1
|
Kulakova A, Indrakumar S, Sønderby P, Gentiluomo L, Streicher W, Roessner D, Frieß W, Peters GHJ, Harris P. Small angle X-ray scattering and molecular dynamic simulations provide molecular insight for stability of recombinant human transferrin. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100017. [PMID: 32647821 PMCID: PMC7337065 DOI: 10.1016/j.yjsbx.2019.100017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
Combination of SAXS and MD simulations can explain the molecular background for the stability studies. Destabilizing excipients in general induce opening of the N-lobe by binding to specific residues in the protein. The fully open conformation of transferrin is not seen without aggregation.
Transferrin is an attractive candidate for drug delivery due to its ability to cross the blood brain barrier. However, in order to be able to use it for therapeutic purposes, it is important to investigate how its stability depends on different formulation conditions. Combining high-throughput thermal and chemical denaturation studies with small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, it was possible to connect the stability of transferrin with its conformational changes. Lowering pH induces opening of the transferrin N-lobe, which results in a negative effect on the stability. Presence of NaCl or arginine at low pH enhances the opening and has a negative impact on the overall protein stability. Statement of Significance Protein-based therapeutics have become an essential part of medical treatment. They are highly specific, have high affinity and fewer off-target effects. However, stabilization of proteins is critical, time-consuming, and expensive, and it is not yet possible to predict the behavior of proteins under different conditions. The current work is focused on a molecular understanding of the stability of human serum transferrin; a protein which is abundant in blood serum, may pass the blood brain barrier and therefore with high potential in drug delivery. Combination of high throughput unfolding techniques and structural studies, using small angle X-ray scattering and molecular dynamic simulations, allows us to understand the behavior of transferrin on a molecular level.
Collapse
Affiliation(s)
- Alina Kulakova
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Sowmya Indrakumar
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Pernille Sønderby
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstrasse 5, 81377 Munich, Germany
| | | | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstrasse 5, 81377 Munich, Germany
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Karimian Amroabadi M, Taheri-Kafrani A, Heidarpoor Saremi L, Rastegari AA. Spectroscopic studies of the interaction between alprazolam and apo-human serum transferrin as a drug carrier protein. Int J Biol Macromol 2018; 108:263-271. [DOI: 10.1016/j.ijbiomac.2017.11.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/20/2023]
|
3
|
The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis. J Theor Biol 2016; 404:73-81. [PMID: 27235585 DOI: 10.1016/j.jtbi.2016.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 11/20/2022]
Abstract
Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure.
Collapse
|
4
|
A QM/MM study of the complexes formed by aluminum and iron with serum transferrin at neutral and acidic pH. J Inorg Biochem 2011; 105:1446-56. [DOI: 10.1016/j.jinorgbio.2011.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/13/2011] [Accepted: 07/26/2011] [Indexed: 11/18/2022]
|
5
|
Zhou S, Zhang B, Sturm E, Teagarden DL, Schöneich C, Kolhe P, Lewis LM, Muralidhara BK, Singh SK. Comparative Evaluation of Disodium Edetate and Diethylenetriaminepentaacetic Acid as Iron Chelators to Prevent Metal -Catalyzed Destabilization of a Therapeutic Monoclonal Antibody. J Pharm Sci 2010; 99:4239-50. [DOI: 10.1002/jps.22141] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Eckenroth BE, Mason AB, McDevitt ME, Lambert LA, Everse SJ. The structure and evolution of the murine inhibitor of carbonic anhydrase: a member of the transferrin superfamily. Protein Sci 2010; 19:1616-26. [PMID: 20572014 PMCID: PMC2975126 DOI: 10.1002/pro.439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The original signature of the transferrin (TF) family of proteins was the ability to bind ferric iron with high affinity in the cleft of each of two homologous lobes. However, in recent years, new family members that do not bind iron have been discovered. One new member is the inhibitor of carbonic anhydrase (ICA), which as its name indicates, binds to and strongly inhibits certain isoforms of carbonic anhydrase. Recently, mouse ICA has been expressed as a recombinant protein in a mammalian cell system. Here, we describe the 2.4 Å structure of mouse ICA from a pseudomerohedral twinned crystal. As predicted, the structure is bilobal, comprised of two α-β domains per lobe typical of the other family members. As with all but insect TFs, the structure includes the unusual reverse γ-turn in each lobe. The structure is consistent with the fact that introduction of two mutations in the N-lobe of murine ICA (mICA) (W124R and S188Y) allowed it to bind iron with high affinity. Unexpectedly, both lobes of the mICA were found in the closed conformation usually associated with presence of iron in the cleft, and making the structure most similar to diferric pig TF. Two new ICA family members (guinea pig and horse) were identified from genomic sequences and used in evolutionary comparisons. Additionally, a comparison of selection pressure (dN/dS) on functional residues reveals some interesting insights into the evolution of the TF family including that the N-lobe of lactoferrin may be in the process of eliminating its iron binding function.
Collapse
Affiliation(s)
- Brian E Eckenroth
- Department of Biochemistry, University of VermontBurlington, Vermont 05405
| | - Anne B Mason
- Department of Biochemistry, University of VermontBurlington, Vermont 05405
| | - Meghan E McDevitt
- Department of Biology, Chatham UniversityPittsburgh, Pennsylvania 15232
| | - Lisa A Lambert
- Department of Biology, Chatham UniversityPittsburgh, Pennsylvania 15232
| | - Stephen J Everse
- Department of Biochemistry, University of VermontBurlington, Vermont 05405,*Correspondence to: Stephen J. Everse, Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Ave, Burlington, VT 05405. E-mail:
| |
Collapse
|
7
|
Evaluation of ovotransferrin-matrix metal-affinity metalloprotein chromatography for Pu(IV) separations. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.91.12.697.23418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Metal-Affinity metalloprotein chromatography has been suggested to have potential for selectively removing actinides from solution. To evaluate this potential, characterization of Pu(IV) and Fe(III) binding to an ovotransferrin-Sepharose™ 4B matrix, with oxalate and carbonate synergistic anions, was performed. Metal binding capacity was determined for metal concentrations ranging from 2×10-6 to 1×10-3M Fe(III) and 2.9×10-5 to 2.6×10-4M Pu(IV), where both metals were added as a solution of 10:1 nitrilotriacetic acid:metal. Metal binding capacity was also determined over the pH range 3.0 to 9.2. The metal binding properties of the immobilized ovotransferrin were found to differ from those reported for free-protein studies. Distribution coefficients were low: for metal solution concentrations of 0.02, 0.04, 0.10, and 0.20mM, coefficients were 540, 180, 23, and 12mL/g for Fe(III) and 20, 12, 7.2, and 6.0mL/g for Pu(IV), respectively. The capacity of the material was less dependent on pH than expected, varying by only two μmoles metal/g matrix for both Fe(III) and Pu(IV) over the pH range of 4.2 to 9.5. This study illustrates limitations of metalloprotein chromatography for Pu(IV) separation.
Collapse
|
8
|
Froidevaux P, Haldimann M. Plutonium from above-ground nuclear tests in milk teeth: investigation of placental transfer in children born between 1951 and 1995 in Switzerland. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1731-4. [PMID: 19079728 PMCID: PMC2599771 DOI: 10.1289/ehp.11358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 09/16/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND Occupational risks, the present nuclear threat, and the potential danger associated with nuclear power have raised concerns regarding the metabolism of plutonium in pregnant women. OBJECTIVE We measured plutonium levels in the milk teeth of children born between 1951 and 1995 to assess the potential risk that plutonium incorporated by pregnant women might pose to the radiosensitive tissues of the fetus through placenta transfer. METHODS We used milk teeth, whose enamel is formed during pregnancy, to investigate the transfer of plutonium from the mother's blood plasma to the fetus. We measured plutonium using sensitive sector field inductively coupled plasma mass spectrometry techniques. We compared our results with those of a previous study on strontium-90 ((90)Sr) released into the atmosphere after nuclear bomb tests. RESULTS Results show that plutonium activity peaks in the milk teeth of children born about 10 years before the highest recorded levels of plutonium fallout. By contrast, (90)Sr, which is known to cross the placenta barrier, manifests differently in milk teeth, in accordance with (90)Sr fallout deposition as a function of time. CONCLUSIONS These findings demonstrate that plutonium found in milk teeth is caused by fallout that was inhaled around the time the milk teeth were shed and not from any accumulation during pregnancy through placenta transfer. Thus, plutonium may not represent a radiologic risk for the radiosensitive tissues of the fetus.
Collapse
Affiliation(s)
- Pascal Froidevaux
- University Institute of Radiation Physics, University Hospital Center, University of Lausanne, Grand Pré 1, Lausanne, Switzerland.
| | | |
Collapse
|
9
|
Spectroscopic analysis of the interaction between gallium(III) and apoovotransferrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 91:137-42. [DOI: 10.1016/j.jphotobiol.2008.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 03/03/2008] [Accepted: 03/12/2008] [Indexed: 11/23/2022]
|
10
|
Hamilton DH, Turcot I, Stintzi A, Raymond KN. Large cooperativity in the removal of iron from transferrin at physiological temperature and chloride ion concentration. J Biol Inorg Chem 2004; 9:936-44. [PMID: 15517438 DOI: 10.1007/s00775-004-0592-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 07/29/2004] [Indexed: 11/29/2022]
Abstract
Iron removal from serum transferrin by various chelators has been studied by gel electrophoresis, which allows direct quantitation of all four forms of transferrin (diferric, C-monoferric, N-monoferric, and apotransferrin). Large cooperativity between the two lobes of serum transferrin is found for iron removal by several different chelators near physiological conditions (pH 7.4, 37 degrees C, 150 mM NaCl, 20 mM NaHCO(3)). This cooperativity is manifested in a dramatic decrease in the rate of iron removal from the N-monoferric transferrin as compared with iron removal from the other forms of ferric transferrin. Cooperativity is diminished as the pH is decreased; it is also very sensitive to changes in chloride ion concentration, with a maximum cooperativity at 150 mM NaCl. A mechanism is proposed that requires closure of the C-lobe before iron removal from the N-lobe can be effected; the "open" conformation of the C-lobe blocks a kinetically significant anion-binding site of the N-lobe, preventing its opening. Physiological implications of this cooperativity are discussed.
Collapse
Affiliation(s)
- David H Hamilton
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
11
|
Rinaldo D, Field MJ. A computational study of the open and closed forms of the N-lobe human serum transferrin apoprotein. Biophys J 2004; 85:3485-501. [PMID: 14645044 PMCID: PMC1303656 DOI: 10.1016/s0006-3495(03)74769-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human serum transferrin tightly binds ferric ions in the blood stream but is able to release them in cells by a process involving receptor-mediated endocytosis and decrease in pH. Iron binding and release are accompanied by a large conformation change. In this study, we investigate theoretically the open and closed forms of the N-lobe human serum transferrin apoprotein by performing pKa calculations and molecular dynamics and free-energy simulations. In agreement with the hypothesis based on the x-ray crystal structures, our calculations show that there is a shift in the pKa values of the lysines forming the dilysine trigger when the conformation changes. We argue, however, that simple electrostatic repulsion between the lysines is not sufficient to trigger domain opening and, instead, propose an alternative explanation for the dilysine-trigger effect. Analysis of the molecular dynamics and free-energy results indicate that the open form is more mobile than the closed form and is much more stable at pH 5.3, in large part due to entropic effects. Despite a lower free energy, the dynamics simulation of the open form shows that it is flexible enough to sample conformations that are consistent with iron binding.
Collapse
Affiliation(s)
- David Rinaldo
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat à l'Energie Atomique, and the Centre National de Recherche Scientifique, Grenoble, France
| | | |
Collapse
|
12
|
Gumerov DR, Mason AB, Kaltashov IA. Interlobe communication in human serum transferrin: metal binding and conformational dynamics investigated by electrospray ionization mass spectrometry. Biochemistry 2003; 42:5421-8. [PMID: 12731884 DOI: 10.1021/bi020660b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human serum transferrin (hTF) is an iron transport protein, comprising two lobes (N and C), each containing a single metal-binding center. Despite substantial structural similarity between the two lobes, studies have demonstrated the existence of significant differences in their metal-binding properties. The nature of these differences has been elucidated through the use of electrospray ionization mass spectrometry to study both metal retention and conformational properties of hTF under a variety of conditions. In the absence of chelating agents or nonsynergistic anions, the diferric form of hTF remains intact until the pH is lowered to 4.5. The monoferric form of hTF retains the compact conformation until the pH is lowered to 4.0, whereas the apoprotein becomes partially unfolded at pH as high as 5.5. Selective (lobe-specific) modulation of the iron-binding properties of hTF using recombinant forms of the protein (in which the pH-sensitive elements in each lobe were mutated) verifies that the N-lobe of the protein has a lower affinity for ferric ion. Surprisingly, the apo-N-lobe is significantly less flexible compared to the apo-C-lobe. Furthermore, the conformation of the iron-free N-lobe is stabilized when the C-lobe contains iron, confirming the existence of an interlobe interaction within the protein. The experimental results provide strong support for the earlier suggestion that hTF interacts with its receptor (TFR) primarily through the C-lobe both at the cell surface and inside the endosome.
Collapse
Affiliation(s)
- Dmitry R Gumerov
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | | | | |
Collapse
|
13
|
Krell T, Chevalier M, Lissolo L. Affinity-purification of Transferrin-binding protein B under nondenaturing conditions. Protein Expr Purif 2002; 24:323-8. [PMID: 11922747 DOI: 10.1006/prep.2001.1593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The commonly used purification procedures for Transferrin-binding protein B (TbpB) are based on an affinity chromatography step using resins onto which human transferrin had been immobilized. These protocols involve protein elution using denaturing buffer solutions. Here we present an improved protocol which permits protein elution under nondenaturing conditions using chelating agents such as phosphate or compounds containing a pyrophosphate group. Furthermore, isothermal titration calorimetry experiments of the purified protein with holotransferrin have been shown to be a reliable method to assess the purity and activity of the purified material.
Collapse
Affiliation(s)
- Tino Krell
- Aventis Pasteur, 1541 avenue Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | | | | |
Collapse
|
14
|
Khan JA, Kumar P, Srinivasan A, Singh TP. Protein intermediate trapped by the simultaneous crystallization process. Crystal structure of an iron-saturated intermediate in the Fe3+ binding pathway of camel lactoferrin at 2.7 a resolution. J Biol Chem 2001; 276:36817-23. [PMID: 11473113 DOI: 10.1074/jbc.m104343200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This is the first protein intermediate obtained in the crystalline state by the simultaneous process of Fe(3+) binding and crystal nucleation and is also the first structure of an intermediate of lactoferrin in the Fe(3+) binding pathway. Lactoferrin is an iron-binding 80-kDa glycoprotein. It binds Fe(3+) very tightly in a closed interdomain cleft in both lobes. The iron-free structure of lactoferrin, on the other hand, adopts an open conformation with domains moving widely apart. These studies imply that initial Fe(3+) binding must be in the open form. The protein intermediate was crystallized by the microdialysis method. The protein solution, with a concentration of 100 mg/ml in 10 mm Tris-HCl, pH 8.0, was loaded in a capillary and dialyzed against the same buffer containing 26% (v/v) ethanol placed in a reservoir. FeCl(3) and CO(3)(2-) in excess molar ratios to that of protein in its solution were added to the reservoir buffer. The crystals appeared after some hours and grew to the optimum size within 36 h. The structure was determined by molecular replacement method and refined to final R- and R-free factors of 0.187 and 0.255, respectively. The present structure showed that the protein molecule adopts an open conformation similar to that of camel apolactoferrin. The electron density map clearly indicated the presence of two iron atoms, one in each lobe with 4-fold coordinations: two by the protein ligands of Tyr-92(433) OH and Tyr-192(526) OH and two other coordination sites occupied by oxygen atoms of bidentate CO(3)(2-) ions leading to a tetrahedral intermediate. The CO(3)(2-) anion is stabilized through hydrogen bonds with the synergistic anion-binding site Arg-121(463) and with Ser-122 Ogamma in the N-lobe and Thr-464 Ogamma in C-lobe. The third oxygen atom of CO(3)(2-) interacts with a water molecule in both lobes.
Collapse
Affiliation(s)
- J A Khan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | |
Collapse
|
15
|
Mizutani K, Muralidhara BK, Yamashita H, Tabata S, Mikami B, Hirose M. Anion-mediated Fe3+ release mechanism in ovotransferrin C-lobe: a structurally identified SO4(2-) binding site and its implications for the kinetic pathway. J Biol Chem 2001; 276:35940-6. [PMID: 11466309 DOI: 10.1074/jbc.m102590200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The differential properties of anion-mediated Fe(3+) release between the N- and C-lobes of transferrins have been a focus in transferrin biochemistry. The structural and kinetic characteristics for isolated lobe have, however, been documented with the N-lobe only. Here we demonstrate for the first time the quantitative Fe(3+) release kinetics and the anion-binding structure for the isolated C-lobe of ovotransferrin. In the presence of pyrophosphate, sulfate, and nitrilotriacetate anions, the C-lobe released Fe(3+) with a decelerated rate in a single exponential progress curve, and the observed first order rate constants displayed a hyperbolic profile as a function of the anion concentration. The profile was consistent with a newly derived single-pathway Fe(3+) release model in which the holo form is converted depending on the anion concentration into a "mixed ligand" intermediate that releases Fe(3+). The apo C-lobe was crystallized in ammonium sulfate solution, and the structure determined at 2.3 A resolution demonstrated the existence of a single bound SO(4)(2-) in the interdomain cleft, which interacts directly with Thr(461)-OG1, Tyr(431)-OH, and His(592)-NE2 and indirectly with Tyr(524)-OH. The latter three groups are Fe(3+)-coordinating ligands, strongly suggesting the facilitated Fe(3+) release upon the anion occupation at this site. The SO(4)(2-) binding structure supported the single-pathway kinetic model.
Collapse
Affiliation(s)
- K Mizutani
- Research Institute for Food Science, Kyoto University, Uji, Kyoto 611 0011, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Clarkson J, Smith DA. UV Raman evidence of a tyrosine in apo-human serum transferrin with a low pK(a) that is elevated upon binding of sulphate. FEBS Lett 2001; 503:30-4. [PMID: 11513849 DOI: 10.1016/s0014-5793(01)02687-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding of sulphate to human serum apo-transferrin has been examined by ultraviolet absorption and ultraviolet resonance Raman difference spectroscopies between pH 6.0 and 9.0. The ultraviolet absorption data reveals a negative feature at 245 nm that increases in magnitude with pH, with an apparent pK(a) of 7.57, which the Raman difference data reveals to be due to tyrosine. The pK(a) of this tyrosine is unusually low and is measured at 7.84 by the Raman difference method and is elevated to greater than 9.0 upon addition of sulphate. Previous studies on the N-lobe imply that Tyr 188 is the tyrosine with a low pK(a) and also that Arg 124 is the primary binding site for the sulphate. The functional relevance may be that with sulphate bound, both carbonate binding and the deprotonation of Tyr will be disfavoured, and as a result so is iron binding.
Collapse
Affiliation(s)
- J Clarkson
- Department of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK.
| | | |
Collapse
|
17
|
Mizutani K, Mikami B, Hirose M. Domain closure mechanism in transferrins: new viewpoints about the hinge structure and motion as deduced from high resolution crystal structures of ovotransferrin N-lobe. J Mol Biol 2001; 309:937-47. [PMID: 11399070 DOI: 10.1006/jmbi.2001.4719] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of holo hen ovotransferrin N-lobe refined at 1.65 A resolution has been obtained. The final model gave an R-factor of 0.173 in the resolution range between 10.0 and 1.65 A. The comparison of the structure with previous high-resolution apo and Fe(3+)-loaded, domain-opened intermediate structures provides new viewpoints on the domain closure mechanism upon Fe(3+) uptake in ovotransferrin N-lobe. Overall, conformational transition follows the common mechanism that has been first demonstrated for lactoferrin N-lobe; the domains 1 and 2 rotate 49.7 degrees as rigid bodies with a translation of 2.1 A around a screw-axis that passes through the two interdomain beta-strands (89-94 and 244-249). It is generally believed that the two strands display a hinge-like motion. Here, the latter strand indeed displays an ideal hinge nature: the segments 244-246 and 248-249 behave as a part of the rigid body of domain 2 and that of domain 1, respectively, and a sharp bend upon the domain closure is largely accounted for by the changes in the torsion angles phi and psi of Val247. We find, however, that the mode of the conformational change in the first beta-strand is much more complex. Two of the five inter beta-strand hydrogen bonds undergo crucial exchanges: from Ser91-N...Val247-O and Thr89-O...Ala249-N in the open apo and intermediate structures into Tyr92-N...Val247-O and Thr90-O...Ala249-N in the closed holo structure. These exchanges, which may be triggered in the intermediate state by modulation in the topological relation between the Fe(3+)-ligated hinge residue Tyr92-OH and the anion anchor residues of helix 5, are accompanied by a large conformational change and extensive hydrogen bonding rearrangements in a long stretch of segment of Glu82 to Tyr92. Such structural transition would work as a driving force for the domain closure, which highlights a "door closer"-like role, in addition to the canonical-hinge role, for the interdomain polypeptide segment pair. As an alternative hinge that secures the correct domain motion by being placed on a significant distance from the beta-strand hinge, we point out the participation of the van der Waals contacts formed between domain 1 residue of Met331 and domain 2 residues of Trp125, Ile129 and Trp140.
Collapse
Affiliation(s)
- K Mizutani
- The Research Institute for Food Science, Kyoto University, Uji, Kyoto 6110011, Japan
| | | | | |
Collapse
|
18
|
Gumerov DR, Kaltashov IA. Dynamics of iron release from transferrin N-lobe studied by electrospray ionization mass spectrometry. Anal Chem 2001; 73:2565-70. [PMID: 11403301 DOI: 10.1021/ac0015164] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transferrins constitute a class of metalloproteins that are involved in circulatory iron transport in a variety of species. The metal ion-binding properties of these proteins have been the focus of extensive research efforts in the past decade due to their extreme importance in a variety of biological and healthcare-related fields. The large size of these proteins, as well as the presence of high-spin metal ions (e.g., Fe3+), limits the use of NMR. In this work, we report on the use of electrospray ionization mass spectrometry (ESI MS) to study dynamics of the transferrin system in vitro under conditions that are designed to mimic the endosomal environment. ESI MS is shown to provide valuable insights into the mechanistic aspects of metal ion-binding/release by transferrins and is complementary to other spectroscopic techniques. Conformational stability of the complex is evaluated based on the appearance of the charge-state distribution of protein ions, while the composition of the protein-ligand complex is determined based on the mass of the protein ions. In the absence of iron chelators, a stepwise dissociation of the ternary complex (protein-metal ion-synergistic anion) is observed as the solution pH is gradually decreased. Although the release of synergistic anion from the complex is initiated at typical endosomal pH levels (i.e., 5.5), metal ion remains largely bound to the protein until the pH is lowered to a level of approximately 4.5. Under these conditions, a significant fraction of the protein populates unfolded conformations. In stark contrast to this behavior, addition of an iron chelating agent (citrate) to the protein solution results in facile iron release at typical endosomal pH levels without any detectable unfolding of the protein. The mass spectral data lends further credibility to the notion that the holoprotein samples conformations that are specific to the apo form (e.g., "open conformation"), from which iron dissociation most likely occurs. The results of the present study demonstrate that ESI MS can be used to model metal ion release from transferrin under conditions that are designed to mimic the physiological environment.
Collapse
Affiliation(s)
- D R Gumerov
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
19
|
Metzler DE, Metzler CM, Sauke DJ. Transition Metals in Catalysis and Electron Transport. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
The preliminary development of a plutonium in blood plasma equilibrium model. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1569-4860(01)80010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Hirose M. The structural mechanism for iron uptake and release by transferrins. Biosci Biotechnol Biochem 2000; 64:1328-36. [PMID: 10945247 DOI: 10.1271/bbb.64.1328] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transferrins are a group of iron-binding proteins that control the levels of iron in the body fluids of vertebrates by their ability to bind two Fe3+ and two CO3(2-). The transferrin molecule, with a molecular mass of about 80 kDa, is folded into two similarly sized homologous N- and C-lobes that are stabilized by many intrachain disulfides. As observed by X-ray crystallography, each lobe is further divided into two similarly sized domains, domain 1 and domain 2, and an Fe3+-binding site is within the interdomain cleft. Four of the six Fe3+ coordination sites are occupied by protein ligands (2 Tyr residues, 1 Asp, and 1 His) and the other two by a bidentate CO3(2-). Upon uptake and release of Fe3+, transferrins undergo a large-scale conformational change depending on a common structural mechanism: domains 1 and 2 rotate as rigid bodies around a rotation axis that passes through the two antiparallel beta-strands linking the domains. The extent of the rotation is, however, variable for different transferrin species and lobes. As a Fe3+ release mechanisms at low pH from the N-lobes of serum transferrin and ovotransferrin, the structural evidence for 'dilysine trigger mechanism' is shown. A structural mechanism for the Fe3+ release in presence of a non-synergistic anion is proposed on the basis of the sulfate-bound apo crystal structure of the ovotransferrin N-lobe. Domain-opened structures with the coordinated Fe3+ by the two tyrosine residues are demonstrated in fragment and intact forms, and their functional implications as a possible intermediate for iron uptake and release are discussed.
Collapse
Affiliation(s)
- M Hirose
- The Research Institute for Food Science, Kyoto University, Uji, Japan
| |
Collapse
|
22
|
Mizutani K, Yamashita H, Mikami B, Hirose M. Crystal structure at 1.9 A resolution of the apoovotransferrin N-lobe bound by sulfate anions: implications for the domain opening and iron release mechanism. Biochemistry 2000; 39:3258-65. [PMID: 10727217 DOI: 10.1021/bi992574q] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several lines of functional evidence have shown that anion binding to a nonsynergistic site is a prerequisite for the anion-mediated iron release mechanism of transferrins. We report here structural evidence of the location of sulfate anion binding sites of the ovotransferrin N-lobe via the 1.90 A resolution apo crystal structure. The crystals were grown in an ammonium sulfate solution and belonged to space group P6(3)22 with the following unit cell dimensions: a = b = 125.17 A and c = 87.26 A. The structural determination was performed by isomorphous replacement, using Pt and Au derivatives. The structure refinement gave an R-factor of 0.187 in the resolution range of 7.0-1.90 A for the final model. From the electron density map, the existence of four bound SO(4)(2)(-) anions was detected. Three of them that exhibited reasonably low B-factors were all located in the opened interdomain cleft (sites 1-3). In site 1, the bound anion directly interacts with an Fe(3+)-coordinating ligand; SO(4) O1 and SO(4) O3 form hydrogen bonds with His250 NE2. Oxygen atom O3 of the same sulfate anion makes a hydrogen bond with Ser91 OG in a hinge strand. The sulfate anion in site 2 partially occupies the synergistic anion binding sites; SO(4) O2 and SO(4) O3 are hydrogen bonded to Arg121 NE and NH2, respectively, both of which are consensus anchor groups for CO(3)(2)(-) anion in holotransferrins. The former oxygen atom of SO(4)(2)(-) is also hydrogen bonded to Ser122 N, which forms a hydrogen bond with Fe(3+)-coordinating ligand Asp60 OD2 in holotransferrins. Some of the SO(4)(2)(-) oxygen atoms in sites 1 and 2 interact indirectly through H(2)O molecules with functionally important protein groups, such as the other Fe(3+)-coordinating ligands, Tyr92 OH and Tyr191 OH, and a dilysine trigger group, Lys209 NZ. In site 3, SO(4) O1 and SO(4) O4 form hydrogen bonds with Ser192 OG and Tyr191 N, respectively, and SO(4) O2 forms hydrogen bonds with Ser192 N and Ser192 OG. These structural data are consistent with the view that the anion bindings to the interdomain cleft, especially to sites 1 and 2, play crucial roles in the domain opening and synergistic carbonate anion release in the iron release mechanism of the ovotransferrin N-lobe.
Collapse
Affiliation(s)
- K Mizutani
- The Research Institute for Food Science, Kyoto University, Uji, Kyoto 611 0011, Japan
| | | | | | | |
Collapse
|
23
|
Donohoe RJ. Alteration of infrared spectrum of serum transferrin by iron binding and lowered pH. BIOSPECTROSCOPY 1999; 5:325-7. [PMID: 10604284 DOI: 10.1002/(sici)1520-6343(1999)5:6<325::aid-bspy1>3.0.co;2-p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Difference infrared spectra are reported for human serum transferrin in D2O as a function of iron binding or increased acidity. Spectral features detected as iron is bound at high pH include difference bands that are indicative of reduced solvent exposure and binding site ligation. More extensive spectral alterations, some of which indicate titration of carboxylic acid groups, are induced in the apo protein by lowering the pH in a manner consistent with that entailed in endocytosis.
Collapse
Affiliation(s)
- R J Donohoe
- Los Alamos National Laboratory, Bioscience and Biotechnology Group, New Mexico 87545, USA
| |
Collapse
|
24
|
Kurokawa H, Dewan JC, Mikami B, Sacchettini JC, Hirose M. Crystal structure of hen apo-ovotransferrin. Both lobes adopt an open conformation upon loss of iron. J Biol Chem 1999; 274:28445-52. [PMID: 10497206 DOI: 10.1074/jbc.274.40.28445] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional crystal structure of hen apo-ovotransferrin has been solved by molecular replacement and refined by simulated annealing and restrained least squares to a 3.0-A resolution. The final model, which comprises 5312 protein atoms (residues 1 to 686) and 28 carbohydrate atoms (from two monosaccharides attached to Asn(473)), gives an R-factor of 0.231 for the 11,989 observed reflections between 20.0- and 3.0-A resolution. In the structure, both empty iron binding clefts are in the open conformation, lending weight to the theory that Fe(3+) binding or release in transferrin proceeds via a mechanism that involves domain opening and closure. Upon opening, the domains rotate essentially as rigid bodies. The two domains of the N-lobe rotate away from one another by 53 degrees, whereas the C-lobe domains rotate away each another by 35 degrees. These rotations take place about an axis that passes through the two beta-strands, linking the domains. The domains of each lobe make different contacts with one another in the open and closed forms. These contacts form two interdomain interfaces on either side of the rotation axis, and domain opening or closing produces a see-saw motion between these two alternative close-packed interfaces. The interdomain disulfide bridge (Cys(478)-Cys(671)), found only in the C-lobe, may restrict domain opening but does not completely prevent it.
Collapse
Affiliation(s)
- H Kurokawa
- Research Institute for Food Science, Kyoto University, Uji, Kyoto 611, Japan
| | | | | | | | | |
Collapse
|
25
|
Harris WR, Yang B, Abdollahi S, Hamada Y. Steric restrictions on the binding of large metal ions to serum transferrin. J Inorg Biochem 1999; 76:231-42. [PMID: 10605839 DOI: 10.1016/s0162-0134(99)00150-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apotransferrin in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid at 25 degrees C and pH 7.4 was titrated with acidic solutions of Lu3+, Tb3+, and Eu3+. Metal binding at the two specific metal-binding sites of transferrin was followed from changes in the difference UV spectra at 245 nm. The binding of Tb3+ was also followed from changes in the fluorescence emission spectrum at 549 nm. Apotransferrin was titrated with solutions containing varying ratios of the metal ion and the competitive chelating agent nitrilotriacetic acid, and metal-transferrin binding constants were calculated by nonlinear least-squares fits of the absorbance as a function of titrant added. The sequential carbonate-independent equilibrium constants for the binding of two metal ions are log KM1 = 11.08 and log KM2 = 7.93 for Lu3+, log KM1 = 11.20 and log KM2 = 7.61 for Tb3+, and log KM1 = 9.66 and log KM2 = 7.27 for Eu3+. Titrations of both C-terminal and N-terminal monoferric transferrins indicate that all of these metal ions bind more strongly to the C-terminal binding site. The trend in log K values as a function of the lanthanide ionic radius has been evaluated both by plots of log K versus the metal ion charge/radius ratio and by linear free-energy relationships in which binding constants for complexes of the larger lanthanides are plotted versus the binding constants for complexes with the smallest lanthanide, Lu3+. Both methods indicate that there is a sharp drop in the binding constants for the C-terminal binding site for metals larger than Tb3+. This decrease is attributed to a steric hindrance to the binding of the larger cations. The steric effect is not as strong for metal binding at the N-terminal site. As a result, the selectivity for binding to the C-terminal site, which is quite high for the smaller lanthanides, drops sharply on going from Tb3+ to Nd3+.
Collapse
Affiliation(s)
- W R Harris
- Department of Chemistry, University of Missouri-St. Louis 63121, USA.
| | | | | | | |
Collapse
|
26
|
Mizutani K, Yamashita H, Kurokawa H, Mikami B, Hirose M. Alternative structural state of transferrin. The crystallographic analysis of iron-loaded but domain-opened ovotransferrin N-lobe. J Biol Chem 1999; 274:10190-4. [PMID: 10187803 DOI: 10.1074/jbc.274.15.10190] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transferrins bind Fe3+ very tightly in a closed interdomain cleft by the coordination of four protein ligands (Asp60, Tyr92, Tyr191, and His250 in ovotransferrin N-lobe) and of a synergistic anion, physiologically bidentate CO32-. Upon Fe3+ uptake, transferrins undergo a large scale conformational transition: the apo structure with an opening of the interdomain cleft is transformed into the closed holo structure, implying initial Fe3+ binding in the open form. To solve the Fe3+-loaded, domain-opened structure, an ovotransferrin N-lobe crystal that had been grown as the apo form was soaked with Fe3+-nitrilotriacetate, and its structure was solved at 2.1 A resolution. The Fe3+-soaked form showed almost exactly the same overall open structure as the iron-free apo form. The electron density map unequivocally proved the presence of an iron atom with the coordination by the two protein ligands of Tyr92-OH and Tyr191-OH. Other Fe3+ coordination sites are occupied by a nitrilotriacetate anion, which is stabilized through the hydrogen bonds with the peptide NH groups of Ser122, Ala123, and Gly124 and a side chain group of Thr117. There is, however, no clear interaction between the nitrilotriacetate anion and the synergistic anion binding site, Arg121.
Collapse
Affiliation(s)
- K Mizutani
- Research Institute for Food Science, Kyoto University, Uji, Kyoto 6110011, Japan
| | | | | | | | | |
Collapse
|
27
|
Kim CY, Shen B, Park MS, Olah GA. Structural changes measured by X-ray scattering from human flap endonuclease-1 complexed with Mg2+ and flap DNA substrate. J Biol Chem 1999; 274:1233-9. [PMID: 9880491 DOI: 10.1074/jbc.274.3.1233] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human flap endonuclease-1 (FEN-1) is a member of the structure-specific endonuclease family and is essential in DNA replication and repair. FEN-1 has specific endonuclease activity for repairing nicked double-stranded DNA substrates that have the 5'-end of the nick expanded into a single-stranded tail, and it is involved in processing Okazaki fragments during DNA replication. Magnesium is a cofactor required for nuclease activity. We used small-angle x-ray scattering to obtain global structural information pertinent to nuclease activity from FEN-1, the D181A mutant, the wild-type FEN-1. 34-mer DNA flap complex, and the D181A.34-mer DNA flap complex. The D181A mutant, which has Asp-181 replaced by Ala, selectively binds to the flap structure, but has lost its cleaving activity. Asp-181 is thought to be involved in Mg2+ binding at the active site (Shen, B., Nolan, J. P., Sklar, L. A., and Park, M. S. (1996) J. Biol. Chem. 271, 9173-9176). Our data indicate that FEN-1 and the D181A mutant each have a radius of gyration of approximately 26 A, and the effect of Mg2+ on the scattering from the proteins alone is insignificant. The 34-mer DNA fragment was constructed such that it readily forms a 5'-flap structure. The formation of the flap conformation of the DNA substrate was evident by both the extrapolated Io scattering and radius of gyration and was supported by NMR spectrum and nuclease assays. In the absence of magnesium, the FEN-1.34-mer DNA flap complex has an Rg value of approximately 34 A, whereas the D181A.34-mer DNA flap complex self-associates, suggesting that a significant protein conformational change occurs by addition of the flap DNA substrate and that Asp-181 is crucial for proper binding of the protein to the DNA substrate. A time course change in the scattering profiles arising from magnesium activation of the FEN-1.34-mer DNA flap complex is consistent with the protein completely releasing the DNA substrate after cleavage.
Collapse
Affiliation(s)
- C Y Kim
- Life Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | |
Collapse
|