1
|
Abba Moussa D, Vazquez M, Chable-Bessia C, Roux-Portalez V, Tamagnini E, Pedotti M, Simonelli L, Ngo G, Souchard M, Lyonnais S, Chentouf M, Gros N, Marsile-Medun S, Dinter H, Pugnière M, Martineau P, Varani L, Juan M, Calderon H, Naranjo-Gomez M, Pelegrin M. Discovery of a pan anti-SARS-CoV-2 monoclonal antibody with highly efficient infected cell killing capacity for novel immunotherapeutic approaches. Emerg Microbes Infect 2025; 14:2432345. [PMID: 39584380 PMCID: PMC11632933 DOI: 10.1080/22221751.2024.2432345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus. Noteworthy, C10 demonstrates exceptional efficacy in recognizing all assessed VOCs, including recent Omicron variants. While C10 lacks direct neutralization capacity, it efficiently binds to infected lung epithelial cells and induces their lysis via natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Building upon this pan-SARS-CoV-2 mAb, we engineered C10-based, Chimeric Antigen Receptor (CAR)-T cells endowed with efficient killing capacity against SARS-CoV-2-infected lung epithelial cells. Notably, NK and CAR-T-cell mediated killing of lung infected cells effectively reduces viral titers. These findings highlight the potential of non-neutralizing mAbs in providing immune protection against emerging infectious diseases. Our work reveals a pan-SARS-CoV-2 mAb effective in targeting infected cells and demonstrates the proof-of-concept for the potential application of CAR-T cell therapy in combating SARS-CoV-2 infections. Furthermore, it holds promise for the development of innovative antibody-based and cell-based therapeutic strategies against severe COVID-19 by expanding the array of therapeutic options available for high-risk populations.Trial registration: ClinicalTrials.gov identifier: NCT04093596.
Collapse
Affiliation(s)
| | - Mario Vazquez
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Vincent Roux-Portalez
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Elia Tamagnini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Giang Ngo
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Manon Souchard
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Myriam Chentouf
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Nathalie Gros
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Heiko Dinter
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Martine Pugnière
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Pierre Martineau
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Manel Juan
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Hugo Calderon
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Mireia Pelegrin
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
2
|
Mairaville C, Broyon M, Maurel M, Chentouf M, Chiavarina B, Turtoi A, Pirot N, Martineau P. Identification of monoclonal antibodies from naive antibody phage-display libraries for protein detection in formalin-fixed paraffin-embedded tissues. J Immunol Methods 2024; 532:113730. [PMID: 39059744 DOI: 10.1016/j.jim.2024.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Most antibodies used in immunohistochemistry (IHC) have been developed by animal immunization. We wanted to explore naive antibody repertoires displayed on filamentous phages as a source of full-length antibodies for IHC on Formalin-Fixed and Paraffin-Embedded (FFPE) tissues. We used two isogenic mouse fibroblast cell lines that express or not human HER2 to generate positive and negative FFPE pseudo-tissue respectively. Using these pseudo-tissues and previously described approaches based on differential panning, we isolated very efficient antibody clones, but not against HER2. To optimize HER2 targeting and tissue specificity, we first performed 3-4 rounds of in vitro panning using recombinant HER2 extracellular domain (ECD) to enrich the phage library in HER2 binders, followed by one panning round using the two FFPE pseudo-tissues to retain binders for IHC conditions. We then analyzed the bound phages using next-generation sequencing to identify antibody sequences specifically associated with the HER2-positive pseudo-tissue. Using this approach, the top-ranked clone identified by sequencing was specific to the HER2-positive pseudo-tissue and showed a staining pattern similar to that of the antibody used for the clinical diagnosis of HER2-positive breast cancer. However, we could not optimize staining on other tissues, showing that specificity was restricted to the tissue used for selection and screening. Therefore, future optimized protocols must consider tissue diversity early during the selection by panning using a wide collection of tissue types.
Collapse
Affiliation(s)
| | - Morgane Broyon
- BCM, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Margaux Maurel
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France
| | | | | | - Andrei Turtoi
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France
| | - Nelly Pirot
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France; BCM, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
3
|
Mortelecque J, Zejneli O, Bégard S, Simões MC, ElHajjar L, Nguyen M, Cantrelle FX, Hanoulle X, Rain JC, Colin M, Gomes CM, Buée L, Landrieu I, Danis C, Dupré E. A selection and optimization strategy for single-domain antibodies targeting the PHF6 linear peptide within the tau intrinsically disordered protein. J Biol Chem 2024; 300:107163. [PMID: 38484799 PMCID: PMC11007443 DOI: 10.1016/j.jbc.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.
Collapse
Affiliation(s)
- Justine Mortelecque
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Orgeta Zejneli
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France; Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Séverine Bégard
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Margarida C Simões
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Lea ElHajjar
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Marine Nguyen
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - François-Xavier Cantrelle
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Xavier Hanoulle
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | | | - Morvane Colin
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Cláudio M Gomes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
| | - Clément Danis
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France; Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Elian Dupré
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
| |
Collapse
|
4
|
Pham DN, Linova MY, Smith WK, Brown H, Elhanafi D, Fan J, Lavoie J, Woodley JM, Carbonell RG. Novel multimodal cation-exchange membrane for the purification of a single-chain variable fragment from Pichia pastoris supernatant. J Chromatogr A 2024; 1718:464682. [PMID: 38341900 DOI: 10.1016/j.chroma.2024.464682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83 %. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 min, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20 % loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83 % to approximately 92-95 %.
Collapse
Affiliation(s)
- Dan N Pham
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marina Y Linova
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - William K Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Hunter Brown
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Joseph Lavoie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
5
|
Mangeat T, Gracia M, Pichard A, Poty S, Martineau P, Robert B, Deshayes E. Fc-engineered monoclonal antibodies to reduce off-target liver uptake. EJNMMI Res 2023; 13:81. [PMID: 37697076 PMCID: PMC10495296 DOI: 10.1186/s13550-023-01030-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Radiolabeled-antibodies usually display non-specific liver accumulation that may impair image analysis and antibody biodistribution. Here, we investigated whether Fc silencing influenced antibody biodistribution. We compared recombinant 89Zr-labeled antibodies (human IgG1 against different targets) with wild-type Fc and with mutated Fc (LALAPG triple mutation to prevent binding to Fc gamma receptors; FcγR). After antibody injection in mice harboring xenografts of different tumor cell lines or of immortalized human myoblasts, we analyzed antibody biodistribution by PET-CT and conventional biodistribution analysis. RESULTS Accumulation in liver was strongly reduced and tumor-specific targeting was increased for the antibodies with mutated Fc compared with wild-type Fc. CONCLUSION Antibodies with reduced binding to FcγR display lower liver accumulation and better tumor-to-liver ratios. These findings need to be taken into account to improve antibody-based theragnostic approaches.
Collapse
Affiliation(s)
- Tristan Mangeat
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, ICM, 34298, Montpellier, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, ICM, 34298, Montpellier, France
| | - Alexandre Pichard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, ICM, 34298, Montpellier, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, ICM, 34298, Montpellier, France
| | - Pierre Martineau
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, ICM, 34298, Montpellier, France
| | - Bruno Robert
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, ICM, 34298, Montpellier, France.
- Institut de Recherche en Cancérologie de Montpellier (IRCM), 124 Avenue des Apothicaires, 34090, Montpellier, France.
| | - Emmanuel Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, ICM, 34298, Montpellier, France.
- Institut Régional du Cancer de Montpellier (ICM), Service de Médecine Nucléaire, 34298, Montpellier, France.
- Institut de Recherche en Cancérologie de Montpellier (IRCM), 124 Avenue des Apothicaires, 34090, Montpellier, France.
| |
Collapse
|
6
|
Ortega-Ferreira C, Soret P, Robin G, Speca S, Hubert S, Le Gall M, Desvaux E, Jendoubi M, Saint-Paul J, Chadli L, Chomel A, Berger S, Nony E, Neau B, Fould B, Licznar A, Levasseur F, Guerrier T, Elouej S, Courtade-Gaïani S, Provost N, Nguyen TQ, Verdier J, Launay D, De Ceuninck F. Antibody-mediated neutralization of galectin-3 as a strategy for the treatment of systemic sclerosis. Nat Commun 2023; 14:5291. [PMID: 37652913 PMCID: PMC10471779 DOI: 10.1038/s41467-023-41117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune, inflammatory and fibrotic disease with limited treatment options. Developing new therapies is therefore crucial to address patient needs. To this end, we focused on galectin-3 (Gal-3), a lectin known to be associated with several pathological processes seen in SSc. Using RNA sequencing of whole-blood samples in a cross-sectional cohort of 249 patients with SSc, Gal-3 and its interactants defined a strong transcriptomic fingerprint associated with disease severity, pulmonary and cardiac malfunctions, neutrophilia and lymphopenia. We developed new Gal-3 neutralizing monoclonal antibodies (mAb), which were then evaluated in a mouse model of hypochlorous acid (HOCl)-induced SSc. We show that two of these antibodies, D11 and E07, reduced pathological skin thickening, lung and skin collagen deposition, pulmonary macrophage content, and plasma interleukin-5 and -6 levels. Moreover, E07 changed the transcriptional profiles of HOCl-treated mice, resulting in a gene expression pattern that resembled that of control mice. Similarly, pathological pathways engaged in patients with SSc were counteracted by E07 in mice. Collectively, these findings demonstrate the translational potential of Gal-3 blockade as a therapeutic option for SSc.
Collapse
Affiliation(s)
- Céline Ortega-Ferreira
- Servier R&D Center, Biomarker Assay Development, Translational Medicine, Gif-sur-Yvette, France
| | - Perrine Soret
- Servier R&D Center, Biomarker Biostatistics, Gif-sur-Yvette, France
| | | | - Silvia Speca
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | - Sandra Hubert
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | | | - Emiko Desvaux
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | - Manel Jendoubi
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | | | - Loubna Chadli
- Servier R&D Center, Clinical Biomarker Development, Translational Medicine, Gif-sur-Yvette, France
| | - Agnès Chomel
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Sylvie Berger
- Servier R&D Center, Structural Sciences, Gif-sur-Yvette, France
| | - Emmanuel Nony
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Béatrice Neau
- Servier R&D Center, Preclinical Biostatistics, Quantitative Pharmacology, Gif-sur-Yvette, France
| | - Benjamin Fould
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Anne Licznar
- Servier R&D Center, DMPK Department, Translational Medicine, Gif-sur-Yvette, France
| | - Franck Levasseur
- Servier R&D Center, DMPK Department, Translational Medicine, Gif-sur-Yvette, France
| | - Thomas Guerrier
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | - Sahar Elouej
- Servier R&D Center, Computational Medicine, Gif-sur-Yvette, France
| | | | - Nicolas Provost
- Servier R&D Center, Molecular Genomics, Gif-sur-Yvette, France
| | | | - Julien Verdier
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | - David Launay
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
- Lille University Hospital, Department of Internal Medicine and Clinical Immunology, Reference Center for Rare Systemic Autoimmune Diseases, North and North-West France (CeRAINO), Lille, France
| | - Frédéric De Ceuninck
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Chung SS, Bidstrup EJ, Hershewe JM, Warfel KF, Jewett MC, DeLisa MP. Ribosome Stalling of N-Linked Glycoproteins in Cell-Free Extracts. ACS Synth Biol 2022; 11:3892-3899. [PMID: 36399685 PMCID: PMC9764415 DOI: 10.1021/acssynbio.2c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Ribosome display is a powerful in vitro method for selection and directed evolution of proteins expressed from combinatorial libraries. However, the ability to display proteins with complex post-translational modifications such as glycosylation is limited. To address this gap, we developed a set of complementary methods for producing stalled ribosome complexes that displayed asparagine-linked (N-linked) glycoproteins in conformations amenable to downstream functional and glycostructural interrogation. The ability to generate glycosylated ribosome-nascent chain (glycoRNC) complexes was enabled by integrating SecM-mediated translation arrest with methods for cell-free N-glycoprotein synthesis. This integration enabled a first-in-kind method for ribosome stalling of target proteins modified efficiently and site-specifically with different N-glycan structures. Moreover, the observation that encoding mRNAs remained stably attached to ribosomes provides evidence of a genotype-glycophenotype link between an arrested glycoprotein and its RNA message. We anticipate that our method will enable selection and evolution of N-glycoproteins with advantageous biological and biophysical properties.
Collapse
Affiliation(s)
- Sean S. Chung
- Biochemistry,
Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
| | - Erik J. Bidstrup
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jasmine M. Hershewe
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road Technological
Institute E136, Evanston, Illinois 60208-3120, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208-3120, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road Technological
Institute E136, Evanston, Illinois 60208-3120, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208-3120, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road Technological
Institute E136, Evanston, Illinois 60208-3120, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208-3120, United States
| | - Matthew P. DeLisa
- Biochemistry,
Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell
Institute
of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Kim JK, Lim GM, Kim EJ, Kim W, Lee CS, Kim BG, Jeong HJ. Generation of Recombinant Antibodies in HEK293F Cells for the Detection of Staphylococcus aureus. ACS OMEGA 2022; 7:9690-9700. [PMID: 35350310 PMCID: PMC8945071 DOI: 10.1021/acsomega.1c07194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Staphylococcus aureus is a major resistant pathogen in clinical practice. Due to the increasing number of infections, rapid and sensitive detection of antibiotic-resistant S. aureus as well as antibiotic-sensitive S. aureus is important for the prevention and control of infectious diseases. In this study, we produced recombinant antibodies against S. aureus from mammalian human embryonic kidney 293 Freestyle cells with high yield and purity. These recombinant antibodies showed high binding affinity and low detection limit in both indirect and sandwich enzyme-linked immunosorbent assays for the detection of methicillin-resistant S. aureus and methicillin-sensitive S. aureus. These results suggest that the recombinant antibodies produced herein can be used for the accurate detection of S. aureus with a wild range of applications in medical diagnosis, food safety, and drug discovery.
Collapse
Affiliation(s)
- Joo-Kyung Kim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
| | - Gyu-Min Lim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
| | - Eun-Jung Kim
- Bio-MAX/N-Bio, Seoul National
University, Seoul 08826, South
Korea
| | - Wooseong Kim
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South
Korea
| | - Chang-Soo Lee
- Department
of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Byung-Gee Kim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
- Bio-MAX/N-Bio, Seoul National
University, Seoul 08826, South
Korea
| | - Hee-Jin Jeong
- Department
of Biological and Chemical Engineering, Hongik University, Sejong 30016, South Korea
| |
Collapse
|
9
|
Strom R, Celada F. Antibody-mediated enzyme formation: Its legacy at age fifty-four. J Mol Recognit 2021; 34:e2931. [PMID: 34693572 PMCID: PMC9286546 DOI: 10.1002/jmr.2931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/04/2022]
Abstract
Antibody-mediated enzyme formation is a phenomenon first described in 1968 and further studied by molecular Immunologists and Biochemists over the following five decades. The present review is made mainly by analyzing the 27 articles concerned with AMEF that appeared over the course of 47 years, commenting 16 original figures selected to be re-printed in AMEF's Legacy. We, the reviewers, started by revisiting our own "insider's" experience of discovery, and followed by considering all results, our own and of members of other AMEF Labs. We had planned to conclude the review by correlating the various AMEF mutants to a detailed knowledge of the consensus betaGal structure. However, we became aware of several "robust" papers, published between 1989 and 2014, by authors outside of AMEF Labs. We familiarly called this surge: "The Second Wave" and adorned it with a doodle in Hokusai style. We were thrilled and happy to take them on board and properly examined their data. A team of this second wave had imagined unique uses for AMEF, and new doors to modern biotechnology. Another one had used AMEF as Tool and Marker to attain high levels of crystallography, solving puzzles of conformation, and ultimate structure. Together, they doubled our motivation to review AMEF. Serendipity gives us back the pleasure of finding, a treat at any age.
Collapse
Affiliation(s)
| | - Franco Celada
- School of MedicineUniversity of GenoaGenoaItaly
- Grossman School of MedicineNYUNew YorkNew YorkUSA
| |
Collapse
|
10
|
Taw MN, Li M, Kim D, Rocco MA, Waraho-Zhmayev D, DeLisa MP. Engineering a Supersecreting Strain of Escherichia coli by Directed Coevolution of the Multiprotein Tat Translocation Machinery. ACS Synth Biol 2021; 10:2947-2958. [PMID: 34757717 DOI: 10.1021/acssynbio.1c00183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli remains one of the preferred hosts for biotechnological protein production due to its robust growth in culture and ease of genetic manipulation. It is often desirable to export recombinant proteins into the periplasmic space for reasons related to proper disulfide bond formation, prevention of aggregation and proteolytic degradation, and ease of purification. One such system for expressing heterologous secreted proteins is the twin-arginine translocation (Tat) pathway, which has the unique advantage of delivering correctly folded proteins into the periplasm. However, transit times for proteins through the Tat translocase, comprised of the TatABC proteins, are much longer than for passage through the SecYEG pore, the translocase associated with the more widely utilized Sec pathway. To date, a high protein flux through the Tat pathway has yet to be demonstrated. To address this shortcoming, we employed a directed coevolution strategy to isolate mutant Tat translocases for their ability to deliver higher quantities of heterologous proteins into the periplasm. Three supersecreting translocases were selected that each exported a panel of recombinant proteins at levels that were significantly greater than those observed for wild-type TatABC or SecYEG translocases. Interestingly, all three of the evolved Tat translocases exhibited quality control suppression, suggesting that increased translocation flux was gained by relaxation of substrate proofreading. Overall, our discovery of more efficient translocase variants paves the way for the use of the Tat system as a powerful complement to the Sec pathway for secreted production of both commodity and high value-added proteins.
Collapse
Affiliation(s)
- May N. Taw
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Daniel Kim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Mark A. Rocco
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Dujduan Waraho-Zhmayev
- Biological Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Matthew P. DeLisa
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
|
12
|
Abstract
R-spondin (RSPO) proteins amplify Wnt signaling and stimulate regeneration in a variety of tissues. To repair tissue in a tissue-specific manner, tissue-targeted RSPO mimetic molecules are desired. Here, we mutated RSPO (RSPO2 F105R/F109A) to eliminate LGR binding while preserving ZNRF3/RNF43 binding and targeted the mutated RSPO to a liver specific receptor, ASGR1. The resulting bi-specific molecule (αASGR1-RSPO2-RA) enhanced Wnt signaling effectively in vitro, and its activity was limited to ASGR1 expressing cells. Systemic administration of αASGR1-RSPO2-RA in mice specifically upregulated Wnt target genes and stimulated cell proliferation in liver but not intestine (which is more responsive to non-targeted RSPO2) in healthy mice, and improved liver function in diseased mice. These results not only suggest that a tissue-specific RSPO mimetic protein can stimulate regeneration in a cell-specific manner, but also provide a blueprint of how a tissue-specific molecule might be constructed for applications in a broader context.
Collapse
|
13
|
Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 2020; 134:104619. [DOI: 10.1016/j.nbd.2019.104619] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
|
14
|
Lopez‐Barbosa N, Ludwicki MB, DeLisa MP. Proteome editing using engineered proteins that hijack cellular quality control machinery. AIChE J 2019. [DOI: 10.1002/aic.16854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Lopez‐Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
| | - Morgan B. Ludwicki
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University Ithaca New York
- Biochemistry, Molecular and Cell Biology Cornell University Ithaca New York
| |
Collapse
|
15
|
Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ. Design and Production of Bispecific Antibodies. Antibodies (Basel) 2019; 8:antib8030043. [PMID: 31544849 PMCID: PMC6783844 DOI: 10.3390/antib8030043] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune cells. Structural diversity has been fast-growing in the bispecific antibody field, creating a plethora of novel bispecific antibody scaffolds, which provide great functional variety. Two common formats of bispecific antibodies on the market are the single-chain variable fragment (scFv)-based (no Fc fragment) antibody and the full-length IgG-like asymmetric antibody. Unlike the conventional monoclonal antibodies, great production challenges with respect to the quantity, quality, and stability of bispecific antibodies have hampered their wider clinical application and acceptance. In this review, we focus on these two major bispecific types and describe recent advances in the design, production, and quality of these molecules, which will enable this important class of biologics to reach their therapeutic potential.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yiqun Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jaeyoung Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kevin McFarland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Posttranslational Targeting of a Recombinant Protein Promotes Its Efficient Secretion into the Escherichia coli Periplasm. Appl Environ Microbiol 2019; 85:AEM.00671-19. [PMID: 31003980 PMCID: PMC6581171 DOI: 10.1128/aem.00671-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Many recombinant proteins that are produced in Escherichia coli have to be targeted to the periplasm to be functional. N-terminal signal peptides can be used to direct recombinant proteins to the membrane-embedded Sec translocon, a multiprotein complex that translocates proteins across the membrane into the periplasm. We have recently shown that the cotranslational targeting of the single-chain variable antibody fragment BL1 saturates the capacity of the Sec translocon leading to impaired translocation of secretory proteins and protein misfolding/aggregation in the cytoplasm. In turn, protein production yields and biomass formation were low. Here, we study the consequences of targeting BL1 posttranslationally to the Sec translocon. Notably, the posttranslational targeting of BL1 does not saturate the Sec translocon capacity, and both biomass formation and protein production yields are increased. Analyzing the proteome of cells producing the posttranslationally targeted BL1 indicates that the decreased synthesis of endogenous secretory and membrane proteins prevents a saturation of the Sec translocon capacity. Furthermore, in these cells, highly abundant chaperones and proteases can clear misfolded/aggregated proteins from the cytoplasm, thereby improving the fitness of these cells. Thus, the posttranslational targeting of BL1 enables its efficient production in the periplasm due to a favorable adaptation of the E. coli proteome. We envisage that our observations can be used to engineer E. coli for the improved production of recombinant secretory proteins.IMPORTANCE The bacterium Escherichia coli is widely used to produce recombinant proteins. To fold properly, many recombinant proteins have to be targeted to the E. coli periplasm, but so far the impact of the targeting pathway of a recombinant protein to the periplasm has not been extensively investigated. Here, we show that the targeting pathway of a recombinant antibody fragment has a tremendous impact on cell physiology, ultimately affecting protein production yields in the periplasm and biomass formation. This indicates that studying the targeting and secretion of proteins into the periplasm could be used to design strategies to improve recombinant protein production yields.
Collapse
|
17
|
Baltz MR, Stephens EA, DeLisa MP. Design and Functional Characterization of Synthetic E3 Ubiquitin Ligases for Targeted Protein Depletion. ACTA ACUST UNITED AC 2019; 10:72-90. [PMID: 30040244 DOI: 10.1002/cpch.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of techniques now exist for decreasing the expression of cellular proteins without the need for genomic modification. One such technique involves engineered protein chimeras that combine the ubiquitination activity of E3 ubiquitin ligases with the binding affinity and substrate specificity of designer binding proteins (DBPs). These chimeras, called "ubiquibodies," are capable of selectively and controllably steering virtually any protein to the ubiquitin proteasome pathway (UPP) for degradation, making ubiquibodies a powerful addition to the protein knockout toolbox. A distinguishing feature of ubiquibodies is their modularity-simply swapping DBPs can generate a new ubiquibody with specificity for a different substrate protein. Moreover, by employing DBPs that recognize particular protein states (e.g., active versus inactive conformation, mutant versus wild-type, post-translational modification), it becomes possible to deplete certain protein subpopulations while sparing others. This protocol outlines the steps necessary to design and functionally evaluate ubiquibodies for customizable silencing of cellular proteins. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Morgan R Baltz
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Erin A Stephens
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York.,Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York
| |
Collapse
|
18
|
Kasli IM, Thomas ORT, Overton TW. Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions. AMB Express 2019; 9:5. [PMID: 30617435 PMCID: PMC6323050 DOI: 10.1186/s13568-018-0727-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022] Open
Abstract
Production of recombinant proteins such as antibody fragments in the periplasm of the bacterium Escherichia coli has a number of advantages, including the ability to form disulphide bonds, aiding correct folding, and the relative ease of release and subsequent capture and purification. In this study, we employed two N-terminal signal peptides, PelB and DsbA, to direct a recombinant scFv antibody (single-chain variable fragment), 13R4, to the periplasm via the Sec and SRP pathways respectively. A design of experiments (DoE) approach was used to optimise process conditions (temperature, inducer concentration and induction point) influencing bacterial physiology and the productivity, solubility and location of scFv. The DoE study indicated that titre and subcellular location of the scFv depend on the temperature and inducer concentration employed, and also revealed the superiority of the PelB signal peptide over the DsbA signal peptide in terms of scFv solubility and cell physiology. Baffled shake flasks were subsequently used to optimise scFv production at higher biomass concentrations. Conditions that minimised stress (low temperature) were shown to be beneficial to production of periplasmic scFv. This study highlights the importance of signal peptide selection and process optimisation for the production of scFv antibodies, and demonstrates the utility of DoE for selection of optimal process parameters.
Collapse
|
19
|
Horga LG, Halliwell S, Castiñeiras TS, Wyre C, Matos CFRO, Yovcheva DS, Kent R, Morra R, Williams SG, Smith DC, Dixon N. Tuning recombinant protein expression to match secretion capacity. Microb Cell Fact 2018; 17:199. [PMID: 30577801 PMCID: PMC6303999 DOI: 10.1186/s12934-018-1047-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/14/2018] [Indexed: 03/08/2023] Open
Abstract
Background The secretion of recombinant disulfide-bond containing proteins into the periplasm of Gram-negative bacterial hosts, such as E. coli, has many advantages that can facilitate product isolation, quality and activity. However, the secretion machinery of E. coli has a limited capacity and can become overloaded, leading to cytoplasmic retention of product; which can negatively impact cell viability and biomass accumulation. Fine control over recombinant gene expression offers the potential to avoid this overload by matching expression levels to the host secretion capacity. Results Here we report the application of the RiboTite gene expression control system to achieve this by finely controlling cellular expression levels. The level of control afforded by this system allows cell viability to be maintained, permitting production of high-quality, active product with enhanced volumetric titres. Conclusions The methods and systems reported expand the tools available for the production of disulfide-bond containing proteins, including antibody fragments, in bacterial hosts. Electronic supplementary material The online version of this article (10.1186/s12934-018-1047-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luminita Gabriela Horga
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Samantha Halliwell
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | | | | | | | | | - Ross Kent
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Rosa Morra
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | | | | | - Neil Dixon
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
20
|
Optimizing Recombinant Protein Production in the Escherichia coli Periplasm Alleviates Stress. Appl Environ Microbiol 2018; 84:AEM.00270-18. [PMID: 29654183 DOI: 10.1128/aem.00270-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/08/2018] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, many recombinant proteins are produced in the periplasm. To direct these proteins to this compartment, they are equipped with an N-terminal signal sequence so that they can traverse the cytoplasmic membrane via the protein-conducting Sec translocon. Recently, using the single-chain variable antibody fragment BL1, we have shown that harmonizing the target gene expression intensity with the Sec translocon capacity can be used to improve the production yields of a recombinant protein in the periplasm. Here, we have studied the consequences of improving the production of BL1 in the periplasm by using a proteomics approach. When the target gene expression intensity is not harmonized with the Sec translocon capacity, the impaired translocation of secretory proteins, protein misfolding/aggregation in the cytoplasm, and an inefficient energy metabolism result in poor growth and low protein production yields. The harmonization of the target gene expression intensity with the Sec translocon capacity results in normal growth, enhanced protein production yields, and, surprisingly, a composition of the proteome that is-besides the produced target-the same as that of cells with an empty expression vector. Thus, the single-chain variable antibody fragment BL1 can be efficiently produced in the periplasm without causing any notable detrimental effects to the production host. Finally, we show that under the optimized conditions, a small fraction of the target protein is released into the extracellular milieu via outer membrane vesicles. We envisage that our observations can be used to design strategies to further improve the production of secretory recombinant proteins in E. coliIMPORTANCE The bacterium Escherichia coli is widely used to produce recombinant proteins. Usually, trial-and-error-based screening approaches are used to identify conditions that lead to high recombinant protein production yields. Here, for the production of an antibody fragment in the periplasm of E. coli, we show that an optimization of its production is accompanied by the alleviation of stress. This indicates that the monitoring of stress responses could be used to facilitate enhanced recombinant protein production yields.
Collapse
|
21
|
Selas Castiñeiras T, Williams SG, Hitchcock A, Cole JA, Smith DC, Overton TW. Development of a generic β-lactamase screening system for improved signal peptides for periplasmic targeting of recombinant proteins in Escherichia coli. Sci Rep 2018; 8:6986. [PMID: 29725125 PMCID: PMC5934370 DOI: 10.1038/s41598-018-25192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022] Open
Abstract
Targeting of recombinant proteins to the Escherichia coli periplasm is a desirable industrial processing tool to allow formation of disulphide bonds, aid folding and simplify recovery. Proteins are targeted across the inner membrane to the periplasm by an N-terminal signal peptide. The sequence of the signal peptide determines its functionality, but there is no method to predict signal peptide function for specific recombinant proteins, so multiple signal peptides must be screened for their ability to translocate each recombinant protein, limiting throughput. We present a screening system for optimising signal peptides for translocation of a single chain variable (scFv) antibody fragment employing TEM1 β-lactamase (Bla) as a C-terminal reporter of periplasmic localisation. The Pectobacterium carotovorum PelB signal peptide was selected as the starting point for a mutagenic screen. β-lactamase was fused to the C-terminal of scFv and β-lactamase activity was correlated against scFv translocation. Signal peptide libraries were generated and screened for β-lactamase activity, which correlated well to scFv::Bla production, although only some high activity clones had improved periplasmic translocation of scFv::Bla. Selected signal peptides were investigated in fed-batch fermentations for production and translocation of scFv::Bla and scFv without the Bla fusion. Improved signal peptides increased periplasmic scFv activity by ~40%.
Collapse
Affiliation(s)
- Tania Selas Castiñeiras
- Cobra Biologics, Stephenson Building, The Science Park, Keele, ST5 5SP, UK.,School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Institute of Microbiology & Infection, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Steven G Williams
- Cobra Biologics, Stephenson Building, The Science Park, Keele, ST5 5SP, UK
| | - Antony Hitchcock
- Cobra Biologics, Stephenson Building, The Science Park, Keele, ST5 5SP, UK
| | - Jeffrey A Cole
- Institute of Microbiology & Infection, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Daniel C Smith
- Cobra Biologics, Stephenson Building, The Science Park, Keele, ST5 5SP, UK
| | - Tim W Overton
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Institute of Microbiology & Infection, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
22
|
Caucheteur D, Robin G, Parez V, Martineau P. Construction of a Synthetic Antibody Gene Library for the Selection of Intrabodies and Antibodies. Methods Mol Biol 2018; 1701:239-253. [PMID: 29116508 DOI: 10.1007/978-1-4939-7447-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Libraries of antibody fragments displayed on filamentous phages have proved their value to generate human antibodies against virtually any target. We describe here a simple protocol to make large and diverse libraries based on a single or a limited number of frameworks. The approach is flexible enough to be used with any antibody format, either single-chain (scFv, VHH) or multi-chain (Fv, Fab, (Fab')2), and to target in a single step the six complementarity-determining regions-or any other part-of the antibody molecule. Using this protocol, libraries larger than 1010 can be easily constructed in a single week.
Collapse
Affiliation(s)
- Déborah Caucheteur
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34090, France
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Gautier Robin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34090, France
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Vincent Parez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34090, France
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.
- INSERM, U1194, Montpellier, F-34298, France.
- Université de Montpellier, Montpellier, F-34090, France.
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
23
|
Abstract
Libraries of antibody fragments displayed on filamentous phages are now a widely used approach to isolate antibodies against virtually any target. We describe a simple protocol to make large and diverse libraries based on a single or a limited number of frameworks. The approach is flexible enough to be used with any antibody format, either single-chain (scFv, VHH) or multi-chain (Fv, Fab, (Fab')2), and to target in a single step the six complementarity-determining regions-or any other part-of the antibody molecule. Using this protocol, libraries larger than 1010 can be constructed in a single week.
Collapse
|
24
|
Gąciarz A, Ruddock LW. Complementarity determining regions and frameworks contribute to the disulfide bond independent folding of intrinsically stable scFv. PLoS One 2017; 12:e0189964. [PMID: 29253024 PMCID: PMC5734687 DOI: 10.1371/journal.pone.0189964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/05/2017] [Indexed: 11/19/2022] Open
Abstract
CyDisCo is a system facilitating disulfide bond formation in recombinant proteins in the cytoplasm of Escherichia coli. Previously we screened for soluble expression of single chain antibody fragments (scFv) in the cytoplasm of E. coli in the presence and absence of CyDisCo, with >90% being solubly expressed. Two scFv, those derived from natalizumab and trastuzumab, were solubly produced in high amounts even in the absence of folding catalysts i.e. disulfide bond formation is not critical for their folding. Here we investigate the contribution of the framework and the complementarity determining regions (CDRs) of scFv to the disulfide-independence of folding. We swapped CDRs between four scFv that have different properties, including two scFv that can efficiently fold independently from disulfide bonds and two more disulfide-dependent scFv. To confirm disulfide-independence we generated cysteine to alanine mutants of the disulfide-independent scFv. All of the scFv were tested for soluble expression in the cytoplasm of E. coli in the presence and absence of the oxidative folding catalysts Erv1p and PDI. Eight of the hybrid scFv were solubly produced in the presence of CyDisCo, while seven were solubly produced in the absence of CyDisCo, though the yields were often much lower when CyDisCo was absent. Soluble expression was also observed for scFv natalizumab and trastuzumab containing no cysteines. We compared yields, thermal stability and secondary structure of solubly produced scFv and undertook binding studies by western blotting, dot blotting or surface plasmon resonance of those produced in good yields. Our results indicate that both the CDRs and the framework contribute to the disulfide-dependence of soluble production of scFv, with the CDRs having the largest effect. In addition, there was no correlation between thermal stability and disulfide-dependence of folding and only a weak correlation between the yield of protein and the thermal stability of the protein.
Collapse
Affiliation(s)
- Anna Gąciarz
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Lloyd W. Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
25
|
Lloyd SB, Niven KP, Kiefel BR, Montefiori DC, Reynaldi A, Davenport MP, Kent SJ, Winnall WR. Exploration of broadly neutralizing antibody fragments produced in bacteria for the control of HIV. Hum Vaccin Immunother 2017; 13:2726-2737. [PMID: 28949787 DOI: 10.1080/21645515.2017.1368935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
While broadly neutralizing antibodies (bnAbs) are a promising preventative and therapeutic tool for HIV infection, production is difficult and expensive. Production of antibody-like fragments in bacterial cytoplasm provides a cheaper alternative. This work explored the transplantation of the complementarity determining regions of the anti-HIV bnAbs PGT121 and 10E8 onto a single-chain variable fragment (scFv) scaffold, previously discovered through a novel screening platform. The scaffolded 10E8 scFv, but not the scaffolded PGT121 scFv, was soluble in bacterial cytoplasm, enabling efficient production in bacteria. Three additional multimeric constructs employing the scaffolded 10E8 scFv were also generated and soluble versions produced in bacteria. However, the constructs were found to have substantially lost anti-HIV binding function and had completely abrogated neutralizing activity. Overall, while this study provides a proof-of-concept for anti-HIV bnAb construct production in bacterial cytoplasm, future refinement of these technologies will be required to realize the goal of producing inexpensive and effective bnAb-like tools for the control of HIV.
Collapse
Affiliation(s)
- Sarah B Lloyd
- a Department of Microbiology and Immunology , The University of Melbourne, Peter Doherty Institute for Infection and Immunity , Victoria , Australia
| | - Keith P Niven
- b Affinity BIO Pty Ltd. , Melbourne , VIC , Australia
| | - Ben R Kiefel
- b Affinity BIO Pty Ltd. , Melbourne , VIC , Australia
| | - David C Montefiori
- c Department of Medicine , Duke University Medical Center , Durham , North Carolina , USA
| | - Arnold Reynaldi
- d Infection Analytics Program, Kirby Institute for Infection and Immunity , University of New South Wales Australia , Sydney , Australia
| | - Miles P Davenport
- d Infection Analytics Program, Kirby Institute for Infection and Immunity , University of New South Wales Australia , Sydney , Australia
| | - Stephen J Kent
- a Department of Microbiology and Immunology , The University of Melbourne, Peter Doherty Institute for Infection and Immunity , Victoria , Australia.,e Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School , Monash University , Melbourne , Australia.,f ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Parkville , Australia
| | - Wendy R Winnall
- a Department of Microbiology and Immunology , The University of Melbourne, Peter Doherty Institute for Infection and Immunity , Victoria , Australia
| |
Collapse
|
26
|
Mizrachi D, Robinson MP, Ren G, Ke N, Berkmen M, DeLisa MP. A water-soluble DsbB variant that catalyzes disulfide-bond formation in vivo. Nat Chem Biol 2017; 13:1022-1028. [PMID: 28628094 PMCID: PMC5562517 DOI: 10.1038/nchembio.2409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/30/2017] [Indexed: 12/17/2022]
Abstract
Escherichia coli DsbB is a transmembrane enzyme that catalyzes the reoxidation of the periplasmic oxidase DsbA by ubiquinone. Here, we sought to convert membrane-bound DsbB into a water-soluble biocatalyst by leveraging a previously described method for in vivo solubilization of integral membrane proteins (IMPs). When solubilized DsbB variants were coexpressed with an export-defective copy of DsbA in the cytoplasm of wild-type E. coli cells, artificial oxidation pathways were created that efficiently catalyzed de novo disulfide-bond formation in a range of substrate proteins, in a manner dependent on both DsbA and quinone. Hence, DsbB solubilization was achieved with preservation of both catalytic activity and substrate specificity. Moreover, given the generality of the solubilization technique, the results presented here should pave the way to unlocking the biocatalytic potential of other membrane-bound enzymes whose utility has been limited by poor stability of IMPs outside of their native lipid-bilayer context.
Collapse
Affiliation(s)
- Dario Mizrachi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Michael-Paul Robinson
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Guoping Ren
- New England Biolabs, 240 County Rd, Ipswich, MA, 01938, USA
| | - Na Ke
- New England Biolabs, 240 County Rd, Ipswich, MA, 01938, USA
| | - Mehmet Berkmen
- New England Biolabs, 240 County Rd, Ipswich, MA, 01938, USA
| | - Matthew P. DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
27
|
Lee SY. Applications of Microbial Biopolymers in Display Technology. CONSEQUENCES OF MICROBIAL INTERACTIONS WITH HYDROCARBONS, OILS, AND LIPIDS: PRODUCTION OF FUELS AND CHEMICALS 2017. [PMCID: PMC7123360 DOI: 10.1007/978-3-319-50436-0_377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Microorganisms produce a variety of different polymers such as polyamides, polysaccharides, and polyesters. The polyesters, the polyhydroxyalkanoates (PHAs), are the most extensively studied polymers in regard to their use in display technology. The material properties of bacterial PHAs in combination with their biocompatibility and biodegradability make them attractive substrates for use in display technology applications. By translationally fusing bioactive molecules to a gene encoding a PHA-binding domain, the appropriate functionalization for a given application can be achieved such that the need for chemical immobilization is circumvented. By separately extracting and processing the biopolymer, using it to coat a surface, and then treating this surface with the fusion proteins, surface functionalization for immunodiagnostic microarray or tissue engineering applications can be accomplished. Conversely, by expressing the fusion protein directly in the PHA-producing organisms, one-step production of functionalized beads can be achieved. Such beads have been demonstrated in diverse applications, including fluorescence-activated cell sorting, enzyme-linked immunosorbent assays, microarrays, diagnostic skin test for tuberculosis, vaccines, protein purification, and affinity bioseparation.
Collapse
Affiliation(s)
- Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea (Republic of)
| |
Collapse
|
28
|
Frain KM, Jones AS, Schoner R, Walker KL, Robinson C. The Bacillus subtilis TatAdCd system exhibits an extreme level of substrate selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:202-208. [PMID: 27984091 DOI: 10.1016/j.bbamcr.2016.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 11/27/2022]
Abstract
The Tat system preferentially transports correctly folded proteins across the bacterial membrane although little is known of the proofreading mechanism. Most research has focused on TatABC systems from Gram-negative bacteria, especially Escherichia coli, and much less is known of the TatAC-type systems from Gram-positive organisms. We have previously shown that the Bacillus subtilis TatAdCd system is functional in an E. coli tat null background and able to transport TorA-GFP and native TorA (TMAO reductase); here, we examined its ability to transport other proteins bearing a TorA signal sequence. We show that whereas E. coli TatABC transports a wide range of biotherapeutics including human growth hormone, interferon α2b, a VH domain protein and 2 different scFvs, TatAdCd transports the scFvs but completely rejects the other proteins. The system also rejects two native E. coli substrates, NrfC and FhuD. Moreover, we have shown that TatABC will transport a wide range of folded scFv variants with the surface altered to incorporate multiple salt bridges, charged residues (5 glutamate, lysine or arginine), or hydrophobic residues (up to 6 leucines). In contrast, TatAdCd completely rejects many of these variants including those with 5 or 6 added Leu residues. The combined data show that the TatABC and TatAdCd systems have very different substrate selectivities, with the TatAdCd system displaying an extreme level of selectivity when compared to the E. coli system. The data also provide a preliminary suggestion that TatAdCd may not tolerate substrates that contain surface domains with a level of hydrophobicity above a certain threshold.
Collapse
Affiliation(s)
- Kelly M Frain
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Alexander S Jones
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Ronald Schoner
- Biopharmaceutical Development, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Kelly L Walker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|
29
|
Moghaddam-Taaheri P, Ikonomova SP, Gong Z, Wisniewski JQ, Karlsson AJ. Bacterial Inner-membrane Display for Screening a Library of Antibody Fragments. J Vis Exp 2016. [PMID: 27805609 PMCID: PMC5092199 DOI: 10.3791/54583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Antibodies engineered for intracellular function must not only have affinity for their target antigen, but must also be soluble and correctly folded in the cytoplasm. Commonly used methods for the display and screening of recombinant antibody libraries do not incorporate intracellular protein folding quality control, and, thus, the antigen-binding capability and cytoplasmic folding and solubility of antibodies engineered using these methods often must be engineered separately. Here, we describe a protocol to screen a recombinant library of single-chain variable fragment (scFv) antibodies for antigen-binding and proper cytoplasmic folding simultaneously. The method harnesses the intrinsic intracellular folding quality control mechanism of the Escherichia coli twin-arginine translocation (Tat) pathway to display an scFv library on the E. coli inner membrane. The Tat pathway ensures that only soluble, well-folded proteins are transported out of the cytoplasm and displayed on the inner membrane, thereby eliminating poorly folded scFvs prior to interrogation for antigen-binding. Following removal of the outer membrane, the scFvs displayed on the inner membrane are panned against a target antigen immobilized on magnetic beads to isolate scFvs that bind to the target antigen. An enzyme-linked immunosorbent assay (ELISA)-based secondary screen is used to identify the most promising scFvs for additional characterization. Antigen-binding and cytoplasmic solubility can be improved with subsequent rounds of mutagenesis and screening to engineer antibodies with high affinity and high cytoplasmic solubility for intracellular applications.
Collapse
Affiliation(s)
| | | | - Zifan Gong
- Department of Chemical and Biomolecular Engineering, University of Maryland
| | | | - Amy J Karlsson
- Fischell Department of Bioengineering, University of Maryland; Department of Chemical and Biomolecular Engineering, University of Maryland;
| |
Collapse
|
30
|
Ikonomova SP, He Z, Karlsson AJ. A simple and robust approach to immobilization of antibody fragments. J Immunol Methods 2016; 435:7-16. [PMID: 27142477 DOI: 10.1016/j.jim.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 04/06/2016] [Accepted: 04/29/2016] [Indexed: 11/18/2022]
Abstract
Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization.
Collapse
Affiliation(s)
- Svetlana P Ikonomova
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA
| | - Ziming He
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA
| | - Amy J Karlsson
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA.
| |
Collapse
|
31
|
Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal. PLoS One 2016; 11:e0152148. [PMID: 27023768 PMCID: PMC4811560 DOI: 10.1371/journal.pone.0152148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA.
Collapse
|
32
|
Dagher SF, Bruno-Bárcena JM. A novel N-terminal region of the membrane β-hexosyltransferase: its role in secretion of soluble protein by Pichia pastoris. MICROBIOLOGY (READING, ENGLAND) 2016; 162:23-34. [PMID: 26552922 PMCID: PMC5974927 DOI: 10.1099/mic.0.000211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022]
Abstract
The β-hexosyltransferase (BHT) from Sporobolomyces singularis is a membrane-bound enzyme that catalyses transgalactosylation reactions to synthesize galacto-oligosaccharides (GOSs). To increase the secretion of the active soluble version of this protein, we examined the uncharacterized novel N-terminal region (amino acids 1-110), which included two predicted endogenous structural domains. The first domain (amino acids 1-22) may act as a classical leader while a non-classical signal was located within the remaining region (amino acids 23-110). A functional analysis of these domains was performed by evaluating the amounts of the rBHT forms secreted by recombinant P. pastoris strains carrying combinations of the predicted structural domains and the α mating factor (MFα) from Saccharomyces cerevisiae as positive control. Upon replacement of the leader domain (amino acids 1-22) by MFα (MFα-rBht(23-594)), protein secretion increased and activity of both soluble and membrane-bound enzymes was improved 53- and 14-fold, respectively. Leader interference was demonstrated when MFα preceded the putative classical rBHT(1-22) leader (amino acids 1-22), explaining the limited secretion of soluble protein by P. pastoris (GS115 : : MFα-rBht(1-594)). To validate the role of the N-terminal domains in promoting protein secretion, we tested the domains using a non-secreted protein, the anti-β-galactosidase single-chain variable antibody fragment scFv13R4. The recombinants carrying chimeras of the N-terminal 1-110 regions of rBHT preceding scFv13R4 correlated with the secretion strength of soluble protein observed with the rBHT recombinants. Finally, soluble bioactive HIS-tagged and non-tagged rBHT (purified to homogeneity) obtained from the most efficient recombinants (GS115 : : MFα-rBht(23-594)-HIS and GS115 : : MFα-rBht(23-594)) showed comparable activity rates of GOS generation.
Collapse
Affiliation(s)
- Suzanne F. Dagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | - José M. Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7615, USA
| |
Collapse
|
33
|
Lee J, Park H, Kim M, Seo Y, Lee Y, Byun SJ, Lee S, Kwon MH. Functional stability of 3D8 scFv, a nucleic acid-hydrolyzing single chain antibody, under different biochemical and physical conditions. Int J Pharm 2015; 496:561-70. [PMID: 26536531 DOI: 10.1016/j.ijpharm.2015.10.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/07/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
3D8 single-chain Fv (scFv) is a catalytic nucleic acid antibody with anti-viral activity against a broad spectrum of viruses. Here we investigated the functional stability of 3D8 scFv to provide a basis for engineering a 3D8 scFv derivative and for developing stable formulations with improved stability and potential use as an anti-viral agent. The stability of 3D8 scFv was assessed by measuring its DNA-hydrolyzing activity under different biochemical and physical conditions using a fluorescence resonance energy transfer (FRET)-based method. In addition, the anti-influenza (H9N2) effect of 3D8 scFv was evaluated in A549 cells. 3D8 scFv was stable at 50°C for 6h at pH 7.2, for 3 days at pH 4-10 at 37°C and 30 days at pH 4-8 at 37°C. The stability was not affected by a reducing condition, freeze-thawing for up to 30 cycles, or lyophilization. Evaluation of the anti-virus effect showed that cells treated with 32-128 units of 3D8 scFv showed a 50% decrease in influenza replication compared to untreated cells. Based on its enzymatic stability in various biochemical and physical environments, 3D8 scFv holds good potential for development as an anti-viral therapeutic.
Collapse
Affiliation(s)
- Joungmin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea
| | - Hyunjoon Park
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea
| | - Minjae Kim
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea
| | - Youngsil Seo
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea
| | - Yeonjin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea; Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon 443-749, Republic of Korea.
| |
Collapse
|
34
|
Challenges to production of antibodies in bacteria and yeast. J Biosci Bioeng 2015; 120:483-90. [DOI: 10.1016/j.jbiosc.2015.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 12/21/2022]
|
35
|
Morra R, Shankar J, Robinson CJ, Halliwell S, Butler L, Upton M, Hay S, Micklefield J, Dixon N. Dual transcriptional-translational cascade permits cellular level tuneable expression control. Nucleic Acids Res 2015; 44:e21. [PMID: 26405200 PMCID: PMC4756846 DOI: 10.1093/nar/gkv912] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/28/2015] [Indexed: 12/03/2022] Open
Abstract
The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems.
Collapse
Affiliation(s)
- Rosa Morra
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jayendra Shankar
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Christopher J Robinson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Samantha Halliwell
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Lisa Butler
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Mathew Upton
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL4 8AA, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK SYNBIOCHEM, University of Manchester, Manchester, M13 9PL, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK SYNBIOCHEM, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
36
|
Ozaki CY, Silveira CRF, Andrade FB, Nepomuceno R, Silva A, Munhoz DD, Yamamoto BB, Luz D, Abreu PAE, Horton DSPQ, Elias WP, Ramos OHP, Piazza RMF. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli. PLoS One 2015; 10:e0131484. [PMID: 26154103 PMCID: PMC4496030 DOI: 10.1371/journal.pone.0131484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC) strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv) that were produced in E. coli against enterotoxins of ETEC strains. METHODS AND FINDINGS Recombinant scFv were developed against ETEC heat-labile toxin (LT) and heat-stable toxin (ST), from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains. CONCLUSION The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Anderson Silva
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brasil
| | | | - Bruno B. Yamamoto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brasil
| | | | | | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brasil
| | | | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|
37
|
Beasley MD, Niven KP, Winnall WR, Kiefel BR. Bacterial cytoplasmic display platform Retained Display (ReD) identifies stable human germline antibody frameworks. Biotechnol J 2015; 10:783-9. [PMID: 25712138 DOI: 10.1002/biot.201400560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 11/08/2022]
Abstract
Conventional antibody surface display requires fusion protein export through at least one cellular membrane, constraining the yield and occasioning difficulties in achieving scaled production. To circumvent this limitation, we developed a novel cytoplasmic display platform, Retained Display (ReD), and used it to screen for human scFv frameworks that are highly soluble and stable in the bacterial cytoplasm. ReD, based on the retention of high-molecular weight complexes within detergent-permeabilized Escherichia coli, enabled presentation of exogenous targets to antibodies that were expressed and folded in the cytoplasm. All human λ and κ light chain family genes were expressed as IGHV3-23 fusions. Members of the λ subfamilies 1, 3 and 6 were soluble cytoplasmic partners of IGHV3-23. Contrary to previous in vivo screens for soluble reduced scFvs, the pairings identified by ReD were identical to the human germline sequences for the framework, CDR1 and CDR2 regions. Using the most soluble scFv scaffold identified, we demonstrated tolerance to CDR3 diversification and isolated a binding scFv to an exogenous protein target. This screening system has the potential to rapidly produce antibodies to target threats such as emerging infectious diseases and bioterror agents.
Collapse
|
38
|
Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:756-63. [DOI: 10.1016/j.bbamcr.2014.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 11/19/2022]
|
39
|
Boock JT, King BC, Taw MN, Conrado RJ, Siu KH, Stark JC, Walker LP, Gibson DM, DeLisa MP. Repurposing a bacterial quality control mechanism to enhance enzyme production in living cells. J Mol Biol 2015; 427:1451-1463. [PMID: 25591491 DOI: 10.1016/j.jmb.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
Heterologous expression of many proteins in bacteria, yeasts, and plants is often limited by low titers of functional protein. To address this problem, we have created a two-tiered directed evolution strategy in Escherichia coli that enables optimization of protein production while maintaining high biological activity. The first tier involves a genetic selection for intracellular protein stability that is based on the folding quality control mechanism inherent to the twin-arginine translocation pathway, while the second is a semi-high-throughput screen for protein function. To demonstrate the utility of this strategy, we isolated variants of the endoglucanase Cel5A, from the plant-pathogenic fungus Fusarium graminearum, whose production was increased by as much as 30-fold over the parental enzyme. This gain in production was attributed to just two amino acid substitutions, and it was isolated after two iterations through the two-tiered approach. There was no significant tradeoff in activity on soluble or insoluble cellulose substrates. Importantly, by combining the folding filter afforded by the twin-arginine translocation quality control mechanism with a function-based screen, we show enrichment for variants with increased protein abundance in a manner that does not compromise catalytic activity, providing a highly soluble parent for engineering of improved or new function.
Collapse
Affiliation(s)
- Jason T Boock
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Brian C King
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - May N Taw
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Robert J Conrado
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ka-Hei Siu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jessica C Stark
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Larry P Walker
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Donna M Gibson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Robin G, Sato Y, Desplancq D, Rochel N, Weiss E, Martineau P. Restricted Diversity of Antigen Binding Residues of Antibodies Revealed by Computational Alanine Scanning of 227 Antibody–Antigen Complexes. J Mol Biol 2014; 426:3729-3743. [DOI: 10.1016/j.jmb.2014.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/31/2014] [Accepted: 08/09/2014] [Indexed: 12/28/2022]
|
41
|
Mazuc E, Guglielmi L, Bec N, Parez V, Hahn CS, Mollevi C, Parrinello H, Desvignes JP, Larroque C, Jupp R, Dariavach P, Martineau P. In-cell intrabody selection from a diverse human library identifies C12orf4 protein as a new player in rodent mast cell degranulation. PLoS One 2014; 9:e104998. [PMID: 25122211 PMCID: PMC4133367 DOI: 10.1371/journal.pone.0104998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/14/2014] [Indexed: 01/04/2023] Open
Abstract
The high specificity of antibodies for their antigen allows a fine discrimination of target conformations and post-translational modifications, making antibodies the first choice tool to interrogate the proteome. We describe here an approach based on a large-scale intracellular expression and selection of antibody fragments in eukaryotic cells, so-called intrabodies, and the subsequent identification of their natural target within living cell. Starting from a phenotypic trait, this integrated system allows the identification of new therapeutic targets together with their companion inhibitory intrabody. We applied this system in a model of allergy and inflammation. We first cloned a large and highly diverse intrabody library both in a plasmid and a retroviral eukaryotic expression vector. After transfection in the RBL-2H3 rat basophilic leukemia cell line, we performed seven rounds of selection to isolate cells displaying a defect in FcεRI-induced degranulation. We used high throughput sequencing to identify intrabody sequences enriched during the course of selection. Only one intrabody was common to both plasmid and retroviral selections, and was used to capture and identify its target from cell extracts. Mass spectrometry analysis identified protein RGD1311164 (C12orf4), with no previously described function. Our data demonstrate that RGD1311164 is a cytoplasmic protein implicated in the early signaling events following FcεRI-induced cell activation. This work illustrates the strength of the intrabody-based in-cell selection, which allowed the identification of a new player in mast cell activation together with its specific inhibitor intrabody.
Collapse
Affiliation(s)
- Elsa Mazuc
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Laurence Guglielmi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Nicole Bec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Vincent Parez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Chang S. Hahn
- Sanofi-Aventis, Bridgewater, New Jersey, United States of America
| | - Caroline Mollevi
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Christian Larroque
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Ray Jupp
- Sanofi-Aventis, Bridgewater, New Jersey, United States of America
| | - Piona Dariavach
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
- Université Montpellier2, Montpellier, France
- * E-mail: (PD); (PM)
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
- * E-mail: (PD); (PM)
| |
Collapse
|
42
|
Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1960-1969. [PMID: 25119345 DOI: 10.1016/j.bbapap.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
Abstract
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
43
|
Conformational targeting of intracellular Aβ oligomers demonstrates their pathological oligomerization inside the endoplasmic reticulum. Nat Commun 2014; 5:3867. [PMID: 24861166 PMCID: PMC4050278 DOI: 10.1038/ncomms4867] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/10/2014] [Indexed: 01/18/2023] Open
Abstract
Aβ oligomers (AβOs) are crucially involved in Alzheimer’s Disease (AD). However, the lack of selective approaches for targeting these polymorphic Aβ assemblies represents a major hurdle in understanding their biosynthesis, traffic and actions in living cells. Here, we established a subcellularly localized conformational-selective interference (CSI) approach, based on the expression of a recombinant antibody fragment against AβOs in the endoplasmic reticulum (ER). By CSI, we can control extra- and intracellular pools of AβOs produced in an AD-relevant cell model, without interfering with the maturation and processing of the Aβ precursor protein. The anti-AβOs intrabody selectively intercepts critical AβO conformers in the ER, modulating their assembly and controlling their actions in pathways of cellular homeostasis and synaptic signalling. Our results demonstrate that intracellular Aβ undergoes pathological oligomerization through critical conformations formed inside the ER. This establishes intracellular AβOs as key targets for AD treatment and presents CSI as a potential targeting strategy. Intracellular Aß oligomers have been linked to Alzheimer’s disease but details about their biosynthesis and function have been hard to obtain due to the lack of selective approaches for targeting them. Here, Meli et al. develop a strategy using recombinant antibodies to target Aß oligomers in the endoplasmic reticulum of cells, and perform mechanistic studies in cellular models of the disease.
Collapse
|
44
|
Vinothkumar KR, McMullan G, Henderson R. Molecular mechanism of antibody-mediated activation of β-galactosidase. Structure 2014; 22:621-7. [PMID: 24613486 PMCID: PMC3988998 DOI: 10.1016/j.str.2014.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 11/18/2022]
Abstract
Binding of a single-chain Fv antibody to Escherichia coli β-galactosidase (β-gal) is known to stabilize the enzyme and activate several inactive point mutants, historically called antibody-mediated enzyme formation mutants. To understand the nature of this activation, we have determined by electron cryo-microscopy the structure of the complex between β-gal and the antibody scFv13R4. Our structure localizes the scFv13R4 binding site to the crevice between domains 1 and 3 in each β-gal subunit. The mutations that scFv13R4 counteracts are located between the antibody binding site and the active site of β-gal, at one end of the TIM-barrel that forms domain 3 where the substrate lactose is hydrolyzed. The mode of binding suggests how scFv stabilizes both the active site of β-gal and the tetrameric state. Antibodies can activate inactive mutant β-galactosidase enzymes Cryo-EM analysis reveals the structure of such an antibody complex One Fv antibody binds to each of four β-galactosidase subunits Activation occurs by internal stabilization within each subunit
Collapse
Affiliation(s)
- Kutti R Vinothkumar
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Greg McMullan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Richard Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
45
|
Portnoff AD, Stephens EA, Varner JD, DeLisa MP. Ubiquibodies, synthetic E3 ubiquitin ligases endowed with unnatural substrate specificity for targeted protein silencing. J Biol Chem 2014; 289:7844-55. [PMID: 24474696 DOI: 10.1074/jbc.m113.544825] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is the main route of protein degradation in eukaryotic cells and is a common mechanism through which numerous cellular pathways are regulated. To date, several reverse genetics techniques have been reported that harness the power of the UPP for selectively reducing the levels of otherwise stable proteins. However, each of these approaches has been narrowly developed for a single substrate and cannot be easily extended to other protein substrates of interest. To address this shortcoming, we created a generalizable protein knock-out method by engineering protein chimeras called "ubiquibodies" that combine the activity of E3 ubiquitin ligases with designer binding proteins to steer virtually any protein to the UPP for degradation. Specifically, we reprogrammed the substrate specificity of a modular human E3 ubiquitin ligase called CHIP (carboxyl terminus of Hsc70-interacting protein) by replacing its natural substrate-binding domain with a single-chain Fv (scFv) intrabody or a fibronectin type III domain monobody that target their respective antigens with high specificity and affinity. Engineered ubiquibodies reliably transferred ubiquitin to surface exposed lysines on target proteins and even catalyzed the formation of biologically relevant polyubiquitin chains. Following ectopic expression of ubiquibodies in mammalian cells, specific and systematic depletion of desired target proteins was achieved, whereas the levels of a natural substrate of CHIP were unaffected. Taken together, engineered ubiquibodies offer a simple, reproducible, and customizable means for directly removing specific cellular proteins through accelerated proteolysis.
Collapse
|
46
|
Sugamata Y, Tanaka T, Matsunaga T, Yoshino T. Functional expression of an scFv on bacterial magnetic particles by in vitro docking. Biochem Biophys Res Commun 2014; 445:1-5. [PMID: 24472552 DOI: 10.1016/j.bbrc.2013.12.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023]
Abstract
A Gram-negative, magnetotactic bacterium, Magnetospirillum magneticum AMB-1 produces nano-sized magnetic particles (BacMPs) in the cytoplasm. Although various applications of genetically engineered BacMPs have been demonstrated, such as immunoassay, ligand-receptor interaction or cell separation, by expressing a target protein on BacMPs, it has been difficult to express disulfide-bonded proteins on BacMPs due to lack of disulfide-bond formation in the cytoplasm. Here, we propose a novel dual expression system, called in vitro docking, of a disulfide-bonded protein on BacMPs by directing an immunoglobulin Fc-fused target protein to the periplasm and its docking protein ZZ on BacMPs. By in vitro docking, an scFv-Fc fusion protein was functionally expressed on BacMPs in the dimeric or trimeric form. Our novel disulfide-bonded protein expression system on BacMPs will be useful for efficient screening of potential ligands or drugs, analyzing ligand-receptor interactions or as a magnetic carrier for affinity purification.
Collapse
Affiliation(s)
- Yasuhiro Sugamata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
47
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
48
|
Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact 2013; 12:24. [PMID: 23497240 PMCID: PMC3605120 DOI: 10.1186/1475-2859-12-24] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022] Open
Abstract
Background In Escherichia coli many heterologous proteins are produced in the periplasm. To direct these proteins to the periplasm, they are equipped with an N-terminal signal sequence so that they can traverse the cytoplasmic membrane via the protein-conducting Sec-translocon. For poorly understood reasons, the production of heterologous secretory proteins is often toxic to the cell thereby limiting yields. To gain insight into the mechanism(s) that underlie this toxicity we produced two secretory heterologous proteins, super folder green fluorescent protein and a single-chain variable antibody fragment, in the Lemo21(DE3) strain. In this strain, the expression intensity of the gene encoding the target protein can be precisely controlled. Results Both SFGFP and the single-chain variable antibody fragment were equipped with a DsbA-derived signal sequence. Producing these proteins following different gene expression levels in Lemo21(DE3) allowed us to identify the optimal expression level for each target gene. Too high gene expression levels resulted in saturation of the Sec-translocon capacity as shown by hampered translocation of endogenous secretory proteins and a protein misfolding/aggregation problem in the cytoplasm. At the optimal gene expression levels, the negative effects of the production of the heterologous secretory proteins were minimized and yields in the periplasm were optimized. Conclusions Saturating the Sec-translocon capacity can be a major bottleneck hampering heterologous protein production in the periplasm. This bottleneck can be alleviated by harmonizing expression levels of the genes encoding the heterologous secretory proteins with the Sec-translocon capacity. Mechanistic insight into the production of proteins in the periplasm is key to optimizing yields in this compartment.
Collapse
|
49
|
Matsui H, Sakurai F, Katayama K, Abe Y, Machitani M, Kurachi S, Tachibana M, Mizuguchi H. A targeted adenovirus vector displaying a human fibronectin type III domain-based monobody in a fiber protein. Biomaterials 2013; 34:4191-4201. [PMID: 23473963 DOI: 10.1016/j.biomaterials.2013.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/17/2013] [Indexed: 11/17/2022]
Abstract
A major drawback of adenovirus (Ad) vectors is their nonspecific transduction into various types of cells or tissue after in vivo application, which might lead to unexpected toxicity and tissue damage. To overcome this problem, we developed a fiber-mutant Ad vector displaying a monobody specific for epidermal growth factor receptor (EGFR) or vascular endothelial growth factor receptor 2 (VEGFR2) in the C-terminus of the knobless fiber protein derived from T4 phage fibritin. A monobody, which is a single domain antibody mimic based on the tenth human fibronectin type III domain scaffold with a structure similar to the variable domains of antibodies, would be suitable as a targeting molecule for display on the Ad capsid proteins because of its highly stable structure even under reducing conditions and low molecular weight (approximately 10 kDa). Surface plasmon resonance (SPR) analysis revealed that the monobody-displaying Ad vector specifically bound to the targeted molecules, leading to significant increases in cellular binding and transduction efficiencies in the targeted cells. Transduction with the monobody-displaying Ad vectors was significantly inhibited in the presence of the Fc-chimera protein of EGFR and VEGFR2. This monobody-displaying Ad vector would be a crucial resource for targeted gene therapy.
Collapse
Affiliation(s)
- Hayato Matsui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazufumi Katayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasuhiro Abe
- Laboratory of Biopharmaceutical Research (Pharmaceutical Proteomics), National Institute of Biomedical Innovation, Osaka, Japan
| | - Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shinnosuke Kurachi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| |
Collapse
|
50
|
McConnell AD, Spasojevich V, Macomber JL, Krapf IP, Chen A, Sheffer JC, Berkebile A, Horlick RA, Neben S, King DJ, Bowers PM. An integrated approach to extreme thermostabilization and affinity maturation of an antibody. Protein Eng Des Sel 2012; 26:151-64. [DOI: 10.1093/protein/gzs090] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|