1
|
Yang X, Gao H, Cheng Z, Zhang S, Zhao Y, Zheng H, Gao L, Cao H, Li X, Zheng SJ, Wang Y. A σC-protein-based indirect enzyme-linked immunosorbent assay for clinical detection of antiavian reovirus antibodies. Poult Sci 2024; 103:104188. [PMID: 39178820 PMCID: PMC11385754 DOI: 10.1016/j.psj.2024.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024] Open
Abstract
Avian reovirus (ARV) is the causative agent of avian viral arthritis and causes significant economic losses to the global poultry industry. For clinical diagnosis, detecting ARV-specific antibodies is crucial. We successfully expressed the ARV-σC protein in insect cells using the baculovirus expression vector system, achieving an expression level of approximately 200 mg/L. We developed an indirect enzyme-linked immunosorbent assay (iELISA) using the ARV-σC protein as a coating antigen to detect antibodies against it. The inter-batch and intrabatch coefficients of iELISA variation were less than 10%. Its sensitivity (1:12,800 diluted in serum) was 4 times higher than that of the indirect immunofluorescence assay (IFA; 1:3200 diluted in serum), and it showed no cross-reactivity with antibodies against other common avian viruses (such as Infectious bursal disease virus, Newcastle disease virus). The practicality of the iELISA was further evaluated using clinical samples. 300 clinical sera from chickens vaccinated with the ARV attenuated vaccine and 20 SPF sera were tested using both the iELISA and the IFA, demonstrating a 100% conformity rate. In conclusion, these results suggest that the iELISA developed in this study is a rapid, sensitive, and specific method that could serve as an effective diagnostic tool for monitoring and controlling avian viral arthritis.
Collapse
Affiliation(s)
- Xia Yang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Gao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhi Cheng
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Su Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yimeng Zhao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hao Zheng
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Smets D, Smit J, Xu Y, Karamanou S, Economou A. Signal Peptide-rheostat Dynamics Delay Secretory Preprotein Folding. J Mol Biol 2022; 434:167790. [PMID: 35970402 DOI: 10.1016/j.jmb.2022.167790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide's hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein's native core exploit their structural dynamics to influence the folding landscape.
Collapse
Affiliation(s)
- Dries Smets
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Jochem Smit
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Ying Xu
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. Int J Mol Sci 2022; 23:ijms23042160. [PMID: 35216276 PMCID: PMC8874411 DOI: 10.3390/ijms23042160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
The Chromatin Assembly Factor 1 is a heterotrimeric complex responsible for the nucleosome assembly during DNA replication and DNA repair. In humans, the largest subunit P150 is the major actor of this process. It has been recently considered as a tumor-associated protein due to its overexpression in many malignancies. Structural and functional studies targeting P150 are still limited and only scarce information about this subunit is currently available. Literature data and bioinformatics analysis assisted the identification of a stable DNA binding domain, encompassing residues from 721 to 860 of P150 within the full-length protein. This domain was recombinantly produced and in vitro investigated. An acidic region modulating its DNA binding ability was also identified and characterized. Results showed similarities and differences between the P150 and its yeast homologue, namely Cac-1, suggesting that, although sharing a common biological function, the two proteins may also possess different features.
Collapse
|
4
|
Hettinga K, Bijl E. Can recombinant milk proteins replace those produced by animals? Curr Opin Biotechnol 2022; 75:102690. [PMID: 35104717 DOI: 10.1016/j.copbio.2022.102690] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 01/15/2022] [Indexed: 11/03/2022]
Abstract
The consumption of animal proteins in general, and dairy proteins in particular, is associated with sustainability and animal welfare issues. Recombinant synthesis of milk proteins is therefore receiving increasing interest, with several studies showing synthesis of milk proteins using a wide range of expression systems. Achieving a high yield and purity is essential for economic production. Besides the synthesis, also the construction of the specific structure in which milk proteins are present in animal milks, casein micelles, is needed. Looking at the current state-of-the-art, the steps to produce recombinant dairy products are technically feasible, but whether it can be implemented at low cost, with the process being environmentally friendly, remains to be seen in the coming years.
Collapse
Affiliation(s)
- Kasper Hettinga
- Dairy Science & Technology, Food Quality and Design Group, Wageningen University & Research, 6708WG Wageningen, The Netherlands.
| | - Etske Bijl
- Dairy Science & Technology, Food Quality and Design Group, Wageningen University & Research, 6708WG Wageningen, The Netherlands
| |
Collapse
|
5
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. The turning away of serum amyloid A biological activities and receptor usage. Immunology 2021; 163:115-127. [PMID: 33315264 PMCID: PMC8114209 DOI: 10.1111/imm.13295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein (APP) to which multiple immunological functions have been attributed. Regardless, the true biological role of SAA remains poorly understood. SAA is remarkably conserved in mammalian evolution, thereby suggesting an important biological function. Since its discovery in the 1970s, the majority of researchers have investigated SAA using recombinant forms made available through bacterial expression. Nevertheless, recent studies indicate that these recombinant forms of SAA are unreliable. Indeed, commercial SAA variants have been shown to be contaminated with bacterial products including lipopolysaccharides and lipoproteins. As such, biological activities and receptor usage (TLR2, TLR4) revealed through the use of commercial SAA variants may not reflect the inherent nature of this APP. Within this review, we discuss the biological effects of SAA that have been demonstrated through more solid experimental approaches. SAA takes part in the innate immune response via the recruitment of leucocytes and executes, through pathogen recognition, antimicrobial activity. Knockout animal models implicate SAA in a range of functions, such as regulation of T-cell-mediated responses and monopoiesis. Moreover, through its structural motifs, not only does SAA function as an extracellular matrix protein, but it also binds extracellular matrix proteins. Finally, we here also provide an overview of definite SAA receptor-mediated functions and highlight those that are yet to be validated. The role of FPR2 in SAA-mediated leucocyte recruitment has been confirmed; nevertheless, SAA has been linked to a range of other receptors including CD36, SR-BI/II, RAGE and P2RX7.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Lv X, Wu Y, Gong M, Deng J, Gu Y, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L, Chen J. Synthetic biology for future food: Research progress and future directions. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
7
|
Keppler JK, Heyse A, Scheidler E, Uttinger MJ, Fitzner L, Jandt U, Heyn TR, Lautenbach V, Loch JI, Lohr J, Kieserling H, Günther G, Kempf E, Grosch JH, Lewiński K, Jahn D, Lübbert C, Peukert W, Kulozik U, Drusch S, Krull R, Schwarz K, Biedendieck R. Towards recombinantly produced milk proteins: Physicochemical and emulsifying properties of engineered whey protein beta-lactoglobulin variants. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
9
|
Ragucci S, Landi N, Russo R, Valletta M, Citores L, Iglesias R, Pedone PV, Pizzo E, Di Maro A. Effect of an additional N-terminal methionyl residue on enzymatic and antifungal activities of Ageritin purified from Agrocybe aegerita fruiting bodies. Int J Biol Macromol 2020; 155:1226-1235. [DOI: 10.1016/j.ijbiomac.2019.11.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/10/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022]
|
10
|
Ahmad B, Hanif Q, Xubiao W, Lulu Z, Shahid M, Dayong S, Rijun Z. Expression and Purification of Hybrid LL-37Tα1 Peptide in Pichia pastoris and Evaluation of Its Immunomodulatory and Anti-inflammatory Activities by LPS Neutralization. Front Immunol 2019; 10:1365. [PMID: 31258535 PMCID: PMC6587124 DOI: 10.3389/fimmu.2019.01365] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
This study pertains to the new approach for the development of hybrid peptide LL-37Tα1 and its biomedical applications. A linear cationic hybrid peptide, LL-37Tα1 was derived from two parental peptides (LL-37 and Tα1) recognized as potent anti-endotoxin without any hemolytic or cytotoxic activity. We successfully cloned the gene of hybrid peptide LL-37Tα1 in PpICZαA vector and expressed in the Pichia pastoris. The recombinant peptide was purified by Ni-affinity column and reverse-phase high performance liquid chromatography (RP-HPLC) with an estimated molecular mass of 3.9 kDa as determined by SDS-PAGE and mass spectrometry. We analyzed the LPS neutralization by limulus amebocyte lysate (LAL) activity and the results indicate that the hybrid peptide LL-37Tα1 directly binds endotoxin and significantly (p < 0.05) neutralizes the effect of LPS in a dose-dependent manner. Lactate dehydrogenase (LDH) assay revealed that LL-37Tα1 successfully reduces the LPS-induced cytotoxicity in mouse RAW264.7 macrophages. Moreover, it significantly (p < 0.05) decreased the levels of nitric oxide, proinflammatory cytokines including TNF-α, IL-6, IL-1β, and diminished the number of apoptotic cells in LPS-stimulated mouse RAW264.7 macrophages. Our results suggest that the P. pastoris expression system is cost-effective for commercial production of the immunomodulatory and anti-inflammatory hybrid peptide (IAHP) LL-37Tα1 and the peptide may serve as effective anti-endotoxin/anti-inflammatory agent with minimal cytotoxicity.
Collapse
Affiliation(s)
- Baseer Ahmad
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quratulain Hanif
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Wei Xubiao
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhang Lulu
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Shahid
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Si Dayong
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhang Rijun
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Ma J, Wang Y, Xu N, Jin L, Liu J, Xing S, Li X. Potential large scale production of meningococcal vaccines by stable overexpression of fHbp in the rice seeds. Protein Expr Purif 2018; 152:1-6. [PMID: 29953946 DOI: 10.1016/j.pep.2018.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 06/16/2018] [Accepted: 06/24/2018] [Indexed: 10/28/2022]
Abstract
Factor H binding protein (fHbp) is the most promising vaccine candidate against serogroup B of Neisseria meningitidis which is a major cause of morbidity and mortality in children. In order to facilitate large scale production of a commercial vaccine, we previously used transgenic Arabidopsis thaliana, but plant-derived fHbp is still far away from a commercial vaccine due to less biomass production. Herein, we presented an alternative route for the production of recombinant fHbp from the seeds of transgenic rice. The OsrfHbp gene encoding recombinant fHbp fused protein was introduced into the genome of rice via Agrobacterium-mediated transformation. The both stable integration and transcription of the foreign OsrfHbp were confirmed by Southern blotting and RT-PCR analysis respectively. Further, the expression of fHbp protein was measured by immunoblotting analysis and quantified by ELISA. The results indicated that fHbp was successfully expressed and the highest yield of fHbp was 0.52 ± 0.03% of TSP in the transgenic rice seeds. The purified fHbp protein showed good antigenicity and immunogenicity in the animal model. The results of this experiment offer a novel approach for large-scale production of plant-derived commercial vaccine fHbp.
Collapse
Affiliation(s)
- Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China.
| | - Nuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Libo Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Jia Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China; Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Xiaokun Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
12
|
Wang F, Zeng L, Wang YL, Cui SQ, Hu L, Zheng JM, Huang DN, Hou G. Construction and characterization of a transmembrane eukaryotic expression vector based on the membrane domain structure of TNF-α. Mol Med Rep 2017; 16:1021-1030. [PMID: 28586021 PMCID: PMC5561801 DOI: 10.3892/mmr.2017.6692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
Abstract
The aim of the present study was to construct a fast-acting, eukaryotic expression vector in eukaryotic cells based on transmembrane-tumor necrosis factor-α (TM-TNF-α) structure. Two types of recombinant eukaryotic expression vectors were constructed, pcDNA3.1-TM-enterokinase-TNF-α and pcDNA3.1-TM-Factor Xa-TNF-α, according to the TNF-α transmembrane segments. Following the generation of these vectors, mouse embryonic 3T3 fibroblasts were transfected and reverse transcription-polymerase chain reaction and western blotting analyses were used to analyze mTNF-α mRNA and protein expression levels, respectively, in total cellular protein extracts and extracellular fluid. The biological activity of TNF-α in the extracellular fluid was then measured using an MTT assay. The vectors were successfully constructed, and mRNA and fusion proteins were detected in the 3T3 cells. Among the fusion proteins, the one observed in pcDNA3.1-TM-FactorXa-TNF-α-transfected 3T3 cells remained as a transmembrane protein. In addition, treatment of L929 cells with TNF-α derived extracellular fluid samples from pcDNA3.1-TM-FactorXa-TNF-α-transfected 3T3 cells was associated with a dose-dependent reduction in in cell-specific activity. The results indicate that proteins expressed using pcDNA3.1-TM-FactorXa-TNF-α vectors form transmembrane proteins. In addition, the results indicate that, only when coupled with FactorXa activity, the extracellular region of TM-TNF-α forms s-TNF-α, and the controlled expression of the fusion protein is initiated.
Collapse
Affiliation(s)
- Fa Wang
- Department of Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong 524023, P.R. China
| | - Liang Zeng
- Department of Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong 524023, P.R. China
| | - Yue-Li Wang
- Department of Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong 524023, P.R. China
| | - Shi-Quan Cui
- Department of Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong 524023, P.R. China
| | - Liang Hu
- Department of Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong 524023, P.R. China
| | - Jun-Ming Zheng
- Department of Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong 524023, P.R. China
| | - Di-Nan Huang
- Department of Clinical Biochemistry, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Gan Hou
- Department of Clinical Biochemistry, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
13
|
Xu N, Wang Y, Ma J, Jin L, Xing S, Jiang C, Li X. Over-expression of fHbp in Arabdopsis for development of meningococcal serogroup B subunit vaccine. Biotechnol J 2016; 11:973-80. [PMID: 27119621 DOI: 10.1002/biot.201500656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/27/2016] [Accepted: 04/19/2016] [Indexed: 01/04/2023]
Abstract
Due to lack of commercial vaccine against the serogroup B (MenB) of Neisseria meningitides, the incidence of meningococcal disease remains high. To solve the issue, transgenic plants are used as bioreactors to produce a plant-derived fHbp subunit vaccine. In this study, the fHbp gene was optimized according to the codon usage bias of Arabidopsis thaliana, synthesized artificially, cloned into an expression vector, driven by a seed-specific promoter, and introduced into A. thaliana by Agrobacterium-mediated floral-dip transformation. Transgenic plants were identified by glufosinate selection, quickstix strips for PAT/bar tests and PCR analysis. The five plants showing higher expression of recombinant fHbp were screened through indirect ELISA. Southern blot analysis showed that the transgenic line rHF-22 had a single-copy integration and the highest expression of fHbp. Recombinant fHbp was purified from seeds of rHF-22 by nitrilotriacetic acid-mediated affinity chromatography, and the purity was 82.5%. BALB/c mice were tested for fHbp vaccine protection from lethal MenB infection, and the relative percent survival was found to be 80%. This study indicates that the recombinant fHbp produced from seeds of rHF-22 is a potential candidate for commercial MenB vaccine. It also provides a reference for safe, cheap and large-scale production of other plant-made vaccines.
Collapse
Affiliation(s)
- Nuo Xu
- College of Life Sciences, Jilin University, Changchun, China.,Wenzhou University, Wenzhou, China
| | - Yunpeng Wang
- Agro-Biotechnology Research Institute, Jilin Academy of Agriculture Science, Changchun, China.,Wenzhou University, Wenzhou, China.,School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Libo Jin
- Wenzhou University, Wenzhou, China.,School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shaochen Xing
- Agro-Biotechnology Research Institute, Jilin Academy of Agriculture Science, Changchun, China
| | - Chao Jiang
- Wenzhou University, Wenzhou, China. .,School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Xiaokun Li
- College of Life Sciences, Jilin University, Changchun, China. .,Wenzhou University, Wenzhou, China. .,School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
14
|
Engineered β-Lactoglobulin Produced in E. coli: Purification, Biophysical and Structural Characterisation. Mol Biotechnol 2016; 58:605-618. [PMID: 27380951 PMCID: PMC5035327 DOI: 10.1007/s12033-016-9960-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functional recombinant bovine β-lactoglobulin has been produced by expression in E. coli using an engineered protein gene and purified to homogeneity by applying a new protocol. Mutations L1A/I2S introduced into the protein sequence greatly facilitate in vivo cleavage of the N-terminal methionine, allowing correctly folded and soluble protein suitable for biochemical, biophysical and structural studies to be obtained. The use of gel filtration on Sephadex G75 at the last purification step enables protein without endogenous ligand to be obtained. The physicochemical properties of recombinant β-lactoglobulin such as CD spectra, ligand binding (n, K a, ΔH, TΔS, ΔG), chemical and thermal stability (ΔG D, C mid) and crystal structure confirmed that the protein obtained is almost identical to the natural one. The substitutions of N-terminal residues did not influence the binding properties of the recombinant protein so that the lactoglobulin produced and purified according to our protocol is a good candidate for further engineering and potential use in pharmacology and medicine.
Collapse
|
15
|
Spohner SC, Müller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 2015; 202:118-34. [DOI: 10.1016/j.jbiotec.2015.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|
16
|
Moulick R, Udgaonkar JB. Thermodynamic characterization of the unfolding of the prion protein. Biophys J 2014; 106:410-20. [PMID: 24461016 DOI: 10.1016/j.bpj.2013.11.4491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/15/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
The prion protein appears to be unusually susceptible to conformational change, and unlike nearly all other proteins, it can easily be made to convert to alternative misfolded conformations. To understand the basis of this structural plasticity, a detailed thermodynamic characterization of two variants of the mouse prion protein (moPrP), the full-length moPrP (23-231) and the structured C-terminal domain, moPrP (121-231), has been carried out. All thermodynamic parameters governing unfolding, including the changes in enthalpy, entropy, free energy, and heat capacity, were found to be identical for the two protein variants. The N-terminal domain remains unstructured and does not interact with the C-terminal domain in the full-length protein at pH 4. Moreover, the enthalpy and entropy of unfolding of moPrP (121-231) are similar in magnitude to values reported for other proteins of similar size. However, the protein has an unusually high native-state heat capacity, and consequently, the change in heat capacity upon unfolding is much lower than that expected for a protein of similar size. It appears, therefore, that the native state of the prion protein undergoes substantial fluctuations in enthalpy and hence, in structure.
Collapse
Affiliation(s)
- Roumita Moulick
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
17
|
Improved detection of variants in recombinant human interferon alpha-2a products by reverse-phase high-performance liquid chromatography on a core–shell stationary phase. J Pharm Biomed Anal 2014; 88:123-9. [DOI: 10.1016/j.jpba.2013.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/28/2022]
|
18
|
Lu H, Zhu Y. The thermostability of two kinds of recombinant ∆6-fatty acid desaturase with different N-terminal sequence lengths in low temperature. Appl Biochem Biotechnol 2013; 171:165-72. [PMID: 23821293 DOI: 10.1007/s12010-013-0363-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/18/2013] [Indexed: 11/30/2022]
Abstract
Two recombinant Rhizopus stolonifer ∆6-fatty acid desaturase enzymes with different-length N-termini were cloned and expressed in Saccharomyces cerevisiae strain INVScl: LRsD6D begins with the sequence of the N-terminal of the R. stolonifer ∆6-fatty acid desaturase native, encoding a deduced polypeptide of 459 amino acids (M-S-T-L-D-R-Q-S-I-F-T-I-K-E-L-E-S-I-S-Q-R-I-H-D-G-D-E-E-A-M-K-F), whereas SRsD6D begins with the amino acid sequence of the predicted ORF, encoding a deduced polypeptide of 430 amino acids (M-K-F) and LRsD6D is longer than SRsD6D by 29 amino acids (M-S-T-L-D-R-Q-S-I-F-T-I-K-E-L-E-S-I-S-Q-R-I-H-D-G-D-E-E-A). Bioinformatic analysis characterized the two recombinant ∆6-fatty acid desaturase enzymes with different-length N-termini, including three conserved histidine-rich motifs, hydropathy profile, and a cytochrome b5-like domain in the N-terminus. When the coding sequence was expressed in S. cerevisiae strain INVScl, the coding produced ∆6-fatty acid desaturase activity exhibited by RsD6D, leading to a novel peak corresponding to γ-linolenic acid methyl ester standards, which was detected with the same retention time. The residual activity of LRsD6D was 74 % at 15 °C for 4 h and that of SRsD6D was 43 %. Purified recombinant LRsD6D was more stable than SRsD6D, indicating that the N-terminal extension, containing mostly hydrophobic residues, affected the overall stability of recombinant LRsD6D.
Collapse
Affiliation(s)
- He Lu
- Department of Microbiology, Chongqing University of Medical Sciences, Chongqing, 400016, People's Republic of China.
| | | |
Collapse
|
19
|
Makabe K, Nakamura T, Kuwajima K. Structural insights into the stability perturbations induced by N-terminal variation in human and goat -lactalbumin. Protein Eng Des Sel 2012; 26:165-70. [DOI: 10.1093/protein/gzs093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Tomoyori K, Nakamura T, Makabe K, Maki K, Saeki K, Kuwajima K. Sequential four-state folding/unfolding of goat α-lactalbumin and its N-terminal variants. Proteins 2012; 80:2191-206. [PMID: 22577070 DOI: 10.1002/prot.24109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/11/2012] [Accepted: 04/25/2012] [Indexed: 11/09/2022]
Abstract
Equilibria and kinetics of folding/unfolding of α-lactalbumin and its two N-terminal variants were studied by circular dichroism spectroscopy. The two variants were wild-type recombinant and Glu1-deletion (E1M) variants expressed in Escherichia coli. The presence of an extra methionine at the N terminus in recombinant α-lactalbumin destabilized the protein by 2 kcal/mol, while the stability was recovered in the E1M variant in which Glu1 was replaced by Met1. Kinetic folding/unfolding reactions of the proteins, induced by stopped-flow concentration jumps of guanidine hydrochloride, indicated the presence of a burst-phase in refolding, and gave chevron plots with significant curvatures in both the folding and unfolding limbs. The folding-limb curvature was interpreted in terms of accumulation of the burst-phase intermediate. However, there was no burst phase observed in the unfolding kinetics to interpret the unfolding-limb curvature. We thus assumed a sequential four-state mechanism, in which the folding from the burst-phase intermediate takes place via two transition states separated by a high-energy intermediate. We estimated changes in the free energies of the burst-phase intermediate and two transition states, caused by the N-terminal variations and also by the presence of stabilizing calcium ions. The Φ values at the N terminus and at the Ca(2+)-binding site thus obtained increased successively during folding, demonstrating the validity of the sequential mechanism. The stability and the folding behavior of the E1M variant were essentially identical to those of the authentic protein, allowing us to use this variant as a pseudo-wild-type α-lactalbumin in future studies.
Collapse
Affiliation(s)
- Katsuaki Tomoyori
- Department of Physics, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Patsalo V, Raleigh DP, Green DF. Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands. Biochemistry 2011; 50:10698-712. [PMID: 22032696 PMCID: PMC3234137 DOI: 10.1021/bi201411c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyanovirin-N (CVN) is an 11 kDa pseudosymmetric cyanobacterial lectin that has been shown to inhibit infection by the human immunodeficiency virus by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work, we describe rationally designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson-Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 M GuaHCl against chemical denaturation, relative to a previously characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding.
Collapse
Affiliation(s)
- Vadim Patsalo
- Department of Applied Mathematics and Statistics Stony Brook University Stony Brook, New York 11794 USA
- Laufer Center for Physical and Quantitative Biology Stony Brook University Stony Brook, New York 11794 USA
| | - Daniel P. Raleigh
- Department of Chemistry Stony Brook University Stony Brook, New York 11794 USA
- Graduate Program in Biochemistry and Structural Biology Stony Brook University Stony Brook, New York 11794 USA
| | - David F. Green
- Department of Applied Mathematics and Statistics Stony Brook University Stony Brook, New York 11794 USA
- Laufer Center for Physical and Quantitative Biology Stony Brook University Stony Brook, New York 11794 USA
- Department of Chemistry Stony Brook University Stony Brook, New York 11794 USA
- Graduate Program in Biochemistry and Structural Biology Stony Brook University Stony Brook, New York 11794 USA
| |
Collapse
|
22
|
Athmaram TN, Saraswat S, Santhosh SR, Singh AK, Suryanarayana WS, Priya R, Gopalan N, Parida M, Rao PVL, Vijayaraghavan R. Yeast expressed recombinant Hemagglutinin protein of novel H1N1 elicits neutralising antibodies in rabbits and mice. Virol J 2011; 8:524. [PMID: 22126628 PMCID: PMC3251546 DOI: 10.1186/1743-422x-8-524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/29/2011] [Indexed: 11/25/2022] Open
Abstract
Currently available vaccines for the pandemic Influenza A (H1N1) 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA) based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI) activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.
Collapse
Affiliation(s)
- T N Athmaram
- Division of Virology, Defence Research and Development Establishment, Ministry of Defence (Govt, of India), Gwalior, MP-474 002, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hsu CH, Pan YR, Liao YD, Wu SH, Chen C. NMR and biophysical elucidation of structural effects on extra N-terminal methionine residue of recombinant amphibian RNases from Rana catesbeiana. J Biochem 2010; 148:209-15. [PMID: 20522487 DOI: 10.1093/jb/mvq058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The stability, structures and steric hindrances of recombinant RNases 2 and 4 expressed in bacteria were studied by circular dichroism (CD) and NMR techniques, and the results were compared with those of their authentic RNases extracted from oocytes of Rana catesbeiana. Although the overall structures of the recombinant and authentic proteins are almost identical, the extra N-terminal Met residue of the recombinant protein remarkably affects catalytic activity and stability. NMR chemical shift comparison of recombinant RNases and the authentic proteins indicated that the structural differences are mainly confined to the N-terminal helical and S2 anti-parallel beta-sheet regions. Significant shift changes for the residues located on the S2 region indicate that the major influences on the structure around the N terminus is due to the loss of the hydrogen bond between Pyr(1) and Val(95(96)) in recombinant RNases 2 and 4. We concluded the apparent steric hindrances of the extra Met to the binding pocket. As well, the affected conformational changes of active residues are attributed to the reduced activities of recombinant RNases. The structural integrity exerted by the N-terminal Pyr(1) residue may be crucial for amphibian RNases and the greatest structural differences occur on the network of the Pyr(1) residue and S2 beta-sheet region.
Collapse
Affiliation(s)
- Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | | | |
Collapse
|
24
|
Malmendal A, Underhaug J, Otzen DE, Nielsen NC. Fast mapping of global protein folding states by multivariate NMR: a GPS for proteins. PLoS One 2010; 5:e10262. [PMID: 20421996 PMCID: PMC2858079 DOI: 10.1371/journal.pone.0010262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022] Open
Abstract
To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method that provides such an overview. GPS NMR exploits the unique ability of NMR to simultaneously record signals from individual hydrogen atoms in complex macromolecular systems and of multivariate analysis to describe spectral variations from these by a few variables for establishment of, and positioning in, protein-folding state maps. The method is fast, sensitive, and robust, and it works without isotope-labelling. The unique capabilities of GPS NMR to identify different folding states and to compare different unfolding processes are demonstrated by mapping of the equilibrium folding space of bovine α-lactalbumin in the presence of the anionic surfactant sodium dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat.
Collapse
Affiliation(s)
- Anders Malmendal
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
- * E-mail: (AM); (NCN)
| | - Jarl Underhaug
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Daniel E. Otzen
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center and Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Niels C. Nielsen
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
- * E-mail: (AM); (NCN)
| |
Collapse
|
25
|
Pettersson-Kastberg J, Mossberg AK, Trulsson M, Yong YJ, Min S, Lim Y, O'Brien JE, Svanborg C, Mok KH. α-Lactalbumin, Engineered to be Nonnative and Inactive, Kills Tumor Cells when in Complex with Oleic Acid: A New Biological Function Resulting from Partial Unfolding. J Mol Biol 2009; 394:994-1010. [DOI: 10.1016/j.jmb.2009.09.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/18/2009] [Accepted: 09/14/2009] [Indexed: 11/28/2022]
|
26
|
Srinivasa Babu K, Antony A, Muthukumaran T, Meenakshisundaram S. Construction of intein-mediated hGMCSF expression vector and its purification in Pichia pastoris. Protein Expr Purif 2008; 57:201-5. [PMID: 18309571 DOI: 10.1016/j.pep.2007.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a novel attempt for the intracellular recombinant protein over expression and easy purification from Pichia pastoris, the therapeutic cytokine human granulocyte macrophage colony stimulating factor (hGMCSF) gene was fused to an intein-chitin-binding domain (gene from pTYB11 vector) fusion tag by overlap extension PCR and inserted into pPICZB vector, allowing for the purification of a native recombinant protein without the need for enzymatic cleavage. The fusion protein under the AOX1 promoter was integrated into the P. pastoris genome (SMD 1168) and the recombinant Pichia clones were screened for multicopy integrants. Expression of hGMCSF was done using glycerol and methanol based synthetic medium by three stage cultivation in a bioreactor. Purification of the expressed hGMCSF fusion protein was done after cell disruption and binding of the solubilized fusion protein to chitin affinity column, followed by DTT induced on column cleavage of hGMCSF from the intein tag. In this study, final biomass of 89 g dry cell weight/l and purified hGMCSF of 120 mg/l having a specific activity of 0.657 x 10(7) IU/mg was obtained. This strategy has an edge over the other--His or--GST based fusion protein purification where non-specific protein binding, expensive enzymatic cleavage and further purification of the enzyme is required. It distinguishes itself from all other purification systems by its ability to purify, in a single chromatographic step.
Collapse
Affiliation(s)
- K Srinivasa Babu
- Centre for Biotechnology, Anna University, Chennai 600025, India
| | | | | | | |
Collapse
|
27
|
Oroguchi T, Ikeguchi M, Ota M, Kuwajima K, Kidera A. Unfolding pathways of goat alpha-lactalbumin as revealed in multiple alignment of molecular dynamics trajectories. J Mol Biol 2007; 371:1354-64. [PMID: 17610894 DOI: 10.1016/j.jmb.2007.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 11/24/2022]
Abstract
Molecular dynamics simulations of protein unfolding were performed at an elevated temperature for the authentic and recombinant forms of goat alpha-lactalbumin. Despite very similar three-dimensional structures, the two forms have significantly different unfolding rates due to an extra N-terminal methionine in the recombinant protein. To identify subtle differences between the two forms in the highly stochastic kinetics of unfolding, we classified the unfolding trajectories using the multiple alignment method based on the analogy between the biological sequences and the molecular dynamics trajectories. A dendrogram derived from the multiple trajectory alignment revealed a clear difference in the unfolding pathways of the authentic and recombinant proteins, i.e. the former reached the transition state in an all-or-none manner while the latter unfolded less cooperatively. It was also found in the classification that the two forms of the protein shared a common transition state structure, which was in excellent agreement with the transition state structure observed experimentally in the Phi-value analysis.
Collapse
Affiliation(s)
- Tomotaka Oroguchi
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
28
|
Dubey VK, Lee J, Somasundaram T, Blaber S, Blaber M. Spackling the crack: stabilizing human fibroblast growth factor-1 by targeting the N and C terminus beta-strand interactions. J Mol Biol 2007; 371:256-68. [PMID: 17570396 DOI: 10.1016/j.jmb.2007.05.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/22/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
The beta-trefoil protein human fibroblast growth factor-1 (FGF-1) is made up of a six-stranded antiparallel beta-barrel closed off on one end by three beta-hairpins, thus exhibiting a 3-fold axis of structural symmetry. The N and C terminus beta-strands hydrogen bond to each other and their interaction is postulated from both NMR and X-ray structure data to be important in folding and stability. Specific mutations within the adjacent N and C terminus beta-strands of FGF-1 are shown to provide a substantial increase in stability. This increase is largely correlated with an increased folding rate constant, and with a smaller but significant decrease in the unfolding rate constant. A series of stabilizing mutations are subsequently combined and result in a doubling of the DeltaG value of unfolding. When taken in the context of previous studies of stabilizing mutations, the results indicate that although FGF-1 is known for generally poor thermal stability, the beta-trefoil architecture appears capable of substantial thermal stability. Targeting stabilizing mutations within the N and C terminus beta-strand interactions of a beta-barrel architecture may be a generally useful approach to increase protein stability. Such stabilized mutations of FGF-1 are shown to exhibit significant increases in effective mitogenic potency, and may prove useful as "second generation" forms of FGF-1 for application in angiogenic therapy.
Collapse
Affiliation(s)
- Vikash Kumar Dubey
- Department of Biomedical Sciences, Florida State University, Tallahassee FL 32306, USA
| | | | | | | | | |
Collapse
|
29
|
Nakatani H, Maki K, Saeki K, Aizawa T, Demura M, Kawano K, Tomoda S, Kuwajima K. Equilibrium and Kinetics of the Folding and Unfolding of Canine Milk Lysozyme. Biochemistry 2007; 46:5238-51. [PMID: 17407267 DOI: 10.1021/bi602464v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The equilibrium and kinetics of canine milk lysozyme folding/unfolding were studied by peptide and aromatic circular dichroism and tryptophan fluorescence spectroscopy. The Ca2+-free apo form of the protein exhibited a three-state equilibrium unfolding, in which the molten globule state is well populated as an unfolding intermediate. A rigorous analysis of holo protein unfolding, including the data from the kinetic refolding experiments, revealed that the holo protein also underwent three-state unfolding with the same molten globule intermediate. Although the observed kinetic refolding curves of both forms were single-exponential, a burst-phase change in the peptide ellipticity was observed in both forms, and the burst-phase intermediates of both forms were identical to each other with respect to their stability, indicating that the intermediate does not bind Ca2+. This intermediate was also shown to be identical to the molten globule state observed at equilibrium. The phi-value analysis, based on the effect of Ca2+ on the folding and unfolding rate constants, showed that the Ca2+-binding site was not yet organized in the transition state of folding. A comparison of the result with that previously reported for alpha-lactalbumin indicated that the folding initiation site is different between canine milk lysozyme and alpha-lactalbumin, and hence, the folding pathways must be different between the two proteins. These results thus provide an example of the phenomenon wherein proteins that are very homologous to each other take different folding pathways. It is also shown that the native state of the apo form is composed of at least two species that interconvert.
Collapse
Affiliation(s)
- Hiroyasu Nakatani
- Department of Life Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Paës G, O'Donohue MJ. Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. J Biotechnol 2006; 125:338-50. [PMID: 16644050 DOI: 10.1016/j.jbiotec.2006.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
Enzymatic hydrolysis constitutes an attractive strategy for biorefining of abundant, low-cost agricultural by-products such as wheat bran and straw. However, to adopt such an approach, efficient enzymes are required, in particular xylanases. To promote heat-induced disorganization of the complex cell wall network in wheat bran and thus increase enzymatic hydrolysis, we have attempted to improve the thermoresistance of a GH-11 xylanase that is already moderately thermostable. Using a previously described engineering strategy that involves the introduction of disulphide bridges, a mutant (Tx-xyl-SS3) displaying enhanced thermostability and thermoactivity was obtained. The half life at 70 degrees C (180 min) of Tx-xyl-SS3 is 10-fold greater than that of the wild type enzyme and its specific activity is almost doubled (3500 IU mg(-1)). Despite these improvements, Tx-xyl-SS3 was unsuitable for use at significantly higher reaction temperatures (i.e. 85-95 degrees C) and thus the initial objective of this study remained unaccomplished. However, unexpectedly even at the normal hydrolytic temperature (60 degrees C), Tx-xyl-SS3 was able to solubilize 50% of the wheat bran arabinoxylans, 10 points more than the wild type enzyme in parallel reactions. The data presented here show that this improvement is not directly linked to the increase in thermostability and/or thermoactivity, but rather to other unidentified changes to physico-chemical properties that may allow Tx-xyl-SS3 to better penetrate the cell wall network in wheat bran.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA-UMR FARE 614, 8, rue Gabriel Voisin, BP 316, 51688 Reims Cedex 2, France
| | | |
Collapse
|
31
|
Yin J, Li G, Ren X, Herrler G. Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 2006; 127:335-47. [PMID: 16959350 DOI: 10.1016/j.jbiotec.2006.07.012] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 07/13/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The expression of heterologous proteins in microorganisms using genetic recombination is still the high point in the development and exploitation of modern biotechnology. People can produce bioactive proteins from relatively cheap culture medium instead of expensive extraction. Host cell systems for the expression of heterologous genes are generally prokaryotic or eukaryotic systems, both of which have inherent advantages and drawbacks. An optimal expression system can be selected only if the productivity, bioactivity, purpose, and physicochemical characteristics of the interest protein are taken into consideration, together with the cost, convenience and safety of the system itself. Here, we concisely review the most frequently used prokaryotic, yeast, insect and mammalian expression systems, as well as expression in eukaryote individuals. The merits and demerits of these systems are discussed.
Collapse
Affiliation(s)
- Jiechao Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, 150030 Harbin, China
| | | | | | | |
Collapse
|
32
|
Dümmler A, Lawrence AM, de Marco A. Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb Cell Fact 2005; 4:34. [PMID: 16351710 PMCID: PMC1326211 DOI: 10.1186/1475-2859-4-34] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/13/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The solubility of recombinant proteins expressed in bacteria is often disappointingly low. Several strategies have been developed to improve the yield and one of the most common strategies is the fusion of the target protein with a suitable partner. Despite several reports on the successful use of each of these carriers to increase the solubility of some recombinant proteins, none of them was always successful and a combinatorial approach seems more efficient to identify the optimal combination for a specific protein. Therefore, the efficiency of an expression system critically depends on the speed in the identification of the optimal combination for the suitable fusion candidate in a screening process. This paper describes a set of expression vectors (pETM) designed for rapid subcloning, expression and subsequent purification using immobilized metal affinity chromatography (IMAC). RESULTS A single PCR product of two Yellow Fluorescent Proteins (EYFPs) was cloned into 18 vectors comprising identical restriction sites and varying fusion partners as well as differing protease recognition sites. After a small-scale expression, the yields of the different constructs were compared using a Coomassie stained SDS-polyacrylamide gel and the results of this preliminary screening were then confirmed by large-scale purification. The yields were calculated and the stability of the different constructs determined using three independent conditions. The results indicated a significant correlation between the length and composition of non-native amino acid tails and stability. Furthermore, the buffer specificity of TEV and 3C proteases was tested using fusion proteins differing only in their protease recognition sequence, and a His-GST-EYFP construct was employed to compare the efficiency of the two alternative affinity purification methods. CONCLUSION The experiments showed that the set of pETM vectors could be used for the rapid production of a large array of different constructs with specific yield, stability, and cleavage features. Their comparison allowed the identification of the optimal constructs to use for the large-scale expression. We expect that the approach outlined in this paper, i.e. the possibility to obtain in parallel fusion products of the target protein with different partners for a preliminary evaluation, would be highly beneficial for all them who are interested in the rapid identification of the optimal conditions for protein expression.
Collapse
Affiliation(s)
- Annett Dümmler
- Protein Expression and Purification Facility, EMBL, Meyerhofstr. 1, D-69117, Heidelberg, Germany
| | - Ann-Marie Lawrence
- Protein Expression and Purification Facility, EMBL, Meyerhofstr. 1, D-69117, Heidelberg, Germany
| | - Ario de Marco
- Protein Expression and Purification Facility, EMBL, Meyerhofstr. 1, D-69117, Heidelberg, Germany
| |
Collapse
|
33
|
Roy P, Mishra S, Chaudhuri TK. Cloning, sequence analysis, and characterization of a novel beta-glucosidase-like activity from Pichia etchellsii. Biochem Biophys Res Commun 2005; 336:299-308. [PMID: 16137662 DOI: 10.1016/j.bbrc.2005.08.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 08/10/2005] [Indexed: 11/26/2022]
Abstract
Genomic DNA fragment encoding a novel beta-glucosidase-like activity of the yeast Pichia etchellsii was cloned and expressed in Escherichia coli. An open-reading frame of 1515bp, termed mugA, coding for a protein of predicted molecular mass of approximately 54kDa was confirmed for this activity. The sequence of the deduced protein did not show homology with the generic beta-glucosidases but a high degree of identity was seen with several Ser-Asp (SD)-rich cell-surface-associated proteins. The secondary structure prediction program 3D-PSSM indicated the protein to be composed of largely helical and coiled structures, which was confirmed by circular dichroism spectroscopy. The encoded protein, MUGA, was purified by about 53-fold and characterized as a monomer of 52.1kDa by SDS-PAGE and MALDI-TOF. The protein displayed high hydrolytic activity on methylumbelliferyl beta-d-glucoside but relatively very little hydrolysis of p-nitrophenyl beta-d-glucoside and gentiobiose, characteristic substrates for beta-glucosidases. The binding experiments performed between P. etchellsii cells and the purified E. coli expressed MUGA indicated binding with the cell surface, which was monitored by fluorescence microscopy. In competition experiments with the SD dipeptide, less protein was shown to bind to the cell surface, in a concentration-dependent manner.
Collapse
Affiliation(s)
- Pranita Roy
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | | | | |
Collapse
|
34
|
Oroguchi T, Ikeguchi M, Saeki K, Kamagata K, Sawano Y, Tanokura M, Kidera A, Kuwajima K. Atomically Detailed Description of the Unfolding of α-Lactalbumin by the Combined Use of Experiments and Simulations. J Mol Biol 2005; 354:164-72. [PMID: 16236317 DOI: 10.1016/j.jmb.2005.09.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/05/2005] [Accepted: 09/20/2005] [Indexed: 11/23/2022]
Abstract
The recombinant form of goat alpha-lactalbumin has a significantly faster unfolding rate compared to the authentic form, although the two molecules differ only in an extra methionine at the N terminus of the recombinant. The mechanism of the destabilization caused by this residue was investigated through the combined use of kinetic experiments and molecular dynamics simulations. Unfolding simulations for the authentic and recombinant forms at 398 K (ten trajectories of 5 ns for each form, 100 ns total) precisely reproduced the experimentally observed differences in unfolding behavior. In addition, experiments reproduced the destabilization of a mutant protein, T38A, faithfully as predicted by the simulations. This bidirectional verification between experiments and simulations enabled the atomically detailed description of the role of the extra methionine residue in the unfolding process.
Collapse
Affiliation(s)
- Tomotaka Oroguchi
- Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chedad A, Van Dael H, Vanhooren A, Hanssens I. Influence of Trp Mutation on Native, Intermediate, and Transition States of Goat α-Lactalbumin: An Equilibrium and Kinetic Study. Biochemistry 2005; 44:15129-38. [PMID: 16285716 DOI: 10.1021/bi0512400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Equilibrium circular dichroism and kinetic stopped-flow fluorescence studies on the stability and the folding kinetics of a set of Trp to Phe mutants of goat alpha-lactalbumin (GLA) were used to characterize the native, intermediate, and transition states of these constructs. GLA contains four tryptophan residues, three of which, Trp26, Trp104, and Trp118, are located in the alpha-domain, while the fourth, Trp60, is located in the beta-domain. Trp26, Trp60, and Trp104 are part of a hydrophobic cluster, whereas Trp118 is situated in a more flexible region near the C-terminal end of the protein. In each case, the mutation leads to a reduction in the overall stability, but only for W26F and W60F is an equilibrium intermediate observed in guanidine hydrochloride-induced unfolding experiments. In kinetic refolding experiments, however, for all samples a burst phase is observed, the amplitude of which depends on the specific mutation. Refolding and unfolding kinetics can adequately be described by a sequential three-state mechanism. phi value analysis showed that the local structure around Trp26, Trp60, and Trp104 is formed in the intermediate and in the transition state of the folding reaction, while around Trp118 no persistent native contacts are observed. From these findings, we conclude that, although hydrophobicity is a major driving force for folding, minor steric changes induced by point mutation can considerably influence the overall stability and the folding process of the protein.
Collapse
Affiliation(s)
- A Chedad
- Interdisciplinary Research Centre, K. U. Leuven Campus Kortrijk, B-8500 Kortrijk, Belgium
| | | | | | | |
Collapse
|
36
|
Permyakov SE, Makhatadze GI, Owenius R, Uversky VN, Brooks CL, Permyakov EA, Berliner LJ. How to improve nature: study of the electrostatic properties of the surface of alpha-lactalbumin. Protein Eng Des Sel 2005; 18:425-33. [PMID: 16093284 DOI: 10.1093/protein/gzi051] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It was recently shown that alpha-lactalbumin interacts with histones and simple models of histone proteins such as positively charged polyamino acids, suggesting that some fundamental aspects of the protein surface electrostatics may come into play. In the present work, the energies of charge-charge interaction in apo- and Ca(2+)-loaded alpha-lactalbumin were calculated using a Tanford-Kirkwood algorithm with either solvent accessibility correction or using a finite difference Poisson-Boltzmann method. The analysis revealed two major regions of alpha-lactalbumin that possessed highly unfavorable electrostatic potentials: (a) the Ca(2+)-binding loop and its neighboring residues and (b) the N-terminal region of the protein. Several individual mutants were prepared to neutralize specific individual surface acidic amino acids at both the N-terminus and Ca(2+)-binding loop of bovine alpha-lactalbumin. These mutants were characterized by intrinsic fluorescence, differential scanning microcalorimetry and circular dichroism. The structural and thermodynamic data agree in every case with the theoretical predictions, confirming that the N-terminal region is very sensitive to changes in charge. For example, desMet D14N mutation destabilizes protein and decreases its calcium affinity. On the other hand, desMet E1M and desMet D37N substitutions increase the thermal stability and calcium affinity. The Met E1Q is characterized by a marked increase in protein stability, whereas desMet E7Q and desMet E11L display a slight increase in calcium affinity and thermal stability. Examination of the unfavorable energy contributed by Glu1 and the energetically favorable consequences of neutralizing this residue suggests that nature may have made an error with bovine alpha-lactalbumin from the viewpoint of stabilizing structure and conformation.
Collapse
Affiliation(s)
- Serge E Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | | | | | |
Collapse
|
37
|
Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:119-39. [PMID: 16027053 DOI: 10.1016/j.bbapap.2005.06.005] [Citation(s) in RCA: 2282] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/08/2005] [Accepted: 06/08/2005] [Indexed: 11/30/2022]
Abstract
Circular dichroism (CD) is being increasingly recognised as a valuable technique for examining the structure of proteins in solution. However, the value of many studies using CD is compromised either by inappropriate experimental design or by lack of attention to key aspects of instrument calibration or sample characterisation. In this article, we summarise the basis of the CD approach and its application to the study of proteins, and then present clear guidelines on how reliable data can be obtained and analysed.
Collapse
Affiliation(s)
- Sharon M Kelly
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
38
|
Halskau O, Underhaug J, Frøystein NA, Martínez A. Conformational flexibility of alpha-lactalbumin related to its membrane binding capacity. J Mol Biol 2005; 349:1072-86. [PMID: 15913646 DOI: 10.1016/j.jmb.2005.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Different folding states of the small, globular milk protein bovine alpha-lactalbumin (BLA) induced by the anionic surfactant sodium dodecylsulphate (SDS) have been examined by fluorescence spectroscopy, CD and NMR. The solution structure of the protein in the absence of SDS was also determined, indicating fluidity even under native conditions. BLA is partly denatured to a molten globule (MG)-like state by micromolar concentrations of SDS, and the transitions from native to MG-like state are dependent on pH, the protein being more sensitive to the surfactant at pH 6.5. As indicated by measurements of the intrinsic emission fluorescence, the tertiary structure disappears at lower concentrations of SDS than most of the secondary structure, as estimated from CD data. The MG-like state induced by low concentrations of SDS is not observable by NMR, and is probably fluctuating and/or aggregating. At higher concentrations of SDS above the critic concentration of micelles, an NMR-observable state reappears. This micelle-associated conformer was partially assigned, and found to bear strong resemblance to the acid-tri-fluoroethanol state, retaining weakened versions of the A and C helix of native BLA. We discuss the results in terms of the inherent flexibility of the protein, and its ability to form multiple folding states and to bind to membranes. Also, we propose that proteins with stable MG-like conformers can have these states stabilized by low levels of compounds with surfactant properties in vivo.
Collapse
Affiliation(s)
- Oyvind Halskau
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | |
Collapse
|
39
|
Ribeiro EA, Ramos CHI. Circular permutation and deletion studies of myoglobin indicate that the correct position of its N-terminus is required for native stability and solubility but not for native-like heme binding and folding. Biochemistry 2005; 44:4699-709. [PMID: 15779896 DOI: 10.1021/bi047908c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the effect of deleted and circularly permuted mutations in sperm whale myoglobin and present here results on three classes of mutants: (i) a deletion mutant, Mb(1)(-)(99), in which the C-terminal helices, G and H, were removed; (ii) two circular permutations, Mb-B_GHA, in which helix B is N-terminal and helix A is C-terminal, and Mb-C_GHAB, in which helix C is N-terminal and helices A and B are C-terminal; and (iii) a deleted circular permutation, Mb-HAB_F, in which helix H is N-terminal, helix F is C-terminal, and helix G is deleted. The conformational characteristics of the apo and holo forms of these mutants were determined at neutral pH, by spectroscopic and hydrodynamic methods. The apo form of the deleted and permuted mutants exhibited a stronger tendency to aggregate and had lower ellipticity than the wild type. The mutants retained the ability to bind heme, but only the circularly permuted holoproteins had native-like heme binding and folding. These results agree with the theory that myoglobin has a central core that is able to bind heme, but also indicate that the presence of N- and C-terminal helices is necessary for native-like heme pocket formation. Because the holopermuteins were less stable than the wild-type protein and aggregated, we propose that the native position of the N-terminus is important for the precise structural architecture of myoglobin.
Collapse
Affiliation(s)
- Euripedes A Ribeiro
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, P.O. Box 6192, Campinas SP, 13084-971 Brazil
| | | |
Collapse
|
40
|
Abstract
The equilibrium unfolding and the kinetic folding and unfolding of goat alpha-lactalbumin (GLA) were studied by near- and far-ultraviolet circular dichroism (CD) and by stopped-flow fluorescence spectroscopy. Specifically, the influence of environmental conditions such as pH and Ca2+ binding was examined. Compared to the apo-form, the Ca2+-bound form was found to be strongly stabilized in equilibrium conditions at pH 7.5 and 25 degrees C. The kinetics of the refolding of apo-GLA show a major change of fluorescence intensity during the experimental dead-time, but this unresolved effect is strongly diminished in holo-GLA. In both cases, however, the chevron plots can adequately be fitted to a three-state model. Moreover, double-mix stopped-flow experiments showed that the native state (N) is reached through one major pathway without the occurrence of alternative tracks. In contrast to the homologous bovine alpha-lactalbumin (BLA), the compactness of GLA is strongly influenced by the presence of Ca2+ ions. Unlike the two-state transition observed in guanidine hydrochloride (GdnHCl)-induced equilibrium denaturation experiments at higher pH, an equilibrium intermediate state (I) is involved in denaturation at pH 4.5. In the latter case, analysis of the kinetic data makes clear that the intermediate and the unfolded states (U) show practically no Gibbs free energy difference and that they are in rapid equilibrium with each other. A possible explanation for these variations in stability and in folding characteristics with pH could be the degree of protonation of His107 that directly influences non-native interactions. Variation of environmental conditions and even small differences in sequence, therefore, can result in important effects on thermodynamic and folding parameters.
Collapse
Affiliation(s)
- Allel Chedad
- Interdisciplinary Research Center, K.U.Leuven Campus Kortrijk, Kortrijk, Belgium
| | | |
Collapse
|
41
|
Covalt JC, Cao TB, Magdaroag JRC, Gross LA, Jennings PA. Temperature, media, and point of induction affect the N-terminal processing of interleukin-1β. Protein Expr Purif 2005; 41:45-52. [PMID: 15802220 DOI: 10.1016/j.pep.2005.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 01/12/2005] [Indexed: 10/25/2022]
Abstract
The expression of recombinant proteins in bacterial hosts may alter the biophysical properties of the protein of interest as a result of differences in post-translational processing from that observed when produced in the native cell. For example, recombinant human interleukin-1beta (IL-1beta) is produced as three isoforms when expressed in the Escherichia coli strain BL-21(DE3). These isoforms are produced by the non-homogeneous processing of the N-terminal methionine residue by the endogenous bacterial aminopeptidase and differ in the first residue (1-met, 1-ala, and 1-pro). Importantly, these isoforms have significantly different binding affinities for the IL receptor protein. Varying the temperature, media composition, and point of induction affects this N-terminal processing to favor one of the three isoforms of IL-1beta. We found changes in media composition and/or point of induction affected the abundance of the isoforms by as much as 15-fold. The 1-pro isoform decreased from 60.9 to 4.7% in Luria broth (LB) and minimal media (MM), respectively, when protein expression was induced at an OD600 of 0.9. Conversely, the abundance of the 1-met isoform is much higher in MM than in LB showing the reverse effect (2.6 and 50.7% in LB and MM, respectively, at an OD600 of 0.9), and the degree to which they are favored depends significantly upon the induction point. Our results show that it is possible to favor the expression of various N-terminal isoforms of IL-1beta by adjusting the environmental growth conditions. Given that the initiator methionine residue is necessary for expression in bacterial hosts and is known to affect the stability of other recombinant proteins our approach may be a useful general method for determining the optimal conditions for expressing and purifying pure, homogenous samples of recombinant proteins for structural and biological studies.
Collapse
Affiliation(s)
- James C Covalt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0375, USA
| | | | | | | | | |
Collapse
|
42
|
Nakao M, Maki K, Arai M, Koshiba T, Nitta K, Kuwajima K. Characterization of Kinetic Folding Intermediates of Recombinant Canine Milk Lysozyme by Stopped-Flow Circular Dichroism†. Biochemistry 2005; 44:6685-92. [PMID: 15850402 DOI: 10.1021/bi050082+] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intermediate in the equilibrium unfolding of canine milk lysozyme induced by a denaturant is known to be very stable with characteristics of the molten globule state. Furthermore, there are at least two kinetic intermediates during refolding of this protein: a burst-phase (first) intermediate formed within the dead time of stopped-flow measurements and a second intermediate that accumulates with a rate constant of 22 s(-)(1). To clarify the relationships of these intermediates with the equilibrium intermediate, and also to characterize the structural changes of the protein during refolding, here we studied the kinetic refolding reactions using stopped-flow circular dichroism at 10 different wavelengths and obtained the circular dichroism spectra of the intermediates. Comparison of the circular dichroism spectra of the intermediates, as well as the absence of observed kinetics in the refolding from the fully unfolded state to the equilibrium intermediate, has demonstrated that the burst-phase intermediate is equivalent to the equilibrium intermediate. The difference circular dichroism spectrum that represented changes from the kinetic intermediate to the native state had characteristics of an exciton coupling band, indicating that specific packing of tryptophan residues in this protein occurred in this phase. From these findings, we propose a schematic model of the refolding of canine milk lysozyme that is consistent with the hierarchical mechanism of protein folding.
Collapse
Affiliation(s)
- Masaharu Nakao
- Department of Physics, School of Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Vanhooren A, Chedad A, Farkas V, Majer Z, Joniau M, Van Dael H, Hanssens I. Tryptophan to phenylalanine substitutions allow differentiation of short- and long-range conformational changes during denaturation of goat α-lactalbumin. Proteins 2005; 60:118-30. [PMID: 15861407 DOI: 10.1002/prot.20496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To test the occurrence of local particularities during the unfolding of Ca2+-loaded goat alpha-lactalbumin (GLA) we replaced Trp60 and -118, either one or both, by Phe. In contrast with alternative studies, our recombinant alpha-lactalbumins are expressed in Pichia pastoris and do not contain the extra N-terminal methionine. The substitution of Trp60 leads to a reduction of the global stability. The effect of the Trp118Phe substitution on the conformation and stability of the mutant, however, is negligible. Comparison of the fluorescence spectra of these mutants makes clear that Trp60 and -118 are strongly quenched in the native state. They both contribute to the quenching of Trp26 and -104 emission. By the interplay of these quenching effects, the fluorescence intensity changes upon thermal unfolding of the mutants behave very differently. This is the reason for a discrepancy of the apparent transition temperatures derived from the shift of the emission maxima (Tm,Fl lambda) and those derived from DSC (Tm,DSC). However, the transition temperatures derived from fluorescence intensity (Tm,Fl int) and from DSC (Tm,DSC), respectively, are quite similar, and thus, no local rearrangements are observed upon heat-induced unfolding. At room temperature, the occurrence of specific local rearrangements upon GdnHCl-induced denaturation of the different mutants is deduced from the apparent free energies of their transition state obtained from stopped-flow fluorescence measurements. By phi-value analysis it appears that, while the surroundings of Trp118 are exposed in the kinetic transition state, the surroundings of Trp60 remain native.
Collapse
Affiliation(s)
- Ann Vanhooren
- Interdisciplinary Research Center, Katholieke Universiteit Leuven Campus Kortrijk, Kortrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Masuda T, Ueno Y, Kitabatake N. High yield secretion of the sweet-tasting protein lysozyme from the yeast Pichia pastoris. Protein Expr Purif 2005; 39:35-42. [PMID: 15596358 DOI: 10.1016/j.pep.2004.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 09/01/2004] [Indexed: 11/18/2022]
Abstract
Hen egg lysozyme (HEL) is one of the sweet-tasting proteins. To understand why lysozyme is sweet, the enzyme was synthesized at high yields by a recombinant method. The mature HEL gene was cloned from a Taq polymerase-amplified PCR product into the Pichia pastoris expression and secretion vector pPIC6alpha. This expression vector contains both the Saccharomyces cerevisiae pre-pro alpha-mating factor secretion signal and the blasticidin resistance gene (bsd) for selection of transformants in bacteria and yeast. Expression of HEL was carried out in fermenter cultures. Culture supernatants were concentrated by ultrafiltration and purified by CM-ion exchange chromatography. Approximately 400 mgL-1 of recombinant HEL was obtained. The high yield of recombinant lysozyme enabled us to perform a sensory analysis in humans. The purified recombinant lysozyme elicited as a sweet taste sensation as does the lysozyme purified directly from egg white, and showed full lytic activity against cells of Micrococcus luteus. These results demonstrate that the P. pastoris expression system with the blasticidin S selection system is useful in producing recombinant sweet-tasting protein in active form at a high yield.
Collapse
Affiliation(s)
- Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
45
|
Saeki K, Arai M, Yoda T, Nakao M, Kuwajima K. Localized nature of the transition-state structure in goat alpha-lactalbumin folding. J Mol Biol 2004; 341:589-604. [PMID: 15276846 DOI: 10.1016/j.jmb.2004.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 06/03/2004] [Accepted: 06/04/2004] [Indexed: 11/22/2022]
Abstract
To investigate whether the structure partially formed in the molten globule folding intermediate of goat alpha-lactalbumin is further organized in the transition state of folding, we constructed a number of mutant proteins and performed Phi-value analysis on them. For this purpose, we measured the equilibrium unfolding transitions and kinetic refolding and unfolding reactions of the mutants using equilibrium and stopped-flow kinetic circular dichroism techniques. The results show that the mutants with mutations located in the A-helix (V8A, L12A), the B-helix (V27A), the beta-domain (L52A, W60A), the C-helix (K93A, L96A), the C-D loop (Y103F), the D-helix (L105A, L110A), and the C-terminal 3(10)-helix (W118F), have low Phi-values, less than 0.2. On the other hand, D87N, which is located on the Ca(2+)-binding site, has a high Phi-value, 0.91, indicating that tight packing of the side-chain around Asp87 occurs in the transition state. One beta-domain mutant (I55V) and three C-helix mutants (I89V, V90A, and I95V) demonstrated intermediate Phi-values, between 0.4 and 0.7. These results indicate that the folding nucleus in the transition state of goat alpha-LA is not extensively distributed over the alpha-domain of the protein, but very localized in a region that contains the Ca(2+)-binding site and the interface between the C-helix and the beta-domain. This is apparently in contrast with the fact that the molten globule state of alpha-lactalbumin has a partially formed structure inside the alpha-domain. It is concluded that the specific docking of the alpha and beta-domains at a domain interface is necessary for this protein to organize its native structure from the molten globule intermediate.
Collapse
Affiliation(s)
- Kimiko Saeki
- Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
46
|
Beena K, Udgaonkar JB, Varadarajan R. Effect of signal peptide on the stability and folding kinetics of maltose binding protein. Biochemistry 2004; 43:3608-19. [PMID: 15035631 DOI: 10.1021/bi0360509] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the role of the signal sequence in targeting proteins to specific subcellular compartments is well characterized, there are fewer studies that characterize its effects on the stability and folding kinetics of the protein. We report a detailed characterization of the folding kinetics and thermodynamic stabilities of maltose binding protein (MBP) and its precursor form, preMBP. Isothermal GdmCl and urea denaturation as a function of temperature and thermal denaturation studies have been carried out to compare stabilities of the two proteins. preMBP was found to be destabilized by about 2-6 kcal/mol (20-40%) with respect to MBP. Rapid cleavage of the signal peptide by various proteases shows that the signal peptide is accessible in the native form of preMBP. The observed rate constant of the major slow phase in folding was decreased 5-fold in preMBP relative to MBP. The rate constants of unfolding were similar at 25 degrees C, but preMBP also exhibited a large burst phase change in unfolding that was absent in MBP. At 10 degrees C, preMBP exhibited a higher unfolding rate than MBP as well as a large burst phase. The appreciable destabilization of MBP by signal peptide is functionally relevant, because it enhances the likelihood of finding the protein in an unfolded translocation-competent form and may influence the interactions of the protein with the translocation machinery. Destabilization is likely to result from favorable interactions between the hydrophobic signal peptide and other hydrophobic regions that are exposed in the unfolded state.
Collapse
Affiliation(s)
- K Beena
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
47
|
Kamagata K, Sawano Y, Tanokura M, Kuwajima K. Multiple parallel-pathway folding of proline-free Staphylococcal nuclease. J Mol Biol 2003; 332:1143-53. [PMID: 14499616 DOI: 10.1016/j.jmb.2003.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
When a protein exhibits complex kinetics of refolding, we often ascribe the complexity to slow isomerization events in the denatured protein, such as cis/trans isomerization of peptidyl prolyl bonds. Does the complex folding kinetics arise only from this well-known reason? Here, we have investigated the refolding of a proline-free variant of staphylococcal nuclease by stopped-flow, double-jump techniques, to examine the folding reactions without the slow prolyl isomerizations. As a result, the protein folds into the native state along at least two accessible parallel pathways, starting from a macroscopically single denatured-state ensemble. The presence of intermediates on the individual folding pathways has revealed the existence of multiple parallel pathways, and is characterized by multi-exponential folding kinetics with a lag phase. Therefore, a "single" amino acid sequence can fold along the multiple parallel pathways. This observation in staphylococcal nuclease suggests that the multiple folding may be more general than we have expected, because the multiple parallel-pathway folding cannot be excluded from proteins that show simpler kinetics.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
Calcineurin (CN) is a Ca(2+)/calmodulin(CaM)-dependent serine/threonine protein phosphatase which is a heterodimer composed of a 61 kDa catalytic subunit (CNA) and a 19 kDa regulatory subunit (CNB). The enzyme is critical for several important intracellular signal-transducing pathways, including T-cell activation. Its crystal structure reveals that the C-terminal of CNB lies in close vicinity of the N-terminal of CNA and each end has a long arm not involved in the active site. After fusing two subunits, it was determined that folding and function of the protein were not affected by the fusion. We amplified a fused gene of A and B subunits using a pair of linker primers including six codons of glycine. A single chain calcineurin was constructed and purified to near-homogeneity. The recombinant enzyme was fully soluble, displayed high specific activity with substrate, and exhibited biochemical properties and kinetic parameters similar to those of the native enzyme from the bovine brain. It was still activated by Ca(2+)/calmodulin but was not regulated by extra CNB and was still strongly stimulated by Mn(2+) and Ni(2+) divalent metal ions. The solution conformations of both recombinant enzyme and bovine calcineurin were assayed under the same conditions using intrinsic fluorescence spectroscopy and circular dichroism spectropolarimetry, and results showed their graphs are approximately identical. Our findings suggested that the fusion of A and B subunits of calcineurin does not affect their folding pathways and structural changes involved in their function, furthermore, they are bound to the correct binding site.
Collapse
Affiliation(s)
- Yun-Long Qin
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing 100875, PR China
| | | | | |
Collapse
|
49
|
Ramboarina S, Redfield C. Structural characterisation of the human alpha-lactalbumin molten globule at high temperature. J Mol Biol 2003; 330:1177-88. [PMID: 12860137 DOI: 10.1016/s0022-2836(03)00639-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molten globules are partially folded forms of proteins thought to be general intermediates in protein folding. The 15N-1H HSQC NMR spectrum of the human alpha-lactalbumin (alpha-LA) molten globule at pH 2 and 20 degrees C is characterised by broad lines which make direct study by NMR methods difficult; this broadening arises from conformational fluctuations throughout the protein on a millisecond to microsecond timescale. Here, we find that an increase in temperature to 50 degrees C leads to a dramatic sharpening of peaks in the 15N-1H HSQC spectrum of human alpha-LA at pH 2. Far-UV CD and ANS fluorescence experiments demonstrate that under these conditions human alpha-LA maintains a high degree of helical secondary structure and the exposed hydrophobic surfaces that are characteristic of a molten globule. Analysis of the H(alpha), H(N) and 15N chemical shifts of the human alpha-LA molten globule at 50 degrees C leads to the identification of regions of native-like helix in the alpha-domain and of non-native helical propensity in the beta-domain. The latter may be responsible for the observed overshoot in ellipticity at 222 nm in kinetic refolding experiments.
Collapse
Affiliation(s)
- Stephanié Ramboarina
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QH, UK
| | | |
Collapse
|
50
|
MacDonald LM, Armson A, Thompson RCA, Reynoldson JA. Characterization of factors favoring the expression of soluble protozoan tubulin proteins in Escherichia coli. Protein Expr Purif 2003; 29:117-22. [PMID: 12729732 DOI: 10.1016/s1046-5928(03)00006-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The alpha- and beta-tubulin genes of the parasitic protozoa Giardia duodenalis, Cryptosporidium parvum, and Encephalitozoon intestinalis have been overexpressed in soluble form using Escherichia coli-based expression systems. Several expression systems were compared in terms of the amount of soluble protein produced with different fusion partners, strains of E. coli BL21, and expression temperatures. The cleavability of the fusion partner was also assessed in terms of post-expression applications of the recombinant protein. The maltose-binding protein (MBP) and glutathione S-transferase (GST) fusion partners produced the highest expression levels for all six proteins without the formation of inclusion bodies. The expression system also provided a means of purifying the soluble protein using affinity and anion-exchange chromatography while minimizing protein losses. The yield and purity were therefore very high for both the MBP and GST systems. The tubulin monomers were demonstrated to be assembly-competent using a standard dimerization assay and also retained full antigenicity with monoclonal antibodies. This study presents several methods which are suitable for producing soluble tubulin monomers and, thus, circumventing the formation of inclusion bodies which necessitates re-folding of the tubulin.
Collapse
Affiliation(s)
- Louisa M MacDonald
- Division of Veterinary and Biomedical Sciences, Murdoch University, South Street, Perth, WA 6150, Australia.
| | | | | | | |
Collapse
|