1
|
Xu F, Li Y, Zhao X, Liu G, Pang B, Liao N, Li H, Shi J. Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods. Crit Rev Biotechnol 2024; 44:924-940. [PMID: 37455417 DOI: 10.1080/07388551.2023.2225131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/21/2023] [Indexed: 07/18/2023]
Abstract
Fungi-mediated synthesis of Gold nanoparticles (AuNPs) has advantages in: high efficiency, low energy consumption, no need for extra capping and stabilizing agents, simple operation, and easy isolation and purification. Many fungi have been found to synthesize AuNPs inside cells or outside cells, providing different composition and properties of particles when different fungi species or reaction conditions are used. This is good to produce AuNPs with different properties, but may cause challenges to precisely control the particle shape, size, and activities. Besides, low concentrations of substrate and fungal biomass are needed to synthesize small-size particles, limiting the yield of AuNPs in a large scale. To find clues for the development methods to solve these challenges, the reported mechanisms of the fungi-mediated synthesis of AuNPs were summarized. The mechanisms of intracellular AuNPs synthesis are dependent on gold ions absorption by the fungal cell wall via proteins, polysaccharides, or electric absorption, and the reduction of gold ions via enzymes, proteins, and other cytoplasmic redox mediators in the cytoplasm or cell wall. The extracellular synthesis of AuNPs is mainly due to the metabolites outside fungal cells, including proteins, peptides, enzymes, and phenolic metabolites. These mechanisms cause the great diversity of the produced AuNPs in functional groups, element composition, shapes, sizes, and properties. Many methods have been developed to improve the synthesis efficiency by changing: chloroauric acid concentrations, reaction temperature, pH, fungal mass, and reaction time. However, future studies are still required to precisely control the: shape, size, composition, and properties of fungal AuNPs.
Collapse
Affiliation(s)
- Fengqin Xu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Yinghui Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Xixi Zhao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Guanwen Liu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Bing Pang
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Ning Liao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Huixin Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Junling Shi
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
3
|
Singh KR, Natarajan A, Pandey SS. Bioinspired Multifunctional Silver Nanoparticles for Optical Sensing Applications: A Sustainable Approach. ACS APPLIED BIO MATERIALS 2023; 6:4549-4571. [PMID: 37852204 DOI: 10.1021/acsabm.3c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu 641004, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
4
|
Hossain N, Islam MA, Chowdhury MA. Synthesis and characterization of plant extracted silver nanoparticles and advances in dental implant applications. Heliyon 2022; 8:e12313. [PMID: 36590472 PMCID: PMC9794905 DOI: 10.1016/j.heliyon.2022.e12313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dental implantology has always emphasized silver nanoparticles (AgNPs) for various applications due to their biocompatibility, antibacterial activity, and increased surface volume ratio offered by these particles. It is utilized to a large extent in the dental implant industry as a surface modification, biocompatible constituent and composite material. AgNPs may be produced inexpensively, sustainably, and environmentally responsibly by utilizing technologies that extract the plant material. The phytochemical components that are contained in plants make them a better, non-toxic, and more cost-effective alternative to both physical and chemical approaches. Because the size and shape of AgNP depend on their synthesis method and technique, and because the efficacy and toxicity of AgNP depend on both size and shape, synthesis methods and techniques have recently become the focus of a significant amount of research attention. In this review, we discussed Plant Extracted Ag-NP's whose sizes range up to 100nm. This review also focuses on recent research advancements in the Plant Extracted synthesis of AgNPs, as well as their characterization methodologies, current obstacles, future possibilities, and applications in dental implantology.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Aminul Islam
- Department of Mechanical Engineering IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering Dhaka University of Engineering and Technology (DUET), Gazipur Gazipur-1707, Bangladesh
| |
Collapse
|
5
|
Sivagami M, Asharani I. Phyto-mediated Ni/NiO NPs and their catalytic applications-a short review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines 2022; 10:2426. [PMID: 36289688 PMCID: PMC9599314 DOI: 10.3390/biomedicines10102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals' health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination among foodborne pathogens. The occurrence of AMR in bacteria pathogens that cause infections in animals and those associated with food spoilage is now considered a global health concern affecting humans, animals and the environment. The search for alternative antimicrobial agents has kindled the interest of many researchers. Among the alternatives, using plant-derived nanoparticles (PDNPs) for treating microbial dysfunctions in food-producing animals has gained significant attention. In traditional medicine, plant extracts are considered as safe, efficient and natural antibacterial agents for various animal diseases. Given the complexity of the AMR and concerns about issues at the interface of human health, animal health and the environment, it is important to emphasize the role of a One Health approach in addressing this problem. This review examines the potential of PDNPs as bio-control agents in food-producing animals, intending to provide consumers with microbiologically safe food while ensuring food safety and security, better health for animals and humans and a safe environment.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
7
|
Vellingiri MM, Ashwin JKM, Soundari AJPG, Sathiskumar S, Priyadharshini U, Paramasivam D, Liu WC, Balasubramanian B. Mycofabrication of AgONPs derived from Aspergillus terreus FC36AY1 and its potent antimicrobial, antioxidant, and anti-angiogenesis activities. Mol Biol Rep 2021; 48:7933-7946. [PMID: 34655404 DOI: 10.1007/s11033-021-06824-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is an emergency need for the natural therapeutic agents to treat arious life threatening diseases such as cardio- vascular disease, Rheumatoid arthritis and cancer. Among these diseases, cancer is found to be the second life threatening disease; in this view the present study focused to synthesize the silver oxide nanoparticles (AgONPs) from endophytic fungus. METHODS The endophytic fungus was isolated from a medicinal tree Aegle marmelos (Vilva tree) and the potential strain was screened through antagonistic activity. The endophytic fungus was identified through microscopic (Lactophenol cotton blue staining and spore morphology in culture media) and Internal Transcribed Spacer (ITS) 1, ITS 4 and 18S rRNA amplification. The endophyte was cultured for the synthesis of AgONPs and the synthesized NPs were characterized through UV- Vis, FT- IR, EDX, XRD and SEM. The synthesized AgONPs were determined for antimicrobial, antioxidant and anti- angiogenic activity. RESULTS About 35 pigmented endophytic fungi were isolated, screened for antagonistic activity against 12 pathogens and antioxidant activity through DPPH radical scavenging assay; among the isolates, FC36AY1 explored the highest activity and the strain FC36AY1 was identified as Aspergillus terreus. The AgONPs were synthesized from the strain FC36AY1 and characterized for its confirmation, functional groups, nanostructures with unit cell dimensions, size and shape, presence of elements through UV-Vis spectrophotometry, FT-IR, XRD, SEM with EDX analysis. The myco-generated AgONPs manifested their antimicrobial and antioxidant properties with maximum activity at minimum concentration. Moreover, the inhibition of angiogenesis by the AgONPs in Hen's Egg Test on the Chorio-Allantoic Membrane analysis were tested on the eggs of Chittagong breed evinced at significant bioactivity least concentration at 0.1 µg/mL. CONCLUSIONS Thus, the results of this study revealed that the fungal mediated AgONPs can be exploited as potential in biomedical applications.
Collapse
Affiliation(s)
- Manon Mani Vellingiri
- Department of Biotechnology, Rathnavel Subramaniam College of Arts and Science, Coimbatore, Tamil Nadu, 641 402, India
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | - Arockiam Jeyasundar Parimala Gnana Soundari
- Department of Biotechnology, Rathnavel Subramaniam College of Arts and Science, Coimbatore, Tamil Nadu, 641 402, India
- Department of Advanced Studies, The Gandhigram Rural Institute (Deemed to be University), Dindigul, India
| | - Swamiappan Sathiskumar
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | - Deepak Paramasivam
- Department of Biotechnology, Dr. N.G.P. Arts and Science College (Autonomous and Affiliated to Bharathiar University), Coimbatore, Tamil Nadu, 641048, India
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | | |
Collapse
|
8
|
Tereshchenko A, Guda A, Polyakov V, Rusalev Y, Butova V, Soldatov A. Pd nanoparticle growth monitored by DRIFT spectroscopy of adsorbed CO. Analyst 2020; 145:7534-7540. [PMID: 32966356 DOI: 10.1039/d0an01303j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synchrotron-based X-ray absorption spectroscopy and scattering are known in situ probes of metal nanoparticles (NPs). A limited number of laboratory techniques allow post-synthesis diagnostics of the active metal surface area. This work demonstrates the high potential of infrared spectroscopy as an in situ laboratory probe for the growth of metal NPs on a substrate. We introduce a small fraction of CO molecules into the reaction mixture as a probe to monitor the reduction kinetics of the Pd2+ precursor on ceria in hydrogen.
Collapse
Affiliation(s)
- Andrei Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia.
| | | | | | | | | | | |
Collapse
|
9
|
Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, Tiznado H, Ovalle-Marroquin M, Soto-Ramos AG, Blanco A, Rodríguez JA, Romo OA, Chávez-Almazán LA, Susarrey-Arce A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep 2020; 10:12805. [PMID: 32732959 PMCID: PMC7393152 DOI: 10.1038/s41598-020-69606-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/15/2020] [Indexed: 01/01/2023] Open
Abstract
The scientific community is exploiting the use of silver nanoparticles (AgNPs) in nanomedicine and other AgNPs combination like with biomaterials to reduce microbial contamination. In the field of nanomedicine and biomaterials, AgNPs are used as an antimicrobial agent. One of the most effective approaches for the production of AgNPs is green synthesis. Lysiloma acapulcensis (L. acapulcensis) is a perennial tree used in traditional medicine in Mexico. This tree contains abundant antimicrobial compounds. In the context of antimicrobial activity, the use of L. acapulcensis extracts can reduce silver to AgNPs and enhance its antimicrobial activity. In this work, we demonstrate such antimicrobial activity effect employing green synthesized AgNPs with L. acapulcensis. The FTIR and LC-MS results showed the presence of chemical groups that could act as either (i) reducing agents stabilizing the AgNPs or (ii) antimicrobial capping agents enhancing antimicrobial properties of AgNPs. The synthesized AgNPs with L. acapulcensis were crystalline with a spherical and quasi-spherical shape with diameters from 1.2 to 62 nm with an average size diameter of 5 nm. The disk diffusion method shows the magnitude of the susceptibility over four pathogenic microorganisms of clinical interest. The antimicrobial potency obtained was as follows: E. coli ≥ S. aureus ≥ P. aeruginosa > C. albicans. The results showed that green synthesized (biogenic) AgNPs possess higher antimicrobial potency than chemically produced AgNPs. The obtained results confirm a more significant antimicrobial effect of the biogenic AgNPs maintaining low-cytotoxicity than the AgNPs produced chemically.
Collapse
Affiliation(s)
- Diana Garibo
- Cátedras Conacyt-Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Microbiología, Ensenada, Baja California, México. .,Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México.
| | - Hugo A Borbón-Nuñez
- Cátedras Conacyt-Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, México
| | - Jorge N Díaz de León
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - Ernesto García Mendoza
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Iván Estrada
- Cátedras Conacyt-Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Departamento de Ingeniería de Materiales y Química, Chihuahua, México
| | - Yanis Toledano-Magaña
- Universidad Autónoma de Baja California (UABC), Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada, México
| | - Hugo Tiznado
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - Marcela Ovalle-Marroquin
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | | | - Alberto Blanco
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - José A Rodríguez
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - Oscar A Romo
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - Luis A Chávez-Almazán
- Secretaría de Salud de Guerrero, Banco de Sangre Regional Zona Centro, Chilpancingo de los Bravo, Guerrero, México
| | - Arturo Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| |
Collapse
|
10
|
Soneya S, Saritha KV. Biofabrication of silver nanoparticles using leaf extract of Rhynchosia beddomei Baker: spectral characterization and their biological activities. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Bathula C, K S, Kumar K A, Yadav H, Ramesh S, Shinde S, Shrestha NK, Mallikarjuna K, Kim H. Ultrasonically driven green synthesis of palladium nanoparticles by Coleus amboinicus for catalytic reduction and Suzuki-Miyaura reaction. Colloids Surf B Biointerfaces 2020; 192:111026. [PMID: 32344163 DOI: 10.1016/j.colsurfb.2020.111026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/15/2022]
Abstract
A novel ultrasonically driven bio-reduction method was adopted to reduce the palladium chloride into palladium nanoparticles (PdNPs@CA) using coleus amboinicus extract as a green synthetic protocol. XRD confirms the formation of phase pure cubic Pd nanoparticles with the crystallite size range of 40-50 nm. The UV-vis spectrum reveals the formation of Pd nanoparticles by the disappeared peak at 480 nm of PdCl2 solution. The size distribution and surface morphology of prepared Pd nanoparticles showed spherical shaped nanoparticles with less agglomeration. The catalytic reduction behaviour of the Pd suspension is studied by 4-nitro phenol reduction process in 8 min further confirms its high catalytic performance. Synthesized PdNPs@CA were explored in ultrasound promoted Suzuki-Miyaura coupling reaction to determine the catalytic behaviour with ultrasonic frequency of 40 kHz and power of 150 W (Power sonic 410 bath sonicator) and its recycling ability is determined. It was found that aryl halides reacted with aryl boronic acids to obtain biaryl compound with excellent reaction yields in the presence of PdNPs@CA only in 30 min using PEG-400 as a green solvent. PdNPs@CA can be recovered efficiently and reused for 7 cycles without loss of its catalytic property.
Collapse
Affiliation(s)
- Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Subalakshmi K
- Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | - Ashok Kumar K
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Hemraj Yadav
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Surendra Shinde
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, 10326, Republic of Korea
| | - Nabeen K Shrestha
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - K Mallikarjuna
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 712 749, Republic of Korea.
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 712 749, Republic of Korea.
| |
Collapse
|
12
|
Ramadan MA, Sharawy S, Elbisi M, Ghosal K. Eco-friendly Packaging Composite Fabrics based on in situ synthesized Silver nanoparticles (AgNPs) & treatment with Chitosan and/or Date seed extract. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Scaria J, Nidheesh PV, Kumar MS. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110011. [PMID: 32072958 DOI: 10.1016/j.jenvman.2019.110011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 05/07/2023]
Abstract
Bimetallic nanoparticles are the complex combination of two different metal constituents in nanoscale. Water and wastewater treatment utilizing bimetallic particles is an emerging research area. When two metals are combined, it can show not only the properties of its constituents but also new and enhanced properties derived by the synergy of the combination. These properties of bimetallic nanoparticles inevitably depend on the size, structure, and morphology of the particles. Thus the adopting synthesis strategy is very crucial to achieve desired results. Here in this review, the various bimetallic synthesis strategies are compared. The bimetallic nanoparticles decontaminate water through adsorption and/or catalysis mechanism. The various degradation pathways, specifically, adsorption, reduction, oxidation, and advanced oxidation processes are discussed in detail in this review.
Collapse
Affiliation(s)
- Jaimy Scaria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
14
|
Botcha S, Prattipati SD. Callus Extract Mediated Green Synthesis of Silver Nanoparticles, Their Characterization and Cytotoxicity Evaluation Against MDA-MB-231 and PC-3 Cells. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00683-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M. Surface functionalization of central venous catheter with mycofabricated silver nanoparticles and its antibiofilm activity on multidrug resistant Acinetobacter baumannii. Microb Pathog 2019; 138:103832. [PMID: 31689474 DOI: 10.1016/j.micpath.2019.103832] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/27/2022]
Abstract
The mycofabrication of silver nanoparticles (AgNPs) through green chemistry protocol is an advanced methodological progress in medical nanotechnology. Mycofabricated AgNPs are less toxic due to an aura of biomolecules around the nanoparticles. Hence the mycofabricated AgNPs can be used for clinical applications. The present study explores the antibiofilm activity of mycogenerated AgNPs, which were synthesized by the enzymatic reduction of silver nitrate using the marine algicolous endophytic fungus Penicillium polonicum ARA10. The mycogenerated AgNPs showed very specific and potent bactericidal activity against Acinetobacter baumannii. Anti-A.baumannii activities of mycogenerated AgNPs on planktonic as well as biofilm embedded cells were explored. The physical impact of synthesized AgNPs on A.baumannii was investigated by scanning electron microscopy and fluorescence microscopy. A bionanocomposite coating for the central venous catheter (CVC) was formulated using the mycogenerated AgNPs and polydopamine. The bionanocomposite surface was characterized by field emission scanning electron microscopy, water contact angle measurement, and Raman spectroscopy. The results showed that the mycogenerated AgNPs have potent antibiofilm activity on biofilms of A.baumannii. The scanning electron microscopy (SEM) and fluorescence microscopy images showed noticeable aberrations on the ultrastructure of A.baumannii. The SEM and FE-SEM images of biofilms on the surface of CVC samples proved that the AgNPs at minimum bactericidal concentration could destroy the structure of biofilms and lyses the bacterial cell. Thus, the present study establishes a new way to the development of 'antibacterial surfaces' based on mycogenerated AgNPs.
Collapse
Affiliation(s)
- Sahadevan Neethu
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Mathew Jyothis
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India.
| |
Collapse
|
16
|
Amini SM, Akbari A. Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotechnol 2019; 13:771-777. [PMID: 31625516 PMCID: PMC8676617 DOI: 10.1049/iet-nbt.2018.5386] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 10/24/2023] Open
Abstract
For being applied in medicine as therapeutic agents, nanostructures need to be biocompatible and eco-friendly. Plant-derived phenolic acids have been utilised for green synthesis of metallic or metallic oxide nanoparticles (NPs). The phenolic acids play role as both reducing agents and stabilisers in the process of NPs synthesis. Many experiments have been dedicated to develop efficient green synthesis techniques for producing metal NPs. Using phenolic acids represents a reproducible, simple, profitable, and cost-effective strategy to synthesise metal NPs. As a phytochemical for metal NPs synthesis, phenolic acids are antioxidants that represent many health benefits. However, limited studies have been dedicated to the synthesis and characterisation of NPs produced by phenolic acids. Thus, this review focused on phenolic acids mediated nanomaterial synthesis and its biomedical applications. It should be noted the mechanism of metal ion bioreduction, phenolic acids surface adsorption, characterisation, and toxicity of metal NPs made with different phenolic acids have been discussed in this review.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Green Synthesis of Microbial Nanoparticle: Approaches to Application. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-16534-5_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Nasrollahzadeh M, Sajadi SM, Issaabadi Z, Sajjadi M. Biological Sources Used in Green Nanotechnology. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-12-813586-0.00003-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Welz PJ, Khan N, Prins A. The effect of biogenic and chemically manufactured silver nanoparticles on the benthic bacterial communities in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1380-1390. [PMID: 30743850 DOI: 10.1016/j.scitotenv.2018.06.283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 06/09/2023]
Abstract
This study was conducted to determine and compare the effect of chemically-synthesised and biogenic silver nanoparticles on the benthic bacterial community structure in mesocosms containing sediment from three rivers in geographical sites with different population densities (low, medium, high), and therefore likely to be associated with respective low, moderate and high degrees of anthropogenic input. The nanoparticles were applied at the upper limit expected to accumulate in impacted environments (4 μg kgsed-1). The biomass, concentrations of elements, including selection metals (P, K, Na, K, Ca, Mg, Zn, Cu, Al, Ag) were all significantly higher at the high density than at the low density sites. Bacterial community profiling (terminal restriction fragment length polymorphism and amplicon sequencing) showed that the bacterial community structure in the sediments from the high population density site were resilient to environmental perturbations [adjustment from in-situ to ex-situ (laboratory) conditions], as well as to exposure to silver nanoparticles, with the converse being true for the low population density site. Results obtained from amplicon sequencing were interrogated to the lowest taxonomic level with a relative abundance >5%. Proteobacteria was the most abundant phylum in all the sediments. Notable resistance (increased relative abundance) to one or both forms of silver nanoparticles was seen in the class Thermoleophilia, and the orders Myxococcales, Bacteriodales, Pirellules CCU21 and iii 1-15 (class Acidobacteria 6). Conversely, sensitivity was demonstrated in the family Koribacteraceae and the orders Rhizobiales, Ellin 329 and Gemmatales. It is recommended that pro-active environmental monitoring is performed in aquatic systems receiving point source pollution from wastewater treatment plants in order to assess the accumulation of silver nanoparticles. If necessary, measures should be implemented to mitigate the entry of silver nanoparticles, especially into more vulnerable environments.
Collapse
Affiliation(s)
- Pamela J Welz
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7530, South Africa.
| | - Nuraan Khan
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7530, South Africa
| | - Alaric Prins
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7530, South Africa
| |
Collapse
|
20
|
Shkryl YN, Veremeichik GN, Kamenev DG, Gorpenchenko TY, Yugay YA, Mashtalyar DV, Nepomnyaschiy AV, Avramenko TV, Karabtsov AA, Ivanov VV, Bulgakov VP, Gnedenkov SV, Kulchin YN, Zhuravlev YN. Green synthesis of silver nanoparticles using transgenic Nicotiana tabacum callus culture expressing silicatein gene from marine sponge Latrunculia oparinae. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:1646-1658. [PMID: 29022401 DOI: 10.1080/21691401.2017.1388248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the present investigation, transgenic tobacco callus cultures and plants overexpressing the silicatein gene LoSilA1 from marine sponge Latrunculia oparinae were obtained and their bioreduction behaviour for the synthesis of silver nanoparticles (AgNPs) was studied. Synthesized nanoparticles were characterized using UV-visible spectroscopy, Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic flame electron microscopy (AFM) and nanoparticle tracking analysis (NTA). Our measurements showed that the reduction of silver nitrate produced spherical AgNPs with diameters in the range of 12-80 nm. The results of XRD analysis proved the crystal nature of the obtained AgNPs. FTIR analysis indicated that particles are reduced and stabilized in solution by the capping agent, which is likely to be proteins present in the callus extract. Interestingly, the reduction potential of LoSiLA1-transgenic callus line was increased three-fold compared with the empty vector-transformed calli. The synthesized AgNPs were found to exhibit strong antibacterial activity against Escherichia coli and Agrobacterium rhizogenes. The present study reports the first evidence for using genetic engineering for activation of the reduction potential of plant cells for synthesis of biocidal AgNPs.
Collapse
Affiliation(s)
- Yuri N Shkryl
- a Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Department of Biotechnology, Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Galina N Veremeichik
- a Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Department of Biotechnology, Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Dmitriy G Kamenev
- a Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Department of Biotechnology, Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Tatiana Y Gorpenchenko
- a Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Department of Biotechnology, Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Yulia A Yugay
- a Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Department of Biotechnology, Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Dmitriy V Mashtalyar
- b Institute of Chemistry , Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Aleksander V Nepomnyaschiy
- c Institute for Automation and Control Processes , Far East Branch of Russian Academy of Science , Vladivostok , Russia
| | - Tatiana V Avramenko
- a Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Department of Biotechnology, Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Aleksandr A Karabtsov
- d Far East Geological Institute , Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Vladimir V Ivanov
- d Far East Geological Institute , Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Victor P Bulgakov
- a Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Department of Biotechnology, Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
- e Far Eastern Federal University, School of Natural Sciences , Vladivostok , Russia
| | - Sergey V Gnedenkov
- b Institute of Chemistry , Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| | - Yury N Kulchin
- c Institute for Automation and Control Processes , Far East Branch of Russian Academy of Science , Vladivostok , Russia
| | - Yury N Zhuravlev
- a Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Department of Biotechnology, Far East Branch of Russian Academy of Sciences , Vladivostok , Russia
| |
Collapse
|
21
|
Microwave-assisted synthesis of Pd 3Ag nanocomposite via nature polysaccharide applied to glucose detection. Int J Biol Macromol 2018; 118:2065-2070. [PMID: 30009896 DOI: 10.1016/j.ijbiomac.2018.07.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/11/2023]
Abstract
In this work, a green strategy is performed to fabricate Pd3Ag nanoparticles (NPs) using plant-extracted polysaccharide (Lilium brownie polysaccharide, LBP). As-obtained Pd3Ag nanocomposite (Pd3Ag-LBP/C) is surveyed including transmission election microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD). The result of glucose detection application shows that the Pd3Ag-LBP/C glassy carbon electrode (GCE) exhibits good stability and sensitivity. It can completely cover the normal blood glucose concentration (3-8 mM) with high sensitivity of 77.20 μA mM-1 cm-2. This work undoubtedly has positive effects on green synthesis development. It not only proves the practicability of building nanomaterials by polysaccharide, but also offers an environmentally friendly way for fabricating other nanomaterials.
Collapse
|
22
|
Tong X, Guo N, Dang Z, Ren Q, Shen H. In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize ( Zea mays L.). IET Nanobiotechnol 2018; 12:987-993. [PMID: 30247142 PMCID: PMC8676264 DOI: 10.1049/iet-nbt.2017.0230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 08/02/2023] Open
Abstract
Nanoparticles (NPs), especially biosynthesised in living plants by absorbing soluble salts and reducing metal ions, are extensively used in various fields. This work aimed at investigating the in vivo biosynthesis of silver NPs (Ag-NPs) in maize and the spatial distribution of the NPs and some important nutrient elements in the plant. The content of silver in plant was examined by inductively coupled plasma-atomic emission spectrometer showing that Ag can be absorbed by plant as soluble salts. The NPs in different parts of maize plant were detected and analysed by transmission electron microscopy, demonstrating the synthesis of NPs and their transport from the root to the shoots. Two-dimensional proton induced X-ray emission of silver, chlorine and several nutrient elements elucidated the possible relationship between synthesis of NPs and several nutrient elements in plant tissues. To their knowledge, this is the first report of possibility of synthesis of Ag-NPs in living plants maize (Zea mays L.). This study presents direct evidence for synthesis of NPs and distribution of related nutrient elements in maize, which has great significance for studying synthetic application of NPs in crop plants.
Collapse
Affiliation(s)
- Xiaoli Tong
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Na Guo
- Modern Physics Research Center, Fudan University, Shanghai, People's Republic of China
| | - Zhiyan Dang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Qingguang Ren
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China.
| | - Hao Shen
- Modern Physics Research Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges. Microb Pathog 2018; 123:196-200. [DOI: 10.1016/j.micpath.2018.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/25/2018] [Accepted: 07/12/2018] [Indexed: 02/04/2023]
|
24
|
Mitra S, Das A, Sen S, Mahanty B. Potential of metabolic engineering in bacterial nanosilver synthesis. World J Microbiol Biotechnol 2018; 34:138. [DOI: 10.1007/s11274-018-2522-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|
25
|
Allafchian AR, Jalali SAH, Aghaei F, Farhang HR. Green synthesis of silver nanoparticles using Glaucium corniculatum (L.) Curtis extract and evaluation of its antibacterial activity. IET Nanobiotechnol 2018; 12:574-578. [PMID: 30095415 PMCID: PMC8676330 DOI: 10.1049/iet-nbt.2017.0265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 07/29/2023] Open
Abstract
The metal nanoparticles, due to interesting features such as electrical, optical, chemical and magnetic properties, have been investigated repeatedly. Also, the mentioned nanoparticles have specific uses in terms of their antibacterial activity. The biosynthesis method is more appropriate than the chemical method for producing the nanoparticles because it does not need any special facilities; it is also economically affordable. In the current study, the silver nanoparticles (AgNPs) were obtained by using a very simple and low-cost method via Glaucium corniculatum (L.) Curtis plant extract. The characteristics of the AgNPs were investigated using techniques including: X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The SEM and TEM images showed that the nanoparticles had a spherical shape, and the mean diameter of them was 53.7 and 45 nm, respectively. The results of the disc diffusion test used for measuring the anti-bacterial activity of the synthesised nanoparticles indicated that the formed nanoparticles possessed a suitable anti-bacterial activity.
Collapse
Affiliation(s)
- Ali Reza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farzane Aghaei
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hamid Reza Farhang
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
26
|
Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP. Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:306-314. [PMID: 28818776 DOI: 10.1016/j.jphotobiol.2017.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022]
Abstract
Insect pests belonging to the genus Callosobruchus are the major cause of damage to stored pulse crops. Recently, nanotechnology has emerged as a promising tool for pest control. In the present study, we report for the first time the synthesis and biological evaluation of Bacillus thuringiensis coated zinc oxide nanoparticles (Bt-ZnO NPs) on the pulse beetle, Callosobruchus maculatus. The biologically synthesized Bt-ZnO NPs were extensively characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Zeta potential. The bio-physical characterization revealed that the Bt-ZnO NPs has a hexagonal wurtzite structures with an average particle size of 20nm. In addition, zeta potential measurement demonstrated that the Bt-ZnO NPs are negatively charged (-12.7mV) and are moderately stable. The biopesticidal effect of Bt-ZnO NPs was tested against the pulse beetle, C. maculatus. Treatment with Bt-ZnO NPs reduced the fecundity (eggs laid) and hatchability of C. maculatus in a dose-dependent manner. A significant delay in the larval, pupal and total development period of C. maculatus was observed after treatment with Bt-ZnO NPs at 25μg/mL. Furthermore, Bt-ZnO NPs are highly effective in the control of C. maculatus and caused 100% mortality at 25μg/mL. The LC50 value was estimated to be 10.71μg/mL. In addition, treatment with Bt-ZnO NPs decreased the mid-gut α-amylase, cysteine protease, α-glucosidase and glutathione S-transferase (GST) activity in C. maculatus. Our results suggest that Bt-ZnO NPs are effective against C. maculatus and could be used as nanobiopesticides in the control of stored grain insect pests in the future.
Collapse
Affiliation(s)
- Balasubramanian Malaikozhundan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi 630 004, Tamil Nadu, India.
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi 630 004, Tamil Nadu, India.
| | - Sekar Vijayakumar
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6th Floor, Karaikudi 630 004, Tamil Nadu, India
| | - Merlin P Thangaraj
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E5, Canada
| |
Collapse
|
27
|
|
28
|
Dauthal P, Mukhopadhyay M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00861] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Preeti Dauthal
- Department of Chemical Engineering, S.V. National Institute of Technology, Surat-395007, Gujarat, India
| | - Mausumi Mukhopadhyay
- Department of Chemical Engineering, S.V. National Institute of Technology, Surat-395007, Gujarat, India
| |
Collapse
|
29
|
Stoychev GV, Okhrimenko DV, Appelhans D, Voit B. Electron beam-induced formation of crystalline nanoparticle chains from amorphous cadmium hydroxide nanofibers. J Colloid Interface Sci 2016; 461:122-127. [PMID: 26397918 DOI: 10.1016/j.jcis.2015.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
Quantum dots (QDs) and especially quantum dot arrays have been attracting tremendous attention due to their potential applications in various high-tech devices, including QD lasers, solar cells, single photon emitters, QD memories, etc. Here, a dendrimer-based approach for the controlled synthesis of ultra-thin amorphous cadmium hydroxide nanofibers was developed. The fragmentation of the obtained nanofibers in crystalline nanoparticle chains under the irradiation with electron beam was observed in both ambient and cryo-conditions. Based on the experimental results, a model for the formation of amorphous nanofibers, as well as their transformation in crystalline nanoparticle chains is proposed. We foresee that these properties of the nanofibers, combined with the possibility to convert cadmium hydroxide into CdX (X=O, S, Se, Te), could result in a new method for the preparation of 2D and 3D QDs-arrays with numerous potential applications in high performance devices.
Collapse
Affiliation(s)
- Georgi V Stoychev
- Technische Universität Dresden, Organic Chemistry of Polymers, 01062 Dresden, Germany; Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, D-01069 Dresden, Germany.
| | - Denis V Okhrimenko
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5C, 2100, Denmark
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Technische Universität Dresden, Organic Chemistry of Polymers, 01062 Dresden, Germany; Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, D-01069 Dresden, Germany
| |
Collapse
|
30
|
Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin N. Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Karuppiah C, Palanisamy S, Chen SM, Emmanuel R, Muthupandi K, Prakash P. Green synthesis of gold nanoparticles and its application for the trace level determination of painter's colic. RSC Adv 2015. [DOI: 10.1039/c4ra14988b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The green synthesis of metal nanoparticles is found to be more attractive in various disciplines, including in analytical chemistry for heavy metal ion sensing.
Collapse
Affiliation(s)
- Chelladurai Karuppiah
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Selvakumar Palanisamy
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - R. Emmanuel
- Department of Chemistry
- Thiagarajar College
- Madurai-625009
- India
| | - K. Muthupandi
- Department of Chemistry
- Thiagarajar College
- Madurai-625009
- India
| | - P. Prakash
- Department of Chemistry
- Thiagarajar College
- Madurai-625009
- India
| |
Collapse
|
32
|
Durai P, Chinnasamy A, Gajendran B, Ramar M, Pappu S, Kasivelu G, Thirunavukkarasu A. Synthesis and characterization of silver nanoparticles using crystal compound of sodium para-hydroxybenzoate tetrahydrate isolated from Vitex negundo. L leaves and its apoptotic effect on human colon cancer cell lines. Eur J Med Chem 2014; 84:90-9. [DOI: 10.1016/j.ejmech.2014.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/26/2014] [Accepted: 07/03/2014] [Indexed: 01/29/2023]
|
33
|
Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 2014; 69:185-91. [DOI: 10.1016/j.ijbiomac.2014.05.047] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/04/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022]
|
34
|
Zhao Y, Wang D, Xie H, Won SW, Cui L, Wu G. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies. Bioprocess Biosyst Eng 2014; 38:69-77. [PMID: 24996651 DOI: 10.1007/s00449-014-1244-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
Abstract
One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.
Collapse
Affiliation(s)
- Yufeng Zhao
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Chemistry and Materials, South-central University for Nationalities, Wuhan, 430-074, Hubei, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Green biosynthesis of silver nanoparticles and nanomolar detection of p-nitrophenol. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2425-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Al-Harbi MS, El-Deeb BA, Mostafa N, Amer SAM. Extracellular Biosynthesis of AgNPs by the Bacterium <i>Proteus mirabilis</i> and Its Toxic Effect on Some Aspects of Animal Physiology. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/anp.2014.33012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Srivastava P, Bragança J, Ramanan SR, Kowshik M. Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 2013; 17:821-31. [PMID: 23884709 DOI: 10.1007/s00792-013-0563-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/09/2013] [Indexed: 11/29/2022]
Abstract
Numerous bacteria, fungi, yeasts and viruses have been exploited for biosynthesis of highly structured metal sulfide and metallic nanoparticles. Haloarchaea (salt-loving archaea) of the third domain of life Archaea, on the other hand have not yet been explored for nanoparticle synthesis. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (AgNPs) by the haloarchaeal isolate Halococcus salifodinae BK3. The culture on adaptation to silver nitrate exhibited growth kinetics similar to that of the control. NADH-dependent nitrate reductase was involved in silver tolerance, reduction, synthesis of AgNPs, and exhibited metal-dependent increase in enzyme activity. The AgNPs preparation was characterized using UV-visible spectroscopy, XRD, TEM and EDAX. The XRD analysis of the nanoparticles showed the characteristic Bragg peaks of face-centered cubic silver with crystallite domain size of 22 and 12 nm for AgNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The average particle size obtained from TEM analysis was 50.3 and 12 nm for AgNPs synthesized in NTYE and HNB, respectively. This is the first report on the synthesis of silver nanoparticles by haloarchaea.
Collapse
Affiliation(s)
- Pallavee Srivastava
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, 403 726, Goa, India
| | | | | | | |
Collapse
|
38
|
Biosynthesis of Gold Nanoparticles by Streptomyces sp. ERI-3 Supernatant and Process Optimization for Enhanced Production. J CLUST SCI 2012. [DOI: 10.1007/s10876-012-0439-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Mohammed Fayaz A, Girilal M, Rahman M, Venkatesan R, Kalaichelvan P. Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 2011; 32:49-73. [DOI: 10.3109/07388551.2010.550568] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Papageorgiou SK, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK. Facile synthesis of carbon supported copper nanoparticles from alginate precursor with controlled metal content and catalytic NO reduction properties. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:384-390. [PMID: 21398027 DOI: 10.1016/j.jhazmat.2011.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/16/2010] [Accepted: 02/16/2011] [Indexed: 05/30/2023]
Abstract
A copper-nanoparticle-doped carbon was prepared from an alginate based precursor in a one step carbonisation-reduction procedure based on the modified polyol process. The ion exchange capacity of the precursor as well as the porosity, metal content, thermal properties, of the final product, were investigated. The preparation route leads to a porous carbon/copper composite with predefined metal loading reaching up to over 30% (w/w) of finely dispersed Cu nanoparticles of fairly uniform size. NO catalytic abatement evaluation showed high efficiency even at low temperatures compared to other recently reported carbon supported catalysts.
Collapse
Affiliation(s)
- Sergios K Papageorgiou
- Institute of Physical Chemistry, NCSR DemokritosTerma Patriarchou Grigoriou & Neapoleos, 15310 Ag Paraskevi Attikis, Athens, Greece.
| | | | | | | | | |
Collapse
|
42
|
Biological synthesis of metallic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:257-62. [DOI: 10.1016/j.nano.2009.07.002] [Citation(s) in RCA: 1448] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/16/2009] [Accepted: 07/04/2009] [Indexed: 11/18/2022]
|
43
|
Kalishwaralal K, Gopalram S, Vaidyanathan R, Deepak V, Pandian SRK, Gurunathan S. Optimization of alpha-amylase production for the green synthesis of gold nanoparticles. Colloids Surf B Biointerfaces 2010; 77:174-80. [PMID: 20189782 DOI: 10.1016/j.colsurfb.2010.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/21/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
Biocompatible gold nanoparticles have received considerable attention in recent years because of their promising applications in bioimaging, biosensors, biolabels, and biomedicine. The generation of gold nanoparticles using extra-cellular alpha-amylase for the reduction of AuCl(4) with the retention of enzymatic activity in the complex is being reported. The enhanced synthesis of particles has been brought about by optimizing the medium components for alpha-amylase. Response surface methodology and central composite rotary design (CCRD) were employed to optimize a fermentation medium for the production of alpha-amylase by Bacillus licheniformis at pH 8. The three variables involved in the study of alpha-amylase were fructose, peptone and soya meal. Only fructose had a significant effect on alpha-amylase production. The most optimum medium (medB) containing (%) fructose: 3, peptone: 1, soya meal: 2, resulted in a amylase activity of 201.381 U/ml which is same as that of the central level. The least optimum (medA) and most optimum (medB) media were compared for the synthesis of particles indicated by difference in color formation. Spectrophotometric analysis revealed that the particles exhibited a peak at 582 nm and the A(582) for the Med B was 8-fold greater than that of the Med A. The TEM analysis revealed that the particle size ranged from 10 to 50 nm.
Collapse
Affiliation(s)
- Kalimuthu Kalishwaralal
- Department of Biotechnology, Division of Molecular and Cellular Biology, Kalasalingam University, Anand Nagar, Krishnankoil 626190, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
44
|
Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS. Extracellular Synthesis of Crystalline Silver Nanoparticles and Molecular Evidence of Silver Resistance fromMorganellasp.: Towards Understanding Biochemical Synthesis Mechanism. Chembiochem 2008; 9:1415-22. [DOI: 10.1002/cbic.200700592] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Wang H, Niu J, Long X, He Y. Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. ULTRASONICS SONOCHEMISTRY 2008; 15:386-392. [PMID: 17977776 DOI: 10.1016/j.ultsonch.2007.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/23/2007] [Accepted: 09/18/2007] [Indexed: 05/25/2023]
Abstract
Sonophotocatalytic behaviour of methyl orange (MeO) in aqueous solution illuminated by light generated by a xenon lamp was investigated. For all three kinds of photocatalysts: Degussa P25 (75% anatase, 25% rutile, with a surface area of 55.07 m(2)/g), Yili TiO(2) (mainly anatase, with a surface area of 10.45 m(2)/g) and Ag/TiO(2) (silver loaded on Yili TiO(2)), the degradation followed pseudo-first order kinetics. The results showed a synergistic effect between sonolysis and photocatalysis. Some parameters affecting the sonophotocatalytic degradation of MeO with nanoparticles Ag/TiO(2) were determined. The results indicated that the degradation ratio of MeO increased with the increase of ultrasonic power. An optimum 60 mg/L of Ag/TiO(2) added to relatively low concentrations of MeO was proved to have the most effective degradation efficiency. The study on the effects of hydroxyl radical (*OH) scavengers (i.e. mannitol and dimethyl sulfoxide) on the MeO degradation indicated that *OH radicals played an important role during MeO degradation, which enhanced MeO to be completely decomposed.
Collapse
Affiliation(s)
- Hongyuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Xingxing Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ya He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
46
|
|
47
|
Sun X, Li Y. Hollow carbonaceous capsules from glucose solution. J Colloid Interface Sci 2006; 291:7-12. [PMID: 16019011 DOI: 10.1016/j.jcis.2005.04.101] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/23/2005] [Accepted: 04/28/2005] [Indexed: 11/20/2022]
Abstract
An easy hydrothermal method was developed for preparing hollow carbonaceous capsules with reactive surface layer and tunable void size, and shell thickness through a hydrothermal method at 180 degrees C, using only the anionic surfactant sodium dodecyl sulfate (SDS) and glucose as starting material. Ag nanoparticles of less than 10 nm were loaded onto the surface of capsules under ambient condition. Products were characterized with TEM, SEM, and FT-IR spectra. The process is green, cheap, and easy. Since no toxic materials were used in preparation and as-prepared capsules a shared reactive surface layer and a stable carbonaceous framework, the capsules might find application in fields such as biochemistry, pharmaceutics, and clinical diagnostics.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Chemistry and Key Laboratory of Atomic & Molecular Nanosciences, Ministry of Education, China
| | | |
Collapse
|
48
|
Xiong Y, Xie Y, Du G, Liu X, Tian X. Ultrasound-Assisted Self-Regulation Route to Ag Nanorods. CHEM LETT 2002. [DOI: 10.1246/cl.2002.98] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 1999; 96:13611-4. [PMID: 10570120 PMCID: PMC24112 DOI: 10.1073/pnas.96.24.13611] [Citation(s) in RCA: 632] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One mechanism of silver resistance in microorganisms is accumulation of the metal ions in the cell. Here, we report on the phenomenon of biosynthesis of silver-based single crystals with well-defined compositions and shapes, such as equilateral triangles and hexagons, in Pseudomonas stutzeri AG259. The crystals were up to 200 nm in size and were often located at the cell poles. Transmission electron microscopy, quantitative energy-dispersive x-ray analysis, and electron diffraction established that the crystals comprise at least three different types, found both in whole cells and thin sections. These Ag-containing crystals are embedded in the organic matrix of the bacteria. Their possible potential as organic-metal composites in thin film and surface coating technology is discussed.
Collapse
Affiliation(s)
- T Klaus
- Department of Materials Science, The Angström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden.
| | | | | | | |
Collapse
|