1
|
Zhang JL, Richetti S, Ramezani T, Welcker D, Lütke S, Pogoda HM, Hatzold J, Zaucke F, Keene DR, Bloch W, Sengle G, Hammerschmidt M. Vertebrate extracellular matrix protein hemicentin-1 interacts physically and genetically with basement membrane protein nidogen-2. Matrix Biol 2022; 112:132-154. [PMID: 36007682 PMCID: PMC10015821 DOI: 10.1016/j.matbio.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mouse and zebrafish hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 in basement membrane integrity. We show that HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately 3.5-fold lower affinity and in a competitive manner. Furthermore, immunofluorescence and immunogold labeling revealed that HMCN1/Hmcn1 is localized close to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as the loss of Laminin-α5 (Lama5) or Hmcn1. Finally, combined partial loss-of-function studies indicated that nid2a genetically interacts with both hmcn1 and lama5. Together, these findings suggest that despite their mutually exclusive physical binding, hemicentins, nidogens, and laminins tightly cooperate and support each other during formation, maintenance, and function of basement membranes to confer tissue linkage.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Stefania Richetti
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Thomas Ramezani
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Daniela Welcker
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans-Martin Pogoda
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Research Unit for Osteoarthritis, Department for Orthopedics, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR, United States
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021; 11:biom11050685. [PMID: 34063320 PMCID: PMC8147605 DOI: 10.3390/biom11050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the evolution of early metazoans, as it provides structural and biochemical support to the surrounding cells through the cell–cell and cell–matrix interactions. In multi-cellular organisms, ECM plays a pivotal role in the differentiation of tissues and in the development of organs. Fibulins are ECM glycoproteins, found in a variety of tissues associated with basement membranes, elastic fibers, proteoglycan aggregates, and fibronectin microfibrils. The expression profile of fibulins reveals their role in various developmental processes such as elastogenesis, development of organs during the embryonic stage, tissue remodeling, maintenance of the structural integrity of basement membrane, and elastic fibers, as well as other cellular processes. Apart from this, fibulins are also involved in the progression of human diseases such as cancer, cardiac diseases, congenital disorders, and chronic fibrotic disorders. Different isoforms of fibulins show a dual role of tumor-suppressive and tumor-promoting activities, depending on the cell type and cellular microenvironment in the body. Knockout animal models have provided deep insight into their role in development and diseases. The present review covers details of the structural and expression patterns, along with the role of fibulins in embryonic development and disease progression, with more emphasis on their involvement in the modulation of cancer diseases.
Collapse
|
3
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
4
|
Cangemi C, Hansen ML, Argraves WS, Rasmussen LM. Fibulins and their role in cardiovascular biology and disease. Adv Clin Chem 2014; 67:245-65. [PMID: 25735864 DOI: 10.1016/bs.acc.2014.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibulins are a group of extracellular matrix proteins of which many are present in high amounts in the cardiovascular system. They share common biochemical properties and are often found in relation to basement membranes or elastic fibers. Observations in humans with specific mutations in fibulin genes, together with results from genetically engineered mice and data from human cardiovascular tissue suggest that the fibulin family of proteins play important functional roles in the cardiovascular system. Moreover, fibulin-1 circulates in high concentrations in plasma and may function as a cardiovascular disease marker.
Collapse
Affiliation(s)
- Claudia Cangemi
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Maria Lyck Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - William Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
5
|
Lens extrusion from Laminin alpha 1 mutant zebrafish. ScientificWorldJournal 2014; 2014:524929. [PMID: 24526906 PMCID: PMC3914655 DOI: 10.1155/2014/524929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 01/07/2023] Open
Abstract
We report analysis of the ocular lens phenotype of the recessive, larval lethal zebrafish mutant, lama1a69/a69. Previous work revealed that this mutant has a shortened body axis and eye defects including a defective hyaloid vasculature, focal corneal dysplasia, and loss of the crystalline lens. While these studies highlight the importance of laminin α1 in lens development, a detailed analysis of the lens defects seen in these mutants was not reported. In the present study, we analyze the lenticular anomalies seen in the lama1a69/a69 mutants and show that the lens defects result from the anterior extrusion of lens material from the eye secondary to structural defects in the lens capsule and developing corneal epithelium associated with basement membrane loss. Our analysis provides further insights into the role of the lens capsule and corneal basement membrane in the structural integrity of the developing eye.
Collapse
|
6
|
Vierkotten S, Muether PS, Fauser S. Overexpression of HTRA1 leads to ultrastructural changes in the elastic layer of Bruch's membrane via cleavage of extracellular matrix components. PLoS One 2011; 6:e22959. [PMID: 21829675 PMCID: PMC3149070 DOI: 10.1371/journal.pone.0022959] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/02/2011] [Indexed: 12/01/2022] Open
Abstract
Variants in the chromosomal region 10q26 are strongly associated with an increased risk for age-related macular degeneration (AMD). Two potential AMD genes are located in this region: ARMS2 and HTRA1 (high-temperature requirement A1). Previous studies have suggested that polymorphisms in the promotor region of HTRA1 result in overexpression of HTRA1 protein. This study investigated the role of HTRA1 overexpression in the pathogenesis of AMD. Transgenic Htra1 mice overexpressing the murine protein in the retinal pigment epithelium (RPE) layer of the retina were generated and characterized by transmission electron microscopy, immunofluorescence staining and Western Blot analysis. The elastic layer of Bruch's membrane (BM) in the Htra1 transgenic mice was fragmented and less continuous than in wild type (WT) controls. Recombinant HTRA1 lacking the N-terminal domain cleaved various extracellular matrix (ECM) proteins. Subsequent Western Blot analysis revealed an overexpression of fibronectin fragments and a reduction of fibulin 5 and tropoelastin in the RPE/choroid layer in transgenic mice compared to WT. Fibulin 5 is essential for elastogenesis by promoting elastic fiber assembly and maturation. Taken together, our data implicate that HTRA1 overexpression leads to an altered elastogenesis in BM through fibulin 5 cleavage. It highlights the importance of ECM related proteins in the development of AMD and links HTRA1 to other AMD risk genes such as fibulin 5, fibulin 6, ARMS2 and TIMP3.
Collapse
Affiliation(s)
- Sarah Vierkotten
- Center of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Sascha Fauser
- Center of Ophthalmology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
7
|
Stattin EL, Wiklund F, Lindblom K, Önnerfjord P, Jonsson BA, Tegner Y, Sasaki T, Struglics A, Lohmander S, Dahl N, Heinegård D, Aspberg A. A missense mutation in the aggrecan C-type lectin domain disrupts extracellular matrix interactions and causes dominant familial osteochondritis dissecans. Am J Hum Genet 2010; 86:126-37. [PMID: 20137779 DOI: 10.1016/j.ajhg.2009.12.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 11/27/2022] Open
Abstract
Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo.
Collapse
|
8
|
Abstract
From the earliest studies with epithelial cells implanted into detrusor muscle to later experiments on smooth muscle in defined collagen gels, cell niche and extracellular matrix (ECM) have been clearly shown to orchestrate cellular behavior and fate whether quiescent, migratory, or proliferative. Normal matrix can revert transformed cells to quiescence, and damaged matrix can trigger malignancy or dedifferentiation. ECM influence in disease, development, healing and regeneration has been demonstrated in many other fields of study, but a thorough examination of the roles of ECM in bladder cell activity has not yet been undertaken. Structural ECM proteins, in concert with adhesive proteins, provide crucial structural support to the bladder. Both structural and nonstructural components of the bladder have major effects on smooth muscle function, through effects on matrix rigidity and signaling through ECM receptors. While many ECM components and receptors identified in the bladder have specific known functions in the vascular smooth musculature, their function in the bladder is often less well defined. In cancer and obstructive disease, the ECM has a critical role in pathogenesis. The challenge in these settings will be to find therapies that prevent hyperproliferation and encourage proper differentiation, through an understanding of matrix effects on cell biology and susceptibility to therapeutics.
Collapse
|
9
|
Davis JA, Handford PA, Redfield C. The N1317H Substitution Associated with Leber Congenital Amaurosis Results in Impaired Interdomain Packing in Human CRB1 Epidermal Growth Factor-like (EGF) Domains. J Biol Chem 2007; 282:28807-28814. [PMID: 17660513 DOI: 10.1074/jbc.m704015200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-binding epidermal growth factor-like (cbEGF) domain is a widely occurring module in proteins of diverse function. Amino acid substitutions that disrupt its structure or calcium affinity have been associated with various disorders. The extracellular portion of CRB1, the human homologue of Drosophila Crumbs, exhibits a modular domain organization that includes EGF and cbEGF domains. The N1317H substitution in the 19th cbEGF domain of CRB1 is associated with the serious visual disorder Leber congenital amaurosis. We have investigated the structure and Ca(2+) binding of recombinant wild-type and N1317H CRB1 fragments (EGF18-cbEGF19) using NMR and find that Ca(2+) binding is altered, resulting in disruption of long range interactions between adjacent EGF domains in CRB1. From these observations, we propose that this substitution affects the structural integrity of CRB1 in the inter-photoreceptor matrix of the retina, where it is expressed. Furthermore, we identify disease-causing substitutions in other cbEGF-containing proteins that are likely to result in similar disruption of interdomain packing, supporting the hypothesis that the tandem cbEGF domain linkages are critical for the structure and function of proteins containing cbEGF domains.
Collapse
Affiliation(s)
- Jason A Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
10
|
Hubmacher D, Tiedemann K, Bartels R, Brinckmann J, Vollbrandt T, Bätge B, Notbohm H, Reinhardt DP. Modification of the Structure and Function of Fibrillin-1 by Homocysteine Suggests a Potential Pathogenetic Mechanism in Homocystinuria. J Biol Chem 2005; 280:34946-55. [PMID: 16096271 DOI: 10.1074/jbc.m504748200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homocystinuria, a disorder originating in defects in the methionine metabolism, is characterized by an elevated plasma concentration of homocysteine. Most patients have a defect in the cystathionine-beta-synthase, the key enzyme in the conversion of homocysteine to cysteine. Many abnormalities in the connective tissue of patients with homocystinuria resemble those seen in Marfan syndrome, caused by mutations in fibrillin-1. These observations led to the hypothesis that the structure and function of fibrillin-1 is compromised in patients with homocystinuria. To test this hypothesis we produced recombinant human fibrillin-1 fragments spanning the central portion of the molecule (8-Cys/transforming growth factor-beta binding domain 3 to calcium binding EGF domain 22) and extensively analyzed the potential of homocysteine to modify structural and functional properties of these proteins. Circular dichroism spectroscopy revealed moderate changes of their secondary structures after incubation with homocysteine. Equilibrium dialysis demonstrated a number of high affinity calcium binding sites in the tandemly repeated calcium binding epidermal growth factor-like domains 11-22. Calcium binding of homocysteine-modified fragments was completely abolished. Incubation of the recombinant proteins with homocysteine rendered the analyzed calcium binding EGF domains as well as the 8-Cys/transforming growth factor-beta binding domain 3 significantly more susceptible to proteolytic degradation. Furthermore, data were obtained demonstrating that homocysteine can covalently modify fibrillin-1 via disulfide bonds. These data strongly suggest that structural and functional modifications as well as degradation processes of fibrillin-1 in the connective tissues of patients with homocystinuria play a major role in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A2B2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vollbrandt T, Tiedemann K, El-Hallous E, Lin G, Brinckmann J, John H, Bätge B, Notbohm H, Reinhardt DP. Consequences of Cysteine Mutations in Calcium-binding Epidermal Growth Factor Modules of Fibrillin-1. J Biol Chem 2004; 279:32924-31. [PMID: 15161917 DOI: 10.1074/jbc.m405239200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in fibrillin-1 lead to Marfan syndrome and some related genetic disorders. Many of the more than 600 mutations currently known in fibrillin-1 eliminate or introduce cysteine residues in epidermal growth factor-like modules. Here we report structural and functional consequences of three selected cysteine mutations (R627C, C750G, and C926R) in fibrillin-1. The mutations have been analyzed by means of recombinant polypeptides produced in mammalian expression systems. The mRNA levels for the mutation constructs were similar to wild-type levels. All three mutated polypeptides were secreted by embryonic kidney cells (293) into the culture medium. Purification was readily feasible for mutants R627C and C750G, but not for C926R, which restricted the availability of this mutant polypeptide to selected analyses. The overall folds of the mutant polypeptides were indistinguishable from the wild-type as judged by the ultrastructural shape, CD analysis, and reactivity with a specific antibody sensitive for intact disulfide bonds. Subtle structural changes caused by R627C and C750G, however, were monitored by proteolysis and heat denaturation experiments. These changes occurred in the vicinity of the mutations either as short range effects (R627C) or both short and long range effects (C750G). Enhanced proteolytic susceptibility was observed for R627C and C750G to a variety of proteases. These results expand and further strengthen the concept that proteolytic degradation of mutated fibrillin-1 might be an important potential mechanism in the pathogenesis of Marfan syndrome and other disorders caused by mutations in fibrillin-1.
Collapse
Affiliation(s)
- Tillman Vollbrandt
- Department of Medical Molecular Biology of the University of Lübeck, D-23538 Luebeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Day JM, Olin AI, Murdoch AD, Canfield A, Sasaki T, Timpl R, Hardingham TE, Aspberg A. Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J Biol Chem 2004; 279:12511-8. [PMID: 14722076 DOI: 10.1074/jbc.m400242200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteoglycans aggrecan, versican, neurocan, and brevican bind hyaluronan through their N-terminal G1 domains, and other extracellular matrix proteins through the C-type lectin repeat in their C-terminal G3 domains. Here we identify tenascin-C as a ligand for the lectins of all these proteoglycans and map the binding site on the tenascin molecule to fibronectin type III repeats, which corresponds to the proteoglycan lectin-binding site on tenascin-R. In the G3 domain, the C-type lectin is flanked by epidermal growth factor (EGF) repeats and a complement regulatory protein-like motif. In aggrecan, these are subject to alternative splicing. To investigate if these flanking modules affect the C-type lectin ligand interactions, we produced recombinant proteins corresponding to aggrecan G3 splice variants. The G3 variant proteins containing the C-type lectin showed different affinities for various ligands, including tenascin-C, tenascin-R, fibulin-1, and fibulin-2. The presence of an EGF motif enhanced the affinity of interaction, and in particular the splice variant containing both EGF motifs had significantly higher affinity for ligands, such as tenascin-R and fibulin-2. The mRNA for this splice variant was shown by reverse transcriptase-PCR to be expressed in human chondrocytes. Our findings suggest that alternative splicing in the aggrecan G3 domain may be a mechanism for modulating interactions and extracellular matrix assembly.
Collapse
Affiliation(s)
- Joanna M Day
- The Wellcome Trust Centre for Cell Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol 2004; 22:521-38. [PMID: 14996432 DOI: 10.1016/j.matbio.2003.10.006] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2003] [Indexed: 01/11/2023]
Abstract
Basement membranes are cell surface associated extracellular matrices containing laminins, type IV collagens, nidogens, perlecan, agrin, and other macromolecules. Biochemical and ultrastructural studies have suggested that basement membrane assembly and integrity is provided through multiple component interactions consisting of self-polymerizations, inter-component binding, and cell surface adhesions. Mutagenesis in vertebrate embryos and embryoid bodies have led to revisions of this model, providing evidence that laminins are essential for the formation of an initial polymeric scaffold of cell-attached matrix which matures in stability, ligand diversity, and functional complexity as additional matrix components are integrated into the scaffold. These studies also demonstrate that basement membrane components differentially promote cell polarization, organize and compartmentalize developing tissues, and maintain adult tissue function.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
14
|
Timpl R, Sasaki T, Kostka G, Chu ML. Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 2003; 4:479-89. [PMID: 12778127 DOI: 10.1038/nrm1130] [Citation(s) in RCA: 342] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fibulins are a newly recognized family of extracellular matrix proteins. The five known members of the family share an elongated structure and many calcium-binding sites, owing to the presence of tandem arrays of epidermal growth factor-like domains. They have overlapping binding sites for several basement-membrane proteins, tropoelastin, fibrillin, fibronectin and proteoglycans, and they participate in diverse supramolecular structures. New insights into their biological roles are now emerging from studies of transgenic mice and of some inherited human diseases.
Collapse
Affiliation(s)
- Rupert Timpl
- Laboratory of Protein Chemistry, Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
15
|
Dong L, Chen Y, Lewis M, Hsieh JC, Reing J, Chaillet JR, Howell CY, Melhem M, Inoue S, Kuszak JR, DeGeest K, Chung AE. Neurologic defects and selective disruption of basement membranes in mice lacking entactin-1/nidogen-1. J Transl Med 2002; 82:1617-30. [PMID: 12480912 DOI: 10.1097/01.lab.0000042240.52093.0f] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Entactin-1 (nidogen-1) is an ubiquitous component of basement membranes. From in vitro experiments, entactin-1 was assigned a role in maintaining the structural integrity of the basement membrane because of its binding affinity to other components, such as type IV collagen and laminin. Entactin-1 also interacts with integrin receptors on the cell surface to mediate cell adhesion, spreading, and motility. Targeted disruption of the entactin-1 gene in the mouse presented in this study revealed a duplication of the entacin-1 locus. Homozygous mutants for the functional locus lacked entactin-1 mRNA and protein and often displayed seizure-like symptoms and loss of muscle control in the hind legs. The behavior patterns suggested the presence of neurologic deficits in the central nervous system, thus providing genetic evidence linking entactin-1 to proper functions of the neuromuscular system. In homozygous mutants, structural alterations in the basement membranes were found only in selected locations including brain capillaries and the lens capsule. The morphology of the basement membranes in other tissues examined superficially appeared to be normal. These observations suggest that the lost functions of entactin-1 result in pathologic changes that are highly tissue specific.
Collapse
Affiliation(s)
- Lijin Dong
- Department of Obstetrics and Gynecology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Castoldi M, Chu ML. Structural and functional characterization of the human and mouse fibulin-1 gene promoters: role of Sp1 and Sp3. Biochem J 2002; 362:41-50. [PMID: 11829738 PMCID: PMC1222358 DOI: 10.1042/0264-6021:3620041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fibulin-1 is a multifunctional extracellular protein involved in diverse biological processes including cardiovascular development, haemostasis and cancer. To investigate the transcriptional regulation of the gene encoding fibulin-1 we cloned and analysed about 4.0 kb of the 5'-flanking regions of both the human and mouse fibulin-1 genes. The human and mouse fibulin-1 promoters share little sequence similarity except for a short region of approx. 150-170 bp immediately upstream of the translation start site. The conserved region contains a TATA-like sequence (ATAATT) and multiple consensus binding sites for Sp1 and activator protein 2 (AP-2). That the short conserved region in each gene confers basal promoter activity is demonstrated by transient transfections of promoter deletion constructs for both the human and mouse genes into cells that express fibulin-1 constitutively. Co-transfections of promoter constructs with expression plasmids for Sp1, Sp3 and Sp4 into Drosophila SL2 cells indicate that Sp1 and Sp3 are essential for transcriptional activation and that these two factors act synergistically. Electrophoretic mobility-shift assays show that Sp1 and Sp3, but not AP-2, bind to the basal promoter of the human fibulin-1 gene. The results demonstrate the functional importance of Sp1 and Sp3 in regulating the expression of the fibulin-1 gene.
Collapse
Affiliation(s)
- Mirco Castoldi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, U.S.A
| | | |
Collapse
|
17
|
Moll F, Katsaros D, Lazennec G, Hellio N, Roger P, Giacalone PL, Chalbos D, Maudelonde T, Rochefort H, Pujol P. Estrogen induction and overexpression of fibulin-1C mRNA in ovarian cancer cells. Oncogene 2002; 21:1097-107. [PMID: 11850827 DOI: 10.1038/sj.onc.1205171] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Revised: 10/26/2001] [Accepted: 11/07/2001] [Indexed: 01/03/2023]
Abstract
Fibulin-1 is an extracellular matrix protein induced by estradiol in estrogen receptor (ER) positive ovarian cancer cell lines. Alternative splicing of fibulin-1 mRNA results in four different variants named A, B, C and D that may have distinct biological functions. We studied the relative expression of fibulin-1 mRNA variants and their estrogen regulation in human ovarian cancer cells. In ovarian tissues and cancer cell lines, fibulin-1C and -1D are the predominant forms, whereas fibulin-1A and -1B are weakly expressed. We developed a competitive PCR assay based on coamplification of fibulin-1C and -1D to study the relative expression of these fibulin-1 variants in human ovarian samples. In ovarian cancer cell lines and ovarian cancer samples, there was a marked increase in the fibulin-1C:1D and fibulin-1C:HPRT mRNA ratios as compared to normal ovaries. In the BG1 estrogen receptor positive ovarian cancer cell line, fibulin-1C mRNA was induced by estradiol in a dose- and time-dependent manner. Since others and we have previously shown an increased expression of ERalpha as compared to ERbeta in ovarian cancer cells, we investigated whether ERalpha or ERbeta is involved in this induction. For this aim, MDA-MB-231 breast cancer cell line, which expresses both low basal levels of ERs and fibulin-1, was infected with recombinant ERalpha or ERbeta encoding adenovirus and treated with estradiol. Fibulin-1C was induced by estradiol in ERalpha- but not ERbeta-infected cells, suggesting that fibulin-1C induction is mediated through ERalpha. In ovarian tumors, a trend towards a correlation between fibulin-1C and ERalpha expression levels was noted. In conclusion, this study showed an increased fibulin-1C:-1D mRNA ratio in ovarian cancer cells as compared to normal ovaries. This finding suggests that the C variant may be involved in ovarian carcinogenesis. Fibulin-1C overexpression may thus be a clue for the understanding of a putative role of estrogens in ERalpha promoted ovarian tumor progression.
Collapse
Affiliation(s)
- Frederic Moll
- Unité INSERM 540, 60 rue de Navacelles, 34095 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brooke JS, Cha JH, Eidels L. Latent transforming growth factor beta-binding protein-3 and fibulin-1C interact with the extracellular domain of the heparin-binding EGF-like growth factor precursor. BMC Cell Biol 2002; 3:2. [PMID: 11846885 PMCID: PMC65547 DOI: 10.1186/1471-2121-3-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2001] [Accepted: 01/22/2002] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The membrane-bound cell-surface precursor and soluble forms of heparin-binding epidermal growth factor-like growth factor (HB-EGF) contribute to many cellular developmental processes. The widespread occurrence of HB-EGF in cell and tissue types has led to observations of its role in such cellular and tissue events as tumor formation, cell migration, extracellular matrix formation, wound healing, and cell adherence. Several studies have reported the involvement of such extracellular matrix proteins as latent transforming growth factor beta-binding protein, TGF-beta, and fibulin-1 in some of these processes. To determine whether HB-EGF interacts with extracellular matrix proteins we used the extracellular domain of proHB-EGF in a yeast two-hybrid system to screen a monkey kidney cDNA library. cDNA clones containing nucleotide sequences encoding domains of two proteins were obtained and their derived amino acid sequences were evaluated. RESULTS From approximately equal to 3 x 10(6) screened monkey cDNA clones, cDNA clones were recovered that contained nucleotide sequences encoding domains of the monkey latent transforming growth factor-beta binding protein-3 (MkLTBP-3) and fibulin-1C protein. The amino acid sequence derived from the MkLTBP-3 gene shared 98.6% identity with human LTBP-3 and 86.7% identity with mouse LTBP-3 amino acid sequences. The amino acid sequence derived from the monkey fibulin-1C gene shared 97.2% identity with human fibulin-1C. Yeast two-hybrid screens indicate that LTBP-3 and fibulin-1C interact with proHB-EGF through their calcium-binding EGF-like modules. CONCLUSIONS The interactions of the extracellular domain of proHB-EGF with LTBP-3 and fibulin-1C suggest novel functions for HB-EGF between cell and tissue surfaces.
Collapse
Affiliation(s)
- Joanna S Brooke
- Present adress: Dept of Biological Science, Depaul University, Chicago, Il 60614, USA
| | - Jeong-Heon Cha
- Department of Microbiology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390-9048, USA
| | - Leon Eidels
- Department of Microbiology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390-9048, USA
| |
Collapse
|
19
|
Ries A, Göhring W, Fox JW, Timpl R, Sasaki T. Recombinant domains of mouse nidogen-1 and their binding to basement membrane proteins and monoclonal antibodies. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5119-28. [PMID: 11589703 DOI: 10.1046/j.0014-2956.2001.02437.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The basement membrane protein, nidogen-1, was previously shown to consist of three globular domains, G1 to G3, and two connecting segments. Nidogen-1 is a major mediator in the formation of ternary complexes with laminins, collagen IV, perlecan and fibulins. In the present study, we have produced recombinant proteins of these predicted domains in mammalian cells and used these proteins for crystallographic and binding epitope analyses. These fragments included G1, G2, the rod domain and a slightly larger G3 structure; all were obtained in good yields and were shown to be properly folded using electron microscopy. Surface plasmon resonance assays demonstrated high affinity binding (Kd = 3-9 nM) of domain G2 for collagen IV, perlecan domain IV-1 and fibulin-2, and a more moderate Kd for fibulin-1C. Domain G3 contained high affinity binding sites for the laminin gamma1 chain and collagen IV (Kd = 1 nM) and weaker binding sites for fibulin-1C and fibulin-2. A moderate binding affinity was also observed between domain G1 and fibulin-2, while no activity could be detected for the nidogen rod domain. Together, these data indicate the potential of nidogen-1 for multiple interactions within basement membranes. A similar binding repertoire was also identified for seven rat monoclonal antibodies that bound with Kd = 2-30 nM to either G1, G1-G2, G2, the rod domain or G3. Three of the antibodies showed strongly reduced binding to G2 and G3 after complex formation with either a perlecan domain or laminin-1.
Collapse
Affiliation(s)
- A Ries
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18 A, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
20
|
Gallagher WM, Greene LM, Ryan MP, Sierra V, Berger A, Laurent-Puig P, Conseiller E. Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues. FEBS Lett 2001; 489:59-66. [PMID: 11231014 DOI: 10.1016/s0014-5793(00)02389-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here, we report the identification of a human orthologue of fibulin-4, along with analysis of its biosynthetic processing and mRNA expression levels in normal and tumour tissues. Comparative sequence analysis of fibulin-4 cDNAs revealed apparent polymorphisms in the signal sequence that could account for previously reported inefficient secretion in fibulin-4 transfectants. In vitro translation of fibulin-4 mRNA revealed the presence of full-length and truncated polypeptides, the latter apparently generated from an alternative translation initiation site. Since this polypeptide failed to incorporate into endoplasmic reticulum membrane preparations, it was concluded that it lacked a signal sequence and thus could represent an intracellular form of fibulin-4. Using fluorescence in situ hybridisation analysis, the human fibulin-4 gene was localised to chromosome 11q13, this region being syntenic to portions of mouse chromosomes 7 and 19. Considering the fact that translocations, amplifications and other rearrangements of the 11q13 region are associated with a variety of human cancers, the expression of human fibulin-4 was evaluated in a series of colon tumours. Reverse transcription-polymerase chain reaction analysis of RNA from paired human colon tumour and adjacent normal tissue biopsies showed that a significant proportion of tumours had approximately 2-7-fold increases in the level of fibulin-4 mRNA expression. Taken together, results reported here suggest that an intracellular form of fibulin-4 protein may exist and that dysregulated expression of the fibulin-4 gene is associated with human colon tumourigenesis.
Collapse
Affiliation(s)
- W M Gallagher
- Conway Institute of Biomolecular and Biomedical Research, Department of Pharmacology, University College Dublin, Belfield, Ireland.
| | | | | | | | | | | | | |
Collapse
|
21
|
Robinson PN, Godfrey M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 2000; 37:9-25. [PMID: 10633129 PMCID: PMC1734449 DOI: 10.1136/jmg.37.1.9] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mutations in the gene for fibrillin-1 (FBN1) have been shown to cause Marfan syndrome, an autosomal dominant disorder of connective tissue characterised by pleiotropic manifestations involving primarily the ocular, skeletal, and cardiovascular systems. Fibrillin-1 is a major component of the 10-12 nm microfibrils, which are thought to play a role in tropoelastin deposition and elastic fibre formation in addition to possessing an anchoring function in some tissues. Fibrillin-1 mutations have also been found in patients who do not fulfil clinical criteria for the diagnosis of Marfan syndrome, but have related disorders of connective tissue, such as isolated ectopia lentis, familial aortic aneurysm, and Marfan-like skeletal abnormalities, so that Marfan syndrome may be regarded as one of a range of type 1 fibrillinopathies. There appear to be no particular hot spots since mutations are found throughout the entire fibrillin-1 gene. However, a clustering of mutations associated with the most severe form of Marfan syndrome, neonatal Marfan syndrome, has been noted in a region encompassing exons 24 to 32. The gene for fibrillin-2 (FBN2) is highly homologous to FBN1, and mutations in FBN2 have been shown to cause a phenotypically related disorder termed congenital contractural arachnodactyly. Since mutations in the fibrillin genes are likely to affect the global function of the microfibrils, the term microfibrillopathy may be the most appropriate to designate the spectrum of disease associated with dysfunction of these molecules. The understanding of the global and the molecular functions of the fibrillin containing microfibrils is still incomplete and, correspondingly, no comprehensive theory of the pathogenesis of Marfan syndrome has emerged to date. Many, but not all, fibrillin-1 gene mutations are expected to exert a dominant negative effect, whereby mutant fibrillin monomers impair the global function of the microfibrils. In this paper we review the molecular physiology and pathophysiology of Marfan syndrome and related microfibrillopathies.
Collapse
Affiliation(s)
- P N Robinson
- Laboratory of Paediatric Molecular Biology, Department of General Paediatrics, Charité University Hospital, Humboldt University, D-10098 Berlin, Germany
| | | |
Collapse
|
22
|
Sasaki T, Göhring W, Miosge N, Abrams WR, Rosenbloom J, Timpl R. Tropoelastin binding to fibulins, nidogen-2 and other extracellular matrix proteins. FEBS Lett 1999; 460:280-4. [PMID: 10544250 DOI: 10.1016/s0014-5793(99)01362-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elastic fibers in vessel walls and other tissues consist of cross-linked tropoelastin in association with several microfibrillar proteins. In order to understand the molecular basis of these structures, we examined the binding of recombinant human tropoelastin to other extracellular matrix ligands in solid phase binding and surface plasmon resonance assays. These studies demonstrated a particularly high affinity (K(d) about 1 nM) of tropoelastin for microfibrillar fibulin-2 and the recently described nidogen-2 isoform. More moderate affinities were observed for fibulin-1, laminin-1 and perlecan, while several other ligands such as collagens, nidogen-1, fibronectin and BM-40 showed little or no binding. In immunogold staining of mouse aortic media, elastic fibers were heavily decorated with tropoelastin, fibulin-2 and nidogen-2, while the reaction with fibulin-1 was lower. The colocalization of these proteins emphasizes the potential for in vivo interactions.
Collapse
Affiliation(s)
- T Sasaki
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, D-82152, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Giltay R, Timpl R, Kostka G. Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix Biol 1999; 18:469-80. [PMID: 10601734 DOI: 10.1016/s0945-053x(99)00038-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fibulin-1 and fibulin-2 have previously been identified as basement membrane and microfibrillar proteins with a broad binding repertoire for other extracellular ligands. Here we report on the cloning and sequence analysis of human fibulin-3 (487 residues), also known as protein S1-5, and fibulin-4 (443 residues). These novel members of this protein family are most closely related to fibulin-1C. They consist of a C-terminal globular domain III, also shared by the fibrillins, a central rod-like element composed of five calcium-binding epidermal growth factor-like (EG) modules (domain II) and an N-terminal interrupted EG module (domain I) which replaces the anaphylatoxin-like modules of the other fibulins. This predicted domain structure was supported by electron microscopy of fibulin-4, which demonstrated short rods. Northern blots showed that both novel fibulins are expressed in several human tissues to a variable extent and that they are up-regulated in quiescent fibroblasts. Specific antibodies which were raised against each of the novel fibulins did not cross-react with fibulin-1. Immunohistology of adult mouse tissues showed that fibulin-3, fibulin-4 and fibulin-1 have overlapping but distinct extracellular tissue localizations. A particularly prominent feature was the staining of variable sets of large and small blood vessels.
Collapse
Affiliation(s)
- R Giltay
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
24
|
Nakamura T, Ruiz-Lozano P, Lindner V, Yabe D, Taniwaki M, Furukawa Y, Kobuke K, Tashiro K, Lu Z, Andon NL, Schaub R, Matsumori A, Sasayama S, Chien KR, Honjo T. DANCE, a novel secreted RGD protein expressed in developing, atherosclerotic, and balloon-injured arteries. J Biol Chem 1999; 274:22476-83. [PMID: 10428823 DOI: 10.1074/jbc.274.32.22476] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have identified and characterized mouse, rat, and human cDNAs that encode a novel secreted protein of 448 amino acids named DANCE (developmental arteries and neural crest epidermal growth factor (EGF)-like). DANCE contains six calcium-binding EGF-like domains, one of which includes an RGD motif. Overexpression studies of recombinant DANCE protein document that DANCE is a secreted 66-kDa protein. DANCE and recently described protein S1-5 comprise a new EGF-like protein family. The human DANCE gene was mapped at chromosome 14q32.1. DANCE mRNA is mainly expressed in heart, ovary, and colon in adult human tissues. Expression profile analysis by in situ hybridization revealed prominent DANCE expression in developing arteries. DANCE is also expressed in neural crest cell derivatives, endocardial cushion tissue, and several other mesenchymal tissues. In adult vessels, DANCE expression is largely diminished but is reinduced in balloon-injured vessels and atherosclerotic lesions, notably in intimal vascular smooth muscle cells and endothelial cells that lose their ability to proliferate in late stage of injury. DANCE protein was shown to promote adhesion of endothelial cells through interaction of integrins and the RGD motif of DANCE. DANCE is thus a novel vascular ligand for integrin receptors and may play a role in vascular development and remodeling.
Collapse
Affiliation(s)
- T Nakamura
- Department of Medical Chemistry, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Aspberg A, Adam S, Kostka G, Timpl R, Heinegård D. Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 1999; 274:20444-9. [PMID: 10400671 DOI: 10.1074/jbc.274.29.20444] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aggregating proteoglycans (aggrecan, versican, neurocan, and brevican) are important components of many extracellular matrices. Their N-terminal globular domain binds to hyaluronan, but the function of their C-terminal region containing a C-type lectin domain is less clear. We now report that a 90-kDa protein copurifies with recombinant lectin domains from aggrecan and versican, but not from the brain-specific neurocan and brevican. Amino acid sequencing of tryptic peptides from this protein identified it as fibulin-1. This extracellular matrix glycoprotein is strongly expressed in tissues where versican is expressed (blood vessels, skin, and developing heart), and also expressed in developing cartilage and bone. It is thus likely to interact with these proteoglycans in vivo. Surface plasmon resonance measurements confirmed that aggrecan and versican lectin domains bind fibulin-1, whereas brevican and neurocan do not. As expected for a C-type lectin, the interactions with fibulin-1 are Ca2+-dependent, with KD values in the low nanomolar range. Using various deletion mutants, the binding site for aggrecan and versican lectin domains was mapped to the epidermal growth factor-like repeats in domain II of fibulin-1. No difference in affinity was found for deglycosylated fibulin-1, indicating that the proteoglycan C-type lectin domains bind to the protein part of fibulin-1.
Collapse
Affiliation(s)
- A Aspberg
- Department of Cell and Molecular Biology, Section for Connective Tissue Biology, Lund University, P. O. Box 94, SE-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Saharinen J, Hyytiäinen M, Taipale J, Keski-Oja J. Latent transforming growth factor-beta binding proteins (LTBPs)--structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev 1999; 10:99-117. [PMID: 10743502 DOI: 10.1016/s1359-6101(99)00010-6] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Growth factors of the transforming growth factor-beta family are potent regulators of the extracellular matrix formation, in addition to their immunomodulatory and regulatory roles for cell growth. TGF-beta s are secreted from cells as latent complexes containing TGF-beta and its propeptide, LAP (latency-associated peptide). In most cells LAP is covalently linked to an additional protein, latent TGF-beta binding protein (LTBP), forming the large latent complex. LTBPs are required for efficient secretion and correct folding of TGF-beta s. The secreted large latent complexes associate covalently with the extracellular matrix via the N-termini of the LTBPs. LTBPs belong to the fibrillin-LTBP family of extracellular matrix proteins, which have a typical repeated domain structure consisting mostly of epidermal growth factor (EGF)-like repeats and characteristic eight cysteine (8-Cys) repeats. Currently four different LTBPs and two fibrillins have been identified. LTBPs contain multiple proteinase sensitive sites, providing means to solubilize the large latent complex from the extracellular matrix structures. LTBPs are now known to exist both as soluble molecules and in association with the extracellular matrix. An important consequence of this is LTBP-mediated deposition and targeting of latent, activatable TGF-beta into extracellular matrices and connective tissues. LTBPs have a dual function, they are required both for the secretion of the small latent TGF-beta complex as well as directing bound latent TGF-beta to extracellular matrix microfibrils. However, it is not known at present whether LTBPs are capable of forming microfibrils independently, or whether they are a part of the fibrillin-containing fibrils. Most LTBPs possess RGD-sequences, which may have a role in their interactions with the cell surface. At least LTBP-1 is chemotactic to smooth muscle cells, and is involved in vascular remodelling. Analyses of the expressed LTBPs have revealed considerable variations throughout the molecules, generated both by alternative splicing and utilization of multiple promoter regions. The significance of this structural diversity is mostly unclear at present.
Collapse
Affiliation(s)
- J Saharinen
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | | | | | | |
Collapse
|
27
|
Kowal RC, Richardson JA, Miano JM, Olson EN. EVEC, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circ Res 1999; 84:1166-76. [PMID: 10347091 DOI: 10.1161/01.res.84.10.1166] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A hallmark of vascular lesions is the phenotypic modulation of vascular smooth muscle cells (VSMCs) from a quiescent, contractile state to a more primitive, proliferative phenotype with a more fetal pattern of gene expression. Using subtraction hybridization to identify genes that may regulate this transition, we cloned a novel gene named EVEC, an acronym for its expression in the embryonic vasculature and the presence of Ca2+ binding epidermal growth factor-like repeats contained in the predicted protein structure. Although these repeats are characteristic of the extracellular matrix proteins, fibrillin, fibulin, and the latent transforming growth factor-beta binding proteins, EVEC most closely resembles the H411 and T16/S1-5 gene products, the latter of which are believed to regulate DNA synthesis in quiescent fibroblasts. Using in situ hybridization, we demonstrated that EVEC is expressed predominantly in the VSMCs of developing arteries in E11.5 through E16.5 mouse embryos. Lower levels of expression are also observed in endothelial cells, perichondrium, intestine, and mesenchyme of the face and kidney. EVEC mRNA expression is dramatically downregulated in adult arteries, except in the uterus, where cyclic angiogenesis continues; however, EVEC expression is reactivated in 2 independent rodent models of vascular injury. EVEC mRNA is observed in cellular elements of atherosclerotic plaques of LDL receptor-deficient, human apolipoprotein B transgenic mice and in VSMCs of the media and neointima of balloon-injured rat carotid arteries. These data suggest that EVEC may play an important role in the regulation of vascular growth and maturation during development and in lesions of injured vessels.
Collapse
MESH Headings
- Age Factors
- Animals
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- Blotting, Northern
- COS Cells
- Cells, Cultured
- Cloning, Molecular
- Cytoplasmic Granules/metabolism
- Elastin/analysis
- Epidermal Growth Factor/genetics
- Epidermal Growth Factor/metabolism
- Extracellular Matrix Proteins
- Fetus/chemistry
- Fetus/physiology
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Mice
- Microsomes/chemistry
- Microsomes/metabolism
- Molecular Sequence Data
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Phenotype
- RNA, Messenger/analysis
- Rats
- Recombinant Proteins
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Amino Acid
- Tunica Intima/chemistry
- Tunica Intima/cytology
- Tunica Intima/physiology
- Up-Regulation/physiology
Collapse
Affiliation(s)
- R C Kowal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9148, USA
| | | | | | | |
Collapse
|