1
|
Zhan X, Zhou H, Deng C, Hua RX, Pan L, Zhang S, Lu H, He S, Wang Y, Ruan J, Zhou C, He J. Genetic variations in NER pathway gene polymorphisms and Wilms tumor risk: A six-center case-control study in East China. IUBMB Life 2024. [PMID: 39415460 DOI: 10.1002/iub.2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/17/2024] [Indexed: 10/18/2024]
Abstract
The nucleotide excision repair (NER) system is one of the main ways to protect organisms from DNA damage caused by endogenous and exogenous carcinogens. NER deficiency increases genome mutations, chromosomal aberrations, and cancer viability. However, the genetic association between Wilms tumor and NER pathway gene polymorphisms needs to be further validated. We assessed the associations between 19 NER gene polymorphisms and Wilms tumor susceptibility in 416 cases and 936 controls from East China via the TaqMan method. We found that xeroderma pigmentosum group D (XPD) rs238406 and rs13181 significantly decreased the risk of Wilms tumor [adjusted odds ratio (OR) = 0.59, 95% confidence interval (CI) = 0.46-0.75, p <.0001; adjusted OR = 0.63, 95% CI = 0.44-0.89, p = .009, respectively]. Furthermore, the rs751402 and rs2296147 polymorphisms in the xeroderma pigmentosum group G (XPG) gene were significantly correlated with an increased risk for Wilms tumor (adjusted OR = 1.47, 95% CI = 1.03-2.09, p = .034; adjusted OR = 2.14, 95% CI = 1.29-3.56, p = .003, respectively). Expression quantitative trait loci (eQTL) analysis revealed that these four polymorphisms may affect the expression of genes that are adjacent to XPD and XPG. Our study provides evidence that XPD and XPG gene polymorphisms are associated with Wilms tumor risk. Nonetheless, these findings should be confirmed in a larger sample size.
Collapse
Affiliation(s)
- Xueli Zhan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lingling Pan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Hongting Lu
- Department of Pediatric Surgery, Qingdao Women and Children's Hospital, Qingdao, China
| | - Shaohua He
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yizhen Wang
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei, China
| | - Jichen Ruan
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Aydin E, Nie S, Azizoglu S, Chong L, Gokhale M, Suphioglu C. What's the situation with ocular inflammation? A cross-seasonal investigation of proteomic changes in ocular allergy sufferers' tears in Victoria, Australia. Front Immunol 2024; 15:1386344. [PMID: 38855108 PMCID: PMC11157006 DOI: 10.3389/fimmu.2024.1386344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background Ocular allergy (OA) is a localized subset of allergy characterized by ocular surface itchiness, redness and inflammation. Inflammation and eye-rubbing, due to allergy-associated itch, are common in OA sufferers and may trigger changes to the ocular surface biochemistry. The primary aim of this study is to assess the differences in the human tear proteome between OA sufferers and Healthy Controls (HCs) across peak allergy season and off-peak season in Victoria, Australia. Methods 19 participants (14 OA sufferers, 5 HCs) aged 18-45 were recruited for this study. Participants were grouped based on allergy symptom assessment questionnaire scoring. Proteins were extracted from human tear samples and were run on an Orbitrap Mass Spectrometer. Peaks were matched to a DIA library. Data was analyzed using the software MaxQuant, Perseus and IBM SPSS. Results 1267 proteins were identified in tear samples of OA sufferers and HCs. 23 proteins were differentially expressed between peak allergy season OA suffers vs HCs, and 21 were differentially expressed in off-peak season. Decreased proteins in OA sufferers related to cell structure regulation, inflammatory regulation and antimicrobial regulation. In both seasons, OA sufferers were shown to have increased expression of proteins relating to inflammation, immune responses and cellular development. Conclusion Tear protein identification showed dysregulation of proteins involved in inflammation, immunity and cellular structures. Proteins relating to cellular structure may suggest a possible link between OA-associated itch and the subsequent ocular surface damage via eye-rubbing, while inflammatory and immune protein changes highlight potential diagnostic and therapeutic biomarkers of OA.
Collapse
Affiliation(s)
- Esrin Aydin
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Serap Azizoglu
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Luke Chong
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Moneisha Gokhale
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
3
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Luo X, Zhao M, Chen C, Lin F, Li X, Huang H, Dou L, Feng J, Xiao S, Liu D, He J, Yu J. Identification of genetic susceptibility in preterm newborns with bronchopulmonary dysplasia by whole-exome sequencing: BIVM gene may play a role. Eur J Pediatr 2023; 182:1707-1718. [PMID: 36757497 PMCID: PMC10167099 DOI: 10.1007/s00431-022-04779-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023]
Abstract
UNLABELLED Bronchopulmonary dysplasia (BPD) is a common chronic respiratory disease in preterm infants caused by multifactorial etiology. Genetic factors are involved in the occurrence of BPD, but studies have found that candidate genes have poor reproducibility and are influenced by ethnic heterogeneity; therefore, more exploration is still needed. We performed whole-exon sequencing in 34 preterm infants with BPD and 32 non-BPD control neonates. The data were analyzed and interpreted by Fisher difference comparison, PLINK and eQTL association analysis, KEGG and GO enrichment analysis, STRING tool, Cytoscape software, ProtParam tool, HOPE online software, and GEOR2 analysis on NCBI GEO dataset. BPD has a highly heterogeneity in different populations, and we found 35 genes overlapped with previous whole-exon sequencing studies, such as APOB gene. Arterial and epithelial cell development and energy metabolism pathways affect BPD. In this study, 24 key genes were identified, and BIVM rs3825519 mutation leads to prolonged assisted ventilation in patients with BPD. A novel DDAH1 mutation site (NM_012137: exon1: c.89 T > G: p.L30R) was found in 9 BPD patients. CONCLUSION BIVM gene rs3825519 mutation may play a role in the pathogenesis of BPD by affecting cilia movement, and the DDAH1 and APOB genes mutations may have a pathogenic role in BPD. WHAT IS KNOWN • Genetic factors are involved in the occurrence of bronchopulmonary dysplasia. • The candidate genes have poor reproducibility and are influenced by ethnic heterogeneity, therefore, more exploration is still needed. WHAT IS NEW • We identified the role of susceptible SNPs in BPD in Shenzhen, China, and identified 24 key genes that influence the pathogenesis of BPD, and also found 35 genes overlapped with previous whole exon sequencing studies, such as APOB gene. • We found that BIVM and DDAH1 genes may play a pathogenic role in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Xi Luo
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, 136 Zhongshan 2nd Road, Yuzhong District, Chongqing, 40014, China
| | - Min Zhao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, 136 Zhongshan 2nd Road, Yuzhong District, Chongqing, 40014, China
| | - Cheng Chen
- Department of Neonatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital, Shenzhen, 518172, China
| | - Fengji Lin
- Department of Neonatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital, Shenzhen, 518172, China
| | - Xiaodong Li
- Department of Neonatology, Huazhong University of Science and Technology Union Shenzhen Hospital (NanShan Hospital), Shenzhen, 518052, China
| | - Haiyun Huang
- Department of Neonatology, Huazhong University of Science and Technology Union Shenzhen Hospital (NanShan Hospital), Shenzhen, 518052, China
| | - Lei Dou
- Department of Neonatology, Southern University of Science and Technology Hospital, No. 6019 Liuxian Avenue, Xili Street, Nanshan District, Shenzhen, 518055, China
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen, 518031, China
| | - Shanqiu Xiao
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518133, China
| | - Dong Liu
- Department of Neonatology, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Junli He
- Department of Neonatology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, 136 Zhongshan 2nd Road, Yuzhong District, Chongqing, 40014, China. .,Department of Neonatology, Southern University of Science and Technology Hospital, No. 6019 Liuxian Avenue, Xili Street, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Yang C, Chen SJ, Chen BW, Zhang KW, Zhang JJ, Xiao R, Li PG. Gene Expression Profile of the Human Colorectal Carcinoma LoVo Cells Treated With Sporamin and Thapsigargin. Front Oncol 2021; 11:621462. [PMID: 34113558 PMCID: PMC8185278 DOI: 10.3389/fonc.2021.621462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Sporamin, a proteinase inhibitor isolated from the sweet potato (Ipomoea batatas), has shown promising anticancer effect against colorectal cancer (CRC) in vitro and in vivo but its mechanisms of action are poorly understood. In the present study, high throughput RNA sequencing (RNA-seq) technology was applied to explore the transcriptomic changes induced by sporamin in the presence of thapsigargin (TG), a non-12-O-tetradecanolphorbol-13-acetate type cancer promoter, in the LoVo human CRC cells. Cellular total RNA was extracted from the cells after they were treated with vehicle (CTL), 1 μM of thapsigargin (TG), or 1 μM of TG plus 30 μM of sporamin (TGSP) for 24 h. The migratory capacity of the cells was determined by wound healing assay. The gene expression profiles of the cells were determined by RNA-seq on an Illumina platform. GO enrichment analysis, KEGG pathway analysis, protein-protein interaction (PPI) network construction, and transcription factors (TF) prediction were all performed based on the differentially expressed genes (DEGs) across groups with a series of bioinformatics tools. Finally, the effect and potential molecular targets of the sporamin at the transcriptome level were evaluated. Sporamin significantly inhibited the migration of cells induced by TG. Among the 17915 genes detected in RNA-seq, 46 DEGs were attributable to the effect of sporamin. RT-PCR experiment validated that the expression of RGPD2, SULT1A3, and BIVM-ERCC5 were up-regulated while NYP4R, FOXN1, PAK6, and CEACAM20 were down-regulated. Sporamin enhanced the mineral absorption pathway, worm longevity regulating pathway, and pyrimidine metabolism pathway. Two TFs (SMIM11A and ATOH8) were down-regulated by sporamin. HMOX1 (up-regulated) and NME1-NME2 (down-regulated) were the main nodes in a PPI network consisting of 16 DEGs that were modulated by sporamin in the presence of TG. Sporamin could favorably alter the gene expression profile of CRC cells, up-regulating the genes that contribute to the homeostasis of intracellular metal ions and the activities of essential enzymes and DNA damage repairment. More studies are warranted to verify its effect on specific genes and delineate the mechanism of action implicated in the process.
Collapse
Affiliation(s)
- Chun Yang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Si-Jia Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Bo-Wen Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Kai-Wen Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Jing-Jie Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China.,National Center for Child Nutriment Quality Supervision and Testing, China National Children's Center, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Peng-Gao Li
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| |
Collapse
|
6
|
Ge J, Liu H, Qian D, Wang X, Moorman PG, Luo S, Hwang S, Wei Q. Genetic variants of genes in the NER pathway associated with risk of breast cancer: A large-scale analysis of 14 published GWAS datasets in the DRIVE study. Int J Cancer 2019; 145:1270-1279. [PMID: 31026346 DOI: 10.1002/ijc.32371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022]
Abstract
A recent hypothesis-free pathway-level analysis of genome-wide association study (GWAS) datasets suggested that the overall genetic variation measured by single nucleotide polymorphisms (SNPs) in the nucleotide excision repair (NER) pathway genes was associated with breast cancer (BC) risk, but no detailed SNP information was provided. To substantiate this finding, we performed a larger meta-analysis of 14 previously published GWAS datasets in the Discovery, Biology and Risk of Inherited Variants in Breast Cancer (DRIVE) study with 53,107 subjects of European descent. Using a hypothesis-driven approach, we selected 138 candidate genes from the NER pathway using the "Molecular Signatures Database (MsigDB)" and "PathCards". All SNPs were imputed using IMPUTE2 with the 1000 Genomes Project Phase 3. Logistic regression was used to estimate BC risk, and pooled ORs for each SNP were obtained from the meta-analysis using the false discovery rate for multiple test correction. RegulomeDB, HaploReg, SNPinfo and expression quantitative trait loci (eQTL) analysis were used to assess the SNP functionality. We identified four independent SNPs associated with BC risk, BIVM-ERCC5 rs1323697_C (OR = 1.06, 95% CI = 1.03-1.10), GTF2H4 rs1264308_T (OR = 0.93, 95% CI = 0.89-0.97), COPS2 rs141308737_C deletion (OR = 1.06, 95% CI = 1.03-1.09) and ELL rs1469412_C (OR = 0.93, 95% CI = 0.90-0.96). Their combined genetic score was also associated with BC risk (OR = 1.12, 95% CI = 1.08-1.16, ptrend < 0.0001). The eQTL analysis revealed that BIVM-ERCC5 rs1323697 C and ELL rs1469412 C alleles were correlated with increased mRNA expression levels of their genes in 373 lymphoblastoid cell lines (p = 0.022 and 2.67 × 10-22 , respectively). These SNPs might have roles in the BC etiology, likely through modulating their corresponding gene expression.
Collapse
Affiliation(s)
- Jie Ge
- Department of Epidemiology and Statistics, Qiqihar Medical University, Qiqihar, Heilongjiang, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC
| | - Danwen Qian
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC
| | - Xiaomeng Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC
| | - Patricia G Moorman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Department of Community and Family Medicine, Duke University Medical Center, Durham, NC
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
| | - Shelley Hwang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC.,Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
7
|
Zhou YY, Ji XF, Fu JP, Zhu XJ, Li RH, Mu CK, Wang CL, Song WW. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose. PLoS One 2015; 10:e0132088. [PMID: 26176541 PMCID: PMC4503422 DOI: 10.1371/journal.pone.0132088] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023] Open
Abstract
D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.
Collapse
Affiliation(s)
- Yue-Yue Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Xiong-Fei Ji
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Jian-Ping Fu
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Xiao-Juan Zhu
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Rong-Hua Li
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chang-Kao Mu
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chun-Lin Wang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- * E-mail: (WWS); (CLW)
| | - Wei-Wei Song
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- * E-mail: (WWS); (CLW)
| |
Collapse
|
8
|
Peterson MP, Rosvall KA, Taylor CA, Lopez JA, Choi JH, Ziegenfus C, Tang H, Colbourne JK, Ketterson ED. Potential for sexual conflict assessed via testosterone-mediated transcriptional changes in liver and muscle of a songbird. ACTA ACUST UNITED AC 2013; 217:507-17. [PMID: 24198265 DOI: 10.1242/jeb.089813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Males and females can be highly dimorphic in metabolism and physiology despite sharing nearly identical genomes, and both sexes respond phenotypically to elevated testosterone, a steroid hormone that alters gene expression. Only recently has it become possible to learn how a hormone such as testosterone affects global gene expression in non-model systems, and whether it affects the same genes in males and females. To investigate the transcriptional mechanisms by which testosterone exerts its metabolic and physiological effects on the periphery, we compared gene expression by sex and in response to experimentally elevated testosterone in a well-studied bird species, the dark-eyed junco (Junco hyemalis). We identified 291 genes in the liver and 658 in the pectoralis muscle that were differentially expressed between males and females. In addition, we identified 1727 genes that were differentially expressed between testosterone-treated and control individuals in at least one tissue and sex. Testosterone treatment altered the expression of only 128 genes in both males and females in the same tissue, and 847 genes were affected significantly differently by testosterone treatment in the two sexes. These substantial differences in transcriptional response to testosterone suggest that males and females may employ different pathways when responding to elevated testosterone, despite the fact that many phenotypic effects of experimentally elevated testosterone are similar in both sexes. In contrast, of the 121 genes that were affected by testosterone treatment in both sexes, 78% were regulated in the same direction (e.g. either higher or lower in testosterone-treated than control individuals) in both males and females. Thus, it appears that testosterone acts through both unique and shared transcriptional pathways in males and females, suggesting multiple mechanisms by which sexual conflict can be mediated.
Collapse
Affiliation(s)
- Mark P Peterson
- Department of Biology, Center for Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mitra PS, Ghosh S, Zang S, Sonneborn D, Hertz-Picciotto I, Trnovec T, Palkovicova L, Sovcikova E, Ghimbovschi S, Hoffman E, Dutta SK. Analysis of the toxicogenomic effects of exposure to persistent organic pollutants (POPs) in Slovakian girls: correlations between gene expression and disease risk. ENVIRONMENT INTERNATIONAL 2012; 39:188-99. [PMID: 22208759 PMCID: PMC3259908 DOI: 10.1016/j.envint.2011.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 05/20/2023]
Abstract
The chemical composition of persistent organic pollutants (POPs) in the environment is not uniform throughout the world, and these contaminants contain many structurally different lipophilic compounds. In a well-defined study cohort in the Slovak Republic, the POP chemicals present in the peripheral blood of exposed children were chemically analyzed. The chemical analysis data revealed that the relative concentration and profile of structurally different organic pollutants, including polychlorinated biphenyls (PCBs), 2,2'-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), 2,2'-bis(4-chlorophenyl)-1,1,1-trichloro-ethane (p,p'-DDT), hexachlorobenzene (HCB) and β-hexachlorocyclohexane (β-HCH), may vary from individual to individual, even within the same exposure area. These chemicals can be broadly classified into two groups. The first group, the PCB congeners, primarily originated from industrial compounds and their byproducts. The second group of compounds originated from or was commonly used in the agricultural sector (e.g., DDT, HCB). The objective of this study was to examine the effects of the two POP exposure profiles on gene expression. For the study population, we selected pre-pubertal girls (mean age of 46.2±1.4 months) with high POP concentrations in their blood (>75% tile of total POP) and classified them in the high 'PCB' group when the total PCB concentration was significantly higher than the total concentration of other POP components and in the 'Other Than PCB' (OTP) group, when the total PCB concentration was significantly lower than the concentration of the other major POP constituents. A matched control group of girls (<25% tile of total POP) was selected for comparison purpose (n=5 per group). Our aims were to determine whether there were any common effects of high POP exposure at a toxicogenomic level and to investigate how exposure may affect physiological functions of the children in two different exposure scenarios. Global gene expression analysis using a microarray (Affymetrix Gene Chip Human genome U133 Plus 2.0 Array) platform was conducted on the total RNA of peripheral blood mononuclear cells from the girls. The results were analyzed by Partek GS, Louis, MI, which identified twelve genes (ATAD2B, BIVM, CD96, CXorf39, CYTH1 ETNK1, FAM13A, HIRA, INO80B, ODG1, RAD23B, and TSGA14) and two unidentified probe sets, as regulated differentially in both the PCB and OTP groups against the control group. The qRT-PCR method was used to validate the microarray results. The Ingenuity Pathway Analysis (IPA) software package identified the possible molecular impairments and disease risks associated with each gene set. Connective tissue disorders, genetic disorders, skeletal muscular disorders and neurological diseases were associated with the 12 common genes. The data therefore identified the potential molecular effects of POP exposure on a genomic level. This report underscores the importance of further study to validate the results in a random population and to evaluate the use of the identified genes as biomarkers for POP exposure.
Collapse
Affiliation(s)
| | | | - Shizhu Zang
- Howard University, Washington, DC, United States of America
| | - Dean Sonneborn
- University of California Davis, Davis, Davis, CA, United States of America
| | | | | | | | | | | | - Eric Hoffman
- Children’s National Medical Center, Washington, DC, United States of America
| | - Sisir K. Dutta
- Howard University, Washington, DC, United States of America
- Corresponding Author: 415 College Street, NW, Room 335, EE Just Hall, Washington, DC 20059, TEL: +1(202)-806-6942; FAX: +1(202) 806-5138;
| |
Collapse
|
10
|
Mok MTS, Tay E, Sekyere E, Glenn WK, Bagnara AS, Edwards MR. Giardia intestinalis: Molecular characterization of UDP-N-acetylglucosamine pyrophosphorylase. Gene 2005; 357:73-82. [PMID: 15951138 DOI: 10.1016/j.gene.2005.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/25/2005] [Accepted: 05/10/2005] [Indexed: 01/18/2023]
Abstract
The flagellated protozoan Giardia intestinalis is one of the most prevalent human-infective parasites with a worldwide distribution. This parasite must encyst to complete the life cycle and N-acetylgalactosamine is produced from endogenous glucose for cyst wall synthesis during the transformation. UDP-N-acetylglucosamine pyrophosphorylase in G. intestinalis (GiUAP, EC 2.7.7.23) is the fourth enzyme in the inducible pathway of N-acetylgalactosamine biosynthesis, catalysing the conversion of N-acetylglucosamine-1-P to UDP-N-acetylglucosamine. In this study the gene GiUAP was cloned and sequenced from the Portland 1 strain using PCR techniques. It has an ORF of approximately 1.3 kb and contains no introns. BLAST and ClustalW analysis of the deduced amino acid sequence revealed significant similarities to other eukaryotic UAPs with putative active sites identified. Southern hybridization showed that GiUAP exists as a single-copy gene and it was shown to have two transcripts by RT-PCR and Northern hybridization. RLM-RACE identified both 5' and 3' untranslated regions and suggested the transcripts exist as a 5'-capped mRNA, with the use of two tandem polyadenylation sites to generate two unusually long giardial 3' untranslated regions of approximately 522 bp and approximately 3 kb. Moreover, a recombinant protein (rGiUAP) was expressed in E. coli and subjected to physical characterizations. Surprisingly the results obtained in this study were significantly different from those reported for the GiUAP in MR4 strain, suggesting this gene is under different transcription control in different strains of G. intestinalis. This report describes the molecular characterization of GiUAP and provides an opportunity to explore the control of gene expression during encystation of the parasite.
Collapse
Affiliation(s)
- Myth T S Mok
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Ferraren DO, Liu C, Badner JA, Corona W, Rezvani A, Monje VD, Gershon ES, Bonner TI, Detera-Wadleigh SD. Linkage disequilibrium analysis in the LOC93081-KDELC1-BIVM region on 13q in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2005; 133B:12-7. [PMID: 15635705 DOI: 10.1002/ajmg.b.30121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome-wide scans in bipolar disorder and a meta analysis on published data have provided evidence for linkage to chromosome 13q, although the reported peaks from various studies have not converged in a narrow region. Recently, single nucleotide polymorphisms (SNPs) at the G72/G30 locus have been shown to be associated with bipolar disorder suggesting its potential role in increasing disease risk. The proposed linkage region on 13q extends over a wide span, and could provide a clue to the existence of other susceptibility variants. In the present study, SNPs in the LOC93081-KDELC1-BIVM, a region proximal to G72, were interrogated in two bipolar family series. KDELC1 has a predicted filamin domain and BIVM contains an immunoglobulin-like motif. The small pedigree series yielded a nominally significant global P-value due to under-transmission of a rare haplotype but this finding was not supported by results from the larger series and in the case-control study that compared 278 cases and 277 controls.
Collapse
Affiliation(s)
- Dilberto O Ferraren
- Genetic Basis for Mood and Anxiety Disorders, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nepomuceno-Silva JL, de Melo LDB, Mendonçã SM, Paixão JC, Lopes UG. RJLs: a new family of Ras-related GTP-binding proteins. Gene 2004; 327:221-32. [PMID: 14980719 DOI: 10.1016/j.gene.2003.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 10/30/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
The Ras superfamily of GTP binding proteins encompasses several gene families that regulate a plethora of events in the eukaryotic cell. Here we describe a novel branch of this superfamily which we have named RJLs. These are present in many unicellular organisms and also in deuterostomes but apparently missing in some intermediary phyla, suggesting an intriguing possibility of lateral gene transference between lower and higher eukaryotes. RJLs lack classical membrane targeting signals and the conserved glutamine residue that coordinates GTP hydrolysis in other proteins from the Ras superfamily. Interestingly, chordate orthologues are chimeras fused to "J" domains in their C-terminal, suggesting that these proteins recruit Hsc70 to specific sites in the cell. Expression analysis of RJLs from chordates suggests predominant expression in nervous tissues, possibly reflecting a role for RJLs in the development or maintenance of the sophisticated chordate nervous system.
Collapse
Affiliation(s)
- José L Nepomuceno-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidades Federal do Rio de Janeiro, Rio de Janeiro, RJ 21949-900, Brazil
| | | | | | | | | |
Collapse
|