1
|
Muita BK, Baxter SW. Temporal Exposure to Bt Insecticide Causes Oxidative Stress in Larval Midgut Tissue. Toxins (Basel) 2023; 15:toxins15050323. [PMID: 37235357 DOI: 10.3390/toxins15050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Bacillus thuringiensis (Bt) three-domain Cry toxins are highly successful biological pesticides; however, the mechanism through which they cause death to targeted larval midgut cells is not fully understood. Herein, we challenged transgenic Bt-susceptible Drosophila melanogaster larvae with moderate doses of activated Cry1Ac toxin and assessed the midgut tissues after one, three, and five hours using transmission electron microscopy and transcriptome sequencing. Larvae treated with Cry1Ac showed dramatic changes to their midgut morphology, including shortened microvilli, enlarged vacuoles, thickened peritrophic membranes, and swelling of the basal labyrinth, suggesting water influx. Transcriptome analysis showed that innate immune responses were repressed, genes involved with cell death pathways were largely unchanged, and mitochondria-related genes were strongly upregulated following toxin exposure. Defective mitochondria produced after toxin exposure were likely to contribute to significant levels of oxidative stress, which represent a common physiological response to a range of toxic chemicals. Significant reductions in both mitochondrial aconitase activity and ATP levels in the midgut tissue supported a rapid increase in reactive oxygen species (ROS) following exposure to Cry1Ac. Overall, these findings support the role of water influx, midgut cell swelling, and ROS activity in response to moderate concentrations of Cry1Ac.
Collapse
Affiliation(s)
- Biko K Muita
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Simon W Baxter
- School of BioSciences, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
2
|
Yao X, Liu C, Duan Y, An S, Wei J, Liang G. ABCC2 is a functional receptor of Bacillus thuringiensis Cry1Ca in Spodoptera litura. Int J Biol Macromol 2022; 194:9-16. [PMID: 34861271 DOI: 10.1016/j.ijbiomac.2021.11.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Spodoptera litura is a serious polyphagous pest in the whole world, which has developed resistance to most conventional insecticides and even some Bacillus thuringiensis (Bt) toxins. Cry1Ca has excellent insecticide activity against S. litura with potential application to control S. litura and delay the development of insect resistance. However, the mode of action of Cry1Ca in S. litura is poorly understood. Here, Cry1Ca-binding proteins were identified from S. litura by using pull down assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that aminopeptidase-N (APN), ATP binding cassette subfamily C member 2 (ABCC2), polycalin, actin and V-type proton ATPase subunit A may bind with Cry1Ca. Further study confirmed that ABCC2 fragment expressed in vitro can bind to Cry1Ca as demonstrated by Ligand blot and homologous competition experiments. The over-expression of endogenous SlABCC2 in Sf9 cells increased Cry1Ca cytotoxicity. Correspondingly, the vivo loss of function analyses by SlABCC2 small interfering RNAs (siRNAs) in S. litura larvae decreased the toxicity of Cry1Ca to larvae. Altogether, these results show that ABCC2 of S. litura is a functional receptor that is involved in the action mode of Cry1Ca.
Collapse
Affiliation(s)
- Xue Yao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Yunpeng Duan
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
3
|
The Cytocidal Spectrum of Bacillus thuringiensis Toxins: From Insects to Human Cancer Cells. Toxins (Basel) 2020; 12:toxins12050301. [PMID: 32384723 PMCID: PMC7291302 DOI: 10.3390/toxins12050301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a ubiquitous bacterium in soils, insect cadavers, phylloplane, water, and stored grain, that produces several proteins, each one toxic to different biological targets such as insects, nematodes, mites, protozoa, and mammalian cells. Most Bt toxins identify their particular target through the recognition of specific cell membrane receptors. Cry proteins are the best-known toxins from Bt and a great amount of research has been published. Cry are cytotoxic to insect larvae that affect important crops recognizing specific cell membrane receptors such as cadherin, aminopeptidase-N, and alkaline phosphatase. Furthermore, some Cry toxins such as Cry4A, Cry4B, and Cry11A act synergistically with Cyt toxins against dipteran larvae vectors of human disease. Research developed with Cry proteins revealed that these toxins also could kill human cancer cells through the interaction with specific receptors. Parasporins are a small group of patented toxins that may or may not have insecticidal activity. These proteins could kill a wide variety of mammalian cancer cells by recognizing specific membrane receptors, just like Cry toxins do. Surface layer proteins (SLP), unlike the other proteins produced by Bt, are also produced by most bacteria and archaebacteria. It was recently demonstrated that SLP produced by Bt could interact with membrane receptors of insect and human cancer cells to kill them. Cyt toxins have a structure that is mostly unrelated to Cry toxins; thereby, other mechanisms of action have been reported to them. These toxins affect mainly mosquitoes that are vectors of human diseases like Anopheles spp (malaria), Aedes spp (dengue, zika, and chikungunya), and Culex spp (Nile fever and Rift Valley fever), respectively. In addition to the Cry, Cyt, and parasporins toxins produced during spore formation as inclusion bodies, Bt strains also produce Vip (Vegetative insecticidal toxins) and Sip (Secreted insecticidal proteins) toxins with insecticidal activity during their vegetative growth phase.
Collapse
|
4
|
Shen D, Tang Z, Wang C, Wang J, Dong Y, Chen Y, Wei Y, Cheng B, Zhang M, Grenville-Briggs LJ, Tyler BM, Dou D, Xia A. Infection mechanisms and putative effector repertoire of the mosquito pathogenic oomycete Pythium guiyangense uncovered by genomic analysis. PLoS Genet 2019; 15:e1008116. [PMID: 31017897 PMCID: PMC6502433 DOI: 10.1371/journal.pgen.1008116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/06/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
Pythium guiyangense, an oomycete from a genus of mostly plant pathogens, is an effective biological control agent that has wide potential to manage diverse mosquitoes. However, its mosquito-killing mechanisms are almost unknown. In this study, we observed that P. guiyangense could utilize cuticle penetration and ingestion of mycelia into the digestive system to infect mosquito larvae. To explore pathogenic mechanisms, a high-quality genome sequence with 239 contigs and an N50 contig length of 1,009 kb was generated. The genome assembly is approximately 110 Mb, which is almost twice the size of other sequenced Pythium genomes. Further genome analysis suggests that P. guiyangense may arise from a hybridization of two related but distinct parental species. Phylogenetic analysis demonstrated that P. guiyangense likely evolved from common ancestors shared with plant pathogens. Comparative genome analysis coupled with transcriptome sequencing data suggested that P. guiyangense may employ multiple virulence mechanisms to infect mosquitoes, including secreted proteases and kazal-type protease inhibitors. It also shares intracellular Crinkler (CRN) effectors used by plant pathogenic oomycetes to facilitate the colonization of plant hosts. Our experimental evidence demonstrates that CRN effectors of P. guiyangense can be toxic to insect cells. The infection mechanisms and putative virulence effectors of P. guiyangense uncovered by this study provide the basis to develop improved mosquito control strategies. These data also provide useful knowledge on host adaptation and evolution of the entomopathogenic lifestyle within the oomycete lineage. A deeper understanding of the biology of P. guiyangense effectors might also be useful for management of other important agricultural pests. Utilization of biocontrol agents has emerged as a promising mosquito control strategy, and Pythium guiyangense has wide potential to manage diverse mosquitoes with high efficiency. However, the molecular mechanisms underlying pathological processes remain almost unknown. We observed that P. guiyangense invades mosquito larvae through cuticle penetration and through ingestion of mycelia via the digestive system, jointly accelerating mosquito larvae mortality. We also present a high-quality genome assembly of P. guiyangense that contains two distinct genome complements, which likely resulted from a hybridization of two parental species. Our analyses revealed expansions of kinases, proteases, kazal-type protease inhibitors, and elicitins that may be important for adaptation of P. guiyangense to a mosquito-pathogenic lifestyle. Moreover, our experimental evidence demonstrated that some Crinkler effectors of P. guiyangense can be toxic to insect cells. Our findings suggest new insights into oomycete evolution and host adaptation by animal pathogenic oomycetes. Our new genome resource will enable better understanding of infection mechanisms, with the potential to improve the biological control of mosquitoes and other agriculturally important pests.
Collapse
Affiliation(s)
- Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaoyang Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Cong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yumei Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yang Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yun Wei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Biao Cheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meiqian Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Brett M. Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
5
|
Castella C, Pauron D, Hilliou F, Trang VT, Zucchini-Pascal N, Gallet A, Barbero P. Transcriptomic analysis of Spodoptera frugiperda Sf9 cells resistant to Bacillus thuringiensis Cry1Ca toxin reveals that extracellular Ca 2+, Mg 2+ and production of cAMP are involved in toxicity. Biol Open 2019; 8:bio.037085. [PMID: 30926594 PMCID: PMC6503997 DOI: 10.1242/bio.037085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) produces pore forming toxins that have been used for pest control in agriculture for many years. However, their molecular and cellular mode of action is still unclear. While a first model - referred to as the pore forming model - is the most widely accepted scenario, a second model proposed that toxins could trigger an Mg2+-dependent intracellular signalling pathway leading to cell death. Although Cry1Ca has been shown to form ionic pores in the plasma membrane leading to cell swelling and death, we investigated the existence of other cellular or molecular events involved in Cry1Ca toxicity. The Sf9 insect cell line, derived from Spodoptera frugiperda, is highly and specifically sensitive to Cry1Ca. Through a selection program we developed various levels of laboratory-evolved Cry1Ca-resistant Sf9 cell lines. Using a specific S. frugiperda microarray we performed a comparative transcriptomic analysis between sensitive and resistant cells and revealed genes differentially expressed in resistant cells and related to cation-dependent signalling pathways. Ion chelators protected sensitive cells from Cry1Ca toxicity suggesting the necessity of both Ca2+ and/or Mg2+ for toxin action. Selected cells were highly resistant to Cry1Ca while toxin binding onto their plasma membrane was not affected. This suggested a resistance mechanism different from the classical 'loss of toxin binding'. We observed a correlation between Cry1Ca cytotoxicity and the increase of intracellular cAMP levels. Indeed, Sf9 sensitive cells produced high levels of cAMP upon toxin stimulation, while Sf9 resistant cells were unable to increase their intracellular cAMP. Together, these results provide new information about the mechanism of Cry1Ca toxicity and clues to potential resistance factors yet to discover.
Collapse
|
6
|
BenFarhat-Touzri D, Jemli S, Driss F, Tounsi S. Molecular and structural characterization of a novel Cry1D toxin from Bacillus thuringiensis with high toxicity to Spodoptera littoralis (Lepidoptera: Noctuidae). Int J Biol Macromol 2019; 126:969-976. [PMID: 30593807 DOI: 10.1016/j.ijbiomac.2018.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
The investigation of new Bacillus thuringiensis (Bt) insecticidal proteins (Cry) with specific toxicity is one of the alternative measures used for Lepidopteran pest control. In the present study, a new Cry toxin was identified from a promising Bt strain BLB250 which was previously selected for its high toxicity against Spodoptera littoralis. The corresponding gene, designated cry1D-250, was cloned. It showed an ORF of 3498bp, encoding a protein of 1165 amino acid residues with a putative molecular mass of 132kDa which was confirmed by SDS-PAGE and Western blot analyses. The corresponding toxin named Cry1D-250 showed a higher insecticidal activity towards S. littoralis than Cry1D-133 (LC50 of 224.4ngcm-2) with an LC50 of only 166ngcm-2. Besides to the 65kDa active toxin, proteolysis activation of Cry1D-133 protein with S. littoralis midgut juice generated an extra form of 56kDa, which was the result of a second cleavage. Via activation study and 3D structure analysis, novel substitutions found in the Cry1D-250 protein compared to Cry1D-133 toxin were shown to be involved in the protein stability and toxicity. Therefore, the Cry1D-250 toxin can be considered to be an effective alternative for the control of S. littoralis.
Collapse
Affiliation(s)
- Dalel BenFarhat-Touzri
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzyme Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| | - Fatma Driss
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia.
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| |
Collapse
|
7
|
Martínez-Solís M, Pinos D, Endo H, Portugal L, Sato R, Ferré J, Herrero S, Hernández-Martínez P. Role of Bacillus thuringiensis Cry1A toxins domains in the binding to the ABCC2 receptor from Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:47-56. [PMID: 30077769 DOI: 10.1016/j.ibmb.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Cry proteins from Bacillus thuringiensis (Bt) have been used to control insect pests either as formulated sprays or as in Bt-crops. However, field-evolved resistance to Bt proteins is threatening the long-term use of Bt products. The SeABCC2 locus has been genetically linked to resistance to a Bt bioinsecticide (Xentari™) in Spodoptera exigua (a mutation producing a truncated form of the transporter lacking an ATP binding domain was found in the resistant insects). Here, we investigated the role of SeABCC2 in the mode of action of Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and two Cry1A-1Ca hybrids by expressing the receptor in Sf21 and HEK293T cell lines. Cell toxicity assays showed that Sf21 cells expressing SeABCC2 become susceptible to Cry1A proteins. HEK293T cells expressing the transporter were found susceptible to Cry1A proteins but not to Cry1Ca. The results with the Cry1A-1Ca hybrids suggest that domain II from Cry1Ab/c is crucial for the toxicity to Sf21 cells, whereas domain III from Cry1Aa/b is crucial for the toxicity to HEK293T cells. Binding assays showed that the Cry1Ac binding is of high affinity and specific to cells expressing the SeABCC2 transporter. Heterologous competition experiments support a model in which domain II of Cry1Ab/c has a common binding site in the SeABCC2 protein, whereas domain III of Cry1Aa/b binds to a different binding site in the SeABCC2 protein.
Collapse
Affiliation(s)
- María Martínez-Solís
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain
| | - Daniel Pinos
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain
| | - Haruka Endo
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Leivi Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain
| | - Salvador Herrero
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain
| | - Patricia Hernández-Martínez
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
8
|
Wei J, Liang G, Wu K, Gu S, Guo Y, Ni X, Li X. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines. INSECT SCIENCE 2018; 25:655-666. [PMID: 28247982 DOI: 10.1111/1744-7917.12451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
While Cry1Ac has been known to bind with larval midgut proteins cadherin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), little is known about the receptors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baseline cytotoxicity of activated Cry1Ac and Cry2Ab against the midgut and fat body cell lines of Helicoverpa zea and the ovary cell line of Spodoptera frugiperda (SF9). As expected, the descending order of cytotoxicity of Cry1Ac against the three cell lines in terms of 50% lethal concetration (LC50 ) was midgut (31.0 μg/mL) > fat body (59.0 μg/mL) and SF9 cell (99.6 μg/mL). By contrast, the fat body cell line (LC50 = 7.55 μg/mL) was about twice more susceptible to Cry2Ab than the midgut cell line (16.0 μg/mL), the susceptibility of which was not significantly greater than that of SF9 cells (27.0 μg/mL). Further, ligand blot showed the binding differences between Cry1Ac and Cry2Ab in the three cell lines. These results indicated that the receptors of Cry2Ab were enriched in fat body cells and thus largely different from the receptors of Cry1Ac, which were enriched in midgut cells.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Soberón M, Portugal L, Garcia-Gómez BI, Sánchez J, Onofre J, Gómez I, Pacheco S, Bravo A. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:66-78. [PMID: 29269111 DOI: 10.1016/j.ibmb.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Cell lines have been use extensively for the study of the mode of action of different pore forming toxins produced by different bacterial species. Bacillus thuringiensis Cry toxins are not the exception and their mechanism of action has been analyzed in different cell lines. Here we review the data obtained with different cell lines, including those that are naturally susceptible to the three domain Cry toxins (3d-Cry) and other non-susceptible cell lines that have been transformed with 3d-Cry toxin binding molecules cloned from the susceptible insects. The effects on Cry toxin action after expressing different insect gut proteins, such as glycosyl-phosphatidyl-inositol (GPI) anchored proteins (like alkaline phosphatase (ALP) aminopeptidase (APN)), or trans-membrane proteins (like cadherin (CAD) or ATP-binding cassette subfamily C member 2 (ABCC2) transporter) in cell lines showed that, with few exceptions, expression of GPI-anchored proteins do not correlated with increased susceptibility to the toxin, while the expression of CAD or ABCC2 proteins correlated with induced susceptibility to Cry toxins in the transformed cells lines. Also, that the co-expression of CAD and ABCC2 transporter induced a synergistic effect in the toxicity of 3d-Cry toxins. Overall the data show that in susceptible cell lines, the 3d-Cry toxins induce pore formation that correlates with toxicity. However, the intracellular responses remain controversial since it was shown that the same 3d-Cry toxin in different cell lines activated different responses such as adenylate cyclase-PKA death response or apoptosis. Parasporins are Cry toxins that are toxic to cancer cell lines that have structural similarities with the insecticidal Cry toxins. They belong to the 3d-Cry toxin or to MTX-like Cry toxin families but also show important differences with the insecticidal Cry proteins. Some parasporins are pore-forming toxins, and some activate apoptosis. In this review we summarized the results of the different studies about the Cry toxins mode of action using cultured cell lines and discuss their relation with the studies performed in insect larvae.
Collapse
Affiliation(s)
- Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Leivi Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Blanca-Ines Garcia-Gómez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Jorge Sánchez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Janette Onofre
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Isabel Gómez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Sabino Pacheco
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| |
Collapse
|
10
|
Soberón M, Monnerat R, Bravo A. Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms. TOXINOLOGY 2018. [DOI: 10.1007/978-94-007-6449-1_28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Banerjee R, Hasler J, Meagher R, Nagoshi R, Hietala L, Huang F, Narva K, Jurat-Fuentes JL. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci Rep 2017; 7:10877. [PMID: 28883440 PMCID: PMC5589895 DOI: 10.1038/s41598-017-09866-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/31/2017] [Indexed: 01/28/2023] Open
Abstract
Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm (Spodoptera frugiperda) is a devastating pest of corn in the Western Hemisphere initially controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein (event TC1507). However field-evolved resistance to TC1507 was observed in Puerto Rico in 2007 and has subsequently been reported in a number of locations in North and South America. Early studies on Puerto Rico fall armyworm populations found that the resistance phenotype was associated with reduced expression of alkaline phosphatase. However, in this work we show that field-evolved resistance to Cry1Fa Bt corn in Puerto Rico is closely linked to a mutation in an ATP Binding Cassette subfamily C2 (ABCC2) gene that functions as a Cry1Fa receptor in susceptible insects. Furthermore, we report a DNA-based genotyping test used to demonstrate the presence of the resistant (SfABCC2mut) allele in Puerto Rico populations in 2007, coincident with the first reports of damage to TC1507 corn. These DNA-based field screening data provide strong evidence that resistance to TC1507 in fall armyworm maps to the SfABCC2 gene and provides a useful molecular marker for detecting the SfABCC2mut allele in resistant fall armyworm.
Collapse
Affiliation(s)
- Rahul Banerjee
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Robert Meagher
- Center for Medical, Agricultural and Veterinary Entomology, Insect Behavior and Biocontrol Research Unit, USDA-ARS, Gainesville, FL, 32608, USA
| | - Rodney Nagoshi
- Center for Medical, Agricultural and Veterinary Entomology, Insect Behavior and Biocontrol Research Unit, USDA-ARS, Gainesville, FL, 32608, USA
| | - Lucas Hietala
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | | | - Juan Luis Jurat-Fuentes
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
Bretschneider A, Heckel DG, Pauchet Y. Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:109-117. [PMID: 27456115 DOI: 10.1016/j.ibmb.2016.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
Insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) are highly active against Lepidoptera. However, field-evolved resistance to Bt toxins is on the rise. The 12-cadherin domain protein HevCaLP and the ABC transporter HevABCC2 are both genetically linked to Cry toxin resistance in Heliothis virescens. We investigated their interaction using stably expressing non-lytic clonal Sf9 cell lines expressing either protein or both together. Untransfected Sf9 cells are innately sensitive to Cry1Ca toxin, but not to Cry1A toxins; and quantitative PCR revealed negligible expression of genes involved in Cry1A toxicity such as cadherin, ABCC2, alkaline phosphatase (ALP) and aminopeptidase N (APN). Cry1Aa, Cry1Ab or Cry1Ac caused swelling of Sf9 cells expressing HevABCC2, and caused faster swelling, lysis and up to 86% mortality in cells expressing both proteins. No such effect was observed in control Sf9 cells or in cells expressing only HevCaLP. The results of a mixing experiment demonstrated that both proteins need to be expressed within the same cell for high cytotoxicity, and suggest a novel role for HevCaLP. Binding assays showed that the toxin-receptor interaction is specific. Our findings confirm that HevABCC2 is the central target in Cry1A toxin mode of action, and that HevCaLP plays a supporting role in increasing Cry1A toxicity.
Collapse
Affiliation(s)
- Anne Bretschneider
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
13
|
Dammak M, Khedher SB, Boukedi H, Chaib I, Laarif A, Tounsi S. Involvement of the processing step in the susceptibility/tolerance of two lepidopteran larvae to Bacillus thuringiensis Cry1Aa toxin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 127:46-50. [PMID: 26821657 DOI: 10.1016/j.pestbp.2015.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Bacillus thuringiensis (Bt) Cry1A toxins are known for their effectiveness against lepidopteran insects. In this study, the entomopathogenic activity of Cry1Aa was investigated against two lepidopteran larvae causing serious threat to various crops, Spodoptera littoralis and Tuta absoluta. Contrarily to S. littoralis, which showed low susceptibility to Cry1Aa (40% mortality with 1μg/cm(2)), T. absoluta was very sensitive to this delta-endotoxin (LC50 of 95.8ng/cm(2)). The different steps in the mode of action of this toxin on the two larvae were studied with the aim to understand the origin of their difference of susceptibility. Activation of the 130kDa Cry1Aa protein by T. absoluta larvae juice generated a 65kDa active toxin, whereas S. littoralis gut juice led to a complete degradation of the protoxin. The study of the interaction of the brush border membrane vesicles (BBMV) with purified biotinylated Cry1Aa toxin revealed six and seven toxin binding proteins in T. absoluta and S. littoralis BBMV, respectively. Midgut histopathology of Cry1Aa fed larvae demonstrated approximately similar damage caused by the toxin in the two larvae midguts. These results suggest that the activation step was strongly involved in the difference of susceptibility of the two larvae to Cry1Aa.
Collapse
Affiliation(s)
- Mariam Dammak
- Team of Biopesticides (LPIP), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia.
| | - Saoussen Ben Khedher
- Team of Biopesticides (LPIP), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Hanen Boukedi
- Team of Biopesticides (LPIP), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Ikbel Chaib
- Unit of Entomology (UR13A-GR09), Regional Research Center on Horticulture and Organic Agriculture, University of Sousse, Chott-Mariem, 4042, Tunisia
| | - Asma Laarif
- Unit of Entomology (UR13A-GR09), Regional Research Center on Horticulture and Organic Agriculture, University of Sousse, Chott-Mariem, 4042, Tunisia
| | - Slim Tounsi
- Team of Biopesticides (LPIP), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| |
Collapse
|
14
|
Bacillus amyloliquefaciens AG1 biosurfactant: Putative receptor diversity and histopathological effects on Tuta absoluta midgut. J Invertebr Pathol 2015; 132:42-47. [DOI: 10.1016/j.jip.2015.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 08/15/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022]
|
15
|
Portugal L, Gringorten JL, Caputo GF, Soberón M, Muñoz-Garay C, Bravo A. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1. Peptides 2014; 53:292-9. [PMID: 24189038 DOI: 10.1016/j.peptides.2013.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023]
Abstract
Bacillus thuringiensis Cry toxins are insecticidal proteins used to control insect pests. The interaction of Cry toxins with the midgut of susceptible insects is a dynamic process involving activation of the toxin, binding to midgut receptors in the apical epithelium and conformational changes in the toxin molecule, leading to pore formation and cell lysis. An understanding of the molecular events underlying toxin mode of action is essential for the continued use of Cry toxins. In this work, we examined the mechanism of action of Cry1A toxins in the lepidopteran cell line CF-1, using native Cry1Ab and mutant forms of this protein that interfer with different steps in the mechanism of action, specifically, receptor binding, oligomerization or pore formation. These mutants lost activity against both Manduca sexta larvae and CF-1 cells. We also analyzed a mutation created in domain I of Cry1Ab, in which helix α-1 and part of helix α-2 were deleted (Cry1AbMod). Cry1AbMod is able to oligomerize in the absence of toxin receptors, and although it shows reduced activity against some susceptible insects, it kills insect pests that have developed resistance to native Cry1Ab. Cry1AbMod showed enhanced toxicity to CF-1, suggesting that oligomerization of native Cry1Ab may be a limiting step in its activity against CF-1 cells. The toxicity of Cry1Ac and Cry1AcMod were also analyzed. Our results suggest that some of the steps in the mode of action of Cry1A toxins are conserved in vivo in insect midgut cells and in vitro in an established cell line, CF-1.
Collapse
Affiliation(s)
- Leivi Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - J Lawrence Gringorten
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada.
| | - Guido F Caputo
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - Carlos Muñoz-Garay
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| |
Collapse
|
16
|
Beck B, Brusselman E, Nuyttens D, Moens M, Temmerman F, Pollet S, Van Weyenberg S, Spanoghe P. Improving the biocontrol potential of entomopathogenic nematodes against Mamestra brassicae: effect of spray application technique, adjuvants and an attractant. PEST MANAGEMENT SCIENCE 2014; 70:103-112. [PMID: 23512412 DOI: 10.1002/ps.3533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/08/2013] [Accepted: 03/19/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND Steinernema carpocapsae Weiser, an entomopathogenic nematode (EPN), is a potential biological control agent for the cabbage moth (Mamestra brassicae L.). This research aimed to identify a suitable spray application technique, and to determine whether yeast extract added to an EPN spray has an attracting and/or a feeding stimulant effect on M. brassicae. The biological control capabilities of EPN against this pest were examined in the field. RESULTS Good coverage of the underside of cauliflower leaves, the habitat of young instar larvae (L1-L4) of M. brassicae was obtained using different spray boom configurations with vertical extensions that carried underleaf spraying nozzles. One of the configurations was selected for field testing with an EPN spray. Brewer's yeast extract stimulated larval feeding on leaves, and increased the mortality of these larvae when exposed to EPN. The field trial showed that a spray application with S. carpocapsae, Addit and xanthan gum can effectively lower the numbers of cabbage heads damaged by M. brassicae. Brewer's yeast extract did not significantly increase this field performance of EPN. CONCLUSION Steinernema carpocapsae, applied with an appropriate spray technique, can be used within biological control schemes as part of a resistance management programme for Bt.
Collapse
Affiliation(s)
- Bert Beck
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Agricultural Engineering, Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
17
|
BenFarhat-Touzri D, Saadaoui M, Abdelkefi-Mesrati L, Saadaoui I, Azzouz H, Tounsi S. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut. J Invertebr Pathol 2013; 112:142-5. [DOI: 10.1016/j.jip.2012.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/18/2012] [Accepted: 11/17/2012] [Indexed: 10/27/2022]
|
18
|
Ghribi D, Abdelkefi-Mesrati L, Boukedi H, Elleuch M, Ellouze-Chaabouni S, Tounsi S. The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J Invertebr Pathol 2011; 109:183-6. [PMID: 22079884 DOI: 10.1016/j.jip.2011.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 10/15/2022]
Abstract
SPB1 is a Bacillus subtilis strain producing a lipopeptide biosurfactant. The insecticidal activity of this biosurfactant was evaluated against the Egyptian cotton leaf worm (Spodoptera littoralis). It displayed toxicity with an LC(50) of 251 ng/cm(2). The histopathological changes occurred in the larval midgut of S. littoralis treated with B. subtilis SPB1 biosurfactant were vesicle formation in the apical region, cellular vacuolization and destruction of epithelial cells and their boundaries. Ligand-blotting experiments with S. littoralis brush border membrane vesicles showed binding of SPB1 biosurfactant to a protein of 45 kDa corresponding to its putative receptor. The latter differs in molecular size from those recognized by Bacillus thuringiensis Vip3A and Cry1C toxins, commonly known by their activity against S. littoralis. This result wires the application of B. subtilis biosurfactant for effective control of S. littoralis larvae, particularly in the cases where S. littoralis will develop resistance against B. thuringiensis toxins.
Collapse
Affiliation(s)
- Dhouha Ghribi
- Unit of Enzymes and Bioconversion, National School of Engineers of Sfax, University of Sfax, BP W, 3038 Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
19
|
Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J Invertebr Pathol 2011; 106:250-4. [DOI: 10.1016/j.jip.2010.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 10/04/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
|
20
|
Howlader MTH, Kagawa Y, Sakai H, Hayakawa T. Biological properties of loop-replaced mutants of Bacillus thuringiensis mosquitocidal Cry4Aa. J Biosci Bioeng 2010; 108:179-83. [PMID: 19664548 DOI: 10.1016/j.jbiosc.2009.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 11/19/2022]
Abstract
Cry4Aa produced by Bacillus thuringiensis subsp. israelensis (Bti) exhibits a specific toxicity to Anopheles, Aedes, and Culex larvae, which are vectors of serious diseases, and formulations of Bti are used worldwide for mosquito control. In general, domain II of the Cry toxin is believed to be important for target specificity, and three loops (loops 1, 2, and 3) in domain II have been studied extensively. In this report, to analyze the biological functions of loops 1, 2, and 3 of Cry4Aa, mutants were constructed in which one of the loops was replaced with either of the other two loops. A bioassay using Culex pipiens larvae revealed that the mosquitocidal activity was virtually lost upon replacement of loop2. The mutants in which loops 1 and/or 3 were replaced also showed decreased activity, but they still maintained some activities. This suggested that loop2, but not loops 1 and 3, was essential for the mosquitocidal activity of Cry4Aa. Proteolytic digestion revealed the involvement of loops in the stability of the Cry4Aa structure. No significant differences were observed in the amount of wild-type and mutant Cry4Aa bound to the BBMVs prepared from the C. pipiens larvae.
Collapse
|
21
|
Herrero S, Ansems M, Van Oers MM, Vlak JM, Bakker PL, de Maagd RA. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1109-1118. [PMID: 17916497 DOI: 10.1016/j.ibmb.2007.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 05/25/2023]
Abstract
Insect larvae spend most of their time eating and the digestive tract is the most crucial barrier for the entrance of many pathogens. In our study, suppression subtractive hybridization (SSH) was used to compare Spodoptera exigua midgut gene expression between larvae exposed to the Bacillus thuringiensis Cry1Ca toxin and non-exposed insects. Based on the SSH results, full cDNA sequences coding for four homologous proteins were obtained. Quantitative and semi-quantitative RT-PCR showed the increased expression of the genes coding for these proteins after exposure to different B. thuringiensis toxins as well as after infection with baculovirus. The proteins were named REPAT after their increased expression in Response to Pathogen. REPAT1, a member of this family, was recombinantly expressed using the baculovirus expression system, revealing the glycosylated nature of the protein. Recombinant baculoviruses expressing REPAT1 were used to infect larvae from S. exigua, showing that expression of REPAT1 was reducing the virulence of baculovirus to the infected larvae. Together, these results suggest a role for REPAT1 in mitigating pathological effects.
Collapse
Affiliation(s)
- Salvador Herrero
- Business Unit Bioscience, Plant Research International B.V., Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Sakai H, Howlader MTH, Ishida Y, Nakaguchi A, Oka K, Ohbayashi K, Yamagiwa M, Hayakawa T. Flexibility and strictness in functional replacement of domain III of cry insecticidal proteins from Bacillus thuringiensis. J Biosci Bioeng 2007; 103:381-3. [PMID: 17502282 DOI: 10.1263/jbb.103.381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 01/19/2007] [Indexed: 11/17/2022]
Abstract
Cry1C, one of the lepidopteran-specific insecticidal proteins from Bacillus thuringiensis, exhibits potent cytotoxicity against Sf9, an insect cell line. Cry1Aa and Cry4A, which are lepidopteran- and dipteran-specific insecticidal proteins, respectively, show no cytotoxicity against Sf9. When domain III of Cry1C was replaced with that of Cry1Aa or Cry4A, the hybrid Cry1C protein retained the cytotoxicity. These results suggest that domain III of Cry1C is not crucial in determining the cytocidal specificity of Cry1C against Sf9.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama-shi, Okayama 700-8530, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sivakumar S, Rajagopal R, Venkatesh GR, Srivastava A, Bhatnagar RK. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J Biol Chem 2007; 282:7312-9. [PMID: 17213205 DOI: 10.1074/jbc.m607442200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminopeptidase-N (APN) and cadherin proteins located at the midgut epithelium of Helicoverpa armigera have been implicated as receptors for the Cry1A subfamily of insecticidal proteins of Bacillus thuringiensis. Ligand blot analysis with heterologously expressed and purified H. armigera Bt receptor with three closely related Cry1A proteins tentatively identified HaAPN1 as an interacting ligand. However, to date there is no direct evidence of APN being a functional receptor to Cry1Ac in H. armigera. Sf21 insect cells expressing HaAPN1 displayed aberrant cell morphology upon overlaying with Cry1Ac protein. Down-regulating expression of HaAPN1 by RNA interference using double-stranded RNA correlated with a corresponding reduction in the sensitivity of HaAPN1-expressing cells to Cry1Ac protein. This clearly establishes that insect cells expressing the receptor recruit sensitivity to the insecticidal protein Cry1Ac, and their susceptibility is directly dependent on the amount of HaAPN1 protein expressed. Most importantly, silencing of HaAPN1 in H. armigera in vivo by RNA interference resulted in reduced transcript levels and a corresponding decrease in the susceptibility of larvae to Cry1Ac. BIAcore analysis of HaAPN1/Cry1Ac interaction further established HaAPN1 as a ligand for Cry1Ac. This is the first functional demonstration of insect aminopeptidase-N of H. armigera being a receptor of Cry1Ac protein of B. thuringiensis.
Collapse
Affiliation(s)
- Swaminathan Sivakumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | | | | | | | | |
Collapse
|
24
|
Avisar D, Segal M, Sneh B, Zilberstein A. Cell-cycle-dependent resistance to Bacillus thuringiensis Cry1C toxin in Sf9 cells. J Cell Sci 2005; 118:3163-71. [PMID: 15985466 DOI: 10.1242/jcs.02440] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Sf9 cell line, derived from the moth Spodoptera frugiperda, is highly and specifically sensitive to the Bacillus thuringiensis Cry1C toxin. Upon exposure to Cry1C, ionic pores are formed in the plasma membrane leading to cell swelling and death. Here, we describe a unique transient tolerance to Cry1C of dividing cells, which allowed completion of the division process in the presence of Cry1C. Correlatively, arresting the cells at G2-M phase by nocodazole treatment rendered them insensitive to Cry1C. When the arresting agent was removed, the cells completed their division and gradually regained Cry1C sensitivity. In comparison to normal cells with 1-2% cell-division frequency, the M-phase arrested cells bound less toxin in binding assays. Moreover, no lipid rafts could be isolated from the membranes of M-phase arrested cells. Caveolin-1, identified here for the first time in insect cells, was immunodetected as a lipid raft component of normal cells, but was only present in the membrane-soluble fraction of G2-M-arrested cells. Thus M-phase-linked changes in lipid raft organization may account for diminished Cry1C binding and toxicity. Furthermore, considering the pivotal role of lipid rafts in different cell functions of many cell types, the lack of organized lipid rafts in dividing cells may transiently affect cell susceptibility to pathogens, toxins and other lipid raft-linked functions.
Collapse
Affiliation(s)
- Dror Avisar
- Department of Plant Sciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
25
|
Hua G, Jurat-Fuentes JL, Adang MJ. Fluorescent-based assays establish Manduca sexta Bt-R(1a) cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:193-202. [PMID: 14871616 DOI: 10.1016/j.ibmb.2003.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 10/14/2003] [Indexed: 05/24/2023]
Abstract
A fluorescence-based approach was developed to analyze in vivo the function of Manduca sexta cadherin (Bt-R(1)) as a Cry1 toxin receptor. We cloned a Bt-R(1a) cDNA that differs from Bt-R(1) by 37 nucleotides and two amino acids and expressed it transiently in Drosophila melanogaster Schneider 2 (S2) cells. Cells expressing Bt-R(1a) bound Cry1Aa, Cry1Ab, and Cry1Ac toxins on ligand blots, and in saturation binding assays. More Cry1Ab was bound relative to Cry1Aa and Cry1Ac, though each Cry1A toxin bound with high-affinity (Kd values from 1.7 to 3.3 nM). Using fluorescent microscopy and flow cytometry assays, we show that Cry1Aa, Cry1Ab and Cry1Ac, but not Cry1Ba, killed S2 cells expressing Bt-R(1a) cadherin. These results demonstrate that M. sexta cadherin Bt-R(1a) functions as a receptor for the Cry1A toxins in vivo and validates our cytotoxicity assay for future receptor studies.
Collapse
Affiliation(s)
- Gang Hua
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA
| | | | | |
Collapse
|
26
|
Kamauchi S, Yamagiwa M, Esaki M, Otake K, Sakai H. Binding properties of Bacillus thuringiensis Cry1C delta-endotoxin to the midgut epithelial membranes of Culex pipiens. Biosci Biotechnol Biochem 2003; 67:94-9. [PMID: 12619679 DOI: 10.1271/bbb.67.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Cry1C delta-endotoxin from Bacillus thuringiensis is toxic to both lepidopteran and dipteran insect larvae. To analyze the dipteran-specific insecticidal mechanisms, we investigated the properties of Cry1C binding to the epithelial cell membrane of the larval midgut from the mosquito Culex pipiens in comparison with dipteran-specific Cry4A. Immunohistochemical staining of the larval midgut sections from Culex pipiens showed that Cry1C and Cry4A bound to the microvilli of the epithelial cells. The Cry1C binding to brush border membrane vesicles from the mosquito larvae was specific and irreversible, and did not compete with Cry4A. By ligand blotting analyses, we detected several Cry1C-binding proteins, the Cry1C binding to which did compete with excess unlabeled Cry4A. These results suggested that Cry1C and Cry4A recognized the same binding site(s) on the epithelial cell surface but that their interaction with the target membrane differed.
Collapse
Affiliation(s)
- Shinya Kamauchi
- Department of Bioscience and Biotechnology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
27
|
Mandrioli M, Wimmer EA. Stable transformation of a Mamestra brassicae (lepidoptera) cell line with the lepidopteran-derived transposon piggyBac. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1-5. [PMID: 12459194 DOI: 10.1016/s0965-1748(02)00189-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cabbage moth cells were transfected with the vector pBac[3xP3-EGFPafm] and helper phsp-pBac. Seventeen percent of the transfected cells showed stable EGFP-expression. This indicates successful and stable transformation of M. brassicae cells with a piggyBac-derived vector. Genomic integration of Bac[3xP3-EGFPafm] in stably transformed cells was confirmed by Southern blots and inverse PCR. Since the integrations are stable, and transfection with pBac[3xP3-EGFPafm] alone did not yield in transformations, no cross-reacting transposase activity seems present in M. brassicae cells. Moreover, Southern blotting with a probe for piggyBac transposase indicated the absence of piggyBac-related elements in the genome of Mamestra brassicae. Due to the tissue specificity of the 3xP3-EGFP marker for eye and nervous tissues, it is intriguing that 3xP3-EGFP can successfully be used to identify stably transformed M. brassicae cells of cell line IZD-MB0503, which is hemocyte-derived. Sequence analysis of the insertion sites showed that piggyBac inverted repeats were adjacent to TTAA sequences on both termini in all the clones. The present results are particularly important as they suggest that piggyBac can be used for transgenesis of cabbage moth cells.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Dipartimento di Biologia Animale, Università di Modena e Reggio Emilia, Via Campi 213/D, 41100, Modena, Italy.
| | | |
Collapse
|
28
|
Guihard G, Laprade R, Schwartz JL. Unfolding affects insect cell permeabilization by Bacillus thuringiensis Cry1C toxin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:110-9. [PMID: 11718667 DOI: 10.1016/s0005-2736(01)00403-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis Cry toxins are efficient, environment-friendly biological insecticides. Their molecular mode of action on target insect cells remains largely unknown. The aim of this study was to investigate the relation between the conformational state of the Cry1C toxin and its ionophoric activity on live Sf9 cells of Spodoptera frugiperda, a target insect for this protein. Potassium ion movement induced by Cry1C across the cell membrane was measured with a fluorescent assay developed previously and the conformation of the toxin was studied using tryptophan spectroscopy. Following treatment with 4 M guanidinium hydrochloride, which resulted in the unfolding of its N-terminal half, the toxin retained its full capacity to permeabilize the cells while the fully unfolded toxin did not induce potassium leakage. Therefore, permeabilization of Sf9 cells by Cry1C requires the integrity of the C-terminal half of the toxin and may depend on an initial unfolding step provided by the acidic environment of the cells.
Collapse
Affiliation(s)
- G Guihard
- INSERM U533, Hôtel-Dieu, Faculté de Médecine, Nantes, France
| | | | | |
Collapse
|
29
|
Cerstiaens A, Verleyen P, Van Rie J, Van Kerkhove E, Schwartz JL, Laprade R, De Loof A, Schoofs L. Effect of Bacillus thuringiensis Cry1 toxins in insect hemolymph and their neurotoxicity in brain cells of Lymantria dispar. Appl Environ Microbiol 2001; 67:3923-7. [PMID: 11525986 PMCID: PMC93110 DOI: 10.1128/aem.67.9.3923-3927.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little information is available on the systemic effects of Bacillus thuringiensis toxins in the hemocoel of insects. In order to test whether B. thuringiensis-activated toxins elicit a toxic response in the hemocoel, we measured the effect of intrahemocoelic injections of several Cry1 toxins on the food intake, growth, and survival of Lymantria dispar (Lepidoptera) and Neobellieria bullata (Diptera) larvae. Injection of Cry1C was highly toxic to the Lymantria larvae and resulted in the complete inhibition of food intake, growth arrest, and death in a dose-dependent manner. Cry1Aa and Cry1Ab (5 microg/0.2 g [fresh weight] [g fresh wt]) also affected growth and food intake but were less toxic than Cry1C (0.5 microg/0.2 g fresh wt). Cry1E and Cry1Ac (5 microg/0.2 g fresh wt) had no toxic effect upon injection. Cry1C was also highly toxic to N. bullata larvae upon injection. Injection of 5 microg/0.2 g fresh wt resulted in rapid paralysis, followed by hemocytic melanization and death. Lower concentrations delayed pupariation or gave rise to malformation of the puparium. Finally, Cry1C was toxic to brain cells of Lymantria in vitro. The addition of Cry1C (20 microg/ml) to primary cultures of Lymantria brain cells resulted in rapid lysis of the cultured neurons.
Collapse
Affiliation(s)
- A Cerstiaens
- Zoological Institute, Katholieke Universiteit, Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
A wild-type and an rDNA strain of Bacillus thuringiensis were cultured in a net-draft-tube modified 20-L airlift bioreactor. A comparison of the sporulation patterns suggests that the early sporulation strain has a lower final spore count. Results from off-gas analysis suggests that the CO(2) profile could be an alternative indication to spore counts for the examination of fermentation performance or even the mortality in bioassay of the cultivation product. The difference in mortality tests exhibited by the microorganism was attributed to different patterns of sporulation as well as different levels of gene control inside the cell itself. The sporulation kinetics of B. thuringiensis was simulated by a simple modified Hill equation, where the initial glucose concentration could affect the timing of the onset of sporulation. The equation matches well with the experimental sporulation data for B. thuringiensis in both wild-type and rDNA strains.
Collapse
Affiliation(s)
- B L Liu
- Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, Taiwan, ROC
| | | |
Collapse
|
31
|
Rang C, Vachon V, de Maagd RA, Villalon M, Schwartz JL, Bosch D, Frutos R, Laprade R. Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins. Appl Environ Microbiol 1999; 65:2918-25. [PMID: 10388684 PMCID: PMC91437 DOI: 10.1128/aem.65.7.2918-2925.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C.
Collapse
Affiliation(s)
- C Rang
- IGEPAM-PC, CIRAD, 34032 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gijón MA, Spencer DM, Kaiser AL, Leslie CC. Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A2. J Cell Biol 1999; 145:1219-32. [PMID: 10366595 PMCID: PMC2133140 DOI: 10.1083/jcb.145.6.1219] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Revised: 04/09/1999] [Indexed: 11/24/2022] Open
Abstract
Cytosolic phospholipase A2 (cPLA2) mediates agonist-induced arachidonic acid release, the first step in eicosanoid production. cPLA2 is regulated by phosphorylation and by calcium, which binds to a C2 domain and induces its translocation to membrane. The functional roles of phosphorylation sites and the C2 domain of cPLA2 were investigated. In Sf9 insect cells expressing cPLA2, okadaic acid, and the calcium-mobilizing agonists A23187 and CryIC toxin induce arachidonic acid release and translocation of green fluorescent protein (GFP)-cPLA2 to the nuclear envelope. cPLA2 is phosphorylated on multiple sites in Sf9 cells; however, only S505 phosphorylation partially contributes to cPLA2 activation. Although okadaic acid does not increase calcium, mutating the calcium-binding residues D43 and D93 prevents arachidonic acid release and translocation of cPLA2, demonstrating the requirement for a functional C2 domain. However, the D93N mutant is fully functional with A23187, whereas the D43N mutant is nearly inactive. The C2 domain of cPLA2 linked to GFP translocates to the nuclear envelope with calcium-mobilizing agonists but not with okadaic acid. Consequently, the C2 domain is necessary and sufficient for translocation of cPLA2 to the nuclear envelope when calcium is increased; however, it is required but not sufficient with okadaic acid.
Collapse
Affiliation(s)
- M A Gijón
- Division of Basic Science, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
33
|
Garner KJ, Hiremath S, Lehtoma K, Valaitis AP. Cloning and complete sequence characterization of two gypsy moth aminopeptidase-N cDNAs, including the receptor for Bacillus thuringiensis Cry1Ac toxin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:527-535. [PMID: 10406091 DOI: 10.1016/s0965-1748(99)00027-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The complete cDNAs corresponding to two distinct gypsy moth (Lymantria dispar) larval gut aminopeptidases, APN1 and lambda APN2, were cloned and sequenced. The 3.4 kilobasepair cDNA of APN1 which encodes a 1017 amino acid prepro-protein corresponds to the previously-identified gypsy moth APN (APN-1) that specifically binds the Cry1Ac delta-endotoxin of Bacillus thuringiensis. Analysis of the primary structure of APN1 revealed a cluster of five potential N-linked glycosylation sites near the N-terminus and a C-terminal sequence characteristic of a putative glycosylphosphatidyl-inositol (GPI) anchor signal sequence. The cDNA of APN1 encodes the N-terminal peptide sequence and nine internal sequences obtained from the purified brush border membrane vesicle Cry1Ac receptor by protein sequencing. The lambda APN2 cDNA encodes a shorter protein with 51% similarity to APN1 that also appears to have a GPI anchor signal sequence. Expression of the APN1 cDNA in a baculovirus vector was confirmed by immunoblotting.
Collapse
Affiliation(s)
- K J Garner
- USDA Forest Service, Northeastern Research Station, Delaware, OH 43015, USA
| | | | | | | |
Collapse
|