1
|
Price BD, Sojka A, Maity S, Chavez IM, Starck M, Wilson MZ, Han S, Sherwin MS. Field-domain rapid-scan EPR at 240GHz for studies of protein functional dynamics at room temperature. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 366:107744. [PMID: 39096714 DOI: 10.1016/j.jmr.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
We present field-domain rapid-scan (RS) electron paramagnetic resonance (EPR) at 8.6T and 240GHz. To enable this technique, we upgraded a home-built EPR spectrometer with an FPGA-enabled digitizer and real-time processing software. The software leverages the Hilbert transform to recover the in-phase (I) and quadrature (Q) channels, and therefore the raw absorptive and dispersive signals, χ' and χ'', from their combined magnitude (I2+Q2). Averaging a magnitude is simpler than real-time coherent averaging and has the added benefit of permitting long-timescale signal averaging (up to at least 2.5×106 scans) because it eliminates the effects of source-receiver phase drift. Our rapid-scan (RS) EPR provides a signal-to-noise ratio that is approximately twice that of continuous wave (CW) EPR under the same experimental conditions, after scaling by the square root of acquisition time. We apply our RS EPR as an extension of the recently reported time-resolved Gd-Gd EPR (TiGGER) [Maity et al., 2023], which is able to monitor inter-residue distance changes during the photocycle of a photoresponsive protein through changes in the Gd-Gd dipolar couplings. RS, opposed to CW, returns field-swept spectra as a function of time with 10ms time resolution, and thus, adds a second dimension to the static field transients recorded by TiGGER. We were able to use RS TiGGER to track time-dependent and temperature-dependent kinetics of AsLOV2, a light-activated phototropin domain found in oats. The results presented here combine the benefits of RS EPR with the improved spectral resolution and sensitivity of Gd chelates at high magnetic fields. In the future, field-domain RS EPR at high magnetic fields may enable studies of other real-time kinetic processes with time resolutions that are otherwise difficult to access in the solution state.
Collapse
Affiliation(s)
- Brad D Price
- Department of Physics, University of California, Santa Barbara, 93106, CA, USA; Institute for Terahertz Science and Technology, University of California, Santa Barbara, 93106, CA, USA.
| | - Antonín Sojka
- Department of Physics, University of California, Santa Barbara, 93106, CA, USA; Institute for Terahertz Science and Technology, University of California, Santa Barbara, 93106, CA, USA
| | - Shiny Maity
- Department of Chemistry, University of California, Santa Barbara, 93106, CA, USA; Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, 60208, IL, USA
| | - I Marcelo Chavez
- Department of Chemistry, University of California, Santa Barbara, 93106, CA, USA
| | - Matthieu Starck
- Department of Chemistry, Durham University, Durham, DH13LE, UK
| | - Maxwell Z Wilson
- Department Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, 93106, CA, USA
| | - Songi Han
- Department of Chemistry, University of California, Santa Barbara, 93106, CA, USA; Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, 60208, IL, USA
| | - Mark S Sherwin
- Department of Physics, University of California, Santa Barbara, 93106, CA, USA; Institute for Terahertz Science and Technology, University of California, Santa Barbara, 93106, CA, USA.
| |
Collapse
|
2
|
Jacobson DR, Perkins TT. Quantifying a light-induced energetic change in bacteriorhodopsin by force spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2313818121. [PMID: 38324569 PMCID: PMC10873598 DOI: 10.1073/pnas.2313818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Ligand-induced conformational changes are critical to the function of many membrane proteins and arise from numerous intramolecular interactions. In the photocycle of the model membrane protein bacteriorhodopsin (bR), absorption of a photon by retinal triggers a conformational cascade that results in pumping a proton across the cell membrane. While decades of spectroscopy and structural studies have probed this photocycle in intricate detail, changes in intramolecular energetics that underlie protein motions have remained elusive to experimental quantification. Here, we measured these energetics on the millisecond time scale using atomic-force-microscopy-based single-molecule force spectroscopy. Precisely, timed light pulses triggered the bR photocycle while we measured the equilibrium unfolding and refolding of the terminal 8-amino-acid region of bR's G-helix. These dynamics changed when the EF-helix pair moved ~9 Å away from this end of the G helix during the "open" portion of bR's photocycle. In ~60% of the data, we observed abrupt light-induced destabilization of 3.4 ± 0.3 kcal/mol, lasting 38 ± 3 ms. The kinetics and pH-dependence of this destabilization were consistent with prior measurements of bR's open phase. The frequency of light-induced destabilization increased with the duration of illumination and was dramatically reduced in the triple mutant (D96G/F171C/F219L) thought to trap bR in its open phase. In the other ~40% of the data, photoexcitation unexpectedly stabilized a longer-lived putative misfolded state. Through this work, we establish a general single-molecule force spectroscopy approach for measuring ligand-induced energetics and lifetimes in membrane proteins.
Collapse
Affiliation(s)
- David R. Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO80309
| | - Thomas T. Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO80309
| |
Collapse
|
3
|
Fudim R, Szczepek M, Vierock J, Vogt A, Schmidt A, Kleinau G, Fischer P, Bartl F, Scheerer P, Hegemann P. Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin. Sci Signal 2019; 12:12/573/eaav4203. [PMID: 30890657 DOI: 10.1126/scisignal.aav4203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The light-driven proton pump Coccomyxa subellipsoidea rhodopsin (CsR) provides-because of its high expression in heterologous host cells-an opportunity to study active proton transport under controlled electrochemical conditions. In this study, solving crystal structure of CsR at 2.0-Å resolution enabled us to identify distinct features of the membrane protein that determine ion transport directivity and voltage sensitivity. A specific hydrogen bond between the highly conserved Arg83 and the nearby nonconserved tyrosine (Tyr14) guided our structure-based transformation of CsR into an operational light-gated proton channel (CySeR) that could potentially be used in optogenetic assays. Time-resolved electrophysiological and spectroscopic measurements distinguished pump currents from channel currents in a single protein and emphasized the necessity of Arg83 mobility in CsR as a dynamic extracellular barrier to prevent passive conductance. Our findings reveal that molecular constraints that distinguish pump from channel currents are structurally more confined than was generally expected. This knowledge might enable the structure-based design of novel optogenetic tools, which derive from microbial pumps and are therefore ion specific.
Collapse
Affiliation(s)
- Roman Fudim
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Johannes Vierock
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Arend Vogt
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Paul Fischer
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Franz Bartl
- Biophysical Chemistry, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Peter Hegemann
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
4
|
Balo AR, Lee J, Ernst OP. Stationary Phase EPR Spectroscopy for Monitoring Membrane Protein Refolding by Conformational Response. Anal Chem 2018; 91:1071-1079. [DOI: 10.1021/acs.analchem.8b04542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Van Eps N, Caro LN, Morizumi T, Ernst OP. Characterizing rhodopsin signaling by EPR spectroscopy: from structure to dynamics. Photochem Photobiol Sci 2015; 14:1586-97. [PMID: 26140679 DOI: 10.1039/c5pp00191a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy, together with spin labeling techniques, has played a major role in the characterization of rhodopsin, the photoreceptor protein and G protein-coupled receptor (GPCR) in rod cells. Two decades ago, these biophysical tools were the first to identify transmembrane helical movements in rhodopsin upon photo-activation, a critical step in the study of GPCR signaling. EPR methods were employed to identify functional loop dynamics within rhodopsin, to measure light-induced millisecond timescale changes in rhodopsin conformation, to characterize the effects of partial agonists on the apoprotein opsin, and to study lipid interactions with rhodopsin. With the emergence of advanced pulsed EPR techniques, the stage was set to determine the amplitude of structural changes in rhodopsin and the dynamics in the rhodopsin signaling complexes. Work in this area has yielded invaluable information about mechanistic properties of GPCRs. Using EPR techniques, receptors are studied in native-like membrane environments and the effects of lipids on conformational equilibria can be explored. This perspective addresses the impact of EPR methods on rhodopsin and GPCR structural biology, highlighting historical discoveries made with spin labeling techniques, and outlining exciting new directions in the field.
Collapse
Affiliation(s)
- Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
6
|
da Silva GFZ, Goblirsch BR, Tsai AL, Spudich JL. Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin. Biochemistry 2015; 54:3950-9. [PMID: 26037033 DOI: 10.1021/bi501386d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A recently discovered rhodopsin ion pump (DeNaR, also known as KR2) in the marine bacterium Dokdonia eikasta uses light to pump protons or sodium ions from the cell depending on the ionic composition of the medium. In cells suspended in a KCl solution, DeNaR functions as a light-driven proton pump, whereas in a NaCl solution, DeNaR conducts light-driven sodium ion pumping, a novel activity within the rhodopsin family. These two distinct functions raise the questions of whether the conformations of the protein differ in the presence of K(+) or Na(+) and whether the helical movements that result in the canonical E → C conformational change in other microbial rhodopsins are conserved in DeNaR. Visible absorption maxima of DeNaR in its unphotolyzed (dark) state show an 8 nm difference between Na(+) and K(+) in decyl maltopyranoside micelles, indicating an influence of the cations on the retinylidene photoactive site. In addition, electronic paramagnetic resonance (EPR) spectra of the dark states reveal repositioning of helices F and G when K(+) is replaced with Na(+). Furthermore, the conformational changes assessed by EPR spin-spin dipolar coupling show that the light-induced transmembrane helix movements are very similar to those found in bacteriorhodopsin but are altered by the presence of Na(+), resulting in a new feature, the clockwise rotation of helix F. The results establish the first observation of a cation switch controlling the conformations of a microbial rhodopsin and indicate specific interactions of Na(+) with the half-channels of DeNaR to open an appropriate path for ion translocation.
Collapse
Affiliation(s)
- Giordano F Z da Silva
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| | - Brandon R Goblirsch
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| | - Ah-Lim Tsai
- ‡Department of Internal Medicine, Division of Hematology, University of Texas Medical School, Houston, Texas 77030, United States
| | - John L Spudich
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| |
Collapse
|
7
|
Klare JP, Steinhoff HJ. Spin Labeling Studies of Transmembrane Signaling and Transport. Methods Enzymol 2015; 564:315-47. [DOI: 10.1016/bs.mie.2015.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
9
|
Mehler M, Scholz F, Ullrich SJ, Mao J, Braun M, Brown LJ, Brown RCD, Fiedler SA, Becker-Baldus J, Wachtveitl J, Glaubitz C. The EF loop in green proteorhodopsin affects conformation and photocycle dynamics. Biophys J 2014; 105:385-97. [PMID: 23870260 DOI: 10.1016/j.bpj.2013.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
The proteorhodopsin family consists of retinal proteins of marine bacterial origin with optical properties adjusted to their local environments. For green proteorhodopsin, a highly specific mutation in the EF loop, A178R, has been found to cause a surprisingly large redshift of 20 nm despite its distance from the chromophore. Here, we analyze structural and functional consequences of this EF loop mutation by time-resolved optical spectroscopy and solid-state NMR. We found that the primary photoreaction and the formation of the K-like photo intermediate is almost pH-independent and slower compared to the wild-type, whereas the decay of the K-intermediate is accelerated, suggesting structural changes within the counterion complex upon mutation. The photocycle is significantly elongated mainly due to an enlarged lifetime of late photo intermediates. Multidimensional MAS-NMR reveals mutation-induced chemical shift changes propagating from the EF loop to the chromophore binding pocket, whereas dynamic nuclear polarization-enhanced (13)C-double quantum MAS-NMR has been used to probe directly the retinylidene conformation. Our data show a modified interaction network between chromophore, Schiff base, and counterion complex explaining the altered optical and kinetic properties. In particular, the mutation-induced distorted structure in the EF loop weakens interactions, which help reorienting helix F during the reprotonation step explaining the slower photocycle. These data lead to the conclusion that the EF loop plays an important role in proton uptake from the cytoplasm but our data also reveal a clear interaction pathway between the EF loop and retinal binding pocket, which might be an evolutionary conserved communication pathway in retinal proteins.
Collapse
Affiliation(s)
- Michaela Mehler
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rajendran A, Endo M, Sugiyama H. State-of-the-Art High-Speed Atomic Force Microscopy for Investigation of Single-Molecular Dynamics of Proteins. Chem Rev 2013; 114:1493-520. [DOI: 10.1021/cr300253x] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Arivazhagan Rajendran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho
Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho,
Sakyo-ku, Kyoto 606-8501, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho
Sakyo-ku, Kyoto 606-8502, Japan
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho,
Sakyo-ku, Kyoto 606-8501, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
11
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Johann Wolfgang Goethe University, Institute for Physical and Theoretical Chemistry, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Johann Wolfgang Goethe University, Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Stone KM, Voska J, Kinnebrew M, Pavlova A, Junk MJN, Han S. Structural insight into proteorhodopsin oligomers. Biophys J 2013; 104:472-81. [PMID: 23442869 DOI: 10.1016/j.bpj.2012.11.3831] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/05/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022] Open
Abstract
Oligomerization has important functional implications for many membrane proteins. However, obtaining structural insight into oligomeric assemblies is challenging, as they are large and resist crystallization. We focus on proteorhodopsin (PR), a protein with seven transmembrane α-helices that was found to assemble to hexamers in densely packed lipid membrane, or detergent-solubilized environments. Yet, the structural organization and the subunit interface of these PR oligomers were unknown. We used site-directed spin-labeling together with electron spin-resonance lineshape and Overhauser dynamic nuclear polarization analysis to construct a model for the specific orientation of PR subunits within the hexameric complex. We found intersubunit distances to average 16 Å between neighboring 55 residues and that residues 177 are >20 Å apart from each other. These distance constraints show that PR has a defined and radial orientation within a hexamer, with the 55-site of the A-B loop facing the hexamer core and the 177-site of the E-F loop facing the hexamer exterior. Dynamic nuclear polarization measurements of the local solvent dynamics complement the electron spin-resonance-based distance analysis, by resolving whether protein surfaces at positions 55, 58, and 177 are exposed to solvent, or covered by protein-protein or protein-detergent contacts.
Collapse
Affiliation(s)
- Katherine M Stone
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, USA
| | | | | | | | | | | |
Collapse
|
13
|
Spudich JL, Sineshchekov OA, Govorunova EG. Mechanism divergence in microbial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:546-52. [PMID: 23831552 DOI: 10.1016/j.bbabio.2013.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
A fundamental design principle of microbial rhodopsins is that they share the same basic light-induced conversion between two conformers. Alternate access of the Schiff base to the outside and to the cytoplasm in the outwardly open "E" conformer and cytoplasmically open "C" conformer, respectively, combined with appropriate timing of pKa changes controlling Schiff base proton release and uptake make the proton path through the pumps vectorial. Phototaxis receptors in prokaryotes, sensory rhodopsins I and II, have evolved new chemical processes not found in their proton pump ancestors, to alter the consequences of the conformational change or modify the change itself. Like proton pumps, sensory rhodopsin II undergoes a photoinduced E→C transition, with the C conformer a transient intermediate in the photocycle. In contrast, one light-sensor (sensory rhodopsin I bound to its transducer HtrI) exists in the dark as the C conformer and undergoes a light-induced C→E transition, with the E conformer a transient photocycle intermediate. Current results indicate that algal phototaxis receptors channelrhodopsins undergo redirected Schiff base proton transfers and a modified E→C transition which, contrary to the proton pumps and other sensory rhodopsins, is not accompanied by the closure of the external half-channel. The article will review our current understanding of how the shared basic structure and chemistry of microbial rhodopsins have been modified during evolution to create diverse molecular functions: light-driven ion transport and photosensory signaling by protein-protein interaction and light-gated ion channel activity. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA.
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA
| | - Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA
| |
Collapse
|
14
|
Berthoumieu O, Patil AV, Xi W, Aslimovska L, Davis JJ, Watts A. Molecular scale conductance photoswitching in engineered bacteriorhodopsin. NANO LETTERS 2012; 12:899-903. [PMID: 22148875 DOI: 10.1021/nl203965w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacteriorhodopsin (BR) is a robust light-driven proton pump embedded in the purple membrane of the extremophilic archae Halobacterium salinarium . Its photoactivity remains in the dry state, making BR of significant interest for nanotechnological use. Here, in a novel configuration, BR was depleted from most of its endogenous lipids and covalently and asymmetrically anchored onto a gold electrode through a strategically located and highly responsive cysteine mutation; BR has no indigenous cysteines. Chemisorption on gold was characterized by surface plasmon resonance, reductive striping voltammetry, ellipsometry, and atomic force microscopy (AFM). For the first time, the conductance of isolated protein trimers, intimately probed by conducting AFM, was reproducibly and reversibly switched under wavelength-specific conditions (mean resistance of 39 ± 12 MΩ under illumination, 137 ± 18 MΩ in the dark), demonstrating a surface stability that is relevant to potential nanodevice applications.
Collapse
Affiliation(s)
- Olivia Berthoumieu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Structural and Functional Analysis of Proteins by High-Speed Atomic Force Microscopy. STRUCTURAL AND MECHANISTIC ENZYMOLOGY - BRINGING TOGETHER EXPERIMENTS AND COMPUTING 2012; 87:5-55. [DOI: 10.1016/b978-0-12-398312-1.00002-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Malmerberg E, Omran Z, Hub JS, Li X, Katona G, Westenhoff S, Johansson LC, Andersson M, Cammarata M, Wulff M, van der Spoel D, Davidsson J, Specht A, Neutze R. Time-resolved WAXS reveals accelerated conformational changes in iodoretinal-substituted proteorhodopsin. Biophys J 2011; 101:1345-53. [PMID: 21943415 DOI: 10.1016/j.bpj.2011.07.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/15/2011] [Accepted: 07/15/2011] [Indexed: 12/20/2022] Open
Abstract
Time-resolved wide-angle x-ray scattering (TR-WAXS) is an emerging biophysical method which probes protein conformational changes with time. Here we present a comparative TR-WAXS study of native green-absorbing proteorhodopsin (pR) from SAR86 and a halogenated derivative for which the retinal chromophore has been replaced with 13-desmethyl-13-iodoretinal (13-I-pR). Transient absorption spectroscopy differences show that the 13-I-pR photocycle is both accelerated and displays more complex kinetics than native pR. TR-WAXS difference data also reveal that protein structural changes rise and decay an order-of-magnitude more rapidly for 13-I-pR than native pR. Despite these differences, the amplitude and nature of the observed helical motions are not significantly affected by the substitution of the retinal's C-20 methyl group with an iodine atom. Molecular dynamics simulations indicate that a significant increase in free energy is associated with the 13-cis conformation of 13-I-pR, consistent with our observation that the transient 13-I-pR conformational state is reached more rapidly. We conclude that although the conformational trajectory is accelerated, the major transient conformation of pR is unaffected by the substitution of an iodinated retinal chromophore.
Collapse
Affiliation(s)
- Erik Malmerberg
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Krishnamani V, Lanyi JK. Structural changes in bacteriorhodopsin during in vitro refolding from a partially denatured state. Biophys J 2011; 100:1559-67. [PMID: 21402039 DOI: 10.1016/j.bpj.2011.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022] Open
Abstract
We report on the formation of the secondary and tertiary structure of bacteriorhodopsin during its in vitro refolding from an SDS-denatured state. We used the mobility of single spin labels in seven samples, attached at various locations to six of the seven helical segments to engineered cysteine residues, to follow coil-to-helix formation. Distance measurements obtained by spin dipolar quenching in six samples labeled at either the cytoplasmic or extracellular ends of pairs of helices revealed the time dependence of the recovery of the transmembrane helical bundle. The secondary structure in the majority of the helical segments refolds with a time constant of <100-140 ms. Recovery of the tertiary structure is achieved by sequential association of the helices and occurs in at least three distinct steps with time constants of 1), well below 1 s; 2), 3-4 s; and 3), 60-130 s (the latter depending on the helical pair). The slowest of these processes occurs in concert with recovery of the retinal chromophore.
Collapse
|
18
|
Shibata M, Uchihashi T, Yamashita H, Kandori H, Ando T. Structural Changes in Bacteriorhodopsin in Response to Alternate Illumination Observed by High-Speed Atomic Force Microscopy. Angew Chem Int Ed Engl 2011; 50:4410-3. [DOI: 10.1002/anie.201007544] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Indexed: 11/09/2022]
|
19
|
Shibata M, Uchihashi T, Yamashita H, Kandori H, Ando T. Structural Changes in Bacteriorhodopsin in Response to Alternate Illumination Observed by High-Speed Atomic Force Microscopy. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Longhi S, Belle V, Fournel A, Guigliarelli B, Carrière F. Probing structural transitions in both structured and disordered proteins using site-directed spin-labeling EPR spectroscopy. J Pept Sci 2011; 17:315-28. [DOI: 10.1002/psc.1344] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/17/2010] [Accepted: 11/20/2010] [Indexed: 11/10/2022]
|
21
|
Suzuki Y, Yokokawa M, Yoshimura SH, Takeyasu K. Biological Application of Fast-Scanning Atomic Force Microscopy. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2 2011. [DOI: 10.1007/978-3-642-10497-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. NATURE NANOTECHNOLOGY 2010; 5:208-12. [PMID: 20154686 DOI: 10.1038/nnano.2010.7] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/08/2010] [Indexed: 05/24/2023]
Abstract
Dynamic changes in protein conformation in response to external stimuli are important in biological processes, but it has proved difficult to directly visualize such structural changes under physiological conditions. Here, we show that high-speed atomic force microscopy can be used to visualize dynamic changes in stimulated proteins. High-resolution movies of a light-driven proton pump, bacteriorhodopsin, reveal that, upon illumination, a cytoplasmic portion of each bacteriorhodopsin monomer is brought into contact with adjacent trimers. The bacteriorhodopsin-bacteriorhodopsin interaction in the transiently formed assembly engenders both positive and negative cooperative effects in the decay kinetics as the initial bacteriorhodopsin recovers and, as a consequence, the turnover rate of the photocycle is maintained constant, on average, irrespective of the light intensity. These results confirm that high-resolution visualization is a powerful approach for studying elaborate biomolecular processes under realistic conditions.
Collapse
Affiliation(s)
- Mikihiro Shibata
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
23
|
Klare JP, Steinhoff HJ. Spin labeling EPR. PHOTOSYNTHESIS RESEARCH 2009; 102:377-390. [PMID: 19728138 DOI: 10.1007/s11120-009-9490-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 08/14/2009] [Indexed: 05/28/2023]
Abstract
Site-directed spin labeling in combination with electron paramagnetic resonance spectroscopy has emerged as an efficient tool to elucidate the structure and conformational dynamics of biomolecules under native-like conditions. This article summarizes the basics as well as recent progress of site-directed spin labeling. Continuous wave EPR spectra analyses and pulse EPR techniques are reviewed with special emphasis on applications to the sensory rhodopsin-transducer complex mediating the photophobic response of the halophilic archaeum Natronomonas pharaonis and the photosynthetic reaction center from Rhodobacter sphaeroides R26.
Collapse
Affiliation(s)
- Johann P Klare
- Physics Department, University of Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| | | |
Collapse
|
24
|
Hirai T, Subramaniam S, Lanyi JK. Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol 2009; 19:433-9. [PMID: 19643594 DOI: 10.1016/j.sbi.2009.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 11/28/2022]
Abstract
Recent advances in crystallizing integral membrane proteins have led to atomic models for the structures of several seven-helix membrane proteins, including those in the G-protein-coupled receptor family. Further steps toward exploring structure-function relationships will undoubtedly involve determination of the structural changes that occur during the various stages of receptor activation and deactivation. We expect that these efforts will bear many parallels to the studies of conformational changes in bacteriorhodopsin, which still remains the best-studied seven-helix membrane protein. Here, we provide a brief review of some of the lessons learned, the challenges faced, and the controversies over the last decade with determining conformational changes in bacteriorhodopsin. Our hope is that this analysis will be instructive for similar structural studies, especially of other seven-helix membrane proteins, in the coming decade.
Collapse
Affiliation(s)
- Teruhisa Hirai
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
| | | | | |
Collapse
|
25
|
Chen D, Lanyi JK. Structural changes in the N and N' states of the bacteriorhodopsin photocycle. Biophys J 2009; 96:2779-88. [PMID: 19348761 DOI: 10.1016/j.bpj.2008.12.3935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 10/20/2022] Open
Abstract
The bacteriorhodopsin transport cycle includes protonation of the retinal Schiff base by Asp96 (M-->N reaction) and reprotonation of Asp96 from the cytoplasmic surface (N-->N' reaction). We measured distance changes between pairs of spin-labeled structural elements of interest, and in general observed larger overall structural changes in the N state compared with the N' state. The distance between the C-D loop and E-F interhelical loops in A103R1/M163R1 increased approximately 6 A in the N state and approximately 3 A in the N' state. The opposite trend of distance changes in V101R1/A168R1 and L100R1/T170R1 supports counterclockwise rotation of helix F in the N but not the N' state. Small distance increases were observed in S169R1/S226R1, but little change was seen in G106R1/G155R1. Taking earlier published EPR data into account, we suggest that structural changes of the E-F loop occur first, and then helices F and G begin to move together in the late M state. These motions then reach their maximum amplitude in the N state, evidently to facilitate the release of a proton from Asp96 and the formation of a proton-conduction pathway from Asp96 to the Schiff base. The structural changes reverse their directions and decay in the N' state.
Collapse
Affiliation(s)
- Deliang Chen
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | | |
Collapse
|
26
|
Abstract
Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.
Collapse
|
27
|
High-Field/High-Frequency Electron Paramagnetic Resonance Involving Single- and Multiple-Transition Schemes. BIOPHYSICAL TECHNIQUES IN PHOTOSYNTHESIS 2008. [DOI: 10.1007/978-1-4020-8250-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Lanyi JK. Studies of the Bacteriorhodopsin Photocycle without the Use of Light: Clues to Proton Transfer Coupled Reactions. J Mol Microbiol Biotechnol 2007; 12:210-7. [PMID: 17587869 DOI: 10.1159/000099642] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the photochemical cycle of bacteriorhodopsin, the light-driven proton pump of halobacteria, only the first step, the isomerization of the all-trans retinal to 13-cis, is dependent on illumination. Because the steps that accomplish the translocation of a proton during the ensuing reaction sequence of intermediate states are thermal reactions, they have direct analogies with such steps in other ion pumps. In a surprisingly large number of cases, the reactions of the photocycle could be studied without using light. This review recounts experiments of this kind, and what they contribute to understanding the transport mechanism of this pump, and perhaps indirectly other ion pumps as well.
Collapse
Affiliation(s)
- Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA.
| |
Collapse
|
29
|
Lanyi JK, Schobert B. Structural changes in the L photointermediate of bacteriorhodopsin. J Mol Biol 2006; 365:1379-92. [PMID: 17141271 PMCID: PMC1851893 DOI: 10.1016/j.jmb.2006.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/27/2006] [Accepted: 11/03/2006] [Indexed: 11/25/2022]
Abstract
The L to M reaction of the bacteriorhodopsin photocycle includes the crucial proton transfer from the retinal Schiff base to Asp85. In spite of the importance of the L state in deciding central issues of the transport mechanism in this pump, the serious disagreements among the three published crystallographic structures of L have remained unresolved. Here, we report on the X-ray diffraction structure of the L state, to 1.53-1.73 A resolutions, from replicate data sets collected from six independent crystals. Unlike earlier studies, the partial occupancy refinement uses diffraction intensities from the same crystals before and after the illumination to produce the trapped L state. The high reproducibility of inter-atomic distances, and bond angles and torsions of the retinal, lends credibility to the structural model. The photoisomerized 13-cis retinal in L is twisted at the C(13)=C(14) and C(15)=NZ double-bonds, and the Schiff base does not lose its connection to Wat402 and, therefore, to the proton acceptor Asp85. The protonation of Asp85 by the Schiff base in the L-->M reaction is likely to occur, therefore, via Wat402. It is evident from the structure of the L state that various conformational changes involving hydrogen-bonding residues and bound water molecules begin to propagate from the retinal to the protein at this stage already, and in both extracellular and cytoplasmic directions. Their rationales in the transport can be deduced from the way their amplitudes increase in the intermediates that follow L in the reaction cycle, and from the proton transfer reactions with which they are associated.
Collapse
Affiliation(s)
- Janos K Lanyi
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
30
|
Lanyi JK, Schobert B. Propagating structural perturbation inside bacteriorhodopsin: crystal structures of the M state and the D96A and T46V mutants. Biochemistry 2006; 45:12003-10. [PMID: 17002299 PMCID: PMC2782524 DOI: 10.1021/bi061310i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The X-ray diffraction structure of the non-illuminated D96A bacteriorhodopsin mutant reveals structural changes as far away as 15 A from residue 96, at the retinal, Trp-182, Ala-215, and waters 501, 402, and 401. The Asp-to-Ala side-chain replacement breaks its hydrogen bond with Thr-46, and the resulting separation of the cytoplasmic ends of helices B and C is communicated to the retinal region through a chain of covalent and hydrogen bonds. The unexpected long-range consequences of the D96A mutation include breaking the hydrogen bond between O of Ala-215 and water 501 and the formation of a new hydrogen bond between water molecules 401 and 402 in the extracellular region. Because in the T46V mutant a new water molecule appears at Asp-96 and its hydrogen-bond to Ile-45 replaces Thr-46 as its link to helix B, the separation of helices B and C is smaller than that in D96A, and there are no atomic displacements elsewhere in the protein. Propagation of conformational changes along the chain between the retinal and Thr-46 had been observed earlier in the crystal structures of the D96N and E204Q mutants but in the trapped M state. Consistent with the perturbation of the retinal region in D96A, little change of the Thr-46 region occurs between the non-illuminated and M states of this mutant. It appears that a local perturbation can propagate along a track in both directions between the retinal and the Asp-96/Thr-46 pair, either from photoisomerization of the retinal in the wild-type protein in one case or from the D96A mutation in the other.
Collapse
Affiliation(s)
- Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
31
|
Sammalkorpi M, Lazaridis T. Modeling a spin-labeled fusion peptide in a membrane: implications for the interpretation of EPR experiments. Biophys J 2006; 92:10-22. [PMID: 17040984 PMCID: PMC1697865 DOI: 10.1529/biophysj.106.092809] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-directed spin-labeling and electron paramagnetic resonance are powerful tools for studying structure and conformational dynamics of proteins, especially in membranes. The position of the spin label is used as an indicator of the position of the site to which it is attached. The interpretation of these experiments is based on the assumptions that the spin label does not affect the peptide configuration and that it has a fixed orientation and distance with respect to the protein backbone. Here, the validity of these assumptions is examined through implicit membrane molecular dynamics simulations of the influenza hemagglutinin fusion peptide that has been labeled with methanethiosulfonate spin label. We find that the methanethiosulfonate spin label can occasionally induce peptide orientations that differ from those adopted by the wild-type peptide. Furthermore, the spin-label resides, on average, several Angstroms deeper in the membrane than the corresponding backbone C(alpha)-atom even at sites pointing toward the solvent. The nitroxide spin label exhibits flexibility and adopts various configurations depending on the surrounding residues.
Collapse
Affiliation(s)
- Maria Sammalkorpi
- Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
32
|
Jaakola VP, Rehn M, Moeller M, Alexiev U, Goldman A, Turner GJ. G-protein-coupled receptor domain overexpression in Halobacterium salinarum: long-range transmembrane interactions in heptahelical membrane proteins. Proteins 2006; 60:412-23. [PMID: 15971205 DOI: 10.1002/prot.20498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aminergic alpha(2b)-adrenergic receptor (alpha(2b)-AR) third intracellular loop (alpha(2b)-AR 3i) mediates receptor subcellular compartmentalization and signal transduction processes via ligand-dependent interaction with G(i)- and G(o)- proteins. To understand the structural origins of these processes we engineered several lengths of alpha(2b)-AR 3i into the third intracellular loop of the proton pump bacteriorhodopsin (bR) and produced the fusion proteins in quantities suitable for physical studies. The fusion proteins were expressed in the Archaeon Halobacterium salinarum and purified. A highly expressed fusion protein was crystallized from bicelles and diffracted to low resolution on an in-house diffractometer. The bR-alpha(2b)-AR 3i(203-292) protein possessed a photocycle slightly perturbed from that of the wild-type bR. The first half of the fusion protein photocycle, correlated with proton release, is accelerated by a factor of 3, whereas the second half, correlated with proton uptake, is slightly slower than wild-type bR. In addition, there is a large decrease in the pK(a), (from 9.6 to 8.3) of the terminal proton release group in the unphotolyzed state of bR-alpha(2b)-AR 3i as deduced from the pH-dependence of the M-formation. Perturbation of a cytoplasmic loop has thus resulted in the perturbation of proton release at the extracellular surface. The current work indicates that long-range and highly coupled intramolecular interactions exist that are capable of "transducing" structural perturbations (e.g., signals) across the cellular membrane. This gene fusion approach may have general applicability for physical studies of G-protein-coupled receptor domains in the context of the bR structural scaffold.
Collapse
Affiliation(s)
- Veli-Pekka Jaakola
- Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
33
|
Jaakola VP, Vainio M, Sen S, Rehn M, Heimo H, Scheinin M, Goldman A. Intracellularly truncated human alpha2B-adrenoceptors: stable and functional GPCRs for structural studies. J Recept Signal Transduct Res 2005; 25:99-124. [PMID: 16149769 DOI: 10.1081/rrs-200068745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
All three alpha2-adrenoceptor subtypes have a long third intracellular loop (3i), which is conserved by overall size and charge-hydrophobic properties but not by amino acid sequence similarity. These properties must be relevant for function and structure, because they have been preserved during hundreds of millions of years of evolution. The contribution of different loop portions to agonist/antagonist binding properties and G protein coupling of the human alpha2B-adrenoceptor (alpha2B-AR) was investigated with a series of 3i truncated constructs (delta3i). We used a variety of agonists/antagonists in competition binding assays. We stimulated alpha2B-AR delta3i with various agonists and measured [35S]GTPgammaS binding in isolated cell membranes with or without antagonist inhibition. We also evaluated the ability of oligopeptides, analogous to the amino and carboxyl terminal parts of 3i, to promote G protein activation, monitored with the [35S]GTPgammaS assay. Our results reveal that the carboxyl end residues of 3i, R360(6.24) to V372(6.36), are important for Gi/Go protein activation. Deletions in regions from G206(5.72) to R245(5.110) altered the binding of some alpha2B-AR agonists, indicating that agonist binding is dependent on the conformation of the 3i domain, possibly through the involvement of G protein interactions. The truncated receptor constructs may be more stable on purification and thus be useful for structural characterization of alpha2B-AR.
Collapse
Affiliation(s)
- Veli-Pekka Jaakola
- Institute of Biotechnology, Biocenter 3, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Mason AJ, Turner GJ, Glaubitz C. Conformational heterogeneity of transmembrane residues after the Schiff base reprotonation of bacteriorhodopsin. FEBS J 2005; 272:2152-64. [PMID: 15853800 DOI: 10.1111/j.1742-4658.2005.04633.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
bR, N-like and O-like intermediate states of [15N]methionine-labelled wild type and D85N/T170C bacteriorhodopsin were accumulated in native membranes by controlling the pH of the preparations. 15N cross polarization and magic angle sample spinning (CPMAS) NMR spectroscopy allowed resolution of seven out of nine resonances in the bR-state. It was possible to assign some of the observed resonances by using 13C/15N rotational echo double resonance (REDOR) NMR and Mn2+ quenching as well as D2O exchange, which helps to identify conformational changes after the bacteriorhodopsin Schiff base reprotonation. The significant differences in chemical shifts and linewidths detected for some of the resonances in N- and O-like samples indicate changes in conformation, structural heterogeneity or altered molecular dynamics in parts of the protein.
Collapse
Affiliation(s)
- A James Mason
- Centre for Biomolecular Magnetic Resonance and Institut für Biophysikalische Chemie, J.W. Goethe Universität, Frankfurt, Germany
| | | | | |
Collapse
|
35
|
Steinhoff HJ. Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction. Biol Chem 2005; 385:913-20. [PMID: 15551865 DOI: 10.1515/bc.2004.119] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent developments including pulse and multi-frequency techniques make the combination of site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy an attractive approach for the study of protein-protein or protein-oligonucleotide interaction. Analysis of the spin label side chain mobility, its solvent accessibility, the polarity of the spin label micro-environment and distances between spin label side chains allow the modeling of protein domains or protein-protein interaction sites and their conformational changes with a spatial resolution at the level of the backbone fold. Structural changes can be detected with millisecond time resolution. Inter- and intra-molecular distances are accessible in the range from approximately 0.5 to 8 nm by the combination of continuous wave and pulse EPR methods. Recent applications include the study of transmembrane substrate transport, membrane channel gating, gene regulation and signal transfer.
Collapse
|
36
|
Möbius K, Savitsky A, Schnegg A, Plato M, Fuchs M. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Phys Chem Chem Phys 2005; 7:19-42. [DOI: 10.1039/b412180e] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Kamikubo H, Kataoka M. Can the low-resolution structures of photointermediates of bacteriorhodopsin explain their crystal structures? Biophys J 2004; 88:1925-31. [PMID: 15596495 PMCID: PMC1305245 DOI: 10.1529/biophysj.104.045831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand the molecular mechanism of light-driven proton pumps, the structures of the photointermediates of bacteriorhodopsin have been intensively investigated. Low-resolution diffraction techniques have demonstrated substantial conformational changes at the helix level in the M and N intermediates, between which there are noticeable differences. The intermediate structures at atomic resolution have also been solved by x-ray crystallography. Although the crystal structures have demonstrated local structural changes, such as hydrogen bond network rearrangements including water molecules, the large conformational changes at the helix level are not necessarily observed. Furthermore, the two reported crystal structures of an intermediate accumulated using a common method were distinct. To reconcile these apparent discrepancies, low-resolution projection maps were calculated from the crystal structures and compared to the low-resolution intermediate structures obtained using native membranes. The crystal structures can be categorized into three groups, which qualitatively correspond to the low-resolution structures of the M1-type, M2-type, and N-type determined in the native membrane. Based on these results, we conclude that at least three types of intermediate structures play a role during the photocycle.
Collapse
Affiliation(s)
- Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | | |
Collapse
|
38
|
Yang CS, Sineshchekov O, Spudich EN, Spudich JL. The Cytoplasmic Membrane-proximal Domain of the HtrII Transducer Interacts with the E-F Loop of Photoactivated Natronomonas pharaonis Sensory Rhodopsin II. J Biol Chem 2004; 279:42970-6. [PMID: 15262967 DOI: 10.1074/jbc.m406504200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structures of the cytoplasmic loops of the phototaxis receptor sensory rhodopsin II (SRII) and the membrane-proximal cytoplasmic domain of its bound transducer HtrII were examined in the dark and in the light-activated state by fluorescent probes and cysteine cross-linking. Light decreased the accessibility of E-F loop position 154 in the SRII-HtrII complex, but not in free SRII, consistent with HtrII proximity, which was confirmed by tryptophans placed within a 5-residue region identified in the HtrII membrane-proximal domain that exhibited Forster resonance energy transfer to a fluorescent probe at position 154 in SRII. The Forster resonance energy transfer was eliminated in the signaling deficient HtrII mutant G83F without loss of affinity for SRII. Finally, the presence of SRII and HtrII reciprocally inhibit homodimer disulfide cross-linking reactions in their membrane-proximal domains, showing that each interferes with the others self-interaction in this region. The results demonstrate close proximity between SRII-HtrII in the membrane-proximal domain, and in addition, light stimulation of the SRII inhibition of HtrII cross-linking was observed, indicating that the contact is enhanced in the photoactivated complex. A mechanism is proposed in which photoactivation alters the SRII-HtrII interaction in the membrane-proximal region during the signal relay process.
Collapse
Affiliation(s)
- Chii-Shen Yang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Lanyi JK, Schobert B. Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle. Biochemistry 2004; 43:3-8. [PMID: 14705925 DOI: 10.1021/bi035843s] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton pumps utilize a chemical or photochemical reaction to create pH and electrical gradients between the interior and the exterior of cells and organelles that energize ATP synthesis and the accumulation and extrusion of solutes and ions. G-protein coupled receptors bind agonists and assume signaling states that communicate with the coupled transducers. How these two kinds of proteins convert chemical potential to a proton transmembrane electrochemical potential or a signal are the great questions in structural membrane biology, and they may have a common answer. Bacteriorhodopsin, a particularly simple integral membrane protein, functions as a proton pump but has a heptahelical structure like membrane receptors. Crystallographic structures are now available for all of the intermediates of the bacteriorhodopsin transport cycle, and they describe the proton translocation mechanism, step by step and in atomic detail. The results show how local conformational changes propagate upon the gradual relaxation of the initially twisted photoisomerized retinal toward the two membrane surfaces. Such local-global conformational coupling between the ligand-binding site and the distant regions of the protein may be the shared mechanism of ion pumps and G-protein related receptors.
Collapse
Affiliation(s)
- Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
40
|
Abstract
Fourier transform infrared and Raman spectroscopy, solid-state NMR, and X-ray crystallography have contributed detailed information about the structural changes in the proton transport cycle of the light-driven pump, bacteriorhodopsin. The results over the past few years add up to a step-by-step description of the configurational changes of the photoisomerized retinal, how these changes result in internal proton transfers and the release of a proton to the extracellular surface and uptake on the other side, as well as the conservation and transformation of excess free energy during the cycle.
Collapse
Affiliation(s)
- Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| |
Collapse
|
41
|
Borucki B, Otto H, Heyn MP. Time-Resolved Linear Dichroism and Linear Birefringence of Bacteriorhodopsin at Alkaline pH: Identification of Two N Substates with Different Orientations of the Transition Dipole Moment. J Phys Chem B 2004. [DOI: 10.1021/jp035679i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Harald Otto
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Maarten P. Heyn
- Biophysics Group, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
42
|
|
43
|
Schobert B, Brown LS, Lanyi JK. Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J Mol Biol 2003; 330:553-70. [PMID: 12842471 DOI: 10.1016/s0022-2836(03)00576-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An M intermediate of wild-type bacteriorhodopsin and an N intermediate of the V49A mutant were accumulated in photostationary states at pH 5.6 and 295 K, and their crystal structures determined to 1.52A and 1.62A resolution, respectively. They appear to be M(1) and N' in the sequence, M(1)<-->M(2)<-->M'(2)<-->N<-->N'-->O-->BR, where M(1), M(2), and M'(2) contain an unprotonated retinal Schiff base before and after a reorientation switch and after proton release to the extracellular surface, while N and N' contain a reprotonated Schiff base, before and after reprotonation of Asp96 from the cytoplasmic surface. In M(1), we detect a cluster of three hydrogen-bonded water molecules at Asp96, not present in the BR state. In M(2), whose structure we reported earlier, one of these water molecules intercalates between Asp96 and Thr46. In N', the cluster is transformed into a single-file hydrogen-bonded chain of four water molecules that connects Asp96 to the Schiff base. We find a network of three water molecules near residue 219 in the crystal structure of the non-illuminated F219L mutant, where the residue replacement creates a cavity. This suggests that the hydration of the cytoplasmic region we observe in N' might have occurred spontaneously, beginning at an existing water molecule as nucleus, in the cavities from residue rearrangements in the photocycle.
Collapse
Affiliation(s)
- Brigitte Schobert
- Department of Physiology and Biophysics, University of California, D345 Medical Science I, Irvine, CA 92697, USA
| | | | | |
Collapse
|
44
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
45
|
Furutani Y, Iwamoto M, Shimono K, Kamo N, Kandori H. FTIR spectroscopy of the M photointermediate in pharaonis rhoborhodopsin. Biophys J 2002; 83:3482-9. [PMID: 12496114 PMCID: PMC1302422 DOI: 10.1016/s0006-3495(02)75347-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
Assembly of the SNARE complex is essential for neurotransmitter release at synapses. Target plasma membrane SNAREs (t-SNAREs) syntaxin 1A and SNAP-25 form the t-SNARE complex that serves as an intermediate toward final SNARE assembly with vesicle-associated SNARE (v-SNARE). Membrane topologies of syntaxin 1A and the t-SNARE complex were investigated using site-directed spin labeling EPR. EPR analysis revealed that the basic region at the membrane-water interface is unstructured but inserted into the membrane. Such membrane insertion leaves no gap between the t-SNARE core and the membrane. Yet the lack of structure could provide the flexibility necessary for the t-SNARE core. Further, the insertion of the basic interfacial region into the membrane may have profound implications for the mechanism of SNARE-induced membrane fusion.
Collapse
Affiliation(s)
- Chang Sup Kim
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
47
|
Martinez LC, Thurmond RL, Jones PG, Turner GJ. Subdomains in the F and G helices of bacteriorhodopsin regulate the conformational transitions of the reprotonation mechanism. Proteins 2002; 48:269-82. [PMID: 12112695 DOI: 10.1002/prot.10158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have performed cysteine scanning mutagenesis of the bacteriorhodopsin mutant D85N to explore the role of individual amino acids in the conformational transitions of the reprotonation mechanism. We have used whole-cell reflectance spectroscopy to evaluate the spectral properties of the 59 mutants generated during a scan of the entire F and G helices and the intervening loop region. Cys mutants were grouped into one of six phenotypes based on the spectral changes associated with their M <--> N <--> O intermediate-state transitions. Mutations that produced similar phenotypes were found to cluster in discrete molecular domains and indicate that M, N, and O possess distinct structures and that unique molecular interactions regulate the transitions between them. The distribution of these domains suggests that 1) the extramembranous loop region is involved in the stabilization of the N and M intermediates, 2) lipid-protein interactions play a key role in the accumulation of N, and 3) the amino acid side-chain interactions in the extracellular portion of the interface between helices G and A participate in the accumulation of M.
Collapse
Affiliation(s)
- Lynell C Martinez
- Department of Physiology and Biophysics and the Neurosciences Program, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
48
|
Zhang F, Chen Y, Kweon DH, Kim CS, Shin YK. The four-helix bundle of the neuronal target membrane SNARE complex is neither disordered in the middle nor uncoiled at the C-terminal region. J Biol Chem 2002; 277:24294-8. [PMID: 11983696 DOI: 10.1074/jbc.m201200200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of the SNARE complex is an essential step for membrane fusion and neurotransmitter release in neurons. The plasma membrane SNAREs syntaxin 1A and SNAP-25 (t-SNAREs) and the delivery-vesicle SNARE VAMP2 (or v-SNARE) contain the "SNARE regions" that essentially mediate SNARE pairing. Using site-directed spin labeling and EPR distance measurement we show that two identical copies of the SNARE region from syntaxin 1A intertwine as a coiled coil near the "ionic layer" region. The structure of the t-SNARE complex appears to be virtually identical to that of the ternary SNARE complex, except that VAMP2 is substituted to the second copy of syntaxin 1A. Furthermore, it appears that the coiled coil structure is maintained up to residue 259 of syntaxin 1A, identical to that of the ternary complex. These results are somewhat contradictory to the previous reports, suggesting that the t-SNARE complex has the disordered midsection (Xiao, W. Z., Poirier, M. A., Bennett, M. K., and Shin, Y. K. (2001) Nat. Struc. Biol. 8, 308-311) and the uncoiled C-terminal region (Margittai, M., Fasshauer, D., Pabst, S., Jahn, R., and Langen, R. (2001) J. Biol. Chem. 276, 13169-13177). The newly refined structure of the t-SNARE complex provides a basis for the better understanding of the SNARE assembly process. It also provides possible structural-functional clues to the membrane fusion in the v-SNARE deleted fusion models.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
49
|
Nachliel E, Gutman M, Tittor J, Oesterhelt D. Proton transfer dynamics on the surface of the late M state of bacteriorhodopsin. Biophys J 2002; 83:416-26. [PMID: 12080130 PMCID: PMC1302157 DOI: 10.1016/s0006-3495(02)75179-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The cytoplasmic surface of the BR (initial) state of bacteriorhodopsin is characterized by a cluster of three carboxylates that function as a proton-collecting antenna. Systematic replacement of most of the surface carboxylates indicated that the cluster is made of D104, E161, and E234 (Checover, S., Y. Marantz, E. Nachliel, M. Gutman, M. Pfeiffer, J. Tittor, D. Oesterhelt, and N. Dencher. 2001. Biochemistry. 40:4281-4292), yet the BR state is a resting configuration; thus, its proton-collecting antenna can only indicate the presence of its role in the photo-intermediates where the protein is re-protonated by protons coming from the cytoplasmic matrix. In the present study we used the D96N and the triple (D96G/F171C/F219L) mutant for monitoring the proton-collecting properties of the protein in its late M state. The protein was maintained in a steady M state by continuous illumination and subjected to reversible pulse protonation caused by repeated excitation of pyranine present in the reaction mixture. The re-protonation dynamics of the pyranine anion was subjected to kinetic analysis, and the rate constants of the reaction of free protons with the surface groups and the proton exchange reactions between them were calculated. The reconstruction of the experimental signal indicated that the late M state of bacteriorhodopsin exhibits an efficient mechanism of proton delivery to the unoccupied-most basic-residue on its cytoplasmic surface (D38), which exceeds that of the BR configuration of the protein. The kinetic analysis was carried out in conjunction with the published structure of the M state (Sass, H., G. Büldt, R. Gessenich, D. Hehn, D. Neff, R. Schlesinger, J. Berendzen, and P. Ormos. 2000. Nature. 406:649-653), the model that resolves most of the cytoplasmic surface. The combination of the kinetic analysis and the structural information led to identification of two proton-conducting tracks on the protein's surface that are funneling protons to D38. One track is made of the carboxylate moieties of residues D36 and E237, while the other is made of D102 and E232. In the late M state the carboxylates of both tracks are closer to D38 than in the BR (initial) state, accounting for a more efficient proton equilibration between the bulk and the protein's proton entrance channel. The triple mutant resembles in the kinetic properties of its proton conducting surface more the BR-M state than the initial state confirming structural similarities with the BR-M state and differences to the BR initial state.
Collapse
Affiliation(s)
- Esther Nachliel
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
50
|
Hashimoto S, Sasaki M, Takeuchi H, Needleman R, Lanyi JK. Changes in hydrogen bonding and environment of tryptophan residues on helix F of bacteriorhodopsin during the photocycle: a time-resolved ultraviolet resonance Raman study. Biochemistry 2002; 41:6495-503. [PMID: 12009913 DOI: 10.1021/bi012190b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein structural changes during the photocycle of bacteriorhodopsin were examined by time-resolved ultraviolet resonance Raman (UVRR) spectroscopy. Most of the 244-nm UVRR difference signals of Trp were assigned to either Trp182 or Trp189 using the Trp182 --> Phe and Trp189 --> Phe mutants. The W17 mode of Trp182 shows a wavenumber downshift in the M(1) --> M(2) transition, indicating an increase in hydrogen bonding strength at the indole nitrogen. On the other hand, Trp189 shows Raman intensity increases of the W16 and W18 modes ascribable to an increased hydrophobic interaction. These observations suggest that the tilt of helix F, which ensures that reprotonation of the Schiff base is from the cytoplasmic side, occurs in the M(1) --> M(2) transition. In the M(2) --> N transition, the environment of Trp189 returns to the initial state, whereas the hydrophobic interaction of Trp182 decreases drastically. The decrease in hydrophobic interaction of Trp182 in the N state suggests an invasion of water molecules that promote the proton transfer from Asp96 to the Schiff base. Structural reorganization of the protein after the tilt of helix F may be important for efficient reprotonation of the Schiff base.
Collapse
Affiliation(s)
- Shinji Hashimoto
- Faculty of Science and Engineering, Tokyo University of Science, Yamaguchi, Daigaku Dori, Onoda 756-0884, Japan.
| | | | | | | | | |
Collapse
|