1
|
Lee Y, Gu S, Al-Hashimi HM. Insights into the A-C Mismatch Conformational Ensemble in Duplex DNA and its Role in Genetic Processes through a Structure-based Review. J Mol Biol 2024; 436:168710. [PMID: 39009073 DOI: 10.1016/j.jmb.2024.168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.
Collapse
Affiliation(s)
- Yeongjoon Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America
| | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America.
| |
Collapse
|
2
|
Kersten C, Archambault P, Köhler LP. Assessment of Nucleobase Protomeric and Tautomeric States in Nucleic Acid Structures for Interaction Analysis and Structure-Based Ligand Design. J Chem Inf Model 2024; 64:4485-4499. [PMID: 38766733 DOI: 10.1021/acs.jcim.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
With increasing interest in RNA as a therapeutic and a potential target, the role of RNA structures has become more important. Even slight changes in nucleobases, such as modifications or protomeric and tautomeric states, can have a large impact on RNA structure and function, while local environments in turn affect protonation and tautomerization. In this work, the application of empirical tools for pKa and tautomer prediction for RNA modifications was elucidated and compared with ab initio quantum mechanics (QM) methods and expanded toward macromolecular RNA structures, where QM is no longer feasible. In this regard, the Protonate3D functionality within the molecular operating environment (MOE) was expanded for nucleobase protomer and tautomer predictions and applied to reported examples of altered protonation states depending on the local environment. Overall, observations of nonstandard protomers and tautomers were well reproduced, including structural C+G:C(A) and A+GG motifs, several mismatches, and protonation of adenosine or cytidine as the general acid in nucleolytic ribozymes. Special cases, such as cobalt hexamine-soaked complexes or the deprotonation of guanosine as the general base in nucleolytic ribozymes, proved to be challenging. The collected set of examples shall serve as a starting point for the development of further RNA protonation prediction tools, while the presented Protonate3D implementation already delivers reasonable protonation predictions for RNA and DNA macromolecules. For cases where higher accuracy is needed, like following catalytic pathways of ribozymes, incorporation of QM-based methods can build upon the Protonate3D-generated starting structures. Likewise, this protonation prediction can be used for structure-based RNA-ligand design approaches.
Collapse
Affiliation(s)
- Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University, BioZentrum I, Hanns-Dieter-Hüsch.Weg 15, 55128 Mainz, Germany
| | - Philippe Archambault
- Chemical Computing Group, 910-1010 Sherbrooke W., Montreal, Quebec, Canada H3A 2R7
| | - Luca P Köhler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
3
|
Streckerová T, Kurfürst J, Curtis EA. Single-round deoxyribozyme discovery. Nucleic Acids Res 2021; 49:6971-6981. [PMID: 34133739 PMCID: PMC8266665 DOI: 10.1093/nar/gkab504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 01/23/2023] Open
Abstract
Artificial evolution experiments typically use libraries of ∼1015 sequences and require multiple rounds of selection to identify rare variants with a desired activity. Based on the simple structures of some aptamers and nucleic acid enzymes, we hypothesized that functional motifs could be isolated from significantly smaller libraries in a single round of selection followed by high-throughput sequencing. To test this idea, we investigated the catalytic potential of DNA architectures in which twelve or fifteen randomized positions were embedded in a scaffold present in all library members. After incubating in either the presence or absence of lead (which promotes the nonenzymatic cleavage of RNA), library members that cleaved themselves at an RNA linkage were purified by PAGE and characterized by high-throughput sequencing. These selections yielded deoxyribozymes with activities 8- to 30-fold lower than those previously isolated under similar conditions from libraries containing 1014 different sequences, indicating that the disadvantage of using a less diverse pool can be surprisingly small. It was also possible to elucidate the sequence requirements and secondary structures of deoxyribozymes without performing additional experiments. Due to its relative simplicity, we anticipate that this approach will accelerate the discovery of new catalytic DNA and RNA motifs.
Collapse
Affiliation(s)
- Tereza Streckerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 160 00, Czech Republic
| | - Jaroslav Kurfürst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| |
Collapse
|
4
|
Hoogstraten CG, Terrazas M, Aviñó A, White NA, Sumita M. Dynamics-Function Analysis in Catalytic RNA Using NMR Spin Relaxation and Conformationally Restricted Nucleotides. Methods Mol Biol 2021; 2167:183-202. [PMID: 32712921 DOI: 10.1007/978-1-0716-0716-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A full understanding of biomolecular function requires an analysis of both the dynamic properties of the system of interest and the identification of those dynamics that are required for function. We describe NMR methods based on metabolically directed specific isotope labeling for the identification of molecular disorder and/or conformational transitions on the RNA backbone ribose groups. These analyses are complemented by the use of synthetic covalently modified nucleotides constrained to a single sugar pucker, which allow functional assessment of dynamics by selectively removing a minor conformer identified by NMR from the structural ensemble.
Collapse
Affiliation(s)
- Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| | - Montserrat Terrazas
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.,Joint IRB-BSC Program in Computational Biology, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.,Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Minako Sumita
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
5
|
Marušič M, Schlagnitweit J, Petzold K. RNA Dynamics by NMR Spectroscopy. Chembiochem 2019; 20:2685-2710. [PMID: 30997719 PMCID: PMC6899578 DOI: 10.1002/cbic.201900072] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 12/22/2022]
Abstract
An ever-increasing number of functional RNAs require a mechanistic understanding. RNA function relies on changes in its structure, so-called dynamics. To reveal dynamic processes and higher energy structures, new NMR methods have been developed to elucidate these dynamics in RNA with atomic resolution. In this Review, we provide an introduction to dynamics novices and an overview of methods that access most dynamic timescales, from picoseconds to hours. Examples are provided as well as insight into theory, data acquisition and analysis for these different methods. Using this broad spectrum of methodology, unprecedented detail and invisible structures have been obtained and are reviewed here. RNA, though often more complicated and therefore neglected, also provides a great system to study structural changes, as these RNA structural changes are more easily defined-Lego like-than in proteins, hence the numerous revelations of RNA excited states.
Collapse
Affiliation(s)
- Maja Marušič
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| |
Collapse
|
6
|
White NA, Sumita M, Marquez VE, Hoogstraten CG. Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme. RNA (NEW YORK, N.Y.) 2018; 24:1542-1554. [PMID: 30111534 PMCID: PMC6191710 DOI: 10.1261/rna.067579.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
In common with other self-cleaving RNAs, the lead-dependent ribozyme (leadzyme) undergoes dynamic fluctuations to a chemically activated conformation. We explored the connection between conformational dynamics and self-cleavage function in the leadzyme using a combination of NMR spin-relaxation analysis of ribose groups and conformational restriction via chemical modification. The functional studies were performed with a North-methanocarbacytidine modification that prevents fluctuations to C2'-endo conformations while maintaining an intact 2'-hydroxyl nucleophile. Spin-relaxation data demonstrate that the active-site Cyt-6 undergoes conformational exchange attributed to sampling of a minor C2'-endo state with an exchange lifetime on the order of microseconds to tens of microseconds. A conformationally restricted species in which the fluctuations to the minor species are interrupted shows a drastic decrease in self-cleavage activity. Taken together, these data indicate that dynamic sampling of a minor species at the active site of this ribozyme, and likely of related naturally occurring motifs, is strongly coupled to catalytic function. The combination of NMR dynamics analysis with functional probing via conformational restriction is a general methodology for dissecting dynamics-function relationships in RNA.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Minako Sumita
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Victor E Marquez
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Abstract
In addition to storage of genetic information, DNA can also catalyze various reactions. RNA-cleaving DNAzymes are the catalytic DNAs discovered the earliest, and they can cleave RNAs in a sequence-specific manner. Owing to their great potential in medical therapeutics, virus control, and gene silencing for disease treatments, RNA-cleaving DNAzymes have been extensively studied; however, the mechanistic understandings of their substrate recognition and catalysis remain elusive. Here, we report three catalytic form 8-17 DNAzyme crystal structures. 8-17 DNAzyme adopts a V-shape fold, and the Pb2+ cofactor is bound at the pre-organized pocket. The structures with Pb2+ and the modification at the cleavage site captured the pre-catalytic state of the RNA cleavage reaction, illustrating the unexpected Pb2+-accelerated catalysis, intrinsic tertiary interactions, and molecular kink at the active site. Our studies reveal that DNA is capable of forming a compacted structure and that the functionality-limited bio-polymer can have a novel solution for a functional need in catalysis.
Collapse
|
8
|
Ekimoto T, Matubayasi N, Ikeguchi M. Finite-size effect on the charging free energy of protein in explicit solvent. J Chem Theory Comput 2016; 11:215-23. [PMID: 26574219 DOI: 10.1021/ct5008394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The finite-size effect in periodic system is examined for the charging free energy of protein in explicit solvent over a variety of charged states. The key to the finite-size correction is the self-energy, which is defined as the interaction energy of the solute with its own periodic images and the neutralizing background. By employing the thermodynamic-integration method with systematically varied sizes of the unit cell of molecular dynamics (MD) simulations, we show for ubiquitin that the self-energy corrects the finite-size effect on the charging free energy within 1 kcal/mol at total charges of -5e, -1e, neutral, and +1e and within 5 kcal/mol even for a highly charged state with +8e. We then sought the additional correction from the solvation effect using the numerical solution to the Poisson equation of the protein with implicit solvent. This correction reduces the cell-size dependence of the charging free energy at +8e to 3 kcal/mol and is well expressed as the self-energy divided by the dielectric constant of solvent water.
Collapse
Affiliation(s)
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University , Katsura, Kyoto 615-8520, Japan
| | | |
Collapse
|
9
|
Vandivier LE, Anderson SJ, Foley SW, Gregory BD. The Conservation and Function of RNA Secondary Structure in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:463-88. [PMID: 26865341 PMCID: PMC5125251 DOI: 10.1146/annurev-arplant-043015-111754] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance (NMR) imaging to chemical and nuclease probing methods. Combining these latter methods with high-throughput sequencing has enabled them to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure.
Collapse
Affiliation(s)
- Lee E Vandivier
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | - Shawn W Foley
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Brian D Gregory
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
10
|
Hansen MR, Hanson P, Pardi A. Pf1 filamentous phage as an alignment tool for generating local and global structural information in nucleic acids. J Biomol Struct Dyn 2016; 17 Suppl 1:365-9. [PMID: 22607445 DOI: 10.1080/07391102.2000.10506642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract Pf1 filamentous phage represent a simple versatile method for generating partially ordered macromolecules in solution. The phage allow tunable degrees of alignment of macromolecules under a wide range of temperature and solvent conditions. The negatively charged phage are ideal for aligning negatively charged nucleic acids and these phage-nucleic acid solutions are stable indefinitely. We have used Pf1 phage to align various DNA and RNA molecules in solution for measurement of dipolar coupling interactions. These dipolar couplings can be used to improve the local structure of nucleic acids. More importantly they also contain information on the global structure, such as DNA bending, which presently cannot be obtained by standard NMR methods. The principles involved in using Pf1 phage to generate solutions of partially order macromolecules will be discussed. The use of (1)H-(1)H, (1)H-(13)C and (1)H-(15)N dipolar couplings for generating angle constraints for structure refinement of nucleic acids will also be discussed.
Collapse
Affiliation(s)
- M R Hansen
- a Department of Chemistry and Biochemistry , University of Colorado at Boulder , Boulder , CO , 80309-0215
| | | | | |
Collapse
|
11
|
Saran R, Chen Q, Liu J. Searching for a DNAzyme Version of the Leadzyme. J Mol Evol 2015; 81:235-44. [PMID: 26458991 DOI: 10.1007/s00239-015-9702-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022]
Abstract
The leadzyme refers to a small ribozyme that cleaves a RNA substrate in the presence of Pb(2+). In an optimized form, the enzyme strand contains only two unpaired nucleotides. Most RNA-cleaving DNAzymes are much longer. Two classical Pb(2+)-dependent DNAzymes, 8-17 and GR5, both contain around 15 nucleotides in the enzyme loop. This is also the size of most RNA-cleaving DNAzymes that use other metal ions for their activity. Such large enzyme loops make spectroscopic characterization difficult and so far no high-resolution structural information is available for active DNAzymes. The goal of this work is to search for DNAzymes with smaller enzyme loops. A simple replacement of the ribonucleotides in the leadzyme by deoxyribonucleotides failed to produce an active enzyme. A Pb(2+)-dependent in vitro selection combined with deep sequencing was then performed. After sequence alignment and DNA folding, a new DNAzyme named PbE22 was identified, which contains only 5 nucleotides in the enzyme catalytic loop. The biochemical characteristics of PbE22 were compared with those of the leadzyme and the two classical Pb(2+)-dependent DNAzymes. The rate of PbE22 rises with increase in Pb(2+) concentration, being 1.7 h(-1) in the presence of 100 μM Pb(2+) and reaching 3.5 h(-1) at 500 µM Pb(2+). The log of PbE22 rate rises linearly in a pH-dependent fashion (20 µM Pb(2+)) with a slope of 0.74. In addition, many other abundant sequences in the final library were studied. These sequences are quite varied in length and nucleotide composition, but some contain a few conserved nucleotides consistent with the GR5 structure. Interestingly, some sequences are active with Pb(2+) but none of them were active with even 50 mM Mg(2+), which is reminiscent of the difference between the GR5 and 8-17 DNAzymes.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Qingyun Chen
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
12
|
Qi X, Xia T. Structure, dynamics, and mechanism of the lead-dependent ribozyme. Biomol Concepts 2015; 2:305-14. [PMID: 25962038 DOI: 10.1515/bmc.2011.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/06/2011] [Indexed: 12/24/2022] Open
Abstract
Leadzyme is a small catalytic RNA that was identified by in vitro selection for Pb2+-dependent cleavage from a tRNA library. Leadzyme employs a unique two-step Pb2+-specific mechanism to cleave within its active site. NMR and crystal structures of the active site revealed different folding patterns, but neither features the in-line alignment for attack by the 2'-OH nucleophilic group. These experimentally determined structures most likely represent ground states and are catalytically inactive. There are significant dynamics of the active site and the motif samples multiple conformations at the ground states. Various metal ion binding sites have been identified, including one that may be occupied by a catalytic Pb2+. Based on functional group analysis, a computational model of the transition state has been proposed. This model features a unique base triple that is consistent with sequence and functional group requirements for catalysis. This structure is likely only populated transiently, but imposing appropriate conformational constraints may significantly stabilize this state thereby promoting catalysis. Other ions may inhibit the cleavage by competing for the Pb2+ binding site, or by stabilizing the ground state thereby suppressing its transition to the catalytically active conformation. Some rare earth ions can enhance the reaction via an unknown mechanism. Because of its unique chemistry and dynamic behavior, leadzyme can continue to serve as an excellent model system for teaching us RNA biology and chemistry.
Collapse
|
13
|
Popović M, Greenbaum NL. Role of helical constraints of the EBS1-IBS1 duplex of a group II intron on demarcation of the 5' splice site. RNA (NEW YORK, N.Y.) 2014; 20:24-35. [PMID: 24243113 PMCID: PMC3866642 DOI: 10.1261/rna.039701.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
Recognition of the 5' splice site by group II introns involves pairing between an exon binding sequence (EBS) 1 within the ID3 stem-loop of domain 1 and a complementary sequence at the 3' end of exon 1 (IBS1). To identify the molecular basis for splice site definition of a group IIB ai5γ intron, we probed the solution structure of the ID3 stem-loop alone and upon binding of its IBS1 target by solution NMR. The ID3 stem was structured. The base of the ID3 loop was stacked but displayed a highly flexible EBS1 region. The flexibility of EBS1 appears to be a general feature of the ai5γ and the smaller Oceanobacillus iheyensis (O.i.) intron and may help in effective search of conformational space and prevent errors in splicing as a result of fortuitous base-pairing. Binding of IBS1 results in formation of a structured seven base pair duplex that terminates at the 5' splice site in spite of the potential for additional A-U and G•U pairs. Comparison of these data with conformational features of EBS1-IBS1 duplexes extracted from published structures suggests that termination of the duplex and definition of the splice site are governed by constraints of the helical geometry within the ID3 loop. This feature and flexibility of the uncomplexed ID3 loop appear to be common for both the ai5γ and O.i. introns and may help to fine-tune elements of recognition in group II introns.
Collapse
Affiliation(s)
- Milena Popović
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Nancy L. Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
14
|
Nomura Y, Tanaka Y, Fukunaga JI, Fujiwara K, Chiba M, Iibuchi H, Tanaka T, Nakamura Y, Kawai G, Kozu T, Sakamoto T. Solution structure of a DNA mimicking motif of an RNA aptamer against transcription factor AML1 Runt domain. J Biochem 2013; 154:513-9. [PMID: 23997091 DOI: 10.1093/jb/mvt082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AML1/RUNX1 is an essential transcription factor involved in the differentiation of hematopoietic cells. AML1 binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. In a previous study, we obtained RNA aptamers against the AML1 Runt domain by systematic evolution of ligands by exponential enrichment and revealed that RNA aptamers exhibit higher affinity for the Runt domain than that for RDE and possess the 5'-GCGMGNN-3' and 5'-N'N'CCAC-3' conserved motif (M: A or C; N and N' form Watson-Crick base pairs) that is important for Runt domain binding. In this study, to understand the structural basis of recognition of the Runt domain by the aptamer motif, the solution structure of a 22-mer RNA was determined using nuclear magnetic resonance. The motif contains the AH(+)-C mismatch and base triple and adopts an unusual backbone structure. Structural analysis of the aptamer motif indicated that the aptamer binds to the Runt domain by mimicking the RDE sequence and structure. Our data should enhance the understanding of the structural basis of DNA mimicry by RNA molecules.
Collapse
Affiliation(s)
- Yusuke Nomura
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016; CREST, Japan Science and Technology Agency, Saitama 332-0012; Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806; and Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Goh GB, Knight JL, Brooks CL. Towards Accurate Prediction of Protonation Equilibrium of Nucleic Acids. J Phys Chem Lett 2013; 4:760-766. [PMID: 23526474 PMCID: PMC3601767 DOI: 10.1021/jz400078d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The role of protonated nucleotides in modulating the pH-dependent properties of nucleic acids is one of the emerging frontiers in the field of nucleic acid biology. The recent development of a constant pH molecular dynamics simulation (CPHMDMSλD) framework for simulating nucleic acids has provided a tool for realistic simulations of pH-dependent dynamics. We enhanced the CPHMDMSλD framework with pH-based replica exchange (pH-REX), which significantly improves the sampling of both titration and spatial coordinates. The results from our pKa calculations for the GAAA tetraloop, which was predicted with lower accuracy previously due to sampling challenges, demonstrates that pH-REX reduces the average unsigned error (AUE) to 0.7 pKa units, and the error of the most poorly predicted residue A17 was drastically reduced from 2.9 to 1.2 pKa unit. Lastly, we show that pH-REX CPHMDMSλD simulations can be used to identify the dominant conformation of nucleic acid structures in alternate pH environments. This work suggests that pH-REX CPHMDMSλD simulations provide a practical tool for predicting nucleic acid protonation equilibrium from first-principles, and offering structural and mechanistic insight into the study of pH-dependent properties of nucleic acids.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
16
|
Abstract
The role of pH-dependent protonation equilibrium in modulating RNA dynamics and function is one of the key unanswered questions in RNA biology. Molecular dynamics (MD) simulations can provide insight into the mechanistic roles of protonated nucleotides, but it is only capable of modeling fixed protonation states and requires prior knowledge of the key residue's protonation state. Recently, we developed a framework for constant pH molecular dynamics simulations (CPHMDMSλD) of nucleic acids, where the nucleotides' protonation states are modeled as dynamic variables that are coupled to the structural dynamics of the RNA. In the present study, we demonstrate the application of CPHMDMSλD to the lead-dependent ribozyme; establishing the validity of this approach for modeling complex RNA structures. We show that CPHMDMSλD accurately predicts the direction of the pKa shifts and reproduces experimentally-measured microscopic pKa values with an average unsigned error of 1.3 pKa units. The effects of coupled titration states in RNA structures are modeled, and the importance of conformation sampling is highlighted. The general accuracy of CPHMDMSλD simulations in reproducing pH-dependent observables reported in this work demonstrates that constant pH simulations provides a powerful tool to investigate pH-dependent processes in nucleic acids.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
17
|
Bahrami A, Clos LJ, Markley JL, Butcher SE, Eghbalnia HR. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts. JOURNAL OF BIOMOLECULAR NMR 2012; 52:289-302. [PMID: 22359049 PMCID: PMC3480180 DOI: 10.1007/s10858-012-9603-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/08/2012] [Indexed: 05/13/2023]
Abstract
The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ((1)H-(15)N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ((1)H-(1)H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a majority of the NMR resonances, even when the initial predictions are only modestly accurate. RNA-PAIRS is available as a public web-server at http://pine.nmrfam.wisc.edu/RNA/.
Collapse
Affiliation(s)
- Arash Bahrami
- National Magnetic Resonance Facility at Madison, Madison, WI, USA
| | - Lawrence J. Clos
- National Magnetic Resonance Facility at Madison, Madison, WI, USA
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, Madison, WI, USA. Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel E. Butcher
- National Magnetic Resonance Facility at Madison, Madison, WI, USA. Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hamid R. Eghbalnia
- Department of Molecular and Cellular Physiology, University of Cincinnati, P.O. Box 670576, Cincinnati, OH 45267-0576, USA
| |
Collapse
|
18
|
Sokoloski JE, Godfrey SA, Dombrowski SE, Bevilacqua PC. Prevalence of syn nucleobases in the active sites of functional RNAs. RNA (NEW YORK, N.Y.) 2011; 17:1775-87. [PMID: 21873463 PMCID: PMC3185911 DOI: 10.1261/rna.2759911] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biological RNAs, like their DNA counterparts, contain helical stretches, which have standard Watson-Crick base pairs in the anti conformation. Most functional RNAs also adopt geometries with far greater complexity such as bulges, loops, and multihelical junctions. Occasionally, nucleobases in these regions populate the syn conformation wherein the base resides close to or over the ribose sugar, which leads to a more compact state. The importance of the syn conformation to RNA function is largely unknown. In this study, we analyze 51 RNAs with tertiary structure, including aptamers, riboswitches, ribozymes, and ribosomal RNAs, for number, location, and properties of syn nucleobases. These RNAs represent the set of nonoverlapping, moderate- to high-resolution structures available at present. We find that syn nucleobases are much more common among purines than pyrimidines, and that they favor C2'-endo-like conformations especially among those nucleobases in the intermediate syn conformation. Strikingly, most syn nucleobases participate in tertiary stacking and base-pairing interactions: Inspection of RNA structures revealed that the majority of the syn nucleobases are in regions assigned to function, with many syn nucleobases interacting directly with a ligand or ribozyme active site. These observations suggest that judicious placement of conformationally restricted nucleotides biased into the syn conformation could enhance RNA folding and catalysis. Such changes could also be useful for locking RNAs into functionally competent folds for use in X-ray crystallography and NMR.
Collapse
Affiliation(s)
- Joshua E. Sokoloski
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Stephanie A. Godfrey
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah E. Dombrowski
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C. Bevilacqua
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
19
|
Chen G, Kennedy SD, Turner DH. A CA(+) pair adjacent to a sheared GA or AA pair stabilizes size-symmetric RNA internal loops. Biochemistry 2009; 48:5738-52. [PMID: 19485416 PMCID: PMC2697601 DOI: 10.1021/bi8019405] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
RNA internal loops are often important sites for folding and function. Residues in internal loops can have pKa values shifted close to neutral pH because of the local structural environment. A series of RNA internal loops were studied at different pH by UV absorbance versus temperature melting experiments and imino proton nuclear magnetic resonance (NMR). A stabilizing CA pair forms at pH 7 in the and nearest neighbors when the CA pair is the first noncanonical pair (loop-terminal pair) in 3 × 3 nucleotide and larger size-symmetric internal loops. These and nearest neighbors, with CA adjacent to a closing Watson−Crick pair, are further stabilized when the pH is lowered from 7 to 5.5. The results are consistent with a significantly larger fraction (from ∼20% at pH 7 to ∼90% at pH 5.5) of adenines being protonated at the N1 position to form stabilizing wobble CA+ pairs adjacent to a sheared GA or AA pair. The noncanonical pair adjacent to the GA pair in can either stabilize or destabilize the loop, consistent with the sequence-dependent thermodynamics of GA pairs. No significant pH-dependent stabilization is found for most of the other nearest neighbor combinations involving CA pairs (e.g., and ), which is consistent with the formation of various nonwobble pairs observed in different local sequence contexts in crystal and NMR structures. A revised free-energy model, including stabilization by wobble CA+ pairs, is derived for predicting stabilities of medium-size RNA internal loops.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
20
|
Kadakkuzha BM, Zhao L, Xia T. Conformational distribution and ultrafast base dynamics of leadzyme. Biochemistry 2009; 48:3807-9. [PMID: 19301929 DOI: 10.1021/bi900256q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dynamic nature of ribozymes represents a significant challenge in elucidating their structure-dynamics-function relationship. Here, using femtosecond time-resolved spectroscopy and other biophysical tools, we demonstrate that the active site of leadzyme does not have a unique structure, but rather samples an ensemble of conformations that undergo picosecond structural changes. Various base modifications have a profound context-dependent impact on the catalysis.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | |
Collapse
|
21
|
Chen JH, Gong B, Bevilacqua PC, Carey PR, Golden BL. A catalytic metal ion interacts with the cleavage Site G.U wobble in the HDV ribozyme. Biochemistry 2009; 48:1498-507. [PMID: 19178151 DOI: 10.1021/bi8020108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HDV ribozyme self-cleaves by a chemical mechanism involving general acid-base catalysis to generate 2',3'-cyclic phosphate and 5'-hydroxyl termini. Biochemical studies from several laboratories have implicated C75 as the general acid and hydrated magnesium as the general base. We have previously shown that C75 has a pK(a) shifted >2 pH units toward neutrality [Gong, B., Chen, J. H., Chase, E., Chadalavada, D. M., Yajima, R., Golden, B. L., Bevilacqua, P. C., and Carey, P. R. (2007) J. Am. Chem. Soc. 129, 13335-13342], while in crystal structures, it is well-positioned for proton transfer. However, no evidence for a hydrated magnesium poised to serve as a general base in the reaction has been observed in high-resolution crystal structures of various reaction states and mutants. Herein, we use solution kinetic experiments and parallel Raman crystallographic studies to examine the effects of pH on the rate and Mg(2+) binding properties of wild-type and 7-deazaguanosine mutants of the HDV ribozyme. These data suggest that a previously unobserved hydrated magnesium ion interacts with N7 of the cleavage site G.U wobble base pair. Integrating this metal ion binding site with the available crystal structures provides a new three-dimensional model for the active site of the ribozyme that accommodates all available biochemical data and appears competent for catalysis. The position of this metal is consistent with a role of a magnesium-bound hydroxide as a general base as dictated by biochemical data.
Collapse
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
22
|
Bindewald E, Grunewald C, Boyle B, O’Connor M, Shapiro BA. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J Mol Graph Model 2008; 27:299-308. [PMID: 18838281 PMCID: PMC3744370 DOI: 10.1016/j.jmgm.2008.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 05/19/2008] [Indexed: 01/24/2023]
Abstract
One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.
Collapse
Affiliation(s)
- Eckart Bindewald
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Calvin Grunewald
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Brett Boyle
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Mary O’Connor
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
23
|
Julien KR, Sumita M, Chen PH, Laird-Offringa IA, Hoogstraten CG. Conformationally restricted nucleotides as a probe of structure-function relationships in RNA. RNA (NEW YORK, N.Y.) 2008; 14:1632-1643. [PMID: 18596252 PMCID: PMC2491483 DOI: 10.1261/rna.866408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/17/2008] [Indexed: 05/26/2023]
Abstract
We introduce the use of commercially available locked nucleic acids (LNAs) as a functional probe in RNA. LNA nucleotides contain a covalent linkage that restricts the pseudorotation phase of the ribose to C3'-endo (A-form). Introduction of an LNA at a single site thus allows the role of ribose structure and dynamics in RNA function to be assessed. We apply LNA probing at multiple sites to analyze self-cleavage in the lead-dependent ribozyme (leadzyme), thermodynamic stability in the UUCG tetraloop, and the kinetics of recognition of U1A protein by U1 snRNA hairpin II. In the leadzyme, locking a single guanosine residue into the C3'-endo pucker increases the catalytic rate by a factor of 20, despite the fact that X-ray crystallographic and NMR structures of the leadzyme ground state reported a C2'-endo conformation at this site. These results strongly suggest that a conformational change at this position is critical for catalytic function. Functional insights obtained in all three systems demonstrate the highly general applicability of LNA probing in analysis of the role of ribose orientation in RNA structure, dynamics, and function.
Collapse
Affiliation(s)
- Kristine R Julien
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
24
|
Yajima R, Proctor DJ, Kierzek R, Kierzek E, Bevilacqua PC. A conformationally restricted guanosine analog reveals the catalytic relevance of three structures of an RNA enzyme. ACTA ACUST UNITED AC 2008; 14:23-30. [PMID: 17254949 DOI: 10.1016/j.chembiol.2006.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/26/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022]
Abstract
Recent studies indicate that RNA function can be enhanced by the incorporation of conformationally restricted nucleotides. Herein, we use 8-bromoguanosine, a nucleotide analog with an enforced syn conformation, to elucidate the catalytic relevance of ribozyme structures. We chose to study the lead-dependent ribozyme (leadzyme) because structural models derived from NMR, crystal, and computational (MC-Sym) studies differ in which of the three active site guanosines (G7, G9, or G24) have a syn glycosidic torsion angle. Kinetic assays were carried out on 8BrG variants at these three guanosine positions. These data indicate that an 8BrG24 leadzyme is hyperactive, while 8BrG7 and 8BrG9 leadzymes have reduced activity. These findings support the computational model of the leadzyme, rather than the NMR and crystal structures, as being the most relevant to phosphodiester bond cleavage.
Collapse
Affiliation(s)
- Rieko Yajima
- Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
25
|
Trantírek L, Caha E, Kaderávek P, Fiala R. NMR (13)C-relaxation study of base and sugar dynamics in GCAA RNA hairpin tetraloop. J Biomol Struct Dyn 2008; 25:243-52. [PMID: 17937486 DOI: 10.1080/07391102.2007.10507173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Intramolecular dynamics of a 14-mer RNA hairpin including GCAA tetraloop was investigated by (13)C NMR relaxation. R(1) and R(1rho) relaxation rates were measured for all protonated base carbons as well as for C1' carbons of ribose sugars at several magnetic field strengths. The data has been interpreted in the framework of modelfree analysis [G. Lipari and A. Szabo. J Am Chem Soc 104, 4546-4559 (1982); G. Lipari and A. Szabo. J Am Chem Soc 104, 4559-4570 (1982)] characterizing the internal dynamics of the molecule by order parameters and correlation times for fast motions on picosecond to nanosecond time scale and by contributions of the chemical exchange. The fast dynamics reveals a rather rigid stem and a significantly more flexible loop. The cytosine and the last adenine bases in the loop as well as all the loop sugars exhibit a significant contribution of conformational equilibrium on microsecond to millisecond time scale. The high R(1rho) values detected on both base and sugar moieties of the loop indicate coordinated motions in this region. A semiquantitative analysis of the conformational equilibrium suggests the exchange rates on the order of 10(4) s(-1). The results are in general agreement with dynamics studies of GAAA loops by NMR relaxation and fluorescent spectroscopy and support the data on the GCAA loop dynamics obtained by MD simulations.
Collapse
Affiliation(s)
- Lukás Trantírek
- Faculty of Biological Sciences, University of South Bohemia and Biology Centre, Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- David D Boehr
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
27
|
Tolbert BS, Kennedy SD, Schroeder SJ, Krugh TR, Turner DH. NMR structures of (rGCUGAGGCU)2 and (rGCGGAUGCU)2: probing the structural features that shape the thermodynamic stability of GA pairs. Biochemistry 2007; 46:1511-22. [PMID: 17279616 PMCID: PMC4032317 DOI: 10.1021/bi061350m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NMR structures of [see text] and [see text] are reported. The internal loop, [see text], is about 2 kcal/mol more stable than [see text] at 37 degrees C. The duplexes assemble into similar global folds characterized by the formation of tandem sheared GA pairs. The different stabilities of the loops are accompanied by differences in the local structure of the closing GU pairs. In the [see text] internal loop, the GU pairs form canonical wobble configurations with two hydrogen bonds, whereas in [see text], the GU pairs form a single hydrogen bond involving the amino group, GH22, and the carbonyl group, UO4. This pairing is similar to the GU closing pair of the 690 hairpin loop found in E. coli 16S rRNA. The [see text] and [see text] structures reveal how the subtle interplay between stacking and hydrogen bonding determines sequence dependent conformation and thermodynamic stability. Thus, this work provides structural and thermodynamic benchmarks for theoreticians in the ongoing effort to understand the sequence dependence of RNA physicochemical properties.
Collapse
Affiliation(s)
- Blanton S. Tolbert
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Susan J. Schroeder
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019-3051
| | - Thomas R. Krugh
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- To whom correspondence should be addressed to: , (Phone) 585-275-3207, (Fax) 585-276-0205
| |
Collapse
|
28
|
Tang CL, Alexov E, Pyle AM, Honig B. Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. J Mol Biol 2006; 366:1475-96. [PMID: 17223134 DOI: 10.1016/j.jmb.2006.12.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/29/2006] [Accepted: 12/01/2006] [Indexed: 12/01/2022]
Abstract
pK(a) calculations based on the Poisson-Boltzmann equation have been widely used to study proteins and, more recently, DNA. However, much less attention has been paid to the calculation of pK(a) shifts in RNA. There is accumulating evidence that protonated nucleotides can stabilize RNA structure and participate in enzyme catalysis within ribozymes. Here, we calculate the pK(a) shifts of nucleotides in RNA structures using numerical solutions to the Poisson-Boltzmann equation. We find that significant shifts are predicted for several nucleotides in two catalytic RNAs, the hairpin ribozyme and the hepatitis delta virus ribozyme, and that the shifts are likely to be related to their functions. We explore how different structural environments shift the pK(a)s of nucleotides from their solution values. RNA structures appear to use two basic strategies to shift pK(a)s: (a) the formation of compact structural motifs with structurally-conserved, electrostatic interactions; and (b) the arrangement of the phosphodiester backbone to focus negative electrostatic potential in specific regions.
Collapse
Affiliation(s)
- Christopher L Tang
- Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
29
|
Johnson JE, Julien KR, Hoogstraten CG. Alternate-site isotopic labeling of ribonucleotides for NMR studies of ribose conformational dynamics in RNA. JOURNAL OF BIOMOLECULAR NMR 2006; 35:261-74. [PMID: 16937241 DOI: 10.1007/s10858-006-9041-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/02/2006] [Indexed: 05/04/2023]
Abstract
Heteronuclear NMR spin relaxation studies of conformational dynamics are coming into increasing use to help understand the functions of ribozymes and other RNAs. Due to strong 13C-13C magnetic interactions within the ribose ring, however, these studies have thus far largely been limited to (13)C and (15)N resonances on the nucleotide base side chains. We report here the application of the alternate-site (13)C isotopic labeling scheme, pioneered by LeMaster for relaxation studies of amino acid side chains, to nucleic acid systems. We have used different strains of E. coli to prepare mononucleotides containing (13)C label in one of two patterns: Either C1' or C2' in addition to C4', termed (1'/2',4') labeling, or nearly complete labeling at the C2' and C4' sites only, termed (2',4') labeling. These patterns provide isolated 13C-1H spin systems on the labeled carbon atoms and thus allow spin relaxation studies without interference from 13C-13C scalar or dipolar coupling. Using relaxation studies of AMP dissolved in glycerol at varying temperature to produce systems with correlation times characteristic of different size RNAs, we demonstrate the removal of errors due to 13C-13C interaction in T (1) measurements of larger nucleic acids and in T (1rho) measurements in RNA molecules. By extending the applicability of spin relaxation measurements to backbone ribose groups, this technology should greatly improve the flexibility and completeness of NMR analyses of conformational dynamics in RNA.
Collapse
Affiliation(s)
- James E Johnson
- Department of Biochemistry & Molecular Biology, Michigan State University, 212 Biochemistry Building, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
30
|
Vallurupalli P, Kay LE. A suite of 2H NMR spin relaxation experiments for the measurement of RNA dynamics. J Am Chem Soc 2005; 127:6893-901. [PMID: 15869313 DOI: 10.1021/ja0427799] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A suite of (2)H-based spin relaxation NMR experiments is presented for the measurement of molecular dynamics in a site-specific manner in uniformly (13)C, randomly fractionally deuterated ( approximately 50%) RNA molecules. The experiments quantify (2)H R(1) and R(2) relaxation rates that can subsequently be analyzed to obtain information about dynamics on a pico- to nanosecond time scale. Sensitivity permitting, the consistency of the data can be evaluated by measuring all five rates that are accessible for a spin 1 particle and establishing that the rates obey relations that are predicted from theory. The utility of the methodology is demonstrated with studies of the dynamics of a 14-mer RNA containing the UUCG tetraloop at temperatures of 25 and 5 degrees C. The high quality of the data, even at 5 degrees C, suggests that the experiments will be of use for the study of RNA molecules that are as large as 30 nucleotides.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Protein Engineering Network Centers of Excellence and the Departments of Medical Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | |
Collapse
|
31
|
Moody EM, Lecomte JTJ, Bevilacqua PC. Linkage between proton binding and folding in RNA: a thermodynamic framework and its experimental application for investigating pKa shifting. RNA (NEW YORK, N.Y.) 2005; 11:157-72. [PMID: 15659356 PMCID: PMC1370705 DOI: 10.1261/rna.7177505] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/17/2004] [Indexed: 05/21/2023]
Abstract
Perturbation of pKa values can change the favored protonation states of the nucleobases at biological pH and thereby modulate the function of RNA and DNA molecules. In an effort to understand the driving forces for pKa shifting specific to nucleic acids, we developed a thermodynamic framework that relates proton binding to the nucleobases and the helix-coil transition. Key features that emerge from the treatment are a comprehensive description of all the actions of proton binding on RNA folding: acid and alkaline denaturation of the helix and pKa shifting in the folded state. Practical experimental approaches for measuring pKas from thermal denaturation experiments are developed. Microscopic pka values (where ka is the acid dissociation constant) for the unfolded state were determined directly by experiments on unstructured oligonucleotides, which led to a macroscopic pKa for the ensemble of unfolded states shifted toward neutrality. The formalism was then applied to pH-dependent UV melting data for model DNA oligonucleotides. Folded-state pka) values were in good agreement with the outcome of pH titrations, and the acid and alkaline denaturation regions were well described. The formalism developed here is similar to that of Draper and coworkers for Mg2+ binding to RNA, except that the unfolded state is described explicitly owing to the presence of specific proton-binding sites on the bases. A principal conclusion is that it should be possible to attain large pKa shifts by designing RNA molecules that fold cooperatively.
Collapse
Affiliation(s)
- Ellen M Moody
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
32
|
Reiter NJ, Blad H, Abildgaard F, Butcher SE. Dynamics in the U6 RNA intramolecular stem-loop: a base flipping conformational change. Biochemistry 2004; 43:13739-47. [PMID: 15504036 DOI: 10.1021/bi048815y] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The U6 RNA intramolecular stem-loop (ISL) structure is an essential component of the spliceosome and binds a metal ion required for pre-messenger RNA splicing. The metal binding internal loop region of the stem contains a partially protonated C67-(+)A79 base pair (pK(a) = 6.5) and an unpaired U80 nucleotide that is stacked within the helix at pH 7.0. Here, we determine that protonation occurs with an exchange lifetime of approximately 20 micros and report the solution structures of the U6 ISL at pH 5.7. The differences between pH 5.7 and 7.0 structures reveal that the pH change significantly alters the RNA conformation. At lower pH, U80 is flipped out into the major groove. Base flipping involves a purine stacking interaction of flanking nucleotides, inversion of the sugar pucker 5' to the flipped base, and phosphodiester backbone rearrangement. Analysis of residual dipolar couplings as a function of pH indicates that base flipping is not restricted to a local conformational change. Rather, base flipping alters the alignment of the upper and lower helices. The alternative conformations of the U6 ISL reveal striking structural similarities with both the NMR and crystal structures of domain 5 of self-splicing group II introns. These structures suggest that base flipping at an essential metal binding site is a conserved feature of the splicing machinery for both the spliceosome and group II self-splicing introns.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
33
|
Flinders J, Dieckmann T. The solution structure of the VS ribozyme active site loop reveals a dynamic "hot-spot". J Mol Biol 2004; 341:935-49. [PMID: 15328609 DOI: 10.1016/j.jmb.2004.06.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 11/19/2022]
Abstract
The VS ribozyme is the largest ribozyme in its class and is also the least structurally characterized thus far. The current working model of the VS ribozyme locates the active site in stem-loop VI. The solution structure of this active site loop was determined using high resolution NMR spectroscopy. The structure reveals that the ground-state conformation of the active site differs significantly from that determined previously from chemical structure probing and mutational analysis of the ribozyme in its active conformation, which contains several looped out bases. In contrast, the base-pairing scheme found for the isolated loop contains three mismatched base-pairs: an A+-C, a G-U wobble, and a sheared G-A base-pair and no looped out bases. Dynamics observed within the active site loop provide insight into the mechanism by which the RNA can rearrange its secondary structure into an "activated" conformation prior to cleavage. These findings lend support to the idea that RNA secondary structure is more fluid than once believed and that a better understanding of structure and dynamic features of ribozymes is required to unravel the intricacies of their catalytic abilities.
Collapse
Affiliation(s)
- Jeremy Flinders
- Department of Chemistry, University of California at Davis, 95616, USA
| | | |
Collapse
|
34
|
D'Souza V, Dey A, Habib D, Summers MF. NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J Mol Biol 2004; 337:427-42. [PMID: 15003457 DOI: 10.1016/j.jmb.2004.01.037] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 01/19/2004] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
The full length, positive-strand genome of the Moloney Murine Leukemia Virus contains a "core encapsidation signal" that is essential for efficient genome packaging during virus assembly. We have determined the structure of a 101-nucleotide RNA that contains this signal (called mPsi) using a novel isotope-edited NMR approach. The method is robust and should be generally applicable to larger RNAs. mPsi folds into three stem loops, two of which (SL-C and SL-D) co-stack to form an extended helix. The third stem loop (SL-B) is connected to SL-C by a flexible, four-nucleotide linker. The structure contains five mismatched base-pairs, an unusual C.CG base-triple platform, and a novel "A-minor K-turn," in which unpaired adenosine bases A340 and A341 of a GGAA bulge pack in the minor groove of a proximal stem, and a bulged distal uridine (U319) forms a hydrogen bond with the phosphodiester of A341. Phylogenetic analyses indicate that these essential structural elements are conserved among the murine C-type retroviruses.
Collapse
Affiliation(s)
- Victoria D'Souza
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
35
|
Wedekind JE, McKay DB. Crystal structure of the leadzyme at 1.8 A resolution: metal ion binding and the implications for catalytic mechanism and allo site ion regulation. Biochemistry 2003; 42:9554-63. [PMID: 12911297 DOI: 10.1021/bi0300783] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The leadzyme is a small ribozyme, derived from in vitro selection, which catalyzes site specific, Pb(2+)-dependent RNA cleavage. Pb(2+) is required for activity; Mg(2+) inhibits activity, while many divalent and trivalent ions enhance it. The leadzyme structure consists of an RNA duplex interrupted by a trinucleotide bulge. Here, crystal structures determined to 1.8 A resolution, both with Mg(2+) as the sole divalent counterion and with Mg(2+) and Sr(2+) (which mimics Pb(2+) with respect to binding but not catalysis), reveal the metal ion interactions with both the ground state and precatalytic conformations of the leadzyme. Mg(H(2)O)(6)(2+) ions bridge complementary strands of the duplex at multiple locations by binding tandem purines of one RNA strand in the major groove. At one site, Mg(H(2)O)(6)(2+) ligates the phosphodiester backbone of the trinucleotide bulge in the ground state conformation, but not in the precatalytic conformation, suggesting (a) Mg(2+) may inhibit leadzyme activity by stabilizing the ground state and (b) metal ions which displace Mg(2+) from this site may activate the leadzyme. Binding of Sr(2+) to the presumed catalytic Pb(2+) site in the precatalytic leadzyme induces local structural changes in a manner that would facilitate alignment of the catalytic ribose 2'-hydroxyl with the scissile bond for cleavage. These data support a model wherein binding of a catalytic ion to a precatalytic conformation of the leadzyme, in conjunction with the flexibility of the trinucleotide bulge, may facilitate structural rearrangements around the scissle phosphodiester bond favoring configurations that allow bond cleavage.
Collapse
Affiliation(s)
- Joseph E Wedekind
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
36
|
Abstract
A detailed biochemical and mechanistic study of in vitro selected variants of 8-17 DNAzymes is presented. Even though the 8-17 DNAzyme motif has been obtained through in vitro selection under three different conditions involving 10 mM Mg(2+) (called 8-17), 0.5 mM Mg(2+)/50 mM histidine (called Mg5), or 100 microM Zn(2+) (called 17E), all variants are shown to be the most active with Pb(2+) (8-17: k(obs) approximately 0.5 min(-1); Mg5: k(obs) approximately 2 min(-1); 17E: k(obs) approximately 1 min(-1) with 200 microM Pb(2+) at pH 5.0). For the 17E variant of the 8-17 DNAzyme, the single-turnover rate constants followed the order of Pb(2+) >> Zn(2+) >> Mn(2+) approximately Co(2+) > Ni(2+) > Mg(2+) approximately Ca(2+) > Sr(2+) approximately Ba(2+). The catalytic rate is half-maximal at 13.5 microM Pb(2+), 0.97 mM Zn(2+), or 10.5 mM Mg(2+), suggesting that the metal-binding affinity of the DNAzymes is in the order of Pb(2+) > Zn(2+) > Mg(2+). The Pb(2+)-dependent activity increases linearly with pH and the slope of the plot of log k(obs) versus pH is approximately 1, suggesting a single deprotonation in the rate-limiting step of the reaction. Sequence variations of the DNAzyme confirm the importance of the G*T wobble pair, the two loops and the intervening stem in maintaining the active conformation of the system. While Mg(2+) and Zn(2+) catalyze only a transesterification reaction with formation of a product containing a 2',3'-cyclic phosphate, Pb(2+) catalyzes a transesterification reaction followed by hydrolysis of the 2',3'-cyclic phosphate. Although this two-step mechanism has shown to be operative in protein ribonucleases and in the leadzyme RNAzyme, it is now demonstrated for the first time that this DNAzyme may also use the same mechanism. Therefore, the two-step mechanism is observed in metalloenzymes of all classes, and this 8-17 DNAzyme provides a simple, stable, and cost-effective model system for understanding the structure of Pb(2+)-binding sites and their roles in the two-step mechanism.
Collapse
Affiliation(s)
- Andrea K Brown
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
37
|
Bondensgaard K, Mollova ET, Pardi A. The global conformation of the hammerhead ribozyme determined using residual dipolar couplings. Biochemistry 2002; 41:11532-42. [PMID: 12269797 DOI: 10.1021/bi012167q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The global structure of the hammerhead ribozyme was determined in the absence of Mg(2+) by solution NMR experiments. The hammerhead ribozyme motif forms a branched structure consisting of three helical stems connected to a catalytic core. The (1)H-(15)N and (1)H-(13)C residual dipolar couplings were measured in a set of differentially (15)N/(13)C-labeled ribozymes complexed with an unlabeled noncleavable substrate. The residual dipolar couplings provide orientation information on both the local and the global structure of the molecule. Analysis of the residual dipolar couplings demonstrated that the local structure of the three helical stems in solution is well modeled by an A-form conformation. However, the global structure of the hammerhead in solution in the absence of Mg(2+) is not consistent with the Y-shaped conformation observed in crystal structures of the hammerhead. The residual dipolar couplings for the helical stems were combined with standard NOE and J coupling constant NMR data from the catalytic core. The NOE data show formation of sheared G-A base pairs in domain 2. These NMR data were used to determine the global orientation of the three helical stems in the hammerhead. The hammerhead forms a rather extended structure under these conditions with a large angle between stems I and II ( approximately 153 degrees ), a smaller angle between stems II and III ( approximately 100 degrees ), and the smallest angle between stems I and III ( approximately 77 degrees ). The residual dipolar coupling data also contain information on the dynamics of the molecule and were used here to provide qualitative information on the flexibility of the helical domains in the hammerhead ribozyme-substrate complex.
Collapse
Affiliation(s)
- Kent Bondensgaard
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | |
Collapse
|
38
|
David L, Amara P, Field MJ, Major F. Parametrization of a force field for metals complexed to biomacromolecules: applications to Fe(II), Cu(II) and Pb(II). J Comput Aided Mol Des 2002; 16:635-51. [PMID: 12602955 DOI: 10.1023/a:1021962616650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although techniques for the simulation of biomolecules, such as proteins and RNAs, have greatly advanced in the last decade, modeling complexes of biomolecules with metal ions remains problematic. Precise calculations can be done with quantum mechanical methods but these are prohibitive for systems the size of macromolecules. More qualitative modeling can be done with molecular mechanical potentials but the parametrization of force fields for metals is often difficult, particularly if the bonding between the metal and the groups in its coordination shell has significant covalent character. In this paper we present a method for deriving bond and bond-angle parameters for metal complexes from experimental bond and bond-angle distributions obtained from the Cambridge Structural Database. In conjunction with this method, we also introduce a non-standard energy term of gaussian form that allows us to obtain a stable description of the coordination about a metal center during a simulation. The method was evaluated on Fe(II)-porphyrin complexes, on simple Cu(II) ion complexes and a number of complexes of the Pb(II) ion.
Collapse
Affiliation(s)
- Laurent David
- Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- L David
- Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
40
|
Sigel H, Bianchi EM, Corfù NA, Kinjo Y, Tribolet R, Martin RB. Stabilities and isomeric equilibria in solutions of monomeric metal-ion complexes of guanosine 5'-triphosphate (GTP4-) and inosine 5'-triphosphate (ITP4-) in comparison with those of adenosine 5'-triphosphate (ATP4-). Chemistry 2001; 7:3729-37. [PMID: 11575773 DOI: 10.1002/1521-3765(20010903)7:17<3729::aid-chem3729>3.0.co;2-e] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Under experimental conditions in which the self-association of the purine-nucleoside 5'-triphosphates (PuNTPs) GTP and ITP is negligible, potentiometric pH titrations were carried out to determine the stabilities of the M(H;PuNTP) and M(PuNTP)2-complexes where M2+ = Mg2+, Ca2+, Sr2+. Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ (I = 0.1 M, 25 degrees C). The stabilities of all M(GTP)2- and M(ITP)2- complexes are significantly larger than those of the corresponding complexes formed with pyrimidine-nucleoside 5'-triphosphates (PyNTPs), which had been determined previously under the same conditions. This increased complex stability is attributed, in agreement with previous 1H MNR shift studies, to the formation of macrochelates of the phosphate-coordinated metal ions with N7 of the purine residues. A similar enhanced stability (despite relatively large error limits) was observed for the M(H;PuNTP) complexes, in which H+ is bound to the terminal y-phosphate group, relative to the stability of the M(H;PyNTP)- species. The percentage of the macrochelated isomers in the M(GTP)2- and M(ITP)2- systems was quantified by employing the difference log KMM(PuNTP)-log KMM(PyNTP); the lowest and highest formation degrees of the macrochelates were observed for Mg(ITP)2- and Cu(GTP)2- with 17 +/- 11% and 97 +/- 1%, respectively. From previous studies of M(ATP)2- complexes, it is known that innersphere and outersphere macrochelates may form; that is, in the latter case a water molecule is between N7 and the phosphate-coordinated M2+. Similar conclusions are reached now by comparisons with earlier 1H MNR shift measurements, that is, that Mg(GTP)2- (21 +/- 11%), for example, exists largely in the form of an outersphere macrochelate and Zn(GTP)2- (68 +/- 4%) as an innersphere one. Generally, the overall percentage of macrochelate falls off for a given metal ion in the order M(GTP)2- > M(ITP)2- > M(ATP)2-; this is in accord with the decreasing basicity of N7 and the steric inhibition of the (C6)NH2 group in the adenine residue. Furthermore, although the absolute stability constants of the previously studied M(GMP), M(IMP), and M(AMP) complexes differ by about two to three log units from the present M(PuNTP)2- results, the formation degrees of the macrochelates are astonishingly similar for the two series of nucleotides for a given metal ion and purine-nucleobase residue. The conclusion that N7 of the guanine residue is an especially favored binding site for metal ions is also in accord with observations made for nucleic acids.
Collapse
Affiliation(s)
- H Sigel
- Institut für Anorganische Chemie, Universität Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
41
|
Zhang H, Fountain MA, Krugh TR. Structural characterization of a six-nucleotide RNA hairpin loop found in Escherichia coli, r(UUAAGU). Biochemistry 2001; 40:9879-86. [PMID: 11502181 DOI: 10.1021/bi011226x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding region of the Escherichia coli S2 ribosomal protein contains a conserved UUAAGU hairpin loop. The structure of the hairpin formed by the oligomer r(GCGU4U5A6A7G8U9CGCA), which has an r(UUAAGU) hairpin loop, was determined by NMR and molecular modeling techniques as part of a study aimed at characterizing the structure and thermodynamics of RNA hairpin loops. Thermodynamic data obtained from melting curves for this RNA oligomer show that it forms a hairpin in solution with the following parameters: DeltaH degrees = -42.8 +/- 2.2 kcal/mol, DeltaS degrees = -127.6 +/- 6.5 eu, and DeltaG degrees (37) = -3.3 +/- 0.2 kcal/mol. Two-dimensional NOESY WATERGATE spectra show an NOE between U imino protons, which suggests that U4 and U9 form a hydrogen bonded U.U pair. The U5(H2') proton shows NOEs to both the A6(H8) proton and the A7(H8) proton, which is consistent with formation of a "U" turn between nucleotides U5 and A6. An NOE between the A7(H2) proton and the U9(H4') proton shows the proximity of the A7 base to the U9 sugar, which is consistent with the structure determined for the six-nucleotide loop. In addition to having a hydrogen-bonded U.U pair as the first mismatch and a U turn, the r(UUAAGU) loop has the G8 base protruding into the solvent. The solution structure of the r(UUAAGU) loop is essentially identical to the structure of an identical loop found in the crystal structure of the 30S ribosomal subunit where the guanine in the loop is involved in tertiary interactions with RNA bases from adjacent regions [Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000) Nature 407, 327-339]. The similarity of the solution and solid-state structures of this hairpin loop suggests that formation of this hairpin may facilitate folding of 16S RNA.
Collapse
Affiliation(s)
- H Zhang
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | |
Collapse
|
42
|
Doherty EA, Doudna JA. Ribozyme structures and mechanisms. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:457-75. [PMID: 11441810 DOI: 10.1146/annurev.biophys.30.1.457] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
Collapse
Affiliation(s)
- E A Doherty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
43
|
Andersen AA, Collins RA. Intramolecular secondary structure rearrangement by the kissing interaction of the Neurospora VS ribozyme. Proc Natl Acad Sci U S A 2001; 98:7730-5. [PMID: 11427714 PMCID: PMC35410 DOI: 10.1073/pnas.141039198] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kissing interactions in RNA are formed when bases between two hairpin loops pair. Intra- and intermolecular kissing interactions are important in forming the tertiary or quaternary structure of many RNAs. Self-cleavage of the wild-type Varkud satellite (VS) ribozyme requires a kissing interaction between the hairpin loops of stem-loops I and V. In addition, self-cleavage requires a rearrangement of several base pairs at the base of stem I. We show that the kissing interaction is necessary for the secondary structure rearrangement of wild-type stem-loop I. Surprisingly, isolated stem-loop V in the absence of the rest of the ribozyme is sufficient to rearrange the secondary structure of isolated stem-loop I. In contrast to kissing interactions in other RNAs that are either confined to the loops or culminate in an extended intermolecular duplex, the VS kissing interaction causes changes in intramolecular base pairs within the target stem-loop.
Collapse
Affiliation(s)
- A A Andersen
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | |
Collapse
|
44
|
Gendron P, Lemieux S, Major F. Quantitative analysis of nucleic acid three-dimensional structures. J Mol Biol 2001; 308:919-36. [PMID: 11352582 DOI: 10.1006/jmbi.2001.4626] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new computer program to annotate DNA and RNA three-dimensional structures, MC-Annotate, is introduced. The goals of annotation are to efficiently extract and manipulate structural information, to simplify further structural analyses and searches, and to objectively represent structural knowledge. The input of MC-Annotate is a PDB formatted DNA or RNA three-dimensional structure. The output of MC-Annotate is composed of a structural graph that contains the annotations, and a series of HTML documents, one for each nucleotide conformation and base-base interaction present in the input structure. The atomic coordinates of all nucleotides and the homogeneous transformation matrices of all base-base interactions are stored in the structural graph. Symbolic classifications of nucleotide conformations, using sugar puckering modes and nitrogen base orientations around the glycosyl bond, and base-base interactions, using stacking and hydrogen bonding information, are introduced. Peculiarity factors of nucleotide conformations and base-base interactions are defined to indicate their marginalities with all other examples. The peculiarity factors allow us to identify irregular regions and possible stereochemical errors in 3-D structures without interactive visualization. The annotations attached to each nucleotide conformation include its class, its torsion angles, a distribution of the root-mean-square deviations with examples of the same class, the list of examples of the same class, and its peculiarity value. The annotations attached to each base-base interaction include its class, a distribution of distances with examples of the same class, the list of examples of the same class, and its peculiarity value. The distance between two homogeneous transformation matrices is evaluated using a new metric that distinguishes between the rotation and the translation of a transformation matrix in the context of nitrogen bases. MC-Annotate was used to build databases of nucleotide conformations and base-base interactions. It was applied to the ribosomal RNA fragment that binds to protein L11, which annotations revealed peculiar nucleotide conformations and base-base interactions in the regions where the RNA contacts the protein. The question of whether the current database of RNA three-dimensional structures is complete is addressed.
Collapse
Affiliation(s)
- P Gendron
- Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | | | | |
Collapse
|
45
|
Flinders J, Dieckmann T. A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA. J Mol Biol 2001; 308:665-79. [PMID: 11350168 DOI: 10.1006/jmbi.2001.4627] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The VS ribozyme is a 154 nucleotide sequence found in certain natural strains of Neurospora. The RNA can be divided into a substrate and a catalytic domain. Here we present the solution structure of the substrate RNA that is cleaved in a trans reaction by the catalytic domain in the presence of Mg2+. The 30 nucleotide substrate RNA forms a compact helix capped by a flexible loop. The cleavage site bulge contains three non-canonical base-pairs, including an A+.C pair with a protonated adenine. This adenine (A622) is a pH controlled conformational switch that opens up the internal loop at higher pH. The possible significance of this switch for substrate recognition and cleavage is discussed.
Collapse
Affiliation(s)
- J Flinders
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
46
|
MacDonald D, Herbert K, Zhang X, Pologruto T, Lu P, Polgruto T. Solution structure of an A-tract DNA bend. J Mol Biol 2001; 306:1081-98. [PMID: 11237619 DOI: 10.1006/jmbi.2001.4447] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of a DNA dodecamer d(GGCAAAAAACGG)/d(CCGTTTTTTGCC) containing an A-tract has been determined by NMR spectroscopy with residual dipolar couplings. The structure shows an overall helix axis bend of 19 degrees in a geometry consistent with solution and gel electrophoresis experiments. Fourteen degrees of the bending occurs in the GC regions flanking the A-tract. The remaining 5 degrees is spread evenly over its six AT base-pairs. The A-tract is characterized by decreasing minor groove width from the 5' to the 3' direction along the A strand. This is a result of propeller twist in the AT pairs and the increasing negative inclination of the adenine bases at the 3' side of the run of adenine bases. The four central thymine bases all have negative inclination throughout the A-tract with an average value of -6.1 degrees. Although this negative inclination makes the geometry of the A-tract different from all X-ray structures, the proton on N6 of adenine and the O4 of thymine one step down the helix are within distance to form bifurcated hydrogen bonds. The 5' bend of 4 degrees occurs at the junction between the GC flank and the A-tract through a combination of tilt and roll. The larger 3' bend, 10 degrees, occurs in two base steps: the first composed of tilt, -4.1 degrees, and the second a combination of tilt, -4.2 degrees, and roll, 6.0 degrees. This second step is a direct consequence of the change in inclination between an adjacent cytosine base, which has an inclination of -12 degrees, and the next base, a guanine, which has 3 degrees inclination. This bend is a combination of tilt and roll. The large change in inclination allows the formation of a hydrogen bond between the protons of N4 of the 3' cytosine and the O6 of the next 3' base, a guanine, stabilizing the roll component in the bend. These structural features differ from existing models for A-tract bends.For comparison, we also determined the structure of the control sequence, d(GGCAAGAAACGG)/d(CCGTTTCTTGCC), with an AT to GC transition in the center of the A-tract. This structure has no negative inclination in most of the bases within the A-tract, resulting in a bend of only 9 degrees. When ligated in phase, the control sequence has nearly normal mobility in gel electrophoresis experiments.
Collapse
Affiliation(s)
- D MacDonald
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
Collapse
Affiliation(s)
- E A Doherty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
48
|
Da Costa CP, Sigel H. Lead(II)-binding properties of the 5'-monophosphates of adenosine (AMP2-), inosine (IMP2-), and guanosine (GMP2-) in aqueous solution. Evidence for nucleobase-lead(II) interactions. Inorg Chem 2000; 39:5985-93. [PMID: 11151499 DOI: 10.1021/ic0007207] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stability constants of the 1:1 complexes formed between Pb2+ and the nucleosides (Ns), adenosine and guanosine, as well as between the nucleotides (NMP2-), AMP2-, IMP2-, and GMP2-, were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). Based on previously established log KPb(R-PO3)Pb versus pKH(R-PO3)H straight-line plots (R-PO3(2-) = simple phosphate monoester or phosphonate ligands where R is a noninteracting site), it is shown that the Pb(IMP) and Pb(GMP) complexes are more stable than is expected on the basis of the basicity of the phosphate group of IMP2- and GMP2-. This means that macrochelates are formed, where the phosphate-coordinated Pb2+ also interacts with N7 of the nucleobase residue. In contrast, the stability of the Pb(AMP) complex is governed by the basicity of the AMP2- phosphate group. These results agree with the observations made for the Pb(Ns)2+ complexes: Pb(adenosine)2+ is very unstable in contrast to Pb(guanosine)2+, the stability of which is very similar to the one of Pb(cytidine)2+ studied previously. The stability constants of the Pb(Ns)2+ complexes also allowed an evaluation of the structure in solution of the monoprotonated Pb(H;NMP)+ complexes, the stabilities of which were also determined. We were able to show that the proton is located at the phosphate group and Pb2+ at the N7/(C6)O site of H(GMP)-; in the case of H(AMP)- Pb2+ is probably about equally distributed between the adenine residue and the monoprotonated phosphate group. On the basis of the stability constants of these complexes and their structures in solution, it is possible to provide a series which reflects the decreasing affinity for Pb2+ of nucleobase residues in single-stranded nucleic acids: guanine approximately equal to cytosine > (hypoxanthine) > adenine > uracil approximately equal to thymine. The Pb2+ affinity of the phosphodiester linkage, -PO3(-)-, is similar to the one of the adenine residue, but is expected to be more significant due to its larger abundance. The relevance of these results for lead-activated ribozymes is briefly discussed.
Collapse
Affiliation(s)
- C P Da Costa
- Institute of Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | |
Collapse
|
49
|
Silverman SK, Deras ML, Woodson SA, Scaringe SA, Cech TR. Multiple folding pathways for the P4-P6 RNA domain. Biochemistry 2000; 39:12465-75. [PMID: 11015228 DOI: 10.1021/bi000828y] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently described site-specific pyrene labeling of RNA to monitor Mg(2+)-dependent equilibrium formation of tertiary structure. Here we extend these studies to follow the folding kinetics of the 160-nucleotide P4-P6 domain of the Tetrahymena group I intron RNA, using stopped-flow fluorescence with approximately 1 ms time resolution. Pyrene-labeled P4-P6 was prepared using a new phosphoramidite that allows high-yield automated synthesis of oligoribonucleotides with pyrene incorporated at a specific 2'-amino-2'-deoxyuridine residue. P4-P6 forms its higher-order tertiary structure rapidly, with k(obs) = 15-31 s(-1) (t(1/2) approximately 20-50 ms) at 35 degrees C and [Mg(2+)] approximately 10 mM in Tris-borate (TB) buffer. The folding rate increases strongly with temperature from 4 to 45 degrees C, demonstrating a large activation enthalpy DeltaH(double dagger) approximately 26 kcal/mol; the activation entropy DeltaS(double dagger) is large and positive. In low ionic strength 10 mM sodium cacodylate buffer at 35 degrees C, a slow (t(1/2) approximately 1 s) folding component is also observed. The folding kinetics are both ionic strength- and temperature-dependent; the slow phase vanishes upon increasing [Na(+)] in the cacodylate buffer, and the kinetics switch completely from fast at 30 degrees C to slow at 40 degrees C. Using synchrotron hydroxyl radical footprinting, we confirm that fluorescence monitors the same kinetic events as hydroxyl radical cleavage, and we show that the previously reported slow P4-P6 folding kinetics apply only to low ionic strength conditions. One model to explain the fast and slow folding kinetics postulates that some tertiary interactions are present even without Mg(2+) in the initial state. The fast kinetic phase reflects folding that is facilitated by these interactions, whereas the slow kinetics are observed when these interactions are disrupted at lower ionic strength and higher temperature.
Collapse
Affiliation(s)
- S K Silverman
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA.
| | | | | | | | | |
Collapse
|
50
|
Vermeulen A, Zhou H, Pardi A. Determining DNA Global Structure and DNA Bending by Application of NMR Residual Dipolar Couplings. J Am Chem Soc 2000. [DOI: 10.1021/ja001919l] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annaleen Vermeulen
- Contribution from the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215
| | - Hongjun Zhou
- Contribution from the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215
| | - Arthur Pardi
- Contribution from the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215
| |
Collapse
|