1
|
Zhang Y, Chen M, Chen X, Zhang M, Yin J, Yang Z, Gao X, Zhang S, Yang M. Molecular architecture of the mammalian 2-oxoglutarate dehydrogenase complex. Nat Commun 2024; 15:8407. [PMID: 39333186 PMCID: PMC11436768 DOI: 10.1038/s41467-024-52792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
The 2-oxoglutarate dehydrogenase complex (OGDHc) orchestrates a critical reaction regulating the TCA cycle. Although the structure of each OGDHc subunit has been solved, the architecture of the intact complex and inter-subunit interactions still remain unknown. Here we report the assembly of native, intact OGDHc from Sus scrofa heart tissue using cryo-electron microscopy (cryo-EM), cryo-electron tomography (cryo-ET), and subtomogram averaging (STA) to discern native structures of the whole complex and each subunit. Our cryo-EM analyses revealed the E2o cubic core structure comprising eight homotrimers at 3.3-Å resolution. More importantly, the numbers, positions and orientations of each OGDHc subunit were determined by cryo-ET and the STA structures of the core were resolved at 7.9-Å with the peripheral subunits reaching nanometer resolution. Although the distribution of the peripheral subunits E1o and E3 vary among complexes, they demonstrate a certain regularity within the position and orientation. Moreover, we analyzed and validated the interactions between each subunit, and determined the flexible binding mode for E1o, E2o and E3, resulting in a proposed model of Sus scrofa OGDHc. Together, our results reveal distinctive factors driving the architecture of the intact, native OGDHc.
Collapse
Affiliation(s)
- Yitang Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maofei Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Minghui Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zi Yang
- Technology Center for Protein Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, China.
- Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
2
|
Fan L, Wei Y, Chen Y, Ouaziz M, Jiang S, Xu F, Wang H, Shao X. Transcriptome analysis reveals the mechanism of antifungal peptide epinecidin-1 against Botrytis cinerea by mitochondrial dysfunction and oxidative stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105932. [PMID: 38879298 DOI: 10.1016/j.pestbp.2024.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 06/19/2024]
Abstract
The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 μmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Li Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; College of Biological Environment, JiYang College of Zhejiang A&F University, Zhuji 311800, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Meriem Ouaziz
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
3
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Yang L, Wagner T, Mechaly A, Boyko A, Bruch EM, Megrian D, Gubellini F, Alzari PM, Bellinzoni M. High resolution cryo-EM and crystallographic snapshots of the actinobacterial two-in-one 2-oxoglutarate dehydrogenase. Nat Commun 2023; 14:4851. [PMID: 37563123 PMCID: PMC10415282 DOI: 10.1038/s41467-023-40253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.
Collapse
Affiliation(s)
- Lu Yang
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, 430207, PR China
| | - Tristan Wagner
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, D-28359, Bremen, Germany
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, Plateforme de Cristallographie, F-75015, Paris, France
| | - Alexandra Boyko
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- BostonGene, Yerevan, Armenia
| | - Eduardo M Bruch
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Sanofi, In vitro Biology, Integrated Drug Discovery, 350 Water St, Cambridge, MA, 02141, USA
| | - Daniela Megrian
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Pedro M Alzari
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Marco Bellinzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France.
| |
Collapse
|
5
|
Záhonová K, Valach M, Tripathi P, Benz C, Opperdoes FR, Barath P, Lukáčová V, Danchenko M, Faktorová D, Horváth A, Burger G, Lukeš J, Škodová-Sveráková I. Subunit composition of mitochondrial dehydrogenase complexes in diplonemid flagellates. Biochim Biophys Acta Gen Subj 2023:130419. [PMID: 37451476 DOI: 10.1016/j.bbagen.2023.130419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
In eukaryotes, pyruvate, a key metabolite produced by glycolysis, is converted by a tripartite mitochondrial pyruvate dehydrogenase (PDH) complex to acetyl-coenzyme A, which is fed into the tricarboxylic acid cycle. Two additional enzyme complexes with analogous composition catalyze similar oxidative decarboxylation reactions albeit using different substrates, the branched-chain ketoacid dehydrogenase (BCKDH) complex and the 2-oxoglutarate dehydrogenase (OGDH) complex. Comparative transcriptome analyses of diplonemids, one of the most abundant and diverse groups of oceanic protists, indicate that the conventional E1, E2, and E3 subunits of the PDH complex are lacking. E1 was apparently replaced in the euglenozoan ancestor of diplonemids by an AceE protein of archaeal type, a substitution that we also document in dinoflagellates. Here we demonstrate that the mitochondrion of the model diplonemid Paradiplonema papillatum displays pyruvate and 2-oxoglutarate dehydrogenase activities. Protein mass spectrometry of mitochondria reveal that the AceE protein is as abundant as the E1 subunit of BCKDH. This corroborates the view that the AceE subunit is a functional component of the PDH complex. We hypothesize that by acquiring AceE, the diplonemid ancestor not only lost the eukaryotic-type E1, but also the E2 and E3 subunits of the PDH complex, which are present in other euglenozoans. We posit that the PDH activity in diplonemids seems to be carried out by a complex, in which the AceE protein partners with the E2 and E3 subunits from BCKDH and/or OGDH.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Nitra, Slovakia
| | | | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
6
|
Hevler JF, Albanese P, Cabrera-Orefice A, Potter A, Jankevics A, Misic J, Scheltema RA, Brandt U, Arnold S, Heck AJR. MRPS36 provides a structural link in the eukaryotic 2-oxoglutarate dehydrogenase complex. Open Biol 2023; 13:220363. [PMID: 36854377 PMCID: PMC9974300 DOI: 10.1098/rsob.220363] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The tricarboxylic acid cycle is the central pathway of energy production in eukaryotic cells and plays a key part in aerobic respiration throughout all kingdoms of life. One of the pivotal enzymes in this cycle is 2-oxoglutarate dehydrogenase complex (OGDHC), which generates NADH by oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. OGDHC is a megadalton protein complex originally thought to be assembled from three catalytically active subunits (E1o, E2o, E3). In fungi and animals, however, the protein MRPS36 has more recently been proposed as a putative additional component. Based on extensive cross-linking mass spectrometry data supported by phylogenetic analyses, we provide evidence that MRPS36 is an important member of the eukaryotic OGDHC, with no prokaryotic orthologues. Comparative sequence analysis and computational structure predictions reveal that, in contrast with bacteria and archaea, eukaryotic E2o does not contain the peripheral subunit-binding domain (PSBD), for which we propose that MRPS36 evolved as an E3 adaptor protein, functionally replacing the PSBD. We further provide a refined structural model of the complete eukaryotic OGDHC of approximately 3.45 MDa with novel mechanistic insights.
Collapse
Affiliation(s)
- Johannes F. Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Pascal Albanese
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Alisa Potter
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jelena Misic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Richard A. Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Probing the E1o-E2o and E1a-E2o Interactions in Binary Subcomplexes of the Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Complexes by Chemical Cross-Linking Mass Spectrometry and Molecular Dynamics Simulation. Int J Mol Sci 2023; 24:ijms24054555. [PMID: 36901986 PMCID: PMC10003691 DOI: 10.3390/ijms24054555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The human 2-oxoglutarate dehydrogenase complex (hOGDHc) is a key enzyme in the tricarboxylic acid cycle and is one of the main regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. Evidence was obtained for formation of a hybrid complex between the hOGDHc and its homologue the 2-oxoadipate dehydrogenase complex (hOADHc) in the L-lysine metabolic pathway, suggesting a crosstalk between the two distinct pathways. Findings raised fundamental questions about the assembly of hE1a (2-oxoadipate-dependent E1 component) and hE1o (2-oxoglutarate-dependent E1) to the common hE2o core component. Here we report chemical cross-linking mass spectrometry (CL-MS) and molecular dynamics (MD) simulation analyses to understand assembly in binary subcomplexes. The CL-MS studies revealed the most prominent loci for hE1o-hE2o and hE1a-hE2o interactions and suggested different binding modes. The MD simulation studies led to the following conclusions: (i) The N-terminal regions in E1s are shielded by, but do not interact directly with hE2o. (ii) The hE2o linker region exhibits the highest number of H-bonds with the N-terminus and α/β1 helix of hE1o, yet with the interdomain linker and α/β1 helix of hE1a. (iii) The C-termini are involved in dynamic interactions in complexes, suggesting the presence of at least two conformations in solution.
Collapse
|
8
|
Liu S, Xia X, Zhen J, Li Z, Zhou ZH. Structures and comparison of endogenous 2-oxoglutarate and pyruvate dehydrogenase complexes from bovine kidney. Cell Discov 2022; 8:126. [PMID: 36414632 PMCID: PMC9681731 DOI: 10.1038/s41421-022-00487-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
The α-keto acid dehydrogenase complex family catalyzes the essential oxidative decarboxylation of α-keto acids to yield acyl-CoA and NADH. Despite performing the same overarching reaction, members of the family have different component structures and structural organization between each other and across phylogenetic species. While native structures of α-keto acid dehydrogenase complexes from bacteria and fungi became available recently, the atomic structure and organization of their mammalian counterparts in native states remain unknown. Here, we report the cryo-electron microscopy structures of the endogenous cubic 2-oxoglutarate dehydrogenase complex (OGDC) and icosahedral pyruvate dehydrogenase complex (PDC) cores from bovine kidney determined at resolutions of 3.5 Å and 3.8 Å, respectively. The structures of multiple proteins were reconstructed from a single lysate sample, allowing direct structural comparison without the concerns of differences arising from sample preparation and structure determination. Although native and recombinant E2 core scaffold structures are similar, the native structures are decorated with their peripheral E1 and E3 subunits. Asymmetric sub-particle reconstructions support heterogeneity in the arrangements of these peripheral subunits. In addition, despite sharing a similar monomeric fold, OGDC and PDC E2 cores have distinct interdomain and intertrimer interactions, which suggests a means of modulating self-assembly to mitigate heterologous binding between mismatched E2 species. The lipoyl moiety lies near a mobile gatekeeper within the interdomain active site of OGDC E2 and PDC E2. Analysis of the twofold related intertrimer interface identified secondary structural differences and chemical interactions between icosahedral and cubic geometries of the core. Taken together, our study provides a direct structural comparison of OGDC and PDC from the same source and offers new insights into determinants of interdomain interactions and of architecture diversity among α-keto acid dehydrogenase complexes.
Collapse
Affiliation(s)
- Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Zihang Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Harnessing Rare Actinomycete Interactions and Intrinsic Antimicrobial Resistance Enables Discovery of an Unusual Metabolic Inhibitor. mBio 2022; 13:e0039322. [PMID: 35608300 PMCID: PMC9239090 DOI: 10.1128/mbio.00393-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial natural products have historically been a deep source of new medicines, but their slowed discovery in recent decades has put a premium on developing strategies that enhance the likelihood of capturing novel compounds. Here, we used a straightforward approach that capitalizes on the interactive ecology of “rare” actinomycetes. Specifically, we screened for interactions that triggered the production of antimicrobials that inhibited the growth of a bacterial strain with exceptionally diverse natural antimicrobial resistance. This strategy led to the discovery of a family of antimicrobials we term the dynaplanins. Heterologous expression enabled identification of the dynaplanin biosynthetic gene cluster, which was missed by typical algorithms for natural product gene cluster detection. Genome sequencing of partially resistant mutants revealed a 2-oxo acid dehydrogenase E2 subunit as the likely molecular target of the dynaplanins, and this finding was supported by computational modeling of the dynaplanin scaffold within the active site of this enzyme. Thus, this simple strategy, which leverages microbial interactions and natural antibiotic resistance, can enable discovery of molecules with unique antimicrobial activity. In addition, these results indicate that primary metabolism may be a direct target for inhibition via chemical interference in competitive microbial interactions.
Collapse
|
10
|
Engineering the 2-Oxoglutarate Dehydrogenase Complex to Understand Catalysis and Alter Substrate Recognition. REACTIONS 2022. [DOI: 10.3390/reactions3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The E. coli 2-oxoglutarate dehydrogenase complex (OGDHc) is a multienzyme complex in the tricarboxylic acid cycle, consisting of multiple copies of three components, 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3), which catalyze the formation of succinyl-CoA and NADH (+H+) from 2-oxoglutarate. This review summarizes applications of the site saturation mutagenesis (SSM) to engineer E. coli OGDHc with mechanistic and chemoenzymatic synthetic goals. First, E1o was engineered by creating SSM libraries at positions His260 and His298.Variants were identified that: (a) lead to acceptance of substrate analogues lacking the 5-carboxyl group and (b) performed carboligation reactions producing acetoin-like compounds with good enantioselectivity. Engineering the E2o catalytic (core) domain enabled (a) assignment of roles for pivotal residues involved in catalysis, (b) re-construction of the substrate-binding pocket to accept substrates other than succinyllysyldihydrolipoamide and (c) elucidation of the mechanism of trans-thioesterification to involve stabilization of a tetrahedral oxyanionic intermediate with hydrogen bonds by His375 and Asp374, rather than general acid–base catalysis which has been misunderstood for decades. The E. coli OGDHc is the first example of a 2-oxo acid dehydrogenase complex which was evolved to a 2-oxo aliphatic acid dehydrogenase complex by engineering two consecutive E1o and E2o components.
Collapse
|
11
|
Actinobacteria challenge the paradigm: A unique protein architecture for a well-known, central metabolic complex. Proc Natl Acad Sci U S A 2021; 118:2112107118. [PMID: 34819376 DOI: 10.1073/pnas.2112107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high-molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.
Collapse
|
12
|
Škerlová J, Berndtsson J, Nolte H, Ott M, Stenmark P. Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion. Nat Commun 2021; 12:5277. [PMID: 34489474 PMCID: PMC8421416 DOI: 10.1038/s41467-021-25570-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle by converting pyruvate into acetyl-coenzyme A. PDHc encompasses three enzymatically active subunits, namely pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Dihydrolipoyl transacetylase is a multidomain protein comprising a varying number of lipoyl domains, a peripheral subunit-binding domain, and a catalytic domain. It forms the structural core of the complex, provides binding sites for the other enzymes, and shuffles reaction intermediates between the active sites through covalently bound lipoyl domains. The molecular mechanism by which this shuttling occurs has remained elusive. Here, we report a cryo-EM reconstruction of the native E. coli dihydrolipoyl transacetylase core in a resting state. This structure provides molecular details of the assembly of the core and reveals how the lipoyl domains interact with the core at the active site.
Collapse
Affiliation(s)
- Jana Škerlová
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jens Berndtsson
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hendrik Nolte
- grid.419502.b0000 0004 0373 6590Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Martin Ott
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden ,grid.8761.80000 0000 9919 9582Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Pål Stenmark
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden ,grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Nemeria NS, Zhang X, Leandro J, Zhou J, Yang L, Houten SM, Jordan F. Toward an Understanding of the Structural and Mechanistic Aspects of Protein-Protein Interactions in 2-Oxoacid Dehydrogenase Complexes. Life (Basel) 2021; 11:407. [PMID: 33946784 PMCID: PMC8146983 DOI: 10.3390/life11050407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.
Collapse
Affiliation(s)
- Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Jieyu Zhou
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Luying Yang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| |
Collapse
|
14
|
Nagy B, Polak M, Ozohanics O, Zambo Z, Szabo E, Hubert A, Jordan F, Novaček J, Adam-Vizi V, Ambrus A. Structure of the dihydrolipoamide succinyltransferase (E2) component of the human alpha-ketoglutarate dehydrogenase complex (hKGDHc) revealed by cryo-EM and cross-linking mass spectrometry: Implications for the overall hKGDHc structure. Biochim Biophys Acta Gen Subj 2021; 1865:129889. [PMID: 33684457 DOI: 10.1016/j.bbagen.2021.129889] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The human mitochondrial alpha-ketoglutarate dehydrogenase complex (hKGDHc) converts KG to succinyl-CoA and NADH. Malfunction of and reactive oxygen species generation by the hKGDHc as well as its E1-E2 subcomplex are implicated in neurodegenerative disorders, ischemia-reperfusion injury, E3-deficiency and cancers. METHODS We performed cryo-EM, cross-linking mass spectrometry (CL-MS) and molecular modeling analyses to determine the structure of the E2 component of the hKGDHc (hE2k); hE2k transfers a succinyl group to CoA and forms the structural core of hKGDHc. We also assessed the overall structure of the hKGDHc by negative-stain EM and modeling. RESULTS We report the 2.9 Å resolution cryo-EM structure of the hE2k component. The cryo-EM map comprises density for hE2k residues 151-386 - the entire (inner) core catalytic domain plus a few additional residues -, while residues 1-150 are not observed due to the inherent flexibility of the N-terminal region. The structure of the latter segment was also determined by CL-MS and homology modeling. Negative-stain EM on in vitro assembled hKGDHc and previous data were used to build a putative overall structural model of the hKGDHc. CONCLUSIONS The E2 core of the hKGDHc is composed of 24 hE2k chains organized in octahedral (8 × 3 type) assembly. Each lipoyl domain is oriented towards the core domain of an adjacent chain in the hE2k homotrimer. hE1k and hE3 are most likely tethered at the edges and faces, respectively, of the cubic hE2k assembly. GENERAL SIGNIFICANCE The revealed structural information will support the future pharmacologically targeting of the hKGDHc.
Collapse
Affiliation(s)
- Balint Nagy
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Martin Polak
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsofia Zambo
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Eszter Szabo
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Agnes Hubert
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jiří Novaček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vera Adam-Vizi
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
15
|
Buffet A, Zhang J, Rebel H, Corssmit EPM, Jansen JC, Hensen EF, Bovée JVMG, Morini A, Gimenez-Roqueplo AP, Hes FJ, Devilee P, Favier J, Bayley JP. Germline DLST Variants Promote Epigenetic Modifications in Pheochromocytoma-Paraganglioma. J Clin Endocrinol Metab 2021; 106:459-471. [PMID: 33180916 DOI: 10.1210/clinem/dgaa819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 02/02/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors in which altered central metabolism appears to be a major driver of tumorigenesis, and many PPGL genes encode proteins involved in the tricarboxylic acid (TCA) cycle. OBJECTIVE/DESIGN While about 40% of PPGL cases carry a variant in a known gene, many cases remain unexplained. In patients with unexplained PPGL showing clear evidence of a familial burden or multiple tumors, we aimed to identify causative factors using genetic analysis of patient DNA and functional analyses of identified DNA variants in patient tumor material and engineered cell lines. PATIENTS AND SETTING Patients with a likely familial cancer burden of pheochromocytomas and/or paragangliomas and under investigation in a clinical genetic and clinical research setting in university hospitals. RESULTS While investigating unexplained PPGL cases, we identified a novel variant, c.1151C>T, p.(Pro384Leu), in exon 14 of the gene encoding dihydrolipoamide S-succinyltransferase (DLST), a component of the multi-enzyme complex 2-oxoglutarate dehydrogenase. Targeted sequence analysis of further unexplained cases identified a patient carrying a tumor with compound heterozygous variants in DLST, consisting of a germline variant, c.1121G>A, p.(Gly374Glu), together with a somatic missense variant identified in tumor DNA, c.1147A>G, p.(Thr383Ala), both located in exon 14. Using a range of in silico and functional assays we show that these variants are predicted to be pathogenic, profoundly impact enzyme activity, and result in DNA hypermethylation. CONCLUSIONS The identification and functional analysis of these DLST variants further validates DLST as an additional PPGL gene involved in the TCA cycle.
Collapse
Affiliation(s)
- Alexandre Buffet
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015 Paris, France
- Genetic department, Adrenal Referral Center, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Juan Zhang
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Heggert Rebel
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Eleonora P M Corssmit
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Jeroen C Jansen
- Department of Otorhinolaryngology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Erik F Hensen
- Department of Otorhinolaryngology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Aurélien Morini
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Département d'anatomo-pathologie, F-75015 Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015 Paris, France
- Genetic department, Adrenal Referral Center, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Judith Favier
- Genetic department, Adrenal Referral Center, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Jean-Pierre Bayley
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
16
|
Kinugawa H, Kondo N, Komine-Abe A, Tomita T, Nishiyama M, Kosono S. In vitro reconstitution and characterization of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase hybrid complex from Corynebacterium glutamicum. Microbiologyopen 2020; 9:e1113. [PMID: 32864855 PMCID: PMC7568260 DOI: 10.1002/mbo3.1113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) and 2‐oxoglutarate dehydrogenase (ODH) are critical enzymes in central carbon metabolism. In Corynebacterium glutamicum, an unusual hybrid complex consisting of CgE1p (thiamine diphosphate‐dependent pyruvate dehydrogenase, AceE), CgE2 (dihydrolipoamide acetyltransferase, AceF), CgE3 (dihydrolipoamide dehydrogenase, Lpd), and CgE1o (thiamine diphosphate‐dependent 2‐oxoglutarate dehydrogenase, OdhA) has been suggested. Here, we elucidated that the PDH‐ODH hybrid complex in C. glutamicum probably consists of six copies of CgE2 in its core, which is rather compact compared with PDH and ODH in other microorganisms that have twenty‐four copies of E2. We found that CgE2 formed a stable complex with CgE3 (CgE2‐E3 subcomplex) in vitro, hypothetically comprised of two CgE2 trimers and four CgE3 dimers. We also found that CgE1o exists mainly as a hexamer in solution and is ready to form an active ODH complex when mixed with the CgE2‐E3 subcomplex. Our in vitro reconstituted system showed CgE1p‐ and CgE1o‐dependent inhibition of ODH and PDH, respectively, actively supporting the formation of the hybrid complex, in which both CgE1p and CgE1o associate with a single CgE2‐E3. In gel filtration chromatography, all the subunits of CgODH were eluted in the same fraction, whereas CgE1p was eluted separately from CgE2‐E3, suggesting a weak association of CgE1p with CgE2 compared with that of CgE1o. This study revealed the unique molecular architecture of the hybrid complex from C. glutamicum and the compact‐sized complex would provide an advantage to determine the whole structure of the unusual hybrid complex.
Collapse
Affiliation(s)
- Hirokazu Kinugawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Naoko Kondo
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Ayano Komine-Abe
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Japan
| |
Collapse
|
17
|
Bezerra GA, Foster WR, Bailey HJ, Hicks KG, Sauer SW, Dimitrov B, McCorvie TJ, Okun JG, Rutter J, Kölker S, Yue WW. Crystal structure and interaction studies of human DHTKD1 provide insight into a mitochondrial megacomplex in lysine catabolism. IUCRJ 2020; 7:693-706. [PMID: 32695416 PMCID: PMC7340257 DOI: 10.1107/s205225252000696x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
DHTKD1 is a lesser-studied E1 enzyme among the family of 2-oxoacid de-hydrogenases. In complex with E2 (di-hydro-lipo-amide succinyltransferase, DLST) and E3 (dihydrolipo-amide de-hydrogenase, DLD) components, DHTKD1 is involved in lysine and tryptophan catabolism by catalysing the oxidative de-carboxyl-ation of 2-oxoadipate (2OA) in mitochondria. Here, the 1.9 Å resolution crystal structure of human DHTKD1 is solved in complex with the thi-amine diphosphate co-factor. The structure reveals how the DHTKD1 active site is modelled upon the well characterized homologue 2-oxoglutarate (2OG) de-hydrogenase but engineered specifically to accommodate its preference for the longer substrate of 2OA over 2OG. A 4.7 Å resolution reconstruction of the human DLST catalytic core is also generated by single-particle electron microscopy, revealing a 24-mer cubic scaffold for assembling DHTKD1 and DLD protomers into a megacomplex. It is further demonstrated that missense DHTKD1 variants causing the inborn error of 2-amino-adipic and 2-oxoadipic aciduria impact on the complex formation, either directly by disrupting the interaction with DLST, or indirectly through destabilizing the DHTKD1 protein. This study provides the starting framework for developing DHTKD1 modulators to probe the intricate mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Gustavo A. Bezerra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - William R. Foster
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Henry J. Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Kevin G. Hicks
- Department of Biochemistry, University of Utah School of Medicine, USA
| | - Sven W. Sauer
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Thomas J. McCorvie
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, USA
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Wyatt W. Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
18
|
Zhang X, Nemeria NS, Leandro J, Houten S, Lazarus M, Gerfen G, Ozohanics O, Ambrus A, Nagy B, Brukh R, Jordan F. Structure-function analyses of the G729R 2-oxoadipate dehydrogenase genetic variant associated with a disorder of l-lysine metabolism. J Biol Chem 2020; 295:8078-8095. [PMID: 32303640 PMCID: PMC7278340 DOI: 10.1074/jbc.ra120.012761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
2-Oxoadipate dehydrogenase (E1a, also known as DHTKD1, dehydrogenase E1, and transketolase domain-containing protein 1) is a thiamin diphosphate-dependent enzyme and part of the 2-oxoadipate dehydrogenase complex (OADHc) in l-lysine catabolism. Genetic findings have linked mutations in the DHTKD1 gene to several metabolic disorders. These include α-aminoadipic and α-ketoadipic aciduria (AMOXAD), a rare disorder of l-lysine, l-hydroxylysine, and l-tryptophan catabolism, associated with clinical presentations such as developmental delay, mild-to-severe intellectual disability, ataxia, epilepsy, and behavioral disorders that cannot currently be managed by available treatments. A heterozygous missense mutation, c.2185G→A (p.G729R), in DHTKD1 has been identified in most AMOXAD cases. Here, we report that the G729R E1a variant when assembled into OADHc in vitro displays a 50-fold decrease in catalytic efficiency for NADH production and a significantly reduced rate of glutaryl-CoA production by dihydrolipoamide succinyl-transferase (E2o). However, the G729R E1a substitution did not affect any of the three side-reactions associated solely with G729R E1a, prompting us to determine the structure-function effects of this mutation. A multipronged systematic analysis of the reaction rates in the OADHc pathway, supplemented with results from chemical cross-linking and hydrogen-deuterium exchange MS, revealed that the c.2185G→A DHTKD1 mutation affects E1a-E2o assembly, leading to impaired channeling of OADHc intermediates. Cross-linking between the C-terminal region of both E1a and G729R E1a with the E2o lipoyl and core domains suggested that correct positioning of the C-terminal E1a region is essential for the intermediate channeling. These findings may inform the development of interventions to counter the effects of pathogenic DHTKD1 mutations.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Sander Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael Lazarus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10641-2304
| | - Oliver Ozohanics
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Balint Nagy
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Roman Brukh
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| |
Collapse
|
19
|
Chakraborty J, Nemeria NS, Zhang X, Nareddy PR, Szostak M, Farinas E, Jordan F. Engineering 2‐
oxoglutarate
dehydrogenase to a 2‐oxo
aliphatic
dehydrogenase complex by optimizing consecutive components. AIChE J 2019. [DOI: 10.1002/aic.16769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joydeep Chakraborty
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark New Jersey
| | | | - Xu Zhang
- Department of Chemistry Rutgers University Newark New Jersey
| | | | - Michal Szostak
- Department of Chemistry Rutgers University Newark New Jersey
| | - Edgardo Farinas
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark New Jersey
| | - Frank Jordan
- Department of Chemistry Rutgers University Newark New Jersey
| |
Collapse
|
20
|
Andi B, Soares AS, Shi W, Fuchs MR, McSweeney S, Liu Q. Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant. Acta Crystallogr F Struct Biol Commun 2019; 75:616-624. [PMID: 31475929 PMCID: PMC6718150 DOI: 10.1107/s2053230x19011488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.7 Å) were obtained and diffracted to 3.0 Å resolution. Molecular replacement using structures from the PDB containing the amidase signature fold as search models was unsuccessful in yielding a convincing solution. Using the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) program, it was discovered that the structure corresponded to dihydrolipoamide succinyltransferase from Escherichia coli (PDB entry 1c4t), which is considered to be a common crystallization contaminant protein. The structure was refined to an Rwork of 23.0% and an Rfree of 27.2% at 3.0 Å resolution. The structure was compared with others of the same protein deposited in the PDB. This is the first report of the structure of dihydrolipoamide succinyltransferase isolated without an expression tag and in this novel crystal form.
Collapse
Affiliation(s)
- Babak Andi
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S. Soares
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Wuxian Shi
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Martin R. Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Sean McSweeney
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Qun Liu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| |
Collapse
|
21
|
Chen B, Long Q, Zhao Y, Wu Y, Ge S, Wang P, Yang CG, Chi Y, Song B, Yang S. Sulfone-Based Probes Unraveled Dihydrolipoamide S-Succinyltransferase as an Unprecedented Target in Phytopathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6962-6969. [PMID: 31150235 DOI: 10.1021/acs.jafc.9b02059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Target validation of current drugs remains the major challenge for target-based drug discovery, especially for agrochemical discovery. The bactericide 0 represents a novel lead structure and has shown potent efficacy against those diseases that are extremely difficult to control, such as rice bacterial leaf blight. However, no detailed target analysis of this bactericide has been reported. Here, we developed a panel of 0-derived probes 1-6, in which a conservative modification (alkyne tag) was introduced to keep the antibacterial activity of 0 and provide functionality for target identification via click chemistry. With these cell-permeable probes, we were able to discover dihydrolipoamide S-succinyltransferase (DLST) as an unprecedented target in living cells. The probes showed good preference for DLST, especially probe 1, which demonstrated distinct selectivity and reactivity. Also, we reported 0 as the first covalent DLST inhibitor, which has been used to confirm the involvement of DLST in the regulation of energy production.
Collapse
Affiliation(s)
- Biao Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Qingsu Long
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Yongliang Zhao
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Yuanyuan Wu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Shasha Ge
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Peiyi Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Cai-Guang Yang
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| | - Yonggui Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Song Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , People's Republic of China
| |
Collapse
|
22
|
Remacha L, Pirman D, Mahoney CE, Coloma J, Calsina B, Currás-Freixes M, Letón R, Torres-Pérez R, Richter S, Pita G, Herráez B, Cianchetta G, Honrado E, Maestre L, Urioste M, Aller J, García-Uriarte Ó, Gálvez MÁ, Luque RM, Lahera M, Moreno-Rengel C, Eisenhofer G, Montero-Conde C, Rodríguez-Antona C, Llorca Ó, Smolen GA, Robledo M, Cascón A. Recurrent Germline DLST Mutations in Individuals with Multiple Pheochromocytomas and Paragangliomas. Am J Hum Genet 2019; 104:651-664. [PMID: 30929736 PMCID: PMC6451733 DOI: 10.1016/j.ajhg.2019.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) provide some of the clearest genetic evidence for the critical role of metabolism in the tumorigenesis process. Approximately 40% of PPGLs are caused by driver germline mutations in 16 known susceptibility genes, and approximately half of these genes encode members of the tricarboxylic acid (TCA) cycle. Taking as a starting point the involvement of the TCA cycle in PPGL development, we aimed to identify unreported mutations that occurred in genes involved in this key metabolic pathway and that could explain the phenotypes of additional individuals who lack mutations in known susceptibility genes. To accomplish this, we applied a targeted sequencing of 37 TCA-cycle-related genes to DNA from 104 PPGL-affected individuals with no mutations in the major known predisposing genes. We also performed omics-based analyses, TCA-related metabolite determination, and 13C5-glutamate labeling assays. We identified five germline variants affecting DLST in eight unrelated individuals (∼7%); all except one were diagnosed with multiple PPGLs. A recurrent variant, c.1121G>A (p.Gly374Glu), found in four of the eight individuals triggered accumulation of 2-hydroxyglutarate, both in tumors and in a heterologous cell-based assay designed to functionally evaluate DLST variants. p.Gly374Glu-DLST tumors exhibited loss of heterozygosity, and their methylation and expression profiles are similar to those of EPAS1-mutated PPGLs; this similarity suggests a link between DLST disruption and pseudohypoxia. Moreover, we found positive DLST immunostaining exclusively in tumors carrying TCA-cycle or EPAS1 mutations. In summary, this study reveals DLST as a PPGL-susceptibility gene and further strengthens the relevance of the TCA cycle in PPGL development.
Collapse
Affiliation(s)
- Laura Remacha
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - David Pirman
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | | | - Javier Coloma
- Structural Biology Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Maria Currás-Freixes
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Rafael Torres-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Freistaat Sachsen 01069, Germany
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Belén Herráez
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | | | - Emiliano Honrado
- Anatomical Pathology Service, Hospital of León, León, Castilla y León 24071, Spain
| | - Lorena Maestre
- Monoclonal Antibodies Unit, Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Javier Aller
- Department of Endocrinology, University Hospital Puerta de Hierro, Majadahonda, Madrid 28222, Spain
| | - Óscar García-Uriarte
- Nephrology Department, University Hospital of Araba, Vitoria, País Vasco 01009, Spain
| | - María Ángeles Gálvez
- Service of Endocrinology and Nutrition, University Hospital Reina Sofía, Córdoba, Andalucía 14004, Spain; Maimónides Institute of Biomedical Research of Cordoba, Córdoba, Andalucía 14004, Spain
| | - Raúl M Luque
- Hormones and Cancer Group, Maimónides Institute of Biomedical Research of Córdoba, Córdoba, Andalucía 14004, Spain
| | - Marcos Lahera
- Endocrinology and Nutrition Department, La Princesa University Hospital, Madrid, Madrid 28006, Spain
| | - Cristina Moreno-Rengel
- Department of Endocrinology and Nutrition, University Hospital of Basurto, Bilbao 48013, Spain
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Freistaat Sachsen 01069, Germany
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Madrid 28029, Spain
| | - Óscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | | | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Madrid 28029, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Madrid 28029, Spain.
| |
Collapse
|
23
|
Zhou K, Zang J, Chen H, Wang W, Wang H, Zhao G. On-Axis Alignment of Protein Nanocage Assemblies from 2D to 3D through the Aromatic Stacking Interactions of Amino Acid Residues. ACS NANO 2018; 12:11323-11332. [PMID: 30265511 DOI: 10.1021/acsnano.8b06091] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aromatic-aromatic interactions between natural aromatic amino acids Phe, Tyr, and Trp play crucial roles in protein-protein recognition and protein folding. However, the function of such interactions in the preparation of different dimensional, ordered protein superstructures has not been recognized. Herein, by a combination of the directionality of the symmetry axes of protein building blocks and the strength of the aromatic-aromatic interactions coming from a group of aromatic amino acid residues, we built an engineering strategy to construct protein superlattices. Based on this strategy, substitution of single amino acid residue Glu162 around the C4 rotation axes near the outer surface of 24-mer ferritin nanocage with Phe, Tyr, and Trp, respectively, resulted in 2D and 3D protein superlattices where protein cages are aligned along the C4 axes, imposing a fixed disposition of neighboring ferritins. The self-assembly of these superlattices is reversible, which can be tuned by external stimuli (salt concentration or pH). Moreover, these superlattices can serve as biotemplates for the fabrication of 2D and 3D inorganic nanoparticle arrays.
Collapse
Affiliation(s)
- Kai Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Jiachen Zang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Hai Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry , Institute of Molecular Science, Shanxi University , Taiyuan 030006 , China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry , Institute of Molecular Science, Shanxi University , Taiyuan 030006 , China
| | - Guanghua Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| |
Collapse
|
24
|
Zhou J, Yang L, Ozohanics O, Zhang X, Wang J, Ambrus A, Arjunan P, Brukh R, Nemeria NS, Furey W, Jordan F. A multipronged approach unravels unprecedented protein-protein interactions in the human 2-oxoglutarate dehydrogenase multienzyme complex. J Biol Chem 2018; 293:19213-19227. [PMID: 30323066 DOI: 10.1074/jbc.ra118.005432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Indexed: 10/28/2022] Open
Abstract
The human 2-oxoglutaric acid dehydrogenase complex (hOGDHc) plays a pivotal role in the tricarboxylic acid (TCA) cycle, and its diminished activity is associated with neurodegenerative diseases. The hOGDHc comprises three components, hE1o, hE2o, and hE3, and we recently reported functionally active E1o and E2o components, enabling studies on their assembly. No atomic-resolution structure for the hE2o component is currently available, so here we first studied the interactions in the binary subcomplexes (hE1o-hE2o, hE1o-hE3, and hE2o-hE3) to gain insight into the strength of their interactions and to identify the interaction loci in them. We carried out multiple physico-chemical studies, including fluorescence, hydrogen-deuterium exchange MS (HDX-MS), and chemical cross-linking MS (CL-MS). Our fluorescence studies suggested a strong interaction for the hE1o-hE2o subcomplex, but a much weaker interaction in the hE1o-hE3 subcomplex, and failed to identify any interaction in the hE2o-hE3 subcomplex. The HDX-MS studies gave evidence for interactions in the hE1o-hE2o and hE1o-hE3 subcomplexes comprising full-length components, identifying: (i) the N-terminal region of hE1o, in particular the two peptides 18YVEEM22 and 27ENPKSVHKSWDIF39 as constituting the binding region responsible for the assembly of the hE1o with both the hE2o and hE3 components into hOGDHc, an hE1 region absent in available X-ray structures; and (ii) a novel hE2o region comprising residues from both a linker region and from the catalytic domain as being a critical region interacting with hE1o. The CL-MS identified the loci in the hE1o and hE2o components interacting with each other.
Collapse
Affiliation(s)
- Jieyu Zhou
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Luying Yang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Oliver Ozohanics
- the Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 27-29 Tuzolto Utca, Budapest H-1094, Hungary
| | - Xu Zhang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Junjie Wang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Attila Ambrus
- the Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 27-29 Tuzolto Utca, Budapest H-1094, Hungary
| | - Palaniappa Arjunan
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Roman Brukh
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Natalia S Nemeria
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102,
| | - William Furey
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Frank Jordan
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102,
| |
Collapse
|
25
|
Chakraborty J, Nemeria NS, Farinas E, Jordan F. Catalysis of transthiolacylation in the active centers of dihydrolipoamide acyltransacetylase components of 2-oxo acid dehydrogenase complexes. FEBS Open Bio 2018; 8:880-896. [PMID: 29928569 PMCID: PMC5986005 DOI: 10.1002/2211-5463.12431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli 2‐oxoglutarate dehydrogenase complex (OGDHc) comprises multiple copies of three enzymes—E1o, E2o, and E3—and transthioesterification takes place within the catalytic domain of E2o. The succinyl group from the thiol ester of S8‐succinyldihydrolipoyl‐E2o is transferred to the thiol group of coenzyme A (CoA), forming the all‐important succinyl‐CoA. Here, we report mechanistic studies of enzymatic transthioesterification on OGDHc. Evidence is provided for the importance of His375 and Asp374 in E2o for the succinyl transfer reaction. The magnitude of the rate acceleration provided by these residues (54‐fold from each with alanine substitution) suggests a role in stabilization of the symmetrical tetrahedral oxyanionic intermediate by formation of two hydrogen bonds, rather than in acid–base catalysis. Further evidence ruling out a role in acid–base catalysis is provided by site‐saturation mutagenesis studies at His375 (His375Trp substitution with little penalty) and substitutions to other potential hydrogen bond participants at Asp374. Taking into account that the rate constant for reductive succinylation of the E2o lipoyl domain (LDo) by E1o and 2‐oxoglutarate (99 s−1) was approximately twofold larger than the rate constant for kcat of 48 s−1 for the overall reaction (NADH production), it could be concluded that succinyl transfer to CoA and release of succinyl‐CoA, rather than reductive succinylation, is the rate‐limiting step. The results suggest a revised mechanism of catalysis for acyl transfer in the superfamily of 2‐oxo acid dehydrogenase complexes, thus provide fundamental information regarding acyl‐CoA formation, so important for several biological processes including post‐translational succinylation of protein lysines. Enzymes 2‐oxoglutarate dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/2/4/2.html); dihydrolipoamide succinyltransferase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/3/1/61.html); dihydrolipoamide dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/8/1/4.html); pyruvate dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/2/4/1.html); dihydrolipoamide acetyltransferase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/3/1/12.html).
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark NJ USA
| | | | - Edgardo Farinas
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark NJ USA
| | - Frank Jordan
- Department of Chemistry Rutgers University Newark NJ USA
| |
Collapse
|
26
|
Jiang J, Baiesc FL, Hiromasa Y, Yu X, Hui WH, Dai X, Roche TE, Zhou ZH. Atomic Structure of the E2 Inner Core of Human Pyruvate Dehydrogenase Complex. Biochemistry 2018; 57:2325-2334. [PMID: 29608861 DOI: 10.1021/acs.biochem.8b00357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) is a large multienzyme complex that catalyzes the irreversible conversion of pyruvate to acetyl-coenzyme A with reduction of NAD+. Distinctive from PDCs in lower forms of life, in mammalian PDC, dihydrolipoyl acetyltransferase (E2; E2p in PDC) and dihydrolipoamide dehydrogenase binding protein (E3BP) combine to form a complex that plays a central role in the organization, regulation, and integration of catalytic reactions of PDC. However, the atomic structure and organization of the mammalian E2p/E3BP heterocomplex are unknown. Here, we report the structure of the recombinant dodecahedral core formed by the C-terminal inner-core/catalytic (IC) domain of human E2p determined at 3.1 Å resolution by cryo electron microscopy (cryoEM). The structure of the N-terminal fragment and four other surface areas of the human E2p IC domain exhibit significant differences from those of the other E2 crystal structures, which may have implications for the integration of E3BP in mammals. This structure also allowed us to obtain a homology model for the highly homologous IC domain of E3BP. Analysis of the interactions of human E2p or E3BP with their adjacent IC domains in the dodecahedron provides new insights into the organization of the E2p/E3BP heterocomplex and suggests a potential contribution by E3BP to catalysis in mammalian PDC.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Flavius L Baiesc
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yasuaki Hiromasa
- Faculty of Agriculture, Attached Promotive Center for International Education and Research of Agriculture , Kyushu University , Fukuoka 812-8581 , Japan.,Department of Biochemistry and Molecular Biophysics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wong Hoi Hui
- California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xinghong Dai
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Thomas E Roche
- Department of Biochemistry and Molecular Biophysics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
27
|
Zhang S, Zang J, Zhang X, Chen H, Mikami B, Zhao G. "Silent" Amino Acid Residues at Key Subunit Interfaces Regulate the Geometry of Protein Nanocages. ACS NANO 2016; 10:10382-10388. [PMID: 27934076 DOI: 10.1021/acsnano.6b06235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rendering the geometry of protein-based assemblies controllable remains challenging. Protein shell-like nanocages represent particularly interesting targets for designed assembly. Here, we introduce an engineering strategy-key subunit interface redesign (KSIR)-that alters a natural subunit-subunit interface by selective deletion of a small number of "silent" amino acid residues (no participation in interfacial interactions) into one that triggers the generation of a non-native protein cage. We have applied KSIR to construct a non-native 48-mer nanocage from its native 24-mer recombinant human H-chain ferritin (rHuHF). This protein is a heteropolymer composed of equal numbers of two different subunits which are derived from one polypeptide. This strategy has allowed the study of conversion between protein nanocages with different geometries by re-engineering key subunit interfaces and the demonstration of the important role of the above-mentioned specific residues in providing geometric specificity for protein assembly.
Collapse
Affiliation(s)
- Shengli Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Jiachen Zang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Xiaorong Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Hai Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Guanghua Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
28
|
Guo H, Madzak C, Du G, Zhou J. Mutagenesis of conserved active site residues of dihydrolipoamide succinyltransferase enhances the accumulation of α-ketoglutarate in Yarrowia lipolytica. Appl Microbiol Biotechnol 2015; 100:649-59. [PMID: 26428234 DOI: 10.1007/s00253-015-6995-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/30/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
α-Ketoglutarate (α-KG) is an important intermediate in the tricarboxylic acid cycle and has broad applications. The mitochondrial ketoglutarate dehydrogenase (KGDH) complex catalyzes the oxidation of α-KG to succinyl-CoA. Disruption of KGDH, which may enhance the accumulation of α-KG theoretically, was found to be lethal to obligate aerobic cells. In this study, individual overexpression of dihydrolipoamide succinyltransferase (DLST), which serves as the inner core of KGDH, decreased overall activity of the enzyme complex. Furthermore, two conserved active site residues of DLST, His419, and Asp423 were identified. In order to determine whether these residues are engaged in enzyme reaction or not, these two conserved residues were individually mutated. Analysis of the kinetic parameters of the enzyme variants provided evidence that the catalytic reaction of DLST depended on residues His419 and Asp423. Overexpression of mutated DLST not only impaired balanced assembly of KGDH, but also disrupted the catalytic integrity of the enzyme complex. Replacement of the Asp423 residue by glutamate increased extracellular α-KG by 40 % to 50 g L(-1) in mutant strain. These observations uncovered catalytic roles of two conserved active site residues of DLST and provided clues for effective metabolic strategies for rational carbon flux control for the enhanced production of α-KG and related bioproducts.
Collapse
Affiliation(s)
- Hongwei Guo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Catherine Madzak
- UMR1238 Microbiologie et Génétique Moléculaire, INRA/CNRS/AgroPan's Tech, CBAI, BP 01, 78850, Thiverval-Grignon, France
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
29
|
Wang J, Nemeria NS, Chandrasekhar K, Kumaran S, Arjunan P, Reynolds S, Calero G, Brukh R, Kakalis L, Furey W, Jordan F. Structure and function of the catalytic domain of the dihydrolipoyl acetyltransferase component in Escherichia coli pyruvate dehydrogenase complex. J Biol Chem 2014; 289:15215-30. [PMID: 24742683 DOI: 10.1074/jbc.m113.544080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The Escherichia coli pyruvate dehydrogenase complex (PDHc) catalyzing conversion of pyruvate to acetyl-CoA comprises three components: E1p, E2p, and E3. The E2p is the five-domain core component, consisting of three tandem lipoyl domains (LDs), a peripheral subunit binding domain (PSBD), and a catalytic domain (E2pCD). Herein are reported the following. 1) The x-ray structure of E2pCD revealed both intra- and intertrimer interactions, similar to those reported for other E2pCDs. 2) Reconstitution of recombinant LD and E2pCD with E1p and E3p into PDHc could maintain at least 6.4% activity (NADH production), confirming the functional competence of the E2pCD and active center coupling among E1p, LD, E2pCD, and E3 even in the absence of PSBD and of a covalent link between domains within E2p. 3) Direct acetyl transfer between LD and coenzyme A catalyzed by E2pCD was observed with a rate constant of 199 s(-1), comparable with the rate of NADH production in the PDHc reaction. Hence, neither reductive acetylation of E2p nor acetyl transfer within E2p is rate-limiting. 4) An unprecedented finding is that although no interaction could be detected between E1p and E2pCD by itself, a domain-induced interaction was identified on E1p active centers upon assembly with E2p and C-terminally truncated E2p proteins by hydrogen/deuterium exchange mass spectrometry. The inclusion of each additional domain of E2p strengthened the interaction with E1p, and the interaction was strongest with intact E2p. E2p domain-induced changes at the E1p active site were also manifested by the appearance of a circular dichroism band characteristic of the canonical 4'-aminopyrimidine tautomer of bound thiamin diphosphate (AP).
Collapse
Affiliation(s)
- Junjie Wang
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Natalia S Nemeria
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Krishnamoorthy Chandrasekhar
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Sowmini Kumaran
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Palaniappa Arjunan
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Shelley Reynolds
- the Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Guillermo Calero
- the Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Roman Brukh
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Lazaros Kakalis
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - William Furey
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, the Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240, and
| | - Frank Jordan
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102,
| |
Collapse
|
30
|
Chandrasekhar K, Wang J, Arjunan P, Sax M, Park YH, Nemeria NS, Kumaran S, Song J, Jordan F, Furey W. Insight to the interaction of the dihydrolipoamide acetyltransferase (E2) core with the peripheral components in the Escherichia coli pyruvate dehydrogenase complex via multifaceted structural approaches. J Biol Chem 2013; 288:15402-17. [PMID: 23580650 DOI: 10.1074/jbc.m113.466789] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multifaceted structural approaches were undertaken to investigate interaction of the E2 component with E3 and E1 components from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), as a representative of the PDHc from Gram-negative bacteria. The crystal structure of E3 at 2.5 Å resolution reveals similarity to other E3 structures and was an important starting point for understanding interaction surfaces between E3 and E2. Biochemical studies revealed that R129E-E2 and R150E-E2 substitutions in the peripheral subunit-binding domain (PSBD) of E2 greatly diminished PDHc activity, affected interactions with E3 and E1 components, and affected reductive acetylation of E2. Because crystal structures are unavailable for any complete E2-containing complexes, peptide-specific hydrogen/deuterium exchange mass spectrometry was used to identify loci of interactions between 3-lipoyl E2 and E3. Two peptides from the PSBD, including Arg-129, and three peptides from E3 displayed statistically significant reductions in deuterium uptake resulting from interaction between E3 and E2. Of the peptides identified on E3, two were from the catalytic site, and the third was from the interface domain, which for all known E3 structures is believed to interact with the PSBD. NMR clearly demonstrates that there is no change in the lipoyl domain structure on complexation with E3. This is the first instance where the entire wild-type E2 component was employed to understand interactions with E3. A model for PSBD-E3 binding was independently constructed and found to be consistent with the importance of Arg-129, as well as revealing other electrostatic interactions likely stabilizing this complex.
Collapse
Affiliation(s)
- Krishnamoorthy Chandrasekhar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Berman HM. Creating a community resource for protein science. Protein Sci 2012; 21:1587-96. [PMID: 22969036 PMCID: PMC3527698 DOI: 10.1002/pro.2154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/30/2012] [Indexed: 12/13/2022]
Abstract
In addition to being one of the early pioneers in protein crystallography, Carl Brändén made significant contributions to science education with his elegant and beautifully illustrated book Introduction to Protein Structure (Brändén and Tooze, New York: Garland, 1991). It is truly an honor to receive this award in their names. This award and the 40th anniversary of the Protein Data Bank (PDB; Berman et al., Structure 2012;20:391-396) have given me an opportunity to reflect on the various components that have contributed to building a resource for protein science and to try to quantify the impact of having PDB data openly available.
Collapse
Affiliation(s)
- Helen M Berman
- Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
32
|
Shim DJ, Nemeria NS, Balakrishnan A, Patel H, Song J, Wang J, Jordan F, Farinas ET. Assignment of function to histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; substitutions that lead to acceptance of substrates lacking the 5-carboxyl group. Biochemistry 2011; 50:7705-9. [PMID: 21809826 DOI: 10.1021/bi200936n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first component (E1o) of the Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) was engineered to accept substrates lacking the 5-carboxylate group by subjecting H260 and H298 to saturation mutagenesis. Apparently, H260 is required for substrate recognition, but H298 could be replaced with hydrophobic residues of similar molecular volume. To interrogate whether the second component would allow synthesis of acyl-coenzyme A derivatives, hybrid complexes consisting of recombinant components of OGDHc (o) and pyruvate dehydrogenase (p) enzymes were constructed, suggesting that a different component is the "gatekeeper" for specificity for these two multienzyme complexes in bacteria, E1p for pyruvate but E2o for 2-oxoglutarate.
Collapse
Affiliation(s)
- Da Jeong Shim
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments.
Collapse
|
34
|
The E2 domain of OdhA of Corynebacterium glutamicum has succinyltransferase activity dependent on lipoyl residues of the acetyltransferase AceF. J Bacteriol 2010; 192:5203-11. [PMID: 20675489 DOI: 10.1128/jb.00597-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxoglutarate dehydrogenase (ODH) and pyruvate dehydrogenase (PDH) complexes catalyze key reactions in central metabolism, and in Corynebacterium glutamicum there is indication of an unusual supercomplex consisting of AceE (E1), AceF (E2), and Lpd (E3) together with OdhA. OdhA is a fusion protein of additional E1 and E2 domains, and odhA orthologs are present in all Corynebacterineae, including, for instance, Mycobacterium tuberculosis. Here we show that deletion of any of the individual domains of OdhA in C. glutamicum resulted in loss of ODH activity, whereas PDH was still functional. On the other hand, deletion of AceF disabled both PDH activity and ODH activity as well, although isolated AceF protein had solely transacetylase activity and no transsuccinylase activity. Surprisingly, the isolated OdhA protein was inactive with 2-oxoglutarate as the substrate, but it gained transsuccinylase activity upon addition of dihydrolipoamide. Further enzymatic analysis of mutant proteins and mutant cells revealed that OdhA specifically catalyzes the E1 and E2 reaction to convert 2-oxoglutarate to succinyl-coenzyme A (CoA) but fully relies on the lipoyl residues provided by AceF involved in the reactions to convert pyruvate to acetyl-CoA. It therefore appears that in the putative supercomplex in C. glutamicum, in addition to dihydrolipoyl dehydrogenase E3, lipoyl domains are also shared, thus confirming the unique evolutionary position of bacteria such as C. glutamicum and M. tuberculosis.
Collapse
|
35
|
Periplasmic cold expression and one-step purification of human dihydrolipoamide dehydrogenase. Protein Expr Purif 2009; 63:50-7. [DOI: 10.1016/j.pep.2008.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 11/16/2022]
|
36
|
Nakai T, Kuramitsu S, Kamiya N. Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes. J Biochem 2008; 143:747-58. [PMID: 18316329 DOI: 10.1093/jb/mvn033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pyruvate dehydrogenase (PDH), branched-chain 2-oxo acid dehydrogenase (BCDH) and 2-oxoglutarate dehydrogenase (OGDH) are multienzyme complexes that play crucial roles in several common metabolic pathways. These enzymes belong to a family of 2-oxo acid dehydrogenase complexes that contain multiple copies of three different components (E1, E2 and E3). For the Thermus thermophilus enzymes, depending on its substrate specificity (pyruvate, branched-chain 2-oxo acid or 2-oxoglutarate), each complex has distinctive E1 (E1p, E1b or E1o) and E2 (E2p, E2b or E2o) components and one of the two possible E3 components (E3b and E3o). (The suffixes, p, b and o identify their respective enzymes, PDH, BCDH and OGDH.) Our biochemical characterization demonstrates that only three specific E3*E2 complexes can form (E3b*E2p, E3b*E2b and E3o*E2o). X-ray analyses of complexes formed between the E3 components and the peripheral subunit-binding domains (PSBDs), derived from the corresponding E2-binding partners, reveal that E3b interacts with E2p and E2b in essentially the same manner as observed for Geobacillus stearothermophilus E3*E2p, whereas E3o interacts with E2o in a novel fashion. The buried intermolecular surfaces of the E3b*PSBDp/b and E3o*PSBDo complexes differ in size, shape and charge distribution and thus, these differences presumably confer the binding specificities for the complexes.
Collapse
Affiliation(s)
- Tadashi Nakai
- RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan.
| | | | | |
Collapse
|
37
|
Wang ZJ, Xu XP, Fan KQ, Jia CJ, Yang KQ. Sample preparation for two-dimensional blue native/SDS polyacrylamide gel electrophoresis in the identification of Streptomyces coelicolor cytoplasmic protein complexes. ACTA ACUST UNITED AC 2007; 70:565-72. [PMID: 17399796 DOI: 10.1016/j.jbbm.2007.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 11/28/2006] [Accepted: 01/07/2007] [Indexed: 10/23/2022]
Abstract
Ammonium sulfate precipitation was tested as a sample preparation step for BN-PAGE analyses of S. coelicolor cytoplasmic protein complexes. A procedure of sample preparation compatible with two-dimensional BN/SDS-PAGE was established and used to visualize protein complexes. To validate the sample preparation procedure, representative protein complexes were identified. Several previously characterized protein complexes were rediscovered and their reported oligomeric states reconfirmed. In addition, we identified new but plausible interactions that have never been reported before. Our work provides useful reference for the wide application of BN-PAGE in protein interaction study.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, PR China.
| | | | | | | | | |
Collapse
|
38
|
Frank RAW, Price AJ, Northrop FD, Perham RN, Luisi BF. Crystal structure of the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex. J Mol Biol 2007; 368:639-51. [PMID: 17367808 PMCID: PMC7611002 DOI: 10.1016/j.jmb.2007.01.080] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 11/28/2022]
Abstract
The thiamine-dependent E1o component (EC 1.2.4.2) of the 2-oxoglutarate dehydrogenase complex catalyses a rate-limiting step of the tricarboxylic acid cycle (TCA) of aerobically respiring organisms. We describe the crystal structure of Escherichia coli E1o in its apo and holo forms at 2.6 A and 3.5 A resolution, respectively. The structures reveal the characteristic fold that binds thiamine diphosphate and resemble closely the alpha(2)beta(2) hetero-tetrameric E1 components of other 2-oxo acid dehydrogenase complexes, except that in E1o, the alpha and beta subunits are fused as a single polypeptide. The extended segment that links the alpha-like and beta-like domains forms a pocket occupied by AMP, which is recognised specifically. Also distinctive to E1o are N-terminal extensions to the core fold, and which may mediate interactions with other components of the 2-oxoglutarate dehydrogenase multienzyme complex. The active site pocket contains a group of three histidine residues and one serine that appear to confer substrate specificity and the capacity to accommodate the TCA metabolite oxaloacetate. Oxaloacetate inhibits E1o activity at physiological concentrations, and we suggest that the inhibition may allow coordinated activity within the TCA cycle. We discuss the implications for metabolic control in facultative anaerobes, and for energy homeostasis of the mammalian brain.
Collapse
|
39
|
Kato M, Wynn RM, Chuang JL, Brautigam CA, Custorio M, Chuang DT. A synchronized substrate-gating mechanism revealed by cubic-core structure of the bovine branched-chain alpha-ketoacid dehydrogenase complex. EMBO J 2006; 25:5983-94. [PMID: 17124494 PMCID: PMC1698891 DOI: 10.1038/sj.emboj.7601444] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 10/19/2006] [Indexed: 01/07/2023] Open
Abstract
The dihydrolipoamide acyltransferase (E2b) component of the branched-chain alpha-ketoacid dehydrogenase complex forms a cubic scaffold that catalyzes acyltransfer from S-acyldihydrolipoamide to CoA to produce acyl-CoA. We have determined the first crystal structures of a mammalian (bovine) E2b core domain with and without a bound CoA or acyl-CoA. These structures reveal both hydrophobic and the previously unreported ionic interactions between two-fold-related trimers that build up the cubic core. The entrance of the dihydrolipoamide-binding site in a 30-A long active-site channel is closed in the apo and acyl-CoA-bound structures. CoA binding to one entrance of the channel promotes a conformational change in the channel, resulting in the opening of the opposite dihydrolipoamide gate. Binding experiments show that the affinity of the E2b core for dihydrolipoamide is markedly increased in the presence of CoA. The result buttresses the model that CoA binding is responsible for the opening of the dihydrolipoamide gate. We suggest that this gating mechanism synchronizes the binding of the two substrates to the active-site channel, which serves as a feed-forward switch to coordinate the E2b-catalyzed acyltransfer reaction.
Collapse
Affiliation(s)
- Masato Kato
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Max Wynn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacinta L Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chad A Brautigam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Myra Custorio
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA. Tel.: +1 214 648 2457; Fax: +1 214 648 8856; E-mail:
| |
Collapse
|
40
|
Murphy GE, Jensen GJ. Electron Cryotomography of the E. coli Pyruvate and 2-Oxoglutarate Dehydrogenase Complexes. Structure 2005; 13:1765-73. [PMID: 16338405 DOI: 10.1016/j.str.2005.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/27/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
The E. coli pyruvate and 2-oxoglutarate dehydrogenases are two closely related, large complexes that exemplify a growing number of multiprotein "machines" whose domains have been studied extensively and modeled in atomic detail, but whose quaternary structures have remained unclear for lack of an effective imaging technology. Here, electron cryotomography was used to show that the E1 and E3 subunits of these complexes are flexibly tethered approximately 11 nm away from the E2 core. This result demonstrates unambiguously that electron cryotomography can reveal the relative positions of features as small as 80 kDa in individual complexes, elucidating quaternary structure and conformational flexibility.
Collapse
Affiliation(s)
- Gavin E Murphy
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
41
|
Rey S, Gardy JL, Brinkman FSL. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria. BMC Genomics 2005; 6:162. [PMID: 16288665 PMCID: PMC1314894 DOI: 10.1186/1471-2164-6-162] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 11/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of a bacterial protein's subcellular localization (SCL) is important for genome annotation, function prediction and drug or vaccine target identification. Subcellular fractionation techniques combined with recent proteomics technology permits the identification of large numbers of proteins from distinct bacterial compartments. However, the fractionation of a complex structure like the cell into several subcellular compartments is not a trivial task. Contamination from other compartments may occur, and some proteins may reside in multiple localizations. New computational methods have been reported over the past few years that now permit much more accurate, genome-wide analysis of the SCL of protein sequences deduced from genomes. There is a need to compare such computational methods with laboratory proteomics approaches to identify the most effective current approach for genome-wide localization characterization and annotation. RESULTS In this study, ten subcellular proteome analyses of bacterial compartments were reviewed. PSORTb version 2.0 was used to computationally predict the localization of proteins reported in these publications, and these computational predictions were then compared to the localizations determined by the proteomics study. By using a combined approach, we were able to identify a number of contaminants and proteins with dual localizations, and were able to more accurately identify membrane subproteomes. Our results allowed us to estimate the precision level of laboratory subproteome studies and we show here that, on average, recent high-precision computational methods such as PSORTb now have a lower error rate than laboratory methods. CONCLUSION We have performed the first focused comparison of genome-wide proteomic and computational methods for subcellular localization identification, and show that computational methods have now attained a level of precision that is exceeding that of high-throughput laboratory approaches. We note that analysis of all cellular fractions collectively is required to effectively provide localization information from laboratory studies, and we propose an overall approach to genome-wide subcellular localization characterization that capitalizes on the complementary nature of current laboratory and computational methods.
Collapse
Affiliation(s)
- Sébastien Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Jennifer L Gardy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Fiona SL Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
42
|
Rajashankar KR, Bryk R, Kniewel R, Buglino JA, Nathan CF, Lima CD. Crystal Structure and Functional Analysis of Lipoamide Dehydrogenase from Mycobacterium tuberculosis. J Biol Chem 2005; 280:33977-83. [PMID: 16093239 DOI: 10.1074/jbc.m507466200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the 2.4 A crystal structure for lipoamide dehydrogenase encoded by lpdC from Mycobacterium tuberculosis. Based on the Lpd structure and sequence alignment between bacterial and eukaryotic Lpd sequences, we generated single point mutations in Lpd and assayed the resulting proteins for their ability to catalyze lipoamide reduction/oxidation alone and in complex with other proteins that participate in pyruvate dehydrogenase and peroxidase activities. The results suggest that amino acid residues conserved in mycobacterial species but not conserved in eukaryotic Lpd family members modulate either or both activities and include Arg-93, His-98, Lys-103, and His-386. In addition, Arg-93 and His-386 are involved in forming both "open" and "closed" active site conformations, suggesting that these residues play a role in dynamically regulating Lpd function. Taken together, these data suggest protein surfaces that should be considered while developing strategies for inhibiting this enzyme.
Collapse
|
43
|
Frank RAW, Pratap JV, Pei XY, Perham RN, Luisi BF. The Molecular Origins of Specificity in the Assembly of a Multienzyme Complex. Structure 2005; 13:1119-30. [PMID: 16084384 DOI: 10.1016/j.str.2005.04.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 04/18/2005] [Accepted: 04/29/2005] [Indexed: 11/30/2022]
Abstract
The pyruvate dehydrogenase (PDH) multienzyme complex is central to oxidative metabolism. We present the first crystal structure of a complex between pyruvate decarboxylase (E1) and the peripheral subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2). The interface is dominated by a "charge zipper" of networked salt bridges. Remarkably, the PSBD uses essentially the same zipper to alternately recognize the dihydrolipoyl dehydrogenase (E3) component of the PDH assembly. The PSBD achieves this dual recognition largely through the addition of a network of interfacial water molecules unique to the E1-PSBD complex. These structural comparisons illuminate our observations that the formation of this water-rich E1-E2 interface is largely enthalpy driven, whereas that of the E3-PSBD complex (from which water is excluded) is entropy driven. Interfacial water molecules thus diversify surface complementarity and contribute to avidity, enthalpically. Additionally, the E1-PSBD structure provides insight into the organization and active site coupling within the approximately 9 MDa PDH complex.
Collapse
Affiliation(s)
- René A W Frank
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Allen MD, Broadhurst RW, Solomon RG, Perham RN. Interaction of the E2 and E3 components of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Use of a truncated protein domain in NMR spectroscopy. FEBS J 2005; 272:259-68. [PMID: 15634348 DOI: 10.1111/j.1432-1033.2004.04405.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A (15)N-labelled peripheral-subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2p) and the dimer of a solubilized interface domain (E3int) derived from the dihydrolipoyl dehydrogenase (E3) were used to investigate the basis of the interaction of E2p with E3 in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Thirteen of the 55 amino acids in the PSBD show significant changes in either or both of the (15)N and (1)H amide chemical shifts when the PSBD forms a 1 : 1 complex with E3int. All of the 13 amino acids reside near the N-terminus of helix I of PSBD or in the loop region between helix II and helix III. (15)N backbone dynamics experiments on PSBD indicate that the structured region extends from Val129 to Ala168, with limited structure present in residues Asn126 to Arg128. The presence of structure in the region before helix I was confirmed by a refinement of the NMR structure of uncomplexed PSBD. Comparison of the crystal structure of the PSBD bound to E3 with the solution structure of uncomplexed PSBD described here indicates that the PSBD undergoes almost no conformational change upon binding to E3. These studies exemplify and validate the novel use of a solubilized, truncated protein domain in overcoming the limitations of high molecular mass on NMR spectroscopy.
Collapse
Affiliation(s)
- Mark D Allen
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, UK
| | | | | | | |
Collapse
|
45
|
Kong Y, Ming D, Wu Y, Stoops JK, Zhou ZH, Ma J. Conformational flexibility of pyruvate dehydrogenase complexes: a computational analysis by quantized elastic deformational model. J Mol Biol 2003; 330:129-35. [PMID: 12818207 DOI: 10.1016/s0022-2836(03)00555-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) is one of the largest multienzyme complexes known and consists of a dodecahedral E2 core to which other components are attached. We report the results of applying a new computational method, quantized elastic deformational model, to simulating the conformational fluctuations of the truncated E2 core, using low-resolution electron cryomicroscopy density maps. The motional features are well reproduced; especially, the symmetric breathing mode revealed in simulation is nearly identical with what was observed experimentally. Structural details of the motions of the trimeric building blocks, which are critical to facilitating the global expansion and contraction of the complex, were revealed. Using the low-resolution maps from electron cryomicroscopy reconstructions, the simulations showed a picture of the motional mechanism of the PDC core, which is an example without precedent of thermally activated global dynamics. Moreover, the current results support an earlier suggestion that, at low resolution and without the use of amino acid sequence and atomic coordinates, it is possible for computer simulations to provide an accurate description of protein dynamics.
Collapse
Affiliation(s)
- Yifei Kong
- Graduate Program of Structural and Computational Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hengeveld AF, van Mierlo CPM, van den Hooven HW, Visser AJWG, de Kok A. Functional and structural characterization of a synthetic peptide representing the N-terminal domain of prokaryotic pyruvate dehydrogenase. Biochemistry 2002; 41:7490-500. [PMID: 12044183 DOI: 10.1021/bi012172u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic peptide (Nterm-E1p) is used to characterize the structure and function of the N-terminal region (amino acid residues 4-45) of the pyruvate dehydrogenase component (E1p) from the pyruvate dehydrogenase multienzyme complex (PDHC) from Azotobacter vinelandii. Activity and binding studies established that Nterm-E1p specifically competes with E1p for binding to the dihydrolipoyl transacetylase component (E2p) of PDHC. Moreover, the experiments show that the N-terminal region of E1p forms an independent folding domain that functions as a binding domain. CD measurements, two-dimensional (2D) (1)H NMR analysis, and secondary structure prediction all indicate that Nterm-E1p has a high alpha-helical content. Here a structural model of the N-terminal domain is proposed. The peptide is present in two conformations, the population of which depends on the sample conditions. The conformations are designated "unfolded" at pH > or =6 and "folded" at pH <5. The 2D (1)H TOCSY spectrum of a mixture of folded and unfolded Nterm-E1p shows exchange cross-peaks that "link" the folded and unfolded state of Nterm-E1p. The rate of exchange between the two species is in the range of 0.5-5 s(-1). Sharp resonances in the NMR spectra of wild-type E1p demonstrate that this 200 kDa enzyme contains highly flexible regions. The observed dynamic character of E1p and of Nterm-E1p is likely required for the binding of the E1p dimer to the two different binding sites on E2p. Moreover, the flexibility might be essential in sustaining the allosteric properties of the enzyme bound in the complex.
Collapse
Affiliation(s)
- Annechien F Hengeveld
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
47
|
Mariño-Ramírez L, Hu JC. Isolation and mapping of self-assembling protein domains encoded by the Saccharomyces cerevisiae genome using lambda repressor fusions. Yeast 2002; 19:641-50. [PMID: 11967834 PMCID: PMC1955323 DOI: 10.1002/yea.867] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Understanding how proteins are able to form stable complexes is of fundamental interest from the perspective of protein structure and function. Here we show that lambda repressor fusions can be used to identify and characterize homotypic interaction domains encoded by the genome of Saccharomyces cerevisiae, using a selection for polypeptides that can drive the assembly of the DNA binding domain of bacteriophage lambda repressor. Three high complexity libraries were constructed by cloning random fragments of S. cerevisiae DNA as lambda repressor fusions. Repressor fusions encoding homotypic interactions were recovered, identifying oligomerization units in 35 yeast proteins. Seventeen of these interaction domains have not been previously reported, while the other 18 represent homotypic interactions that have been characterized at varying levels of detail. The novel interactions include several predicted coiled-coils as well as domains of unknown structure. With the availability of genomic sequences it should be possible to apply this approach, which provides information about protein-protein interactions that is complementary to that obtained from yeast two-hybrid screens, on a genome-wide scale in yeast or other organisms where large-scale protein-protein interaction data is not available.
Collapse
Affiliation(s)
- Leonardo Mariño-Ramírez
- Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University, College Station, TX 77843-2128, USA
| | | |
Collapse
|
48
|
Abstract
Plant cells are unique in that they contain four species of alpha-ketoacid dehydrogenase complex: plastidial pyruvate dehydrogenase, mitochondrial pyruvate dehydrogenase, alpha-ketoglutarate (2-oxoglutarate) dehydrogenase, and branched-chain alpha-ketoacid dehydrogenase. All complexes include multiple copies of three components: an alpha-ketoacid dehydrogenase/decarboxylase, a dihydrolipoyl acyltransferase, and a dihydrolipoyl dehydrogenase. The mitochondrial pyruvate dehydrogenase complex additionally includes intrinsic regulatory protein-kinase and -phosphatase enzymes. The acyltransferases form the intricate geometric core structures of the complexes. Substrate channeling plus active-site coupling combine to greatly enhance the catalytic efficiency of these complexes. These alpha-ketoacid dehydrogenase complexes occupy key positions in intermediary metabolism, and a basic understanding of their properties is critical to genetic and metabolic engineering. The current status of knowledge of the biochemical, regulatory, structural, genomic, and evolutionary aspects of these fascinating multienzyme complexes are reviewed.
Collapse
Affiliation(s)
- Brian P Mooney
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
49
|
Zhou ZH, McCarthy DB, O'Connor CM, Reed LJ, Stoops JK. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc Natl Acad Sci U S A 2001; 98:14802-7. [PMID: 11752427 PMCID: PMC64939 DOI: 10.1073/pnas.011597698] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional reconstruction of the bovine kidney pyruvate dehydrogenase complex (M(r) approximately 7.8 x 10(6)) comprising about 22 molecules of pyruvate dehydrogenase (E(1)) and about 6 molecules of dihydrolipoamide dehydrogenase (E(3)) with its binding protein associated with the 60-subunit dihydrolipoamide acetyltransferase (E(2)) core provides considerable insight into the structural and functional organization of the largest multienzyme complex known. The structure shows that potentially 60 centers for acetyl-CoA synthesis are organized in sets of three at each of the 20 vertices of the pentagonal dodecahedral core. These centers consist of three E(1) molecules bound to one E(2) trimer adjacent to an E(3) molecule in each of 12 pentagonal openings. The E(1) components are anchored to the E(1)-binding domain of the E(2) subunits through an approximately 50-A-long linker. Three of these linkers emanate from the outside edges of the triangular base of the E(2) trimer and form a cage around its base that may shelter the lipoyl domains and the E(1) and E(2) active sites. The docking of the atomic structures of E(1) and the E(1) binding and lipoyl domains of E(2) in the electron microscopy map gives a good fit and indicates that the E(1) active site is approximately 95 A above the base of the trimer. We propose that the lipoyl domains and its tether (swinging arm) rotate about the E(1)-binding domain of E(2,) which is centrally located 45-50 A from the E(1), E(2), and E(3) active sites, and that the highly flexible breathing core augments the transfer of intermediates between active sites.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Zhou ZH, Liao W, Cheng RH, Lawson JE, McCarthy DB, Reed LJ, Stoops JK. Direct evidence for the size and conformational variability of the pyruvate dehydrogenase complex revealed by three-dimensional electron microscopy. The "breathing" core and its functional relationship to protein dynamics. J Biol Chem 2001; 276:21704-13. [PMID: 11285267 DOI: 10.1074/jbc.m101765200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural studies by three-dimensional electron microscopy of the Saccharomyces cerevisiae truncated dihydrolipoamide acetyltransferase (tE(2)) component of the pyruvate dehydrogenase complex reveal an extraordinary example of protein dynamics. The tE(2) forms a 60-subunit core with the morphology of a pentagonal dodecahedron and consists of 20 cone-shaped trimers interconnected by 30 bridges. Frozen-hydrated and stained molecules of tE(2) in the same field vary in size approximately 20%. Analyses of the data show that the size distribution is bell-shaped, and there is an approximately 40-A difference in the diameter of the smallest and largest structures that corresponds to approximately 14 A of variation in the length of the bridge between interconnected trimers. Companion studies of mature E(2) show that the complex of the intact subunit exhibits a similar size variation. The x-ray structure of Bacillus stearothermophilus tE(2) shows that there is an approximately 10-A gap between adjacent trimers and that the trimers are interconnected by the potentially flexible C-terminal ends of two adjacent subunits. We propose that this springlike feature is involved in a thermally driven expansion and contraction of the core and, since it appears to be a common feature in the phylogeny of pyruvate dehydrogenase complexes, protein dynamics is an integral component of the function of these multienzyme complexes.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Pathology and Laboratory Medicine, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|