1
|
Lilic M, Holmes NA, Bush MJ, Marti AK, Widdick DA, Findlay KC, Choi YJ, Froom R, Koh S, Buttner MJ, Campbell EA. Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB. Proc Natl Acad Sci U S A 2023; 120:e2220785120. [PMID: 36888660 PMCID: PMC10243135 DOI: 10.1073/pnas.2220785120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023] Open
Abstract
Studies of transcriptional initiation in different bacterial clades reveal diverse molecular mechanisms regulating this first step in gene expression. The WhiA and WhiB factors are both required to express cell division genes in Actinobacteria and are essential in notable pathogens such as Mycobacterium tuberculosis. The WhiA/B regulons and binding sites have been elucidated in Streptomyces venezuelae (Sven), where they coordinate to activate sporulation septation. However, how these factors cooperate at the molecular level is not understood. Here we present cryoelectron microscopy structures of Sven transcriptional regulatory complexes comprising RNA polymerase (RNAP) σA-holoenzyme and WhiA and WhiB, in complex with the WhiA/B target promoter sepX. These structures reveal that WhiB binds to domain 4 of σA (σA4) of the σA-holoenzyme, bridging an interaction with WhiA while making non-specific contacts with the DNA upstream of the -35 core promoter element. The N-terminal homing endonuclease-like domain of WhiA interacts with WhiB, while the WhiA C-terminal domain (WhiA-CTD) makes base-specific contacts with the conserved WhiA GACAC motif. Notably, the structure of the WhiA-CTD and its interactions with the WhiA motif are strikingly similar to those observed between σA4 housekeeping σ-factors and the -35 promoter element, suggesting an evolutionary relationship. Structure-guided mutagenesis designed to disrupt these protein-DNA interactions reduces or abolishes developmental cell division in Sven, confirming their significance. Finally, we compare the architecture of the WhiA/B σA-holoenzyme promoter complex with the unrelated but model CAP Class I and Class II complexes, showing that WhiA/WhiB represent a new mechanism in bacterial transcriptional activation.
Collapse
Affiliation(s)
- Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Alexandra K. Marti
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - David A. Widdick
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, UK
| | - Young Joo Choi
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Steven Koh
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | | |
Collapse
|
2
|
Direct regulation of the natural competence regulator gene tfoX by cyclic AMP (cAMP) and cAMP receptor protein (CRP) in Vibrios. Sci Rep 2015; 5:14921. [PMID: 26442598 PMCID: PMC4595672 DOI: 10.1038/srep14921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
TfoX (Sxy) and CRP are two important competence activators. The link between tfoX and CRP has been shown in H. influenza but lacking evidence of direct interaction. Recently a Sxy-dependent CRP (CRP-S) site autoregulating Sxy was reported in E. coli. Here, we show that the cAMP-CRP complex transcriptionally regulates tfoX expression through multiple canonical CRP (CRP-N) sites in Vibrios. This conclusion is supported by an analysis of the tfoX mRNA levels and tfoX transcriptional reporter fusions. The reduced expression of tfoXVC was restored by trans-complementation of crp in ∆crp and by exogenous cAMP in ∆cya. A promoter deletion analysis and the site-directed mutagenesis of the putative CRP-N sites revealed the presence of two functional CRP-N sites. The direct binding of cAMP-CRP to the tfoXVCpromoter was demonstrated by EMSA assays. Additionally, the transcriptional start site (TSS) of tfoXVF in V. fluvialis was determined, and −10/−35 regions were predicted. Further comparison of the tfoX promoter in Vibrios revealed the existence of similar −10 motifs and putative CRP-N sites, indicating the conserved mechanism of CRP regulation on tfoX. Our study demonstrates the direct binding of the cAMP-CRP complex to tfoX promoter, and broadens the understanding of the molecular mechanism regulating tfoX in Vibrios.
Collapse
|
3
|
Expression of different bacterial cytotoxins is controlled by two global transcription factors, CRP and Fis, that co-operate in a shared-recruitment mechanism. Biochem J 2015; 466:323-35. [DOI: 10.1042/bj20141315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of related autotransporter toxin genes in pathogenic Escherichia coli and Shigella sonnei require the CRP and Fis global regulators. At promoters controlling toxin production, CRP is suboptimally positioned and Fis compensates for this impediment by facilitating RNA polymerase recruitment.
Collapse
|
4
|
Lee DJ, Busby SJW. Repression by cyclic AMP receptor protein at a distance. mBio 2012; 3:e00289-12. [PMID: 22967981 PMCID: PMC3445967 DOI: 10.1128/mbio.00289-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In a previous study of promoters dependent on the Escherichia coli cyclic AMP receptor protein (CRP), carrying tandem DNA sites for CRP, we found that the upstream-bound CRP could either enhance or repress transcription, depending on its location. Here, we have analyzed the interactions between CRP and the C-terminal domains of the RNA polymerase α subunits at some of these promoters. We report that the upstream-bound CRP interacts with these domains irrespective of whether it up- or downregulates promoter activity. Hence, disruption of this interaction can lead to either down- or upregulation, depending on its location. IMPORTANCE Many bacterial promoters carry multiple DNA sites for transcription factors. While most factors that downregulate promoter activity bind to targets that overlap or are downstream of the transcription start and -10 element, very few cases of repression from upstream locations have been reported. Since more Escherichia coli promoters are regulated by cyclic AMP receptor protein (CRP) than by any other transcription factor, and since multiple DNA sites for CRP are commonplace at promoters, our results suggest that promoter downregulation by transcription factors may be more prevalent than hitherto thought, and this will have implications for the annotation of promoters from new bacterial genome sequences.
Collapse
Affiliation(s)
- David J Lee
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
5
|
Garcia HG, Sanchez A, Boedicker JQ, Osborne M, Gelles J, Kondev J, Phillips R. Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. Cell Rep 2012; 2:150-61. [PMID: 22840405 DOI: 10.1016/j.celrep.2012.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/14/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022] Open
Abstract
A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression.
Collapse
Affiliation(s)
- Hernan G Garcia
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Frank TD, Carmody AM, Kholodenko BN. Versatility of cooperative transcriptional activation: a thermodynamical modeling analysis for greater-than-additive and less-than-additive effects. PLoS One 2012; 7:e34439. [PMID: 22506020 PMCID: PMC3323628 DOI: 10.1371/journal.pone.0034439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/02/2012] [Indexed: 11/20/2022] Open
Abstract
We derive a statistical model of transcriptional activation using equilibrium thermodynamics of chemical reactions. We examine to what extent this statistical model predicts synergy effects of cooperative activation of gene expression. We determine parameter domains in which greater-than-additive and less-than-additive effects are predicted for cooperative regulation by two activators. We show that the statistical approach can be used to identify different causes of synergistic greater-than-additive effects: nonlinearities of the thermostatistical transcriptional machinery and three-body interactions between RNA polymerase and two activators. In particular, our model-based analysis suggests that at low transcription factor concentrations cooperative activation cannot yield synergistic greater-than-additive effects, i.e., DNA transcription can only exhibit less-than-additive effects. Accordingly, transcriptional activity turns from synergistic greater-than-additive responses at relatively high transcription factor concentrations into less-than-additive responses at relatively low concentrations. In addition, two types of re-entrant phenomena are predicted. First, our analysis predicts that under particular circumstances transcriptional activity will feature a sequence of less-than-additive, greater-than-additive, and eventually less-than-additive effects when for fixed activator concentrations the regulatory impact of activators on the binding of RNA polymerase to the promoter increases from weak, to moderate, to strong. Second, for appropriate promoter conditions when activator concentrations are increased then the aforementioned re-entrant sequence of less-than-additive, greater-than-additive, and less-than-additive effects is predicted as well. Finally, our model-based analysis suggests that even for weak activators that individually induce only negligible increases in promoter activity, promoter activity can exhibit greater-than-additive responses when transcription factors and RNA polymerase interact by means of three-body interactions. Overall, we show that versatility of transcriptional activation is brought about by nonlinearities of transcriptional response functions and interactions between transcription factors, RNA polymerase and DNA.
Collapse
Affiliation(s)
- Till D Frank
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | | | | |
Collapse
|
7
|
Villarreal JM, Hernández-Lucas I, Gil F, Calderón IL, Calva E, Saavedra CP. cAMP receptor protein (CRP) positively regulates the yihU-yshA operon in Salmonella enterica serovar Typhi. MICROBIOLOGY-SGM 2010; 157:636-647. [PMID: 21148209 DOI: 10.1099/mic.0.046045-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the aetiological agent of typhoid fever in humans. This bacterium is also able to persist in its host, causing a chronic disease by colonizing the spleen, liver and gallbladder, in the last of which the pathogen forms biofilms in order to survive the bile. Several genetic components, including the yihU-yshA genes, have been suggested to be involved in the survival of Salmonella in the gallbladder. In this work we describe how the yihU-yshA gene cluster forms a transcriptional unit regulated positively by the cAMP receptor global regulator CRP (cAMP receptor protein). The results obtained show that two CRP-binding sites on the regulatory region of the yihU-yshA operon are required to promote transcriptional activation. In this work we also demonstrate that the yihU-yshA transcriptional unit is carbon catabolite-repressed in Salmonella, indicating that it forms part of the CRP regulon in enteric bacteria.
Collapse
Affiliation(s)
- J M Villarreal
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - F Gil
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I L Calderón
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - E Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
8
|
Downregulation of the Escherichia coli guaB promoter by upstream-bound cyclic AMP receptor protein. J Bacteriol 2009; 191:6094-104. [PMID: 19633076 DOI: 10.1128/jb.00672-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli guaB promoter (P(guaB)) is responsible for directing transcription of the guaB and guaA genes, which specify the biosynthesis of the nucleotide GMP. P(guaB) is subject to growth rate-dependent control (GRDC) and possesses an UP element that is required for this regulation. In addition, P(guaB) contains a discriminator, three binding sites for the nucleoid-associated protein FIS, and putative binding sites for the regulatory proteins DnaA, PurR, and cyclic AMP receptor protein (CRP). Here we show that the CRP-cyclic AMP (cAMP) complex binds to a site located over 100 bp upstream of the guaB transcription start site, where it serves to downregulate P(guaB). The CRP-mediated repression of P(guaB) activity increases in media that support lower growth rates. Inactivation of the crp or cyaA gene or ablation/translocation of the CRP site relieves repression by CRP and results in a loss of GRDC of P(guaB). Thus, GRDC of P(guaB) involves a progressive increase in CRP-mediated repression of the promoter as the growth rate decreases. Our results also suggest that the CRP-cAMP complex does not direct GRDC at P(guaB) and that at least one other regulatory factor is required for conferring GRDC on this promoter. However, PurR and DnaA are not required for this regulatory mechanism.
Collapse
|
9
|
Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J Bacteriol 2008; 191:996-1005. [PMID: 19060147 DOI: 10.1128/jb.00873-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli, a facultative aerobe, expresses two distinct respiratory nitrate reductases. The periplasmic NapABC enzyme likely functions during growth in nitrate-limited environments, whereas the membrane-bound NarGHI enzyme functions during growth in nitrate-rich environments. Maximal expression of the napFDAGHBC operon encoding periplasmic nitrate reductase results from synergistic transcription activation by the Fnr and phospho-NarP proteins, acting in response to anaerobiosis and nitrate or nitrite, respectively. Here, we report that, during anaerobic growth with no added nitrate, less-preferred carbon sources stimulated napF operon expression by as much as fourfold relative to glucose. Deletion analysis identified a cyclic AMP receptor protein (Crp) binding site upstream of the NarP and Fnr sites as being required for this stimulation. The napD and nrfA operon control regions from Shewanella spp. also have apparent Crp and Fnr sites, and expression from the Shewanella oneidensis nrfA control region cloned in E. coli was subject to catabolite repression. In contrast, the carbon source had relatively little effect on expression of the narGHJI operon encoding membrane-bound nitrate reductase under any growth condition tested. Carbon source oxidation state had no influence on synthesis of either nitrate reductase. The results suggest that the Fnr and Crp proteins may act synergistically to enhance NapABC synthesis during growth with poor carbon sources to help obtain energy from low levels of nitrate.
Collapse
|
10
|
|
11
|
Miroslavova NS, Mitchell JE, Tebbutt J, Busby SJW. Recruitment of RNA polymerase to Class II CRP-dependent promoters is improved by a second upstream-bound CRP molecule. Biochem Soc Trans 2006; 34:1075-8. [PMID: 17073754 DOI: 10.1042/bst0341075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetics and biochemistry have been exploited to investigate transcription activation by the Escherichia coli CRP (cAMP receptor protein) factor at promoters with a DNA site for CRP near position −41 and the effects of a second upstream-bound CRP molecule. We show that the upstream-bound CRP contributes to transcription activation by improving the recruitment of RNA polymerase.
Collapse
Affiliation(s)
- N S Miroslavova
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
12
|
Hsiao YM, Liao HY, Lee MC, Yang TC, Tseng YH. Clp upregulates transcription of engA gene encoding a virulence factor in Xanthomonas campestris by direct binding to the upstream tandem Clp sites. FEBS Lett 2005; 579:3525-33. [PMID: 15955530 DOI: 10.1016/j.febslet.2005.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/22/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
In Xanthomonas campestris, the causative agent of black rot in crucifers, the endoglucanase level is greatly decreased in the mutant deficient in Clp, a homologue of cyclic AMP receptor protein (CRP). It is established that Clp has the same DNA binding specificity as CRP at positions 5, 6, and 7 (GTG motif) of the DNA half site. In this study, the engA transcription initiation site was determined by the 5' RACE method, and two consensus Clp-binding sites, site I and site II centered at -69.5 and -42.5, respectively, were located. Transcriptional fusion assays indicated that Clp greatly activates engA transcription. Site-directed mutagenesis indicated that position 5 of GTG motif in site II is essential for both DNA-protein complex formation in electrophoretic mobility shift assays and engA transcription in vivo. In addition, mutation at position 5 of site I drastically reduces the promoter activity, indicating that binding of Clp to site I exerts a synergistic effect on the transcription activation by site II. engA appears to be the first X. campestris gene known to be activated by Clp via a direct binding to the promoter.
Collapse
Affiliation(s)
- Yi-Min Hsiao
- Institute of Medical Biotechnology, Chungtai Institute of Health Sciences and Technology, Taichung 406, Taiwan, ROC
| | | | | | | | | |
Collapse
|
13
|
Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Kuhlman T, Phillips R. Transcriptional regulation by the numbers: applications. Curr Opin Genet Dev 2005; 15:125-35. [PMID: 15797195 PMCID: PMC3462814 DOI: 10.1016/j.gde.2005.02.006] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the increasing amount of experimental data on gene expression and regulation, there is a growing need for quantitative models to describe the data and relate them to their respective context. Thermodynamic models provide a useful framework for the quantitative analysis of bacterial transcription regulation. This framework can facilitate the quantification of vastly different forms of gene expression from several well-characterized bacterial promoters that are regulated by one or two species of transcription factors; it is useful because it requires only a few parameters. As such, it provides a compact description useful for higher-level studies (e.g. of genetic networks) without the need to invoke the biochemical details of every component. Moreover, it can be used to generate hypotheses on the likely mechanisms of transcriptional control.
Collapse
|
14
|
Barnard AML, Lloyd GS, Green J, Busby SJW, Lee DJ. Location of the Escherichia coli RNA polymerase alpha subunit C-terminal domain at an FNR-dependent promoter: analysis using an artificial nuclease. FEBS Lett 2004; 558:13-8. [PMID: 14759508 DOI: 10.1016/s0014-5793(03)01518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 12/22/2003] [Accepted: 12/22/2003] [Indexed: 11/28/2022]
Abstract
The Escherichia coli FNR protein is a global transcription regulator that activates gene expression via interactions with the RNA polymerase alpha subunit C-terminal domain. Using preparations of E. coli RNA polymerase holoenzyme, specifically labelled with a DNA cleavage reagent, we have determined the location and orientation of the C-terminal domain of the RNA polymerase alpha subunit in transcriptionally competent complexes at a class II FNR-dependent promoter. We conclude that one alpha subunit C-terminal domain binds immediately upstream of FNR, and that its position and orientation is the same as at similar promoters dependent on CRP, another E. coli transcription activator that is related to FNR. In complementary experiments, we show that the second alpha subunit C-terminal domain of RNA polymerase can be repositioned by upstream-bound CRP, but not by upstream-bound FNR.
Collapse
Affiliation(s)
- Anne M L Barnard
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
15
|
Lloyd GS, Niu W, Tebbutt J, Ebright RH, Busby SJW. Requirement for two copies of RNA polymerase alpha subunit C-terminal domain for synergistic transcription activation at complex bacterial promoters. Genes Dev 2002; 16:2557-65. [PMID: 12368266 PMCID: PMC187446 DOI: 10.1101/gad.237502] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription activation by the Escherichia coli cyclic AMP receptor protein (CRP) at different promoters has been studied using RNA polymerase holoenzyme derivatives containing two full-length alpha subunits, or containing one full-length alpha subunit and one truncated alpha subunit lacking the alpha C-terminal domain (alpha CTD). At a promoter having a single DNA site for CRP, activation requires only one full-length alpha subunit. Likewise, at a promoter having a single DNA site for CRP and one adjacent UP-element subsite (high-affinity DNA site for alpha CTD), activation requires only one full-length alpha subunit. In contrast, at promoters having two DNA sites for CRP, or one DNA site for CRP and two UP-element subsites, activation requires two full-length alpha subunits. We conclude that a single copy of alpha CTD is sufficient to interact with one CRP molecule and one adjacent UP-element subsite, but two copies of alpha CTD are required to interact with two CRP molecules or with one CRP molecule and two UP-element subsites.
Collapse
Affiliation(s)
- Georgina S Lloyd
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Fujimoto N, Toyama A, Takeuchi H. Binding modes of cyclic AMP and environments of tryptophan residues in 1:1 and 1:2 complexes of cyclic AMP receptor protein and cyclic AMP. Biopolymers 2002; 67:186-96. [PMID: 11979597 DOI: 10.1002/bip.10081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cyclic AMP (cAMP) receptor protein (CRP) forms 1:1 and 1:2 complexes with cAMP, and the former complex is considered to be the most active form of CRP in binding to specific DNA sequences and in modulating gene transcription by RNA polymerases. We examine the cAMP binding modes and structural changes of CRP upon cAMP binding by UV resonance Raman spectroscopy. The Raman spectra of CRP-(cAMP)(1) and CRP-(cAMP)(2) extracted from those of CRP-cAMP mixtures at varied mixing ratios clearly show that the hydrogen bonding state and the conformation of cAMP in both complexes in solution are very similar to those found in the X-ray crystal structure of CRP-(cAMP)(2), which is evidence that the cAMP binding mode does not differ between the two complexes. The environmental hydrophobicity of Trp85 monitored by UV resonance Raman intensity shows a significant decrease upon binding of the first cAMP molecule, whereas no further change occurs in the second cAMP binding step. The environmental change of Trp85 suggests an opening of the cleft between the N-terminal cAMP and C-terminal DNA binding domains in the process of CRP activation by binding of a single cAMP molecule.
Collapse
Affiliation(s)
- Naoko Fujimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | | | | |
Collapse
|
17
|
Tebbutt J, Rhodius VA, Webster CL, Busby SJW. Architectural requirements for optimal activation by tandem CRP molecules at a class I CRP-dependent promoter. FEMS Microbiol Lett 2002; 210:55-60. [PMID: 12023077 DOI: 10.1111/j.1574-6968.2002.tb11159.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Escherichia coli cyclic AMP receptor protein (CRP) activates transcription at target promoters by interacting with the C-terminal domain of the RNA polymerase alpha subunit. We have constructed a set of promoters carrying tandem DNA sites for CRP with one site centred at position -61.5 and the other site located at different upstream positions. Optimal CRP-dependent activation of transcription is observed when the upstream DNA site for CRP is located at position -93.5 or at position -103.5. Evidence is presented to suggest that activation by the upstream-bound CRP molecule is due to interaction with the C-terminal domain of the RNA polymerase alpha subunit.
Collapse
Affiliation(s)
- John Tebbutt
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | | | | |
Collapse
|
18
|
Langdon RC, Burr T, Pagan-Westphal S, Hochschild A. A chimeric activator of transcription that uses two DNA-binding domains to make simultaneous contact with pairs of recognition sites. Mol Microbiol 2001; 41:885-96. [PMID: 11532151 DOI: 10.1046/j.1365-2958.2001.02583.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many well-known transcriptional regulatory proteins are composed of at least two independently folding domains and, typically, only one of these is a DNA-binding domain. However, some transcriptional regulators have been described that have more than one DNA-binding domain. Regulators with a single DNA-binding domain often bind co-operatively to the DNA in homotypic or heterotypic combinations, and two or more DNA-binding domains of a single regulatory protein can also bind co-operatively to suitably positioned recognition sequences. Here, we examine the behaviour of a chimeric activator of transcription with two different DNA-binding domains, that of the bacteriophage lambda cI protein and that of the Escherichia coli cyclic AMP receptor protein. We show that these two DNA-binding moieties, when present in the same molecule, can bind co-operatively to a pair of cognate recognition sites located upstream of a test promoter, thereby permitting the chimera to function as a particularly strong activator of transcription from this promoter. Our results show how such a bivalent DNA-binding protein can be used to regulate transcription differentially from promoters that bear either one or both recognition sites.
Collapse
Affiliation(s)
- R C Langdon
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
19
|
Stojćević N, Morić I, Begović J, Radoja S, Konstantinović M. DNA architecture and transcriptional regulation of the Escherichia coli penicillin amidase (pac) gene. BIOMOLECULAR ENGINEERING 2001; 17:113-7. [PMID: 11222985 DOI: 10.1016/s1389-0344(00)00074-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcriptional regulation of Escherichia coli ATCC11105 penicillin amidase (pac) gene was studied by modifying DNA sequences responsible for promoter activation by cyclic AMP receptor protein (CRP). The nucleotide sequence of the 5'-flanking region of the pac gene contains putative tandem CRP binding sites positioned at -69/-70 and at -111/-112 with respect to the transcriptional start site. Our results obtained with either point mutations or insertion or deletion mutants (each of which rotated the helix structure at the CRP binding site one-half turn) showed significant decrease of penicillin amidase (PA) activity, suggesting the CRP as a major activator. In this study, the evidence for the importance of spacing between tandem binding sites for CRP as well as for their location related to the promoter core sequence has been provided. Involvement of integration host factor (IHF) as an additional regulatory protein in the pac gene transcription regulation was also analyzed. It is shown that activation of the pac gene transcription is elevated by IHF.
Collapse
Affiliation(s)
- N Stojćević
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 446, 11000, Belgrade, Yugoslavia
| | | | | | | | | |
Collapse
|
20
|
Richet E. Synergistic transcription activation: a dual role for CRP in the activation of an Escherichia coli promoter depending on MalT and CRP. EMBO J 2000; 19:5222-32. [PMID: 11013224 PMCID: PMC302108 DOI: 10.1093/emboj/19.19.5222] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of the Escherichia coli malEp promoter relies on the formation of a higher order structure involving cooperative binding of MalT to promoter-proximal and promoter-distal sites as well as CRP binding to three sites located in between. MalT is the primary activator and one function of CRP is to facilitate cooperative binding of MalT to its cognate sites by bending the intervening DNA. It is shown here that CRP also participates directly in malEp activation. This function is carried out by the molecule of CRP bound to the CRP site centered at -139.5 (CRP site 3). This molecule of CRP recruits RNA polymerase by promoting the binding of the RNA polymerase alpha subunit C-terminal domain (alphaCTD) to DNA immediately downstream from CRP site 3, via a contact between alphaCTD and activating region I of CRP. The action of MalT and CRP at malEp hence provides the example of a novel and complex mechanism for transcriptional synergy in prokaryotes whereby one activator both helps the primary activator to form a productive complex with promoter DNA and interacts directly with RNA polymerase holoenzyme.
Collapse
Affiliation(s)
- E Richet
- Unité de Génétique Moléculaire, URA CNRS 1773, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
21
|
McLeod SM, Xu J, Johnson RC. Coactivation of the RpoS-dependent proP P2 promoter by fis and cyclic AMP receptor protein. J Bacteriol 2000; 182:4180-7. [PMID: 10894725 PMCID: PMC101903 DOI: 10.1128/jb.182.15.4180-4187.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli proP P2 promoter, which directs the expression of an integral membrane transporter of proline, glycine betaine, and other osmoprotecting compounds, is induced upon entry into stationary phase to protect cells from osmotic shock. Transcription from the P2 promoter is completely dependent on RpoS (sigma(38)) and Fis. Fis activates transcription by binding to a site centered at -41, which overlaps the promoter, where it makes a specific contact with the C-terminal domain of the alpha subunit of RNA polymerase (alpha-CTD). We show here that Fis and cyclic AMP (cAMP) receptor protein (CRP)-cAMP collaborate to activate transcription synergistically in vitro. Coactivation both in vivo and in vitro is dependent on CRP binding to a site centered at -121.5, but CRP without Fis provides little activation. The contribution by CRP requires the correct helical phasing of the CRP site and a functional activation region 1 on CRP. We provide evidence that coactivation is achieved by Fis and CRP independently contacting each of the two alpha-CTDs. Efficient transcription in vitro requires that both activators must be preincubated with the DNA prior to addition of RNA polymerase.
Collapse
Affiliation(s)
- S M McLeod
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | |
Collapse
|
22
|
Johnson CM, Schleif RF. Cooperative action of the catabolite activator protein and AraC in vitro at the araFGH promoter. J Bacteriol 2000; 182:1995-2000. [PMID: 10715008 PMCID: PMC101909 DOI: 10.1128/jb.182.7.1995-2000.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Full activation of transcription of the araFGH promoter, p(FGH), requires both the catabolite activator protein (CAP) and AraC protein. At p(FGH), the binding site for CAP is centered at position -41.5, an essential binding site for AraC is centered at position -79.5, and a second, nonessential binding site is centered at position -154.5. In this work, we used the minimal promoter region required for in vivo activation of p(FGH) to examine the roles of CAP and AraC in stimulating formation of open complexes at p(FGH). Migration retardation assays of open complexes showed that RNA polymerase binds exceptionally tightly to the AraC-CAP-p(FGH) complex and that the order of addition of proteins to the initiating complex is important. Similar assays with RNA polymerase containing truncated alpha subunits suggest that AraC interacts with the C-terminal domain of the alpha subunit. Finally, AraC protein also acts to prevent the improper binding of RNA polymerase at a pseudo promoter near the true p(FGH) promoter.
Collapse
Affiliation(s)
- C M Johnson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
23
|
Severinov K. RNA polymerase structure-function: insights into points of transcriptional regulation. Curr Opin Microbiol 2000; 3:118-25. [PMID: 10744988 DOI: 10.1016/s1369-5274(00)00062-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The crystal structure of Thermus aquaticus RNA polymerase (RNAP) with 3.3 A resolution has recently been described. The high degree of sequence similarity between T. aquaticus RNAP and the prototypical RNAP from Escherichia coli invites comparison of the new structural data with genetic and biochemical results that defined the interaction sites of E. coli RNAP with transcription regulators.
Collapse
Affiliation(s)
- K Severinov
- Department of Genetics, Rutgers, Waksman Institute, The State University of New Jersey, Piscataway, NJ 08854, USA. severik@waksman. rutgers.edu
| |
Collapse
|
24
|
Chappell SA, Edelman GM, Mauro VP. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci U S A 2000; 97:1536-41. [PMID: 10677496 PMCID: PMC26470 DOI: 10.1073/pnas.97.4.1536] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This study addresses the properties of a newly identified internal ribosome entry site (IRES) contained within the mRNA of the homeodomain protein Gtx. Sequential deletions of the 5' untranslated region (UTR) from either end did not define distinct IRES boundaries; when five nonoverlapping UTR fragments were tested, four had IRES activity. These observations are consistent with other cellular IRES analyses suggesting that some cellular IRESes are composed of segments (IRES modules) that independently and combinatorially contribute to overall IRES activity. We characterize a 9-nt IRES module from the Gtx 5' UTR that is 100% complementary to the 18S rRNA at nucleotides 1132-1124. In previous work, we demonstrated that this mRNA segment could be crosslinked to its complement within intact 40S subunits. Here we show that increasing the number of copies of this IRES module in the intercistronic region of a dicistronic mRNA strongly enhances IRES activity in various cell lines. Ten linked copies increased IRES activity up to 570-fold in Neuro 2a cells. This level of IRES activity is up to 63-fold greater than that obtained by using the well characterized encephalomyocarditis virus IRES when tested in the same assay system. When the number of nucleotides between two of the 9-nt Gtx IRES modules was increased, the synergy between them decreased. In light of these findings, we discuss possible mechanisms of ribosome recruitment by cellular mRNAs, address the proposed role of higher order RNA structures on cellular IRES activity, and suggest parallels between IRES modules and transcriptional enhancer elements.
Collapse
Affiliation(s)
- S A Chappell
- Department of Neurobiology, Scripps Research Institute and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
25
|
Langdon RC, Hochschild A. A genetic method for dissecting the mechanism of transcriptional activator synergy by identical activators. Proc Natl Acad Sci U S A 1999; 96:12673-8. [PMID: 10535981 PMCID: PMC23043 DOI: 10.1073/pnas.96.22.12673] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pairs of transcriptional activators in prokaryotes have been shown to activate transcription synergistically from promoters with two activator binding sites. In some cases, such synergistic effects result from cooperative binding, but in other cases each DNA-bound activator plays a direct role in the activation process by interacting simultaneously with separate surfaces of RNA polymerase. In such cases, each DNA-bound activator must possess a functional activating region, the surface that mediates the interaction with RNA polymerase. When transcriptional activation depends on two or more identical activators, it is not straightforward to test the requirement of each activator for a functional activating region. Here we describe a method for directing a mutationally altered activator to either one or the other binding site, and we demonstrate the use of this method to examine the mechanism of transcriptional activator synergy by the Escherichia coli cyclic AMP receptor protein (CRP) working at an artificial promoter bearing two CRP-binding sites.
Collapse
Affiliation(s)
- R C Langdon
- Harvard Medical School, Department of Microbiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
26
|
Abstract
Transcription activation by Escherichia coli catabolite activator protein (CAP) at each of two classes of simple CAP-dependent promoters is understood in structural and mechanistic detail. At class I CAP-dependent promoters, CAP activates transcription from a DNA site located upstream of the DNA site for RNA polymerase holoenzyme (RNAP); at these promoters, transcription activation involves protein-protein interactions between CAP and the RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex. At class II CAP-dependent promoters, CAP activates transcription from a DNA site that overlaps the DNA site for RNAP; at these promoters, transcription activation involves both: (i) protein-protein interactions between CAP and RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex; and (ii) protein-protein interactions between CAP and RNAP alpha subunit N-terminal domain that facilitates isomerization of the RNAP-promoter closed complex to the RNAP-promoter open complex. Straightforward combination of the mechanisms for transcription activation at class I and class II CAP-dependent promoters permits synergistic transcription activation by multiple molecules of CAP, or by CAP and other activators. Interference with determinants of CAP or RNAP involved in transcription activation at class I and class II CAP-dependent promoters permits "anti-activation" by negative regulators. Basic features of transcription activation at class I and class II CAP-dependent promoters appear to be generalizable to other activators.
Collapse
Affiliation(s)
- S Busby
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
27
|
Plumbridge J. Expression of the phosphotransferase system both mediates and is mediated by Mlc regulation in Escherichia coli. Mol Microbiol 1999; 33:260-73. [PMID: 10411743 DOI: 10.1046/j.1365-2958.1999.01462.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ptsHIcrr operon encodes the cytoplasmic components of the phosphotransferase system (PTS). It is expressed from two major promoters, of which the upstream promoter has previously been shown to be induced by glucose and to be dependent upon cAMP/CAP. This promoter is now shown to be repressed by Mlc. Mlc is a transcriptional regulator controlling, among others, the gene ptsG, encoding EIICBGlc, the glucose-specific transporter of the PTS. Transcription of ptsH p0 and ptsG are subject to the same regulatory pattern. In addition to induction by glucose and repression by Mlc, mutations in ptsHIcrr, which interrupt the PEP-dependent phosphate transfer through the soluble components of the PTS, lead to high expression of both ptsH and ptsG, while mutations inactivating EIIBCGlc are non-inducible. Mutations in mlc lead to high constitutive expression and are dominant, implying that Mlc is the ultimate regulator of ptsHI and ptsG expression. Growth on other PTS sugars, besides glucose, also induces ptsH and ptsG expression, suggesting that the target of Mlc regulation is the PTS. However, induction by these other sugars is only observed in the presence of ptsG+, thus confirming the importance of glucose and EIICBGlc in the regulation of the PTS. The ptsG22 mutation, although negative for glucose transport, shows a weak positive regulatory phenotype. The mutation has been sequenced and its effect on regulation investigated.
Collapse
Affiliation(s)
- J Plumbridge
- Institut de Biologie Physico-chimique (UPR9073), 13, rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
28
|
Meibom KL, Søgaard-Andersen L, Mironov AS, Valentin-Hansen P. Dissection of a surface-exposed portion of the cAMP-CRP complex that mediates transcription activation and repression. Mol Microbiol 1999; 32:497-504. [PMID: 10320573 DOI: 10.1046/j.1365-2958.1999.01362.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli cAMP receptor protein (CRP) is essential for the activation and repression of transcription initiation at promoters in the CytR regulon. CRP performs these activities by making direct protein-protein interactions to the alpha-subunits of RNA polymerase and to the CytR regulator. Strikingly, it has been shown that amino acids of CRP that are critical for communication with the two partner proteins are located in close proximity on the surface of CRP. Here, we have dissected this surface in order to pinpoint the 'repression region' of CRP and to assess whether it overlaps with the characterized 'activating region'. Our results established that residues 12, 13, 17, 105, 108 and 110 are essential for the interaction with CytR and confirmed that 'activating region' 2 of CRP is made up of residues 19, 21 and 101. In the crystallographic structure of the CRP-DNA complex, the two sets of determinants are located immediately adjacent to each other forming a consecutive surface-exposed patch. The 'repression region' is chemically complementary to the characterized region on CytR that is essential for protein-protein communication to CRP. Moreover, the results provide insight into the mechanism by which CytR might prevent CRP-mediated transcription.
Collapse
Affiliation(s)
- K L Meibom
- Department of Molecular Biology, University of Odense, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
29
|
Darwin AJ, Ziegelhoffer EC, Kiley PJ, Stewart V. Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro. J Bacteriol 1998; 180:4192-8. [PMID: 9696769 PMCID: PMC107417 DOI: 10.1128/jb.180.16.4192-4198.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of several Escherichia coli operons is activated by the Fnr protein during anaerobic growth and is further controlled in response to nitrate and nitrite by the homologous response regulators, NarL and NarP. Among these operons, the napF operon, encoding a periplasmic nitrate reductase, has unique features with respect to its Fnr-, NarL-, and NarP-dependent regulation. First, the Fnr-binding site is unusually located compared to the control regions of most other Fnr-activated operons, suggesting different Fnr-RNA polymerase contacts during transcriptional activation. Second, nitrate and nitrite activation is solely dependent on NarP but is antagonized by the NarL protein. In this study, we used DNase I footprint analysis to confirm our previous assignment of the unusual location of the Fnr-binding site in the napF control region. In addition, the in vivo effects of Fnr-positive control mutations on napF operon expression indicate that the napF promoter is atypical with respect to Fnr-mediated activation. The transcriptional regulation of napF was successfully reproduced in vitro by using a supercoiled plasmid template and purified Fnr, NarL, and NarP proteins. These in vitro transcription experiments demonstrate that, in the presence of Fnr, the NarP protein causes efficient transcription activation whereas the NarL protein does not. This suggests that Fnr and NarP may act synergistically to activate napF operon expression. As observed in vivo, this activation by Fnr and NarP is antagonized by the addition of NarL in vitro.
Collapse
Affiliation(s)
- A J Darwin
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
30
|
Kallipolitis BH, Valentin-Hansen P. Transcription of rpoH, encoding the Escherichia coli heat-shock regulator sigma32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex. Mol Microbiol 1998; 29:1091-9. [PMID: 9767576 DOI: 10.1046/j.1365-2958.1998.00999.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the rpoH gene encoding the essential heat-shock regulator sigma32, is expressed in a complex manner. Transcription occurs from four promoters (P1, P3, P4 and P5) and is modulated by several factors including (i) two sigma factors (sigma70 and sigmaE); (ii) the global regulator CRP; and (iii) the DnaA protein. Here, a further dissection of the rpoH regulatory region has revealed that an additional transcription control exists that appears to link rpoH expression to nucleoside metabolism. The cAMP-CRP complex and the CytR anti-activator bind co-operatively to the promoter region forming a repression complex that overlaps the sigmaE-dependent P3 promoter and the sigma70-dependent P4 and P5 promoters. During steady-state growth conditions with glycerol as the carbon and energy source, transcription from P3, P4 and P5 is reduced approximately threefold by CytR, whereas transcription from the upstream promoter, P1, appears to be unaffected. Furthermore, in strains that slightly overproduce CytR, transcription from P3, P4 and P5 is reduced even further (approximately 10-fold), and repression can be fully neutralized by the addition of the inducer cytidine to the growth medium. In the induced state, P4 is the strongest promoter and, together with P3 and P5, it is responsible for most rpoH transcription (65-70%). At present, CytR has been shown to 'fine tune' transcription of two genes (rpoH and ppiA) that are connected with protein-folding activities. These findings suggest that additional assistance in protein folding is required under conditions in which CytR is induced (i.e. in the presence of nucleosides).
Collapse
|
31
|
Abstract
Expression of protein-coding genes in eukaryotes involves the recruitment, by transcriptional activator proteins, of a transcription initiation apparatus consisting of greater than 50 polypeptides. Recent genetic and biochemical evidence in yeast suggests that a subset of these proteins, called SRB proteins, are likely targets for transcriptional activators. We demonstrate here, through affinity chromatography, photo-cross-linking, and surface plasmon resonance experiments, that the GAL4 activator interacts directly with the SRB4 subunit of the RNA polymerase II holoenzyme. The GAL4 activation domain binds to two essential segments of SRB4. The physiological relevance of this interaction is confirmed by mutations in SRB4, which occur within its GAL4-binding domain and which restore activation in vivo by a GAL4 derivative bearing a mutant activation domain.
Collapse
Affiliation(s)
- S S Koh
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
32
|
Belyaeva TA, Rhodius VA, Webster CL, Busby SJ. Transcription activation at promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein: organisation of the RNA polymerase alpha subunits. J Mol Biol 1998; 277:789-804. [PMID: 9545373 DOI: 10.1006/jmbi.1998.1666] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a family of promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein (CRP), with one of the sites centred between base-pairs 41 and 42 upstream from the transcription start site, and the second site located further upstream. In vivo activity measurements show that the activity of these promoters is completely dependent on CRP and that, depending on the precise location, CRP bound at the upstream site increases transcription activation. Hydroxyl radical footprinting was exploited to investigate the binding of CRP and RNA polymerase holoenzyme (RNAP) to these promoters. The study shows that the C-terminal domains of the RNAP alpha subunits bind adjacent to the upstream CRP and that their precise positioning depends on the location of upstream-bound CRP. The C-terminal domains of the RNAP alpha subunits interact with both the upstream and downstream-bound CRP via activating region 1 of CRP.
Collapse
Affiliation(s)
- T A Belyaeva
- School of Biochemistry, University of Birmingham, Birmingham, B15 2TT, U.K
| | | | | | | |
Collapse
|
33
|
Abstract
Most bacterial transcription activators function by making direct contact with RNA polymerase at target promoters. Some activators contact the carboxy-terminal domain of the RNA polymerase alpha subunit, some contact region 4 of the sigma70 subunit, whilst others interact with other contact sites. A number of activators are ambidextrous and can, apparently simultaneously, contact more than one target site on RNA polymerase. Expression from many promoters is co-dependent on two or more activators. There are several different mechanisms for coupling promoter activity to more than one activator: in one such mechanism, the different activators make independent contacts with different target sites on RNA polymerase.
Collapse
Affiliation(s)
- V A Rhodius
- School of Biochemistry, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
34
|
Lloyd GS, Busby SJ, Savery NJ. Spacing requirements for interactions between the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase and the cAMP receptor protein. Biochem J 1998; 330 ( Pt 1):413-20. [PMID: 9461538 PMCID: PMC1219155 DOI: 10.1042/bj3300413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During transcription initiation at bacterial promoters, the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) can interact with DNA-sequence elements (known as UP elements) and with activator proteins. We have constructed a series of semi-synthetic promoters carrying both an UP element and a consensus DNA-binding site for the Escherichia coli cAMP receptor protein (CRP; a factor that activates transcription by making direct contacts with alphaCTD). At these promoters, the UP element was located at a variety of distances upstream of the CRP-binding site, which was fixed at position -41.5 bp upstream of the transcript start. At some positions, the UP element caused enhanced promoter activity whereas, at other positions, it had very little effect. In no case was the CRP-dependence of the promoter relieved. DNase I and hydroxyl-radical footprinting were used to study ternary RNA polymerase-CRP-promoter complexes formed at two of the most active of these promoters, and co-operativity between the binding of CRP and purified alpha subunits was studied. The footprints show that alphaCTD binds to the UP element as it is displaced upstream but that this displacement does not prevent alphaCTD from being contacted by CRP. Models to account for this are discussed.
Collapse
Affiliation(s)
- G S Lloyd
- School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | | |
Collapse
|
35
|
Pérez-Rueda E, Gralla JD, Collado-Vides J. Genomic position analyses and the transcription machinery. J Mol Biol 1998; 275:165-70. [PMID: 9466899 DOI: 10.1006/jmbi.1997.1465] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Position analyses have been devised to extract additional transcriptional information from rapidly expanding genomic data bases. The locations of promoter regulatory sites and also the locations of transcription factor DNA-binding domains are analyzed. Strongly preferred positions of activator binding sites occur in both Escherichia coli and eukaryotes, suggesting specific common features of transcription in the two systems. In both systems, regulatory proteins are found to have their DNA-binding domains near termini and the data suggest an evolutionary analysis that complements a phylogenetic analysis based on sequence alignments. The results indicate that positional information can be an important adjunct to sequence comparisons in analyzing genomic information.
Collapse
Affiliation(s)
- E Pérez-Rueda
- Centro de Investigación Sobre, Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Morelos, México
| | | | | |
Collapse
|
36
|
Wu H, Tyson KL, Cole JA, Busby SJ. Regulation of transcription initiation at the Escherichia coli nir operon promoter: a new mechanism to account for co-dependence on two transcription factors. Mol Microbiol 1998; 27:493-505. [PMID: 9484902 DOI: 10.1046/j.1365-2958.1998.00699.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expression from the Escherichia coli nir promoter is co-dependent on Fnr (a transcription factor triggered by oxygen starvation) and on NarL or NarP (transcription factors triggered by nitrite and nitrate ions). Fnr binds to a single DNA site centred between basepairs 41 and 42 upstream from the nir transcript start, whereas NarL and NarP bind to a site upstream, centred between basepairs 69 and 70. A novel mechanism to account for co-dependence on Fnr and NarL/NarP is suggested from experiments in which the spacing between the DNA sites for Fnr and NarL/NarP was altered. DNA sequence elements located upstream of the NarL/NarP-binding site are the targets for two or more proteins that act to repress Fnr-dependent activation of the nir promoter. This inhibition is counteracted by NarL or NarP. The model has been corroborated by the effects of several deletions and single base substitutions in the nir promoter upstream sequences: these deletions and substitutions prevent the binding of the repressor proteins. One of these repressors has been identified as the Fis protein, that binds to a site located 135-149bp upstream of the nir transcript start: the binding of Fis is suppressed by a single base substitution at position -146. The other repressor protein(s) have yet to be identified, but appear to bind downstream of the DNA site for Fis: binding is suppressed by a single base substitution at position -99.
Collapse
Affiliation(s)
- H Wu
- School of Biochemistry, University of Birmingham, UK
| | | | | | | |
Collapse
|
37
|
Zhang X, Schleif R. Catabolite gene activator protein mutations affecting activity of the araBAD promoter. J Bacteriol 1998; 180:195-200. [PMID: 9440505 PMCID: PMC106871 DOI: 10.1128/jb.180.2.195-200.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied catabolite gene activator protein (CAP) activation at the araBAD promoter, pBAD, in the absence of DNA looping. We ruled out the two most plausible indirect activation mechanisms: CAP-induced folding of upstream DNA back upon RNA polymerase, and CAP-induced stabilization of AraC binding to DNA. Therefore, a direct CAP-RNA polymerase interaction seemed likely. We sought and found CAP mutants defective in transcription activation at pBAD that retained normal DNA binding affinity. Some mutations altered residues in the interval from positions 150 to 164 that includes CAP activating region 1 (AR1), which has been shown to contact RNA polymerase at a number of promoters. Unexpectedly, additional mutations were found that altered residues in the region between positions 46 and 68 and at position 133. This includes the region known as activating region 3 (AR3). Mutations from both groups also affect the araFGH and rhaBAD promoters.
Collapse
Affiliation(s)
- X Zhang
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
38
|
Murakami K, Owens JT, Belyaeva TA, Meares CF, Busby SJ, Ishihama A. Positioning of two alpha subunit carboxy-terminal domains of RNA polymerase at promoters by two transcription factors. Proc Natl Acad Sci U S A 1997; 94:11274-8. [PMID: 9326599 PMCID: PMC23438 DOI: 10.1073/pnas.94.21.11274] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1997] [Accepted: 08/13/1997] [Indexed: 02/05/2023] Open
Abstract
Interactions between the cAMP receptor protein (CRP) and the carboxy-terminal regulatory domain (CTD) of Escherichia coli RNA polymerase alpha subunit were analyzed at promoters carrying tandem DNA sites for CRP binding using a chemical nuclease covalently attached to alpha. Each CRP dimer was found to direct the positioning of one of the two alpha subunit CTDs. Thus, the function of RNA polymerase may be subject to regulation through protein-protein interactions between the two alpha subunits and two different species of transcription factors.
Collapse
Affiliation(s)
- K Murakami
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Schyns G, Buckner CM, Moran CP. Activation of the Bacillus subtilis spoIIG promoter requires interaction of Spo0A and the sigma subunit of RNA polymerase. J Bacteriol 1997; 179:5605-8. [PMID: 9287022 PMCID: PMC179438 DOI: 10.1128/jb.179.17.5605-5608.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis Spo0A activates transcription from both sigmaA- and sigmaH-dependent promoters. Baldus et al. (2) identified two amino acid substitutions in the carboxyl terminus of sigmaA, K356E and H359R, that specifically impaired Spo0A-activated transcription in vivo. To test the model in which the K356E and H359R substitutions in sigmaA interfere with the interaction of Spo0A and sigmaA, we examined the effects of alanine substitutions at these positions in sigmaA on sigmaA's ability to direct transcription in vivo and in vitro. We found that alanine substitutions at these positions specifically reduced expression from the sigmaA-dependent, Spo0A-dependent promoters, spoIIG and spoIIE, in vivo. Furthermore, we found that stimulation of spoIIG promoter activity by Spo0A in vitro was reduced by the single substitutions H359A and H359R in sigmaA.
Collapse
Affiliation(s)
- G Schyns
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
40
|
Sanders GM, Kassavetis GA, Geiduschek EP. Dual targets of a transcriptional activator that tracks on DNA. EMBO J 1997; 16:3124-32. [PMID: 9214630 PMCID: PMC1169931 DOI: 10.1093/emboj/16.11.3124] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sliding clamp of the bacteriophage T4 DNA polymerase, gp45, is also the proximal effector for activation of transcription of T4 late genes. We have identified the phage T4-encoded sigma factor gp55 and the co-activator gp33 as targets of gp45 in promoter complexes, and have shown that a conserved carboxy-terminal amino acid sequence of gp55 and gp33 is required for interaction with gp45. The respective contribution of each target-gp45 interaction to activation of transcription has been assessed by measuring promoter opening rates. The opening rate supported by interaction with both targets is far greater than the arithmetical sum of the separate contributions of each target, implying a synergistic activation of transcription through at least two separate interactions of the trimeric gp45.
Collapse
Affiliation(s)
- G M Sanders
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | |
Collapse
|
41
|
Abstract
The recruitment model for gene activation stipulates that an activator works by bringing the transcriptional machinery to the DNA. Recent experiments in bacteria and yeast indicate that many genes can be activated by this mechanism. These findings have implications for our understanding of the nature of activating regions and their targets, and for the role of histones in gene regulation.
Collapse
Affiliation(s)
- M Ptashne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
42
|
|
43
|
Richet E. On the role of the multiple regulatory elements involved in the activation of the Escherichia coli malEp promoter. J Mol Biol 1996; 264:852-62. [PMID: 9000616 DOI: 10.1006/jmbi.1996.0682] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activation of malEp and malKp, two divergent promoters from Escherichia coli, depends on the synergistic action of MalT and CRP. The reaction involves a common regulatory region located in between and comprising multiple binding elements for both regulatory proteins. The binding of MalT and CRP to this region is known to result in the formation of a higher-order structure that is responsible for malKp activation. This paper presents genetic data which together with previous results, provide compelling evidence that this higher-order structure is also responsible for malEp activation. The role(s) that this structure or elements thereof play in the activation of malEp is analysed by monitoring both the occupancy of the proximal MalT sites (sites 1 and 2) and the activity of different malEp variants in strains containing increasing amounts of active MalT. A truncated malEp promoter comprising only MalT sites 1 and 2 forms a minimal MalT-dependent promoter whose activity is limited by the occupancy of these sites. One role of the higher-order structure formed by MalT and CRP when bound to the entire regulatory region is to ensure high occupation of MalT sites 1 and 2, but it is not its only function. Some elements of this structure, namely the CRP site 1, located at -76.5, and the distal MalT sites, seem to play a direct role in malEp activation besides their participation in the assembly of the higher-order structure.
Collapse
Affiliation(s)
- E Richet
- Unité de Génétique Moléculaire, URA CNRS 1149, Institut Pasteur, Paris, France
| |
Collapse
|
44
|
Rasmussen PB, Holst B, Valentin-Hansen P. Dual-function regulators: the cAMP receptor protein and the CytR regulator can act either to repress or to activate transcription depending on the context. Proc Natl Acad Sci U S A 1996; 93:10151-5. [PMID: 8816767 PMCID: PMC38352 DOI: 10.1073/pnas.93.19.10151] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Studies of gene regulation have revealed that several transcriptional regulators can switch between activator and repressor depending upon both the promoter and the cellular context. A relatively simple prokaryotic example is illustrated by the Escherichia coli CytR regulon. In this system, the cAMP receptor protein (CRP) assists the binding of RNA polymerase as well as a specific negative regulator, CytR. Thus, CRP functions either as an activator or as a corepressor. Here we show that, depending on promoter architecture, the CRP/CytR nucleoprotein complex has opposite effects on transcription. When acting from a site close to the DNA target for RNA polymerase, CytR interacts with CRP to repress transcription, whereas an interaction with CRP from appropriately positioned upstream binding sites can result in formation of a huge preinitiation complex and transcriptional activation. Based on recent results about CRP-mediated regulation of transcription initiation and the finding that CRP possesses discrete surface-exposed patches for protein-protein interaction with RNA polymerase and CytR, a molecular model for this dual regulation is discussed.
Collapse
Affiliation(s)
- P B Rasmussen
- Department of Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|
45
|
Savery N, Rhodius V, Busby S. Protein-protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein. Philos Trans R Soc Lond B Biol Sci 1996; 351:543-50. [PMID: 8735277 DOI: 10.1098/rstb.1996.0053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Escherichia coli cyclic AMP receptor protein (CRP) is a homodimeric transcription activator triggered by cyclic AMP. Escherichia coli contains more than 100 different promoters that can be activated by CRP: in most cases the CRP acts by making direct contact with RNA polymerase. Remarkably, there is considerable variation in the location of the DNA site for CRP from one CRP-dependent promoter to another. Genetic methods have been used to locate the activating regions of CRP that make contact with RNA polymerase at promoters of different architectures. At promoters where the DNA site for CRP is centred near to positions -61, -71 or -81 (i.e. 61, 71 or 81 base pairs upstream of the transcript start-point, respectively), a single surface-exposed loop (Activating Region 1) in the downstream subunit of the CRP dimer makes contact with RNA polymerase. The contact site in RNA polymerase is located in one of the C-terminal domains of two RNA polymerase alpha subunits. At promoters where the DNA site for CRP is centred near to position-41, both subunits of the CRP dimer make contact with RNA polymerase via three separate surface exposed regions (Activating Regions 1, 2 and 3). At these promoters, where bound CRP overlaps with RNA polymerase-binding elements, the C-terminal domains of the polymerase alpha subunits are displaced and bind upstream of CRP. Activation at a number of E. coli promoters is dependent on binding of two CRP dimers, with one dimer bound near to position-41 and the other dimer bound further upstream. In these cases, both bound CRP dimers contact RNA polymerase. The CRP dimer bound around position-41 contacts RNA polymerase via Activating Regions 1, 2 and 3, whereas the upstream bound CRP dimer contacts one of the displaced alpha C-terminal domains via Activating Region 1 in the downstream CRP subunit. Thus in these cases, codependence on two activators is due to simultaneous contacts between separate activators and RNA polymerase. This mechanism allows great flexibility, as any activator that can contact the C-terminal domain of the RNA polymerase alpha subunits can act cooperatively with CRP.
Collapse
Affiliation(s)
- N Savery
- School of Biochemistry, University of Birmingham, U.K
| | | | | |
Collapse
|
46
|
Wing HJ, Williams SM, Busby SJ. Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol 1995; 177:6704-10. [PMID: 7592457 PMCID: PMC177532 DOI: 10.1128/jb.177.23.6704-6710.1995] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We cloned a consensus DNA site for the Escherichia coli FNR protein at different locations upstream of the E. coli melR promoter. FNR can activate transcription initiation at the melR promoter when the FNR binding site is centered around 41, 61, 71, 82, and 92 bp upstream from the transcription start. The SF73 positive control amino acid substitution in FNR interfered with transcription activation by FNR in each case. In contrast, the GA85 positive control substitution reduced activation only at the promoter, where the FNR binding site is 41 bp upstream of the transcript start. The SF73 substitution appears to identify an activating region of FNR that is important for transcription activation at promoters that differ in architecture. Experiments with oriented heterodimers showed that this activating region is functional in the upstream subunit of the FNR dimer at the promoter where FNR binds around 41 bp from the transcript start and in the downstream subunit at the promoters where FNR binds farther upstream.
Collapse
Affiliation(s)
- H J Wing
- School of Biochemistry, University of Birmingham, United Kingdom
| | | | | |
Collapse
|
47
|
Ozoline ON, Tsyganov MA. Structure of open promoter complexes with Escherichia coli RNA polymerase as revealed by the DNase I footprinting technique: compilation analysis. Nucleic Acids Res 1995; 23:4533-41. [PMID: 8524639 PMCID: PMC307422 DOI: 10.1093/nar/23.22.4533] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Footprinting data for 33 open promoter complexes with Escherichia coli RNA polymerase, as well as 17 ternary complexes with different regulators, have been compiled using a computer program FUTPR. The typical and individual properties of their structural organization are analyzed. Promoters are subgrouped according to the extent of the polymerase contact area. A set of alternative sequence elements that could be responsible for RNA polymerase attachment in different promoter groups is suggested on the basis of their sequence homology near the hyperreactive sites. The model of alternative pathways used for promoter activation is discussed.
Collapse
Affiliation(s)
- O N Ozoline
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | | |
Collapse
|
48
|
Pomposiello PJ, Bender RA. Activation of the Escherichia coli lacZ promoter by the Klebsiella aerogenes nitrogen assimilation control protein (NAC), a LysR family transcription factor. J Bacteriol 1995; 177:4820-4. [PMID: 7642513 PMCID: PMC177252 DOI: 10.1128/jb.177.16.4820-4824.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A chimeric promoter with the nitrogen assimilation control protein binding site from hutUp of Klebsiella aerogenes fused to the lacZ core promoter from Escherichia coli was built and cloned in a lacZ reporter plasmid. This construct showed a 14-fold increase of beta-galactosidase activity upon nitrogen limitation. Primer extension experiments showed that the nitrogen assimilation control protein activates lacZp1 in a position-dependent manner.
Collapse
Affiliation(s)
- P J Pomposiello
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | |
Collapse
|
49
|
Ramseier TM, Saier MH. cAMP-cAMP receptor protein complex: five binding sites in the control region of the Escherichia coli mannitol operon. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 8):1901-1907. [PMID: 7551052 DOI: 10.1099/13500872-141-8-1901] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The control region of the mannitol (mtl) operon of Escherichia coli has been shown to contain five cAMP receptor protein (CRP) binding sequences, the most yet reported for any operon. A DNA fragment encompassing the entire mtl operon regulatory region was generated by PCR, and the binding of the cAMP-CRP complex was studied. Using restrictional analysis to separate, delineate and destroy the various putative CRP binding sites, all five sites were shown to be functional for CRP binding in vitro. Four of these sites bound the cAMP-CRP complex with high affinity while the fifth site (the most distal relative to the transcriptional start site) bound the complex with lower affinity. Simultaneous binding of cAMP-CRP complexes to several of these sites was demonstrated. The results serve to identify and define five dissimilar CRP binding sites in a single operon of E. coli. A model for mtl operon transcriptional initiation and repression complexes is presented.
Collapse
|
50
|
Savery NJ, Rhodius VA, Wing HJ, Busby SJ. Transcription activation at Escherichia coli promoters dependent on the cyclic AMP receptor protein: effects of binding sequences for the RNA polymerase alpha-subunit. Biochem J 1995; 309 ( Pt 1):77-83. [PMID: 7619086 PMCID: PMC1135802 DOI: 10.1042/bj3090077] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcription activation at two semi-synthetic Escherichia coli promoters, CC(-41.5) and CC(-72.5), is dependent on the cyclic AMP receptor protein (CRP) that binds to sites centred 41.5 and 72.5 bp upstream from the respective transcription startpoints. An UP-element that can bind the C-terminal domain of the RNA polymerase (RNAP) alpha-subunit was cloned upstream of the DNA site for CRP at CC(-41.5) and downstream of the DNA site for CRP at CC(-72.5). In both cases CRP-dependent promoter activity was increased by the UP-element, but CRP-independent activity was not increased. DNase I footprinting was exploited to investigate the juxtaposition of bound CRP and RNAP alpha-subunits. In both cases, CRP and RNAP alpha-subunits occupy their cognate binding sites in ternary CRP-RNAP promoter complexes. RNAP alpha-subunits can occupy the UP-element in the absence of CRP, but this is not sufficient for open complex formation. The positive effects of binding RNAP alpha-subunits upstream of the DNA site for CRP at -41.5 are suppressed if the UP-element is incorrectly positioned.
Collapse
Affiliation(s)
- N J Savery
- School of Biochemistry, University of Birmingham, U.K
| | | | | | | |
Collapse
|