1
|
Yuasa HJ. Unusual Evolution of Cephalopod Tryptophan Indole-Lyases. J Mol Evol 2023; 91:912-921. [PMID: 38007709 DOI: 10.1007/s00239-023-10144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Tryptophan indole-lyase (TIL), a pyridoxal-5-phosphate-dependent enzyme, catalyzes the hydrolysis of L-tryptophan (L-Trp) to indole and ammonium pyruvate. TIL is widely distributed among bacteria and bacterial TILs consist of a D2-symmetric homotetramer. On the other hand, TIL genes are also present in several metazoans. Cephalopods have two TILs, TILα and TILβ, which are believed to be derived from a gene duplication that occurred before octopus and squid diverged. However, both TILα and TILβ individually contain disruptive amino acid substitutions for TIL activity, and neither was active when expressed alone. When TILα and TILβ were coexpressed, however, they formed a heterotetramer that exhibited low TIL activity. The loss of TIL activity of the heterotetramer following site-directed mutagenesis strongly suggests that the active heterotetramer contains the TILα/TILβ heterodimer. Metazoan TILs generally have lower kcat values for L-Trp than those of bacterial TILs, but such low TIL activity may be rather suitable for metazoan physiology, where L-Trp is in high demand. Therefore, reduced activity may have been a less likely target for purifying selection in the evolution of cephalopod TILs. Meanwhile, the unusual evolution of cephalopod TILs may indicate the difficulty of post-gene duplication evolution of enzymes with catalytic sites contributed by multiple subunits, such as TIL.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Chemistry and Biotechnology, Faculty of Science and Technology, National University Corporation Kochi University, Kochi, 780-8520, Japan.
| |
Collapse
|
2
|
Graboski AL, Kowalewski ME, Simpson JB, Cao X, Ha M, Zhang J, Walton WG, Flaherty DP, Redinbo MR. Mechanism-based inhibition of gut microbial tryptophanases reduces serum indoxyl sulfate. Cell Chem Biol 2023; 30:1402-1413.e7. [PMID: 37633277 DOI: 10.1016/j.chembiol.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Mary Ha
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianan Zhang
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Jiang Z, Lu J, Tong Y, Yang H, Feng S. Enhancement of acid tolerance of Escherichia coli by introduction of molecule chaperone CbpA from extremophile. World J Microbiol Biotechnol 2023; 39:158. [PMID: 37046107 DOI: 10.1007/s11274-023-03613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Molecular chaperone CbpA from extreme acidophile Acidithiobacillus caldus was applied to improve acid tolerance of Escherichia coli via CRISPR/Cas9. Cell growth and viability of plasmid complementary strain indicated the importance of cbpAAc for bacteria acid tolerance. With in situ gene replacement by CRISPR/Cas9 system, colony formation unit (CFU) of genome recombinant strain BL21-ΔcbpA/AccbpA showed 7.7 times higher cell viability than deficient strain BL21-ΔcbpA and 2.3 times higher than wild type. Cell morphology observation using Field Emission Scanning Electron Microscopy (FESEM) revealed cell breakage of BL21-ΔcbpA and significant recovery of BL21-ΔcbpA/AccbpA. The intracellular ATP level of all strains gradually decreased along with the increased stress time. Particularly, the value of recombinant strain was 56.0% lower than that of deficient strain after 5 h, indicating that the recombinant strain consumed a lot of energy to resist acid stress. The arginine concentration in BL21-ΔcbpA/AccbpA was double that of BL21-ΔcbpA, while the aspartate and glutamate contents were 14.8% and 6.2% higher, respectively, compared to that of wild type. Moreover, RNA-Seq analysis examined 93 genes down-regulated in BL21-ΔcbpA compared to wild type strain, while 123 genes were up-regulated in BL21-ΔcbpA/AccbpA compared to BL21-ΔcbpA, with an emphasis on energy metabolism, transport, and cell components. Finally, the working model in response to acid stress of cbpA from A. caldus was developed. This study constructed a recombinant strain resistant to acid stress and also provided a reference for enhancing microorganisms' robustness to various conditions.
Collapse
Affiliation(s)
- Zhenming Jiang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jie Lu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Yuasa HJ. Metazoan tryptophan indole-lyase: Are they still active? Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110801. [PMID: 36228898 DOI: 10.1016/j.cbpb.2022.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Tryptophan indole-lyase (TIL), also known as tryptophanase, is a pyridoxal-5'-phosphate dependent bacterial enzyme that catalyzes the reversible hydrolytic cleavage of l-tryptophan (l-Trp) to indole and ammonium pyruvate. TIL is also found in some metazoans, and they may have been acquired by horizontal gene transfer. In this study, two metazoans, Nematostella vectensis (starlet sea anemone) and Bradysia coprophila (fungus gnat) TILs were bacterially expressed and characterized. The kcat values of metazoan TILs were low, < 1/200 of the kcat of Escherichia coli TIL. By contrast, metazoan TILs showed lower Km values than the TILs of common bacteria, indicating that their affinity for l-Trp is higher than that of bacterial TILs. Analysis of a series of chimeric enzymes based on B. coprophila and bacterial TILs revealed that the low Km value of B. coprophila TIL is not accidental due to the substitution of a single residue, but is due to the cooperative effect of multiple residues. This suggests that high affinity for l-Trp was positively selected during the molecular evolution of metazoan TIL. This is the first report that metazoan TILs have low but obvious activity.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Chemistry and Biotechnology, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan.
| |
Collapse
|
5
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
6
|
Mindt M, Beyraghdar Kashkooli A, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, Martins Dos Santos V, Wendisch VF, Cankar K. Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb Cell Fact 2022; 21:45. [PMID: 35331232 PMCID: PMC8944080 DOI: 10.1186/s12934-022-01771-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Background The nitrogen containing aromatic compound indole is known for its floral odor typical of jasmine blossoms. Due to its characteristic scent, it is frequently used in dairy products, tea drinks and fine fragrances. The demand for natural indole by the flavor and fragrance industry is high, yet, its abundance in essential oils isolated from plants such as jasmine and narcissus is low. Thus, there is a strong demand for a sustainable method to produce food-grade indole. Results Here, we established the biotechnological production of indole upon l-tryptophan supplementation in the bacterial host Corynebacterium glutamicum. Heterologous expression of the tryptophanase gene from E. coli enabled the conversion of supplemented l-tryptophan to indole. Engineering of the substrate import by co-expression of the native aromatic amino acid permease gene aroP increased whole-cell biotransformation of l-tryptophan to indole by two-fold. Indole production to 0.2 g L−1 was achieved upon feeding of 1 g L−1l-tryptophan in a bioreactor cultivation, while neither accumulation of side-products nor loss of indole were observed. To establish an efficient and robust production process, new tryptophanases were recruited by mining of bacterial sequence databases. This search retrieved more than 400 candidates and, upon screening of tryptophanase activity, nine new enzymes were identified as most promising. The highest production of indole in vivo in C. glutamicum was achieved based on the tryptophanase from Providencia rettgeri. Evaluation of several biological aspects identified the product toxicity as major bottleneck of this conversion. In situ product recovery was applied to sequester indole in a food-grade organic phase during the fermentation to avoid inhibition due to product accumulation. This process enabled complete conversion of l-tryptophan and an indole product titer of 5.7 g L−1 was reached. Indole partitioned to the organic phase which contained 28 g L−1 indole while no other products were observed indicating high indole purity. Conclusions The bioconversion production process established in this study provides an attractive route for sustainable indole production from tryptophan in C. glutamicum. Industrially relevant indole titers were achieved within 24 h and indole was concentrated in the organic layer as a pure product after the fermentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01771-y.
Collapse
Affiliation(s)
- Melanie Mindt
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands.,Axxence Aromatic GmbH, Emmerich am Rhein, Germany
| | - Arman Beyraghdar Kashkooli
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Tatjana Jilg
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Dirk Bosch
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Katarina Cankar
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Phillips RS, Ting SCK, Anderson K. Structure and Mechanism of d-Glucosaminate-6-phosphate Ammonia-lyase: A Novel Octameric Assembly for a Pyridoxal 5'-Phosphate-Dependent Enzyme, and Unprecedented Stereochemical Inversion in the Elimination Reaction of a d-Amino Acid. Biochemistry 2021; 60:1609-1618. [PMID: 33949189 PMCID: PMC8359929 DOI: 10.1021/acs.biochem.1c00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-Glucosaminate-6-phosphate ammonia-lyase (DGL) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that produces 2-keto-3-deoxygluconate 6-phosphate (KDG-6-P) in the metabolism of d-glucosaminic acid by Salmonella enterica serovar typhimurium. We have determined the crystal structure of DGL by SAD phasing with selenomethionine to a resolution of 2.58 Å. The sequence has very low identity with most other members of the aminotransferase (AT) superfamily. The structure forms an octameric assembly as a tetramer of dimers that has not been observed previously in the AT superfamily. PLP is covalently bound as a Schiff base to Lys-213 in the catalytic dimer at the interface of two monomers. The structure lacks the conserved arginine that binds the α-carboxylate of the substrate in most members of the AT superfamily. However, there is a cluster of arginines in the small domain that likely serves as a binding site for the phosphate of the substrate. The deamination reaction performed in D2O gives a KDG-6-P product stereospecifically deuterated at C3; thus, the mechanism must involve an enamine intermediate that is protonated by the enzyme before product release. Nuclear magnetic resonance (NMR) analysis demonstrates that the deuterium is located in the pro-R position in the product, showing that the elimination of water takes place with inversion of configuration at C3, which is unprecedented for a PLP-dependent dehydratase/deaminase. On the basis of the crystal structure and the NMR data, a reaction mechanism for DGL is proposed.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Samuel C-K Ting
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Kaitlin Anderson
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
8
|
Pyridoxal 5'-Phosphate-Dependent Enzymes at the Crossroads of Host-Microbe Tryptophan Metabolism. Int J Mol Sci 2020; 21:ijms21165823. [PMID: 32823705 PMCID: PMC7461572 DOI: 10.3390/ijms21165823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences. The ability to redirect the Trp flux to restore a homeostatic production of Trp metabolites may represent a valid therapeutic strategy for a variety of pathological conditions, but identifying metabolic checkpoints that could be exploited to manipulate the Trp metabolic network is still an unmet need. In this review, we put forward the hypothesis that pyridoxal 5′-phosphate (PLP)-dependent enzymes, which regulate multiple pathways of Trp metabolism in both the host and in microbes, might represent critical nodes and that modulating the levels of vitamin B6, from which PLP is derived, might represent a metabolic checkpoint to re-orienteer Trp flux for therapeutic purposes.
Collapse
|
9
|
Faleev NG, Tsvetikova MA, Gogoleva OI, Kulikova VV, Revtovich SV, Kochetkov KA. The Catalytic Mechanisms of the Reactions between Tryptophan Indole-Lyase and Nonstandard Substrates: The Role of the Ionic State of the Catalytic Group Accepting the Cα Proton of the Substrate. Acta Naturae 2019; 11:82-88. [PMID: 31720020 PMCID: PMC6826157 DOI: 10.32607/20758251-2019-11-3-82-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022] Open
Abstract
In the reaction between tryptophan indole-lyase (TIL) and a substrate containing a bad leaving group (L-serine), general acid catalysis is required for the group's elimination. During this stage, the proton originally bound to the Cα atom of the substrate is transferred to the leaving group, which is eliminated as a water molecule. As a result, the basic group that had accepted the Cα proton at the previous stage has to be involved in the catalytic stage following the elimination in its basic form. On the other hand, when the substrate contains a good leaving group (β-chloro-L-alanine), general acid catalysis is not needed at the elimination stage and cannot be implemented, because there are no functional groups in enzymes whose acidity is strong enough to protonate the elimination of a base as weak as Cl- anion. Consequently, the group that had accepted the Cα proton does not lose its additional proton during the elimination stage and should take part in the subsequent stage in its acidic (not basic) form. To shed light on the mechanistic consequences of the changes in the ionic state of this group, we have considered the pH dependencies of the main kinetic parameters for the reactions of TIL with L-serine and β-chloro-L-alanine and the kinetic isotope effects brought about by replacement of the ordinary water used as a solvent with 2H2O. We have found that in the reaction between TIL and β-chloro-L-alanine, the aminoacrylate hydrolysis stage is sensitive to the solvent isotope effect, while in the reaction with L-serine it is not. We have concluded that in the first reaction, the functional group containing an additional proton fulfills a definite catalytic function, whereas in the reaction with L-serine, when the additional proton is absent, the mechanism of hydrolysis of the aminoacrylate intermediate should be fundamentally different. Possible mechanisms were considered.
Collapse
Affiliation(s)
- N. G. Faleev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28 , Moscow, 119991, Russia
| | - M. A. Tsvetikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28 , Moscow, 119991, Russia
| | - O. I. Gogoleva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28 , Moscow, 119991, Russia
| | - V. V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow, 119991, Russia
| | - S. V. Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow, 119991, Russia
| | - K. A. Kochetkov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28 , Moscow, 119991, Russia
- Mendeleev University of Chemical Technology, Miusskaya Sq. 9, Moscow, 125047, Russia
| |
Collapse
|
10
|
Bernardo-García N, Sánchez-Murcia PA, Espaillat A, Martínez-Caballero S, Cava F, Hermoso JA, Gago F. Cold-induced aldimine bond cleavage by Tris in Bacillus subtilis alanine racemase. Org Biomol Chem 2019; 17:4350-4358. [DOI: 10.1039/c9ob00223e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The commonly used Tris buffer acts as a surrogate substrate and deformylates pyridoxal phosphate in a bacterial alanine racemase at subzero temperatures.
Collapse
Affiliation(s)
- Noelia Bernardo-García
- Department of Crystallography and Structural Biology
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- 28006 Madrid
- Spain
| | | | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine
- Department of Molecular Biology
- Umeå Centre for Microbial Research
- Umeå University
- 90187 Umeå
| | - Siseth Martínez-Caballero
- Department of Crystallography and Structural Biology
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- 28006 Madrid
- Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine
- Department of Molecular Biology
- Umeå Centre for Microbial Research
- Umeå University
- 90187 Umeå
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- 28006 Madrid
- Spain
| | - Federico Gago
- Department of Biomedical Sciences
- “Unidad Asociada IQM-CSIC”
- University of Alcalá
- Madrid
- Spain
| |
Collapse
|
11
|
Phillips RS, Buisman AA, Choi S, Hussaini A, Wood ZA. The crystal structure of Proteus vulgaris tryptophan indole-lyase complexed with oxindolyl-L-alanine: implications for the reaction mechanism. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:748-759. [DOI: 10.1107/s2059798318003352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
Tryptophan indole-lyase (TIL) is a bacterial enzyme which catalyzes the reversible formation of indole and ammonium pyruvate from L-tryptophan. Oxindolyl-L-alanine (OIA) is an inhibitor of TIL, with a K
i value of about 5 µM. The crystal structure of the complex of Proteus vulgaris TIL with OIA has now been determined at 2.1 Å resolution. The ligand forms a closed quinonoid complex with the pyridoxal 5′-phosphate (PLP) cofactor. The small domain rotates about 10° to close the active site, bringing His458 into position to donate a hydrogen bond to Asp133, which also accepts a hydrogen bond from the heterocyclic NH of the inhibitor. This brings Phe37 and Phe459 into van der Waals contact with the aromatic ring of OIA. Mutation of the homologous Phe464 in Escherichia coli TIL to Ala results in a 500-fold decrease in k
cat/K
m for L-tryptophan, with less effect on the reaction of other nonphysiological β-elimination substrates. Stopped-flow kinetic experiments of F464A TIL show that the mutation has no effect on the formation of quinonoid intermediates. An aminoacrylate intermediate is observed in the reaction of F464A TIL with S-ethyl-L-cysteine and benzimidazole. A model of the L-tryptophan quinonoid complex with PLP in the active site of P. vulgaris TIL shows that there would be a severe clash of Phe459 (∼1.5 Å apart) and Phe37 (∼2 Å apart) with the benzene ring of the substrate. It is proposed that this creates distortion of the substrate aromatic ring out of plane and moves the substrate upwards on the reaction coordinate towards the transition state, thus reducing the activation energy and accelerating the enzymatic reaction.
Collapse
|
12
|
Winnicka E, Kańska M. Enzymatic synthesis of methyl derivatives of L -tryptophan selectively labeled with hydrogen isotopes. Appl Radiat Isot 2018; 137:118-122. [DOI: 10.1016/j.apradiso.2018.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/26/2018] [Accepted: 03/24/2018] [Indexed: 11/15/2022]
|
13
|
Wu Y, Chen J, Liu Z, Wang F. Identification of pyridoxal phosphate-modified proteins using mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:195-200. [PMID: 29164709 DOI: 10.1002/rcm.8030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Pyridoxal 5'-phosphate (PLP) cooperates with a variety of enzymes in all organisms for many important biological processes. The development of mass spectrometry-based methodology for high-throughput modification analyses could provide an alternative way for PLP identification. The present study aims to identify PLP modification. METHODS More PLP site-determining information was obtained by introducing multistage activation (MSA)-assisted collision-induced dissociation (CID). We then utilized immobilized metal ion affinity chromatography (IMAC) with Ti4+ to enrich the PLP peptides. In addition, alkaline phosphatase (ALP) was used to remove the phosphoryl group and further confirm the PLP modification site. RESULTS MSA was able to greatly enhance the identification and localization of PLP modification. We applied this strategy to analyze PLP-modified proteins in Escherichia coli samples and accurately determine PLP site K270 in tryptophanase. CONCLUSIONS MSA-assisted CID was used to provide better identification of PLP-modified peptides. Furthermore, tryptophanase with PLP modification at K270 in E. coli was identified with Ti4+ -IMAC enrichment followed by ALP treatment. This method provides a promising alternative for investigating biological functions of PLP-modified proteins.
Collapse
Affiliation(s)
- Yue Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, PR China
| |
Collapse
|
14
|
Liu L, Liu Y, Zhang G, Ge Y, Fan X, Lin F, Wang J, Zheng H, Xie X, Zeng X, Chen PR. Genetically Encoded Chemical Decaging in Living Bacteria. Biochemistry 2017; 57:446-450. [PMID: 29171270 DOI: 10.1021/acs.biochem.7b01017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the genetically encoded chemical decaging strategy for protein activation in living bacterial cells. In contrast to the metabolically labile photocaging groups inside Escherichia coli, our chemical decaging strategy that relies on the inverse electron-demand Diels-Alder (iDA) reaction is compatible with the intracellular environment of bacteria, which can be a general tool for gain-of-function study of a given protein in prokaryotic systems. By applying this strategy for in situ activation of the indole-producing enzyme TnaA, we built an orthogonal and chemically inducible indole production pathway inside E. coli cells, which revealed the role of indole in bacterial antibiotic tolerance.
Collapse
Affiliation(s)
- Lu Liu
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yanjun Liu
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Gong Zhang
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yun Ge
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Xinyuan Fan
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Feng Lin
- Peking-Tsinghua Center for Life Sciences , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Jie Wang
- Peking-Tsinghua Center for Life Sciences , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Huangtao Zheng
- Peking-Tsinghua Center for Life Sciences , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Xiao Xie
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Xiangmei Zeng
- Peking-Tsinghua Center for Life Sciences , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Peng R Chen
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| |
Collapse
|
15
|
Gohara DW, Di Cera E. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. J Biol Chem 2016; 291:20840-20848. [PMID: 27462078 DOI: 10.1074/jbc.r116.737833] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Regulation of enzymes through metal ion complexation is widespread in biology and underscores a physiological need for stability and high catalytic activity that likely predated proteins in the RNA world. In addition to divalent metals such as Ca2+, Mg2+, and Zn2+, monovalent cations often function as efficient and selective promoters of catalysis. Advances in structural biology unravel a rich repertoire of molecular mechanisms for enzyme activation by Na+ and K+ Strategies range from short-range effects mediated by direct participation in substrate binding, to more distributed effects that propagate long-range to catalytic residues. This review addresses general considerations and examples.
Collapse
Affiliation(s)
- David W Gohara
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
16
|
Winnicka E, Szymańska J, Kańska M. Synthesis of deuterium-labelled halogen derivatives of L-tryptophan catalysed by tryptophanase. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2016; 52:231-238. [PMID: 26586366 DOI: 10.1080/10256016.2016.1105801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The isotopomers of halogen derivatives of l-tryptophan (l-Trp) (4'-F-, 7'-F-, 5'-Cl- and 7'-Br-l-Trp), specifically labelled with deuterium in α-position of the side chain, were obtained by enzymatic coupling of the corresponding halogenated derivatives of indole with S-methyl-l-cysteine in (2)H2O, catalysed by enzyme tryptophanase (EC 4.1.99.1). The positional deuterium enrichment of the resulting tryptophan derivatives was controlled using (1)H NMR. In accordance with the mechanism of the lyase reaction, a 100% deuterium labelling was observed in the α-position; the chemical yields were between 23 and 51%. Furthermore, β-F-l-alanine, synthesized from β-F-pyruvic acid by the l-alanine dehydrogenase reaction, has been tested as a coupling agent to obtain the halogenated deuterium-labelled derivatives of l-Trp. The chemical yield (∼30%) corresponded to that as observed with S-methyl-l-cysteine but the deuterium label was only 63%, probably due to the use of a not completely deuterated incubation medium.
Collapse
Affiliation(s)
| | | | - Marianna Kańska
- a Department of Chemistry , University of Warsaw , Warsaw , Poland
- b Second Faculty of Medicine , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
17
|
Do Q, Nguyen GT, Phillips RS. Inhibition of tyrosine phenol-lyase by tyrosine homologues. Amino Acids 2016; 48:2243-51. [DOI: 10.1007/s00726-016-2263-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
|
18
|
Kurisaki I, Takayanagi M, Nagaoka M. Bound Na+ is a Negative Effecter for Thrombin-Substrate Stereospecific Complex Formation. J Phys Chem B 2016; 120:4540-7. [DOI: 10.1021/acs.jpcb.6b00976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ikuo Kurisaki
- Graduate
School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Masayoshi Takayanagi
- Graduate
School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Masataka Nagaoka
- Graduate
School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| |
Collapse
|
19
|
Vašák M, Schnabl J. Sodium and Potassium Ions in Proteins and Enzyme Catalysis. Met Ions Life Sci 2016; 16:259-90. [DOI: 10.1007/978-3-319-21756-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Green K, Qasim N, Gdaelvsky G, Kogan A, Goldgur Y, Parola AH, Lotan O, Almog O. A structural view of the dissociation of Escherichia coli tryptophanase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2364-71. [PMID: 26627645 DOI: 10.1107/s139900471501799x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 01/03/2023]
Abstract
Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.
Collapse
Affiliation(s)
- Keren Green
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Nasrin Qasim
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Garik Gdaelvsky
- Department of Chemistry, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Anna Kogan
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Abraham H Parola
- Department of Chemistry, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Ofra Lotan
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Orna Almog
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| |
Collapse
|
21
|
Rety S, Deschamps P, Leulliot N. Structure of Escherichia coli tryptophanase purified from an alkaline-stressed bacterial culture. Acta Crystallogr F Struct Biol Commun 2015; 71:1378-83. [PMID: 26527264 PMCID: PMC4631586 DOI: 10.1107/s2053230x15017549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/19/2015] [Indexed: 11/11/2022] Open
Abstract
Tryptophanase is a bacterial enzyme involved in the degradation of tryptophan to indole, pyruvate and ammonia, which are compounds that are essential for bacterial survival. Tryptophanase is often overexpressed in stressed cultures. Large amounts of endogenous tryptophanase were purified from Escherichia coli BL21 strain overexpressing another recombinant protein. Tryptophanase was crystallized in space group P6522 in the apo form without pyridoxal 5'-phosphate bound in the active site.
Collapse
Affiliation(s)
- Stephane Rety
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - Patrick Deschamps
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
22
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
23
|
Lo VL, Kingston RL, Millane RP. Iterative projection algorithms in protein crystallography. II. Application. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2015; 71:451-9. [PMID: 26131900 DOI: 10.1107/s2053273315005574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/18/2015] [Indexed: 11/10/2022]
Abstract
Iterative projection algorithms (IPAs) are a promising tool for protein crystallographic phase determination. Although related to traditional density-modification algorithms, IPAs have better convergence properties, and, as a result, can effectively overcome the phase problem given modest levels of structural redundancy. This is illustrated by applying IPAs to determine the electron densities of two protein crystals with fourfold non-crystallographic symmetry, starting with only the experimental diffraction amplitudes, a low-resolution molecular envelope and the position of the non-crystallographic axes. The algorithm returns electron densities that are sufficiently accurate for model building, allowing automated recovery of the known structures. This study indicates that IPAs should find routine application in protein crystallography, being capable of reconstructing electron densities starting with very little initial phase information.
Collapse
Affiliation(s)
- Victor L Lo
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rick P Millane
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
24
|
Kogan A, Raznov L, Gdalevsky GY, Cohen-Luria R, Almog O, Parola AH, Goldgur Y. Structures of Escherichia coli tryptophanase in holo and 'semi-holo' forms. Acta Crystallogr F Struct Biol Commun 2015; 71:286-90. [PMID: 25760702 PMCID: PMC4356303 DOI: 10.1107/s2053230x15000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Two crystal forms of Escherichia coli tryptophanase (tryptophan indole-lyase, Trpase) were obtained under the same crystallization conditions. Both forms belonged to the same space group P43212 but had slightly different unit-cell parameters. The holo crystal form, with pyridoxal phosphate (PLP) bound to Lys270 of both polypeptide chains in the asymmetric unit, diffracted to 2.9 Å resolution. The second crystal form diffracted to 3.2 Å resolution. Of the two subunits in the asymmetric unit, one was found in the holo form, while the other appeared to be in the apo form in a wide-open conformation with two sulfate ions bound in the vicinity of the active site. The conformation of all holo subunits is the same in both crystal forms. The structures suggest that Trpase is flexible in the apo form. Its conformation partially closes upon binding of PLP. The closed conformation might correspond to the enzyme in its active state with both cofactor and substrate bound in a similar way as in tyrosine phenol-lyase.
Collapse
Affiliation(s)
- Anna Kogan
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Leah Raznov
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Garik Y. Gdalevsky
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Orna Almog
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Abraham H. Parola
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- New York University Shanghai, Shanghai 200122, People’s Republic of China
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
25
|
Characterization of tryptophanase from Vibrio cholerae. Appl Biochem Biotechnol 2014; 175:243-52. [PMID: 25253268 DOI: 10.1007/s12010-014-1263-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Tryptophanase (Trpase) is a pyridoxal phosphate (PLP)-dependent enzyme responsible for the production of indole, an important intra- and interspecies signaling molecule in bacteria. In this study, the tnaA gene of Vibrio cholerae coding for VcTrpase was cloned into the pET-20b(+) vector and expressed in Escherichia coli BL21(DE3) tn5:tnaA. Using Ni(2+)-nitrilotriacetic acid (NTA) chromatography, VcTrpase was purified, and it possessed a molecular mass of ∼49 kDa with specific absorption peaks at 330 and 435 nm and a specific activity of 3 U/mg protein. The VcTrpase had an 80 % homology to the Trpase of Haemophilus influenzae and E. coli, but only around 50 % identity to the Trpase of Proteus vulgaris and Porphyromonas gingivalis. The optimum conditions for the enzyme were at pH 9.0 and 45 °C. Recombinant VcTrpase exhibited analogous kinetic reactivity to the EcTrpase with K m and k cat values of 0.612 × 10(-3) M and 5.252 s(-1), respectively. The enzyme catalyzed S-methyl-L-cysteine and S-benzyl-L-cysteine degradation, but not L-phenylalanine and L-serine. Using a site-directed mutagenesis technique, eight residues (Thr52, Tyr74, Arg103, Asp137, Arg230, Lys269, Lys270, and His463) were conserved for maintaining enzyme catalysis. All amino acid substitutions at these sites either eliminated or remarkably diminished Trpase activity. These sites are thus potential targets for the design of drugs to control the V. cholerae Trpase and to further investigate its functions.
Collapse
|
26
|
Faleev NG, Zakomirdina LN, Vorob'ev MM, Tsvetikova MA, Gogoleva OI, Demidkina TV, Phillips RS. A straightforward kinetic evidence for coexistence of "induced fit" and "selected fit" in the reaction mechanism of a mutant tryptophan indole lyase Y72F from Proteus vulgaris. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1860-7. [PMID: 25084024 DOI: 10.1016/j.bbapap.2014.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/30/2014] [Accepted: 07/21/2014] [Indexed: 11/25/2022]
Abstract
The interaction of the mutant tryptophan indole-lyase (TIL) from Proteus vulgaris Y72F with the transition state analogue, oxindolyl-l-alanine (OIA), with the natural substrate, l-tryptophan, and with a substrate S-ethyl-l-cysteine was examined. In the case of wild-type enzyme these reactions are described by the same kinetic scheme where binding of holoenzyme with an amino acid, leading to reversible formation of an external aldimine, proceeds very fast, while following transformations, leading finally to reversible formation of a quinonoid intermediate proceed with measureable rates. Principally the same scheme ("induced fit") is realized in the case of mutant Y72F enzyme reaction with OIA. For the reaction of mutant enzyme with l-Trp at lower concentrations of the latter a principally different kinetic scheme is observed. This scheme suggests that binding of the substrate and formation of the quinonoid intermediate are at fast equilibrium, while preceding conformational changes of the holoenzyme proceed with measureable rates ("selected fit"). For the reaction with S-ethyl-l-cysteine the observed concentration dependence of kobs agrees with the realization of both kinetic schemes, the "selected fit" becoming predominant at lower concentrations of substrate, the "induced fit"- at higher ones. In the reaction with S-ethyl-l-cysteine the formation of the quinonoid intermediate proceeds slower than does catalytic α,β-elimination of ethylthiol from S-ethyl-l-cysteine, and consequently does not play a considerable role in the catalysis, which may be effected by a concerted E2 mechanism.
Collapse
Affiliation(s)
- Nicolai G Faleev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Lyudmila N Zakomirdina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Mikhail M Vorob'ev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Marina A Tsvetikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga I Gogoleva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
27
|
Phillips RS, Demidkina TV, Faleev NG. The role of substrate strain in the mechanism of the carbon-carbon lyases. Bioorg Chem 2014; 57:198-205. [PMID: 25035301 DOI: 10.1016/j.bioorg.2014.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 12/24/2022]
Abstract
The carbon-carbon lyases, tryptophan indole lyase (TIL) and tyrosine phenol-lyase (TPL) are bacterial enzymes which catalyze the reversible elimination of indole and phenol from l-tryptophan and l-tyrosine, respectively. These PLP-dependent enzymes show high sequence homology (∼40% identity) and both form homotetrameric structures. Steady state kinetic studies with both enzymes show that an active site base is essential for activity, and α-deuterated substrates exhibit modest primary isotope effects on kcat and kcat/Km, suggesting that substrate deprotonation is partially rate-limiting. Pre-steady state kinetics with TPL and TIL show rapid formation of external aldimine intermediates, followed by deprotonation to give quinonoid intermediates absorbing at about 500nm. In the presence of phenol and indole analogues, 4-hydroxypyridine and benzimidazole, the quinonoid intermediates of TPL and TIL decay to aminoacrylate intermediates, with λmax at about 340nm. Surprisingly, there are significant kinetic isotope effects on both formation and subsequent decay of the quinonoid intermediates when α-deuterated substrates are used. The crystal structure of TPL with a bound competitive inhibitor, 4-hydroxyphenylpropionate, identified several essential catalytic residues: Tyr-71, Thr-124, Arg-381, and Phe-448. The active sites of TIL and TPL are highly conserved with the exceptions of these residues: Arg-381(TPL)/Ile-396 (TIL); Thr-124 (TPL)/Asp-137 (TIL), and Phe-448 (TPL)/His-463 (TIL). Mutagenesis of these residues results in dramatic decreases in catalytic activity without changing substrate specificity. The conserved tyrosine, Tyr-71 (TPL)/Tyr-74 (TIL) is essential for elimination activity with both enzymes, and likely plays a role as a proton donor to the leaving group. Mutation of Arg-381 and Thr-124 of TPL to alanine results in very low but measurable catalytic activity. Crystallography of Y71F and F448H TPL with 3-fluoro-l-tyrosine bound demonstrated that there are two quinonoid structures, relaxed and tense. In the relaxed structure, the substrate aromatic ring is in plane with the Cβ-Cγ bond, but in the tense structure, the substrate aromatic ring is about 20° out of plane with the Cβ-Cγ bond. In the tense structure, hydrogen bonds are formed between the substrate OH and the guanidinium of Arg-381 and the OH of Thr-124, and the phenyl rings of Phe-448 and 449 provide steric strain. Based on the effects of mutagenesis, the substrate strain is estimated to contribute about 10(8) to TPL catalysis. Thus, the mechanisms of TPL and TIL require both substrate strain and acid/base catalysis, and substrate strain is probably responsible for the very high substrate specificity of TPL and TIL.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Nicolai G Faleev
- Nesmeyanov Institute of Organo-Element Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| |
Collapse
|
28
|
Shoji M, Hanaoka K, Ujiie Y, Tanaka W, Kondo D, Umeda H, Kamoshida Y, Kayanuma M, Kamiya K, Shiraishi K, Machida Y, Murakawa T, Hayashi H. A QM/MM Study of the l-Threonine Formation Reaction of Threonine Synthase: Implications into the Mechanism of the Reaction Specificity. J Am Chem Soc 2014; 136:4525-33. [DOI: 10.1021/ja408780c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitsuo Shoji
- Center
for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Japan
- Graduate
School of Pure and Applied Sciences, University of Tsukuba, Tennodai
1-1-1, Tsukuba 305-8571, Japan
| | - Kyohei Hanaoka
- Graduate
School of Pure and Applied Sciences, University of Tsukuba, Tennodai
1-1-1, Tsukuba 305-8571, Japan
| | - Yuzuru Ujiie
- Graduate
School of Pure and Applied Sciences, University of Tsukuba, Tennodai
1-1-1, Tsukuba 305-8571, Japan
| | - Wataru Tanaka
- Graduate
School of Pure and Applied Sciences, University of Tsukuba, Tennodai
1-1-1, Tsukuba 305-8571, Japan
| | - Daiki Kondo
- Graduate
School of Pure and Applied Sciences, University of Tsukuba, Tennodai
1-1-1, Tsukuba 305-8571, Japan
| | - Hiroaki Umeda
- Center
for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Japan
| | - Yoshikazu Kamoshida
- Information
Technology Center, The University of Tokyo, Yayoi 2-11-16,
Bunkyo-ku, Tokyo 113-8658, Japan
| | - Megumi Kayanuma
- Graduate
School of Systems and Information Engineering, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8573, Japan
| | - Katsumasa Kamiya
- Center
for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Japan
| | - Kenji Shiraishi
- Center
for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Japan
| | - Yasuhiro Machida
- Department
of Chemistry, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Takeshi Murakawa
- Department
of Biochemistry, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Hideyuki Hayashi
- Department
of Chemistry, Osaka Medical College, Takatsuki 569-8686, Japan
| |
Collapse
|
29
|
Sayer C, Isupov MN, Westlake A, Littlechild JA. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:564-76. [PMID: 23519665 PMCID: PMC3606037 DOI: 10.1107/s0907444912051670] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/21/2012] [Indexed: 11/10/2022]
Abstract
The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.
Collapse
Affiliation(s)
- Christopher Sayer
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Michail N. Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Aaron Westlake
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Jennifer A. Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| |
Collapse
|
30
|
Crystal structure of Sa239 reveals the structural basis for the activation of ribokinase by monovalent cations. J Struct Biol 2012; 177:578-82. [DOI: 10.1016/j.jsb.2011.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/24/2011] [Accepted: 12/08/2011] [Indexed: 11/18/2022]
|
31
|
Singh R, Spyrakis F, Cozzini P, Paiardini A, Pascarella S, Mozzarelli A. Chemogenomics of pyridoxal 5'-phosphate dependent enzymes. J Enzyme Inhib Med Chem 2011; 28:183-94. [PMID: 22181815 DOI: 10.3109/14756366.2011.643305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) dependent enzymes comprise a large family that plays key roles in amino acid metabolism and are acquiring an increasing interest as drug targets. For the identification of compounds inhibiting PLP-dependent enzymes, a chemogenomics-based approach has been adopted in this work. Chemogenomics exploits the information coded in sequences and three-dimensional structures to define pharmacophore models. The analysis was carried out on a dataset of 65 high-resolution PLP-dependent enzyme structures, including representative members of four-fold types. Evolutionarily conserved residues relevant to coenzyme or substrate binding were identified on the basis of sequence-structure comparisons. A dataset was obtained containing the information on conserved residues at substrate and coenzyme binding site for each representative PLP-dependent enzyme. By linking coenzyme and substrate pharmacophores, bifunctional pharmacophores were generated that will constitute the basis for future development of small inhibitors targeting specific PLP-dependent enzymes.
Collapse
Affiliation(s)
- Ratna Singh
- Department of Biochemistry and Molecular Biology and Laboratory of Molecular Modelling, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Shimada A, Ozaki H, Saito T, Fujii N. Reaction pathway of tryptophanase-catalyzed l-tryptophan synthesis from d-serine. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3289-95. [DOI: 10.1016/j.jchromb.2011.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 12/01/2022]
|
33
|
Schnackerz KD, Andi B, Cook PF. (31)P NMR spectroscopy senses the microenvironment of the 5'-phosphate group of enzyme-bound pyridoxal 5'-phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1447-58. [PMID: 21354475 DOI: 10.1016/j.bbapap.2011.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/24/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
In this review it is demonstrated that (31)P NMR spectroscopy can be used to elucidate information about the microenvironment around the phosphate group of enzyme-bound pyridoxal 5'-phosphate (PLP). The following information can be obtained for all PLP-dependent enzymes: 1) the protonation state of the 5'-phosphate and its exposure to solvent, and 2) tightness of binding of the 5'-phosphate. In addition, the 5-phosphate can report on the protonation state of the Schiff base lysine in some enzymes. Changes in the 5'-phosphate chemical shift can be used to determine changes in tightness of binding of the phosphate as the reaction pathway is traversed, providing information on the dynamics of the enzyme. (31)P NMR spectroscopy is thus an important probe of structure, dynamics and mechanism in native and site-directed mutations of PLP-dependent enzymes. Examples of all of the above are provided in this review. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Klaus D Schnackerz
- Physiologische Chemie I, Theodor-Boveri-Institut für Biowissenschaften, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | |
Collapse
|
34
|
Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase. Amino Acids 2010; 41:1247-56. [DOI: 10.1007/s00726-010-0802-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
|
35
|
Conformational changes and loose packing promote E. coli Tryptophanase cold lability. BMC STRUCTURAL BIOLOGY 2009; 9:65. [PMID: 19814824 PMCID: PMC2770544 DOI: 10.1186/1472-6807-9-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022]
Abstract
Background Oligomeric enzymes can undergo a reversible loss of activity at low temperatures. One such enzyme is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent tetrameric enzyme with a Mw of 210 kD. PLP is covalently bound through an enamine bond to Lys270 at the active site. The incubation of holo E. coli Trpases at 2°C for 20 h results in breaking this enamine bond and PLP release, as well as a reversible loss of activity and dissociation into dimers. This sequence of events is termed cold lability and its understanding bears relevance to protein stability and shelf life. Results We studied the reversible cold lability of E. coli Trpase and its Y74F, C298S and W330F mutants. In contrast to the holo E. coli Trpase all apo forms of Trpase dissociated into dimers already at 25°C and even further upon cooling to 2°C. The crystal structures of the two mutants, Y74F and C298S in their apo form were determined at 1.9Å resolution. These apo mutants were found in an open conformation compared to the closed conformation found for P. vulgaris in its holo form. This conformational change is further supported by a high pressure study. Conclusion We suggest that cold lability of E. coli Trpases is primarily affected by PLP release. The enhanced loss of activity of the three mutants is presumably due to the reduced size of the side chain of the amino acids. This prevents the tight assembly of the active tetramer, making it more susceptible to the cold driven changes in hydrophobic interactions which facilitate PLP release. The hydrophobic interactions along the non catalytic interface overshadow the effect of point mutations and may account for the differences in the dissociation of E. coli Trpase to dimers and P. vulgaris Trpase to monomers.
Collapse
|
36
|
Demidkina TV, Antson AA, Faleev NG, Phillips RS, Zakomirdina LN. Spatial structure and the mechanism of tyrosine phenol-lyase and tryptophan indole-lyase. Mol Biol 2009. [DOI: 10.1134/s0026893309020101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Yoshida Y, Sasaki T, Ito S, Tamura H, Kunimatsu K, Kato H. Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2009; 155:968-978. [PMID: 19246767 DOI: 10.1099/mic.0.024174-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Indole produced via the beta-elimination reaction of l-tryptophan by pyridoxal 5'-phosphate-dependent tryptophanase (EC 4.1.99.1) has recently been shown to be an extracellular and intercellular signalling molecule in bacteria, and controls bacterial biofilm formation and virulence factors. In the present study, we determined the molecular basis of indole production in the periodontopathogenic bacterium Porphyromonas gingivalis. A database search showed that the amino acid sequence deduced from pg1401 of P. gingivalis W83 is 45 % identical with that from tnaA of Escherichia coli K-12, which encodes tryptophanase. Replacement of the pg1401 gene in the chromosomal DNA with the chloramphenicol-resistance gene abolished indole production. The production of indole was restored by the introduction of pg1401, demonstrating that the gene is functionally equivalent to tnaA. However, RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends analyses showed that, unlike E. coli tnaA, pg1401 is expressed alone in P. gingivalis and that the nucleotide sequence of the transcription start site is different, suggesting that the expression of P. gingivalis tnaA is controlled by a unique mechanism. Purified recombinant P. gingivalis tryptophanase exhibited the Michaelis-Menten kinetics values K(m)=0.20+/-0.01 mM and k(cat)=1.37+/-0.06 s(-1) in potassium phosphate buffer, but in sodium phosphate buffer, the enzyme showed lower activity. However, the cation in the buffer, K(+) or Na(+), did not appear to affect the quaternary structure of the enzyme or the binding of pyridoxal 5'-phosphate to the enzyme. The enzyme also degraded S-ethyl-l-cysteine and S-methyl-l-cysteine, but not l-alanine, l-serine or l-cysteine.
Collapse
Affiliation(s)
- Yasuo Yoshida
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Takako Sasaki
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Shuntaro Ito
- Department of Periodontology, Iwate Medical University School of Dentistry, Morioka, Japan
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Haruki Tamura
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Kazushi Kunimatsu
- Department of Periodontology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Hirohisa Kato
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| |
Collapse
|
38
|
Scherzer R, Gdalevsky GY, Goldgur Y, Cohen-Luria R, Bittner S, Parola AH. New tryptophanase inhibitors: Towards prevention of bacterial biofilm formation. J Enzyme Inhib Med Chem 2008; 24:350-5. [DOI: 10.1080/14756360802187612] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Roni Scherzer
- The Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Garik Y. Gdalevsky
- The Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yehuda Goldgur
- The Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Cohen-Luria
- The Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shmuel Bittner
- The Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abraham H. Parola
- The Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
39
|
Almog O, Kogan A, Leeuw MD, Gdalevsky GY, Cohen-Luria R, Parola AH. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41. Biopolymers 2008; 89:354-9. [PMID: 17937401 DOI: 10.1002/bip.20866] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A wide variety of enzymes can undergo a reversible loss of activity at low temperature, a process that is termed cold inactivation. This phenomenon is found in oligomeric enzymes such as tryptophanase (Trpase) and other pyridoxal phosphate dependent enzymes. On the other hand, cold-adapted, or psychrophilic enzymes, isolated from organisms able to thrive in permanently cold environments, have optimal activity at low temperature, which is associated with low thermal stability. Since cold inactivation may be considered "contradictory" to cold adaptation, we have looked into the amino acid sequences and the crystal structures of two families of enzymes, subtilisin and tryptophanase. Two cold adapted subtilisins, S41 and subtilisin-like protease from Vibrio, were compared to a mesophilic and a thermophilic subtilisins, as well as to four PLP-dependent enzymes in order to understand the specific surface residues, specific interactions, or any other molecular features that may be responsible for the differences in their tolerance to cold temperatures. The comparison between the psychrophilic and the mesophilic subtilisins revealed that the cold adapted subtilisins have a high content of acidic residues mainly found on their surface, making it charged. The analysis of the Trpases showed that they have a high content of hydrophobic residues on their surface. Thus, we suggest that the negatively charged residues on the surface of the subtilisins may be responsible for their cold adaptation, whereas the hydrophobic residues on the surface of monomeric Trpase molecules are responsible for the tetrameric assembly, and may account for their cold inactivation and dissociation.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | | | | | | | | | | |
Collapse
|
40
|
A catalytic mechanism that explains a low catalytic activity of serine dehydratase like-1 from human cancer cells: Crystal structure and site-directed mutagenesis studies. Biochim Biophys Acta Gen Subj 2008; 1780:809-18. [DOI: 10.1016/j.bbagen.2008.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
|
41
|
Sonnet PE, Mascavage LM, Dalton DR. The first steps. The attack on the carbonyl carbon of pyridoxal cofactor in pyridoxal-dependent enzymes. Bioorg Med Chem Lett 2008; 18:744-8. [DOI: 10.1016/j.bmcl.2007.11.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
|
42
|
Abstract
YGL196W of Saccharomyces cerevisiae encodes a putative protein that is unidentified but is predicted to have a motif similar to that of the N-terminal domain of the bacterial alanine racemase. In the present study we found that YGL196W encodes a novel D-serine dehydratase, which belongs to a different protein family from that of the known bacterial enzyme. The yeast D-serine dehydratase purified from recombinant Escherichia coli cells depends on pyridoxal 5′-phosphate and zinc, and catalyses the conversion of D-serine into pyruvate and ammonia with the Km and kcat values of 0.39 mM and 13.1 s−1 respectively. D-Threonine and β-Cl-D-alanine also serve as substrates with catalytic efficiencies which are approx. 3 and 2% of D-serine respectively. L-Serine, L-threonine and β-Cl-L-alanine are inert as substrates. Atomic absorption analysis revealed that the enzyme contains one zinc atom per enzyme monomer. The enzyme activities toward D-serine and D-threonine were decreased by EDTA treatment and recovered by the addition of Zn2+. Little recovery was observed with Mg2+, Mn2+, Ca2+, Ni2+, Cu2+, K+ or Na+. In contrast, the activity towards β-Cl-D-alanine was retained after EDTA treatment. These results suggest that zinc is involved in the elimination of the hydroxy group of D-serine and D-threonine. D-Serine dehydratase of S. cerevisiae is probably the first example of a eukaryotic D-serine dehydratase and that of a specifically zinc-dependent pyridoxal enzyme as well.
Collapse
|
43
|
Isupov MN, Lebedev AA. NCS-constrained exhaustive search using oligomeric models. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2007; 64:90-8. [PMID: 18094472 PMCID: PMC2394828 DOI: 10.1107/s0907444907053802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 10/29/2007] [Indexed: 11/10/2022]
Abstract
The efficiency of the cross-rotation function step of molecular replacement (MR) is intrinsically limited as it uses only a fraction of the Patterson vectors. Along with general techniques extending the boundaries of the method, there are approaches that utilize specific features of a given structure. In special cases, where the directions of noncrystallographic symmetry axes can be unambiguously derived from the self-rotation function and the structure of the homologue protein is available in a related oligomeric state, the cross-rotation function step of MR can be omitted. In such cases, a small number of yet unknown parameters defining the orientation of the oligomer and/or its internal organization can be optimized using an exhaustive search. Three difficult MR cases are reported in which these parameters were determined and the oligomer was positioned according to the maximal value of the correlation coefficient in a series of translation searches.
Collapse
Affiliation(s)
- Michail N Isupov
- Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England.
| | | |
Collapse
|
44
|
Musayev FN, di Salvo ML, Ko TP, Gandhi AK, Goswami A, Schirch V, Safo MK. Crystal Structure of human pyridoxal kinase: structural basis of M(+) and M(2+) activation. Protein Sci 2007; 16:2184-94. [PMID: 17766369 PMCID: PMC2204131 DOI: 10.1110/ps.073022107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pyridoxal kinase catalyzes the transfer of a phosphate group from ATP to the 5' alcohol of pyridoxine, pyridoxamine, and pyridoxal. In this work, kinetic studies were conducted to examine monovalent cation dependence of human pyridoxal kinase kinetic parameters. The results show that hPLK affinity for ATP and PL is increased manyfold in the presence of K(+) when compared to Na(+); however, the maximal activity of the Na(+) form of the enzyme is more than double the activity in the presence of K(+). Other monovalent cations, Li(+), Cs(+), and Rb(+) do not show significant activity. We have determined the crystal structure of hPLK in the unliganded form, and in complex with MgATP to 2.0 and 2.2 A resolution, respectively. Overall, the two structures show similar open conformation, and likely represent the catalytically idle state. The crystal structure of the MgATP complex also reveals Mg(2+) and Na(+) acting in tandem to anchor the ATP at the active site. Interestingly, the active site of hPLK acts as a sink to bind several molecules of MPD. The features of monovalent and divalent metal cation binding, active site structure, and vitamin B6 specificity are discussed in terms of the kinetic and structural studies, and are compared with those of the sheep and Escherichia coli enzymes.
Collapse
Affiliation(s)
- Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Christmann-Franck S, Fermandjian S, Mirambeau G, Der Garabedian PA. Molecular modelling studies on the interactions of human DNA topoisomerase IB with pyridoxal-compounds. Biochimie 2007; 89:468-73. [PMID: 17116355 DOI: 10.1016/j.biochi.2006.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/10/2006] [Indexed: 11/27/2022]
Abstract
Candida guilliermondii and human DNA topoisomerases I are inhibited by PL (pyridoxal), PLP (pyridoxal 5'-phosphate) and PLP-AMP (pyridoxal 5'-diphospho-5'-adenosine) (PL<PLP<PLP-AMP). We have recently shown that PLP acted as a competitive inhibitor of C. guilliermondii topoisomerase I, impeding the formation of the cleavable complex from a selective binding to an active site lysine. The targeted lysine in C. guilliermondii topoisomerase I occupies a position equivalent to that of lysine 532 (K(532)) in human topoisomerase I. K(532) acts as a general acid catalyst and is essential for the enzyme activity. This observation has suggested that, in the cell, PLP could down-regulate topoisomerases IB. We have proposed that PLP could be used as a new lead for anticancer drugs trapping the active site lysine (K(532)) and also as a tool to explore the enzyme dynamics required for catalysis. Now we explore the effects of PL, PLP and PLP-AMP on topoisomerases by a molecular modelling approach using the crystal structure of the human topoisomerase I active site and the conformation of K(39)-PLP moiety in Bacillus subtilis alanine racemase as templates. In the modified topoisomerase I several reactive atoms of the K(532)-PLP moiety are at close distance of the catalytic residues R(488), R(590), H(632) and Y(723,) suggesting that PLP develops disturbing interactions with these important residues. These interactions and the corresponding induced fit in the active site conformation are compared with the ones occurring with PL and PLP-AMP. The results could be useful in the search of topoisomerase I inhibitors related to the pyridoxal family.
Collapse
Affiliation(s)
- Serge Christmann-Franck
- Département de Biologie et Pharmacologie Structurales, CNRS UMR 8113, Institut Gustave Roussy et ENS Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
| | | | | | | |
Collapse
|
46
|
Bryce DL, Adiga S, Elliott EK, Gokel GW. Solid-State 23Na NMR Study of Sodium Lariat Ether Receptors Exhibiting Cation−π Interactions. J Phys Chem A 2006; 110:13568-77. [PMID: 17165884 DOI: 10.1021/jp065171q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Noncovalent cation-pi interactions are important in a variety of supramolecular and biochemical systems. We present a 23Na solid-state nuclear magnetic resonance (SSNMR) study of two sodium lariat ether complexes, 1 and 2, in which a sodium cation interacts with an indolyl group that models the side chain of tryptophan. Sodium-23 SSNMR spectra of magic-angle spinning (MAS) and stationary powdered samples have been acquired at three magnetic field strengths (9.4, 11.75, 21.1 T) and analyzed to provide key information on the sodium electric field gradient and chemical shift (CS) tensors which are representative of the cation-pi binding environment. Triple-quantum MAS NMR spectra acquired at 21.1 T clearly reveal two crystallographically distinct sites in both 1 and 2. The quadrupolar coupling constants, CQ(23Na), range from 2.92 +/- 0.05 MHz for site A of 1 to 3.33 +/- 0.05 MHz for site B of 2; these values are somewhat larger than those reported previously by Wong et al. (Wong, A.; Whitehead, R. D.; Gan, Z.; Wu, G. J. Phys. Chem. A 2004, 108, 10551) for NaBPh4, but very similar to the values obtained for sodium metallocenes by Willans and Schurko (Willans, M. J.; Schurko, R. W. J. Phys. Chem. B 2003, 107, 5144). We conclude from the 21.1 T data that the spans of the sodium CS tensors are less than 20 ppm for 1 and 2 and that the largest components of the EFG and CS tensors are non-coincident. Quantum chemical calculations of the NMR parameters substantiate the experimental findings and provide additional insight into the dependence of CQ(23Na) on the proximity of the indole ring to Na+. Taken together, this work has provided novel information on the NMR interaction tensors characteristic of a sodium cation interacting with a biologically important arene.
Collapse
Affiliation(s)
- David L Bryce
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | |
Collapse
|
47
|
Lee SG, Hong SP, Kim DY, Song JJ, Ro HS, Sung MH. Inactivation of tyrosine phenol-lyase by Pictet-Spengler reaction and alleviation by T15A mutation on intertwined N-terminal arm. FEBS J 2006; 273:5564-73. [PMID: 17094783 DOI: 10.1111/j.1742-4658.2006.05546.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Citrobacter freundiil-tyrosine phenol-lyase (TPL) was inactivated by a Pictet-Spengler reaction between the cofactor and a substrate, 3,4-dihydroxyphenyl-L-alanine (L-dopa), in proportion to an increase in the reaction temperature. Random mutagenesis of the tpl gene resulted in the generation of a Thr15 to Ala mutant (T15A), which exhibited a two-fold improved activity towards L-DOPA as the substrate. The Thr15 residue was located on the intertwined N-terminal arm of the TPL structure, and comprised an H-bond network in proximity to the hydrophobic core between the catalytic dimers. The maximum activity of the mutant and native enzymes with L-DOPA was detected at 45 and 40 degrees C, respectively, which was 15 degrees C lower than when using L-tyrosine as the substrate. The half-lives at 45 degrees C were about 16.8 and 6.4 min for the mutant and native enzymes, respectively, in 10 mM L-DOPA. On treatment with excess pyridoxal-5'-phosphate (PLP), the L-DOPA-inactivated enzymes recovered over 80% of their original activities, thereby attributing the inactivation to a loss of the cofactor through Pictet-Spengler condensation with L-DOPA. Consistent with the extended half-life, the apparent Michaelis constant of the T15A enzyme for PLP (K(m,PLP)) increased slowly when increasing the temperature, while that of the native enzyme showed a sharp increase at temperatures higher than 50 degrees C, implying that the loss of the cofactor with the Pictet-Spengler reaction was prevented by the tighter binding and smaller release of the cofactor in the mutant enzyme.
Collapse
Affiliation(s)
- Seung-Goo Lee
- Systems Microbiology Research Center, KRIBB, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Metal complexation is a key mediator or modifier of enzyme structure and function. In addition to divalent and polyvalent metals, group IA metals Na+and K+play important and specific roles that assist function of biological macromolecules. We examine the diversity of monovalent cation (M+)-activated enzymes by first comparing coordination in small molecules followed by a discussion of theoretical and practical aspects. Select examples of enzymes that utilize M+as a cofactor (type I) or allosteric effector (type II) illustrate the structural basis of activation by Na+and K+, along with unexpected connections with ion transporters. Kinetic expressions are derived for the analysis of type I and type II activation. In conclusion, we address evolutionary implications of Na+binding in the trypsin-like proteases of vertebrate blood coagulation. From this analysis, M+complexation has the potential to be an efficient regulator of enzyme catalysis and stability and offers novel strategies for protein engineering to improve enzyme function.
Collapse
Affiliation(s)
- Michael J Page
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
49
|
Phillips RS, Chen HY, Faleev NG. Aminoacrylate intermediates in the reaction of Citrobacter freundii tyrosine phenol-lyase. Biochemistry 2006; 45:9575-83. [PMID: 16878992 DOI: 10.1021/bi060561o] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible hydrolytic cleavage of l-Tyr to give phenol and ammonium pyruvate. The proposed reaction mechanism for TPL involves formation of an external aldimine of the substrate, followed by deprotonation of the alpha-carbon to give a quinonoid intermediate. Elimination of phenol then has been proposed to give an alpha-aminoacrylate Schiff base, which releases iminopyruvate that ultimately undergoes hydrolysis to yield ammonium pyruvate. Previous stopped-flow kinetic experiments have provided direct spectroscopic evidence for the formation of the external aldimine and quinonoid intermediates in the reactions of substrates and inhibitors; however, the predicted alpha-aminoacrylate intermediate has not been previously observed. We have found that 4-hydroxypyridine, a non-nucleophilic analogue of phenol, selectively binds and stabilizes aminoacrylate intermediates in reactions of TPL with S-alkyl-l-cysteines, l-tyrosine, and 3-fluoro-l-tyrosine. In the presence of 4-hydroxypyridine, a new absorption band at 338 nm, assigned to the alpha-aminoacrylate, is observed with these substrates. Formation of the 338 nm peaks is concomitant with the decay of the quinonoid intermediates, with good isosbestic points at approximately 365 nm. The value of the rate constant for aminoacrylate formation is similar to k(cat), suggesting that leaving group elimination is at least partially rate limiting in TPL reactions. In the reaction of S-ethyl-l-cysteine in the presence of 4-hydroxypyridine, a subsequent slow reaction of the alpha-aminoacrylate is observed, which may be due to iminopyruvate formation. Both l-tyrosine and 3-fluoro-l-tyrosine exhibit kinetic isotope effects of approximately 2-3 on alpha-aminoacrylate formation when the alpha-(2)H-labeled substrates are used, consistent with the previously reported internal return of the alpha-proton to the phenol product. These results are the first direct spectroscopic observation of alpha-aminoacrylate intermediates in the reactions of TPL.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA.
| | | | | |
Collapse
|
50
|
Milić D, Matković-Calogović D, Demidkina TV, Kulikova VV, Sinitzina NI, Antson AA. Structures of apo- and holo-tyrosine phenol-lyase reveal a catalytically critical closed conformation and suggest a mechanism for activation by K+ ions. Biochemistry 2006; 45:7544-52. [PMID: 16768450 PMCID: PMC2691550 DOI: 10.1021/bi0601858] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tyrosine phenol-lyase, a tetrameric pyridoxal 5'-phosphate dependent enzyme, catalyzes the reversible hydrolytic cleavage of L-tyrosine to phenol and ammonium pyruvate. Here we describe the crystal structure of the Citrobacter freundii holoenzyme at 1.9 A resolution. The structure reveals a network of protein interactions with the cofactor, pyridoxal 5'-phosphate, and details of coordination of the catalytically important K+ ion. We also present the structure of the apoenzyme at 1.85 A resolution. Both structures were determined using crystals grown at pH 8.0, which is close to the pH of the maximal enzymatic activity (8.2). Comparison of the apoenzyme structure with the one previously determined at pH 6.0 reveals significant differences. The data suggest that the decrease of the enzymatic activity at pH 6.0 may be caused by conformational changes in the active site residues Tyr71, Tyr291, and Arg381 and in the monovalent cation binding residue Glu69. Moreover, at pH 8.0 we observe two different active site conformations: open, which was characterized before, and closed, which is observed for the first time in beta-eliminating lyases. In the closed conformation a significant part of the small domain undergoes an extraordinary motion of up to 12 A toward the large domain, closing the active site cleft and bringing the catalytically important Arg381 and Phe448 into the active site. The closed conformation allows rationalization of the results of previous mutational studies and suggests that the observed active site closure is critical for the course of the enzymatic reaction and for the enzyme's specificity toward its physiological substrate. Finally, the closed conformation allows us to model keto(imino)quinonoid, the key transition intermediate.
Collapse
Affiliation(s)
- Dalibor Milić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|