1
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res 2023; 92:101110. [PMID: 35840489 DOI: 10.1016/j.preteyeres.2022.101110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Genetic medicine is offering hope as new therapies are emerging for many previously untreatable diseases. The eye is at the forefront of these advances, as exemplified by the approval of Luxturna® by the United States Food and Drug Administration (US FDA) in 2017 for the treatment of one form of Leber Congenital Amaurosis (LCA), an inherited blindness. Luxturna® was also the first in vivo human gene therapy to gain US FDA approval. Numerous gene therapy clinical trials are ongoing for other eye diseases, and novel delivery systems, discovery of new drug targets and emerging technologies are currently driving the field forward. Targeting RNA, in particular, is an attractive therapeutic strategy for genetic disease that may have safety advantages over alternative approaches by avoiding permanent changes in the genome. In this regard, antisense oligonucleotides (ASO) and RNA interference (RNAi) are the currently popular strategies for developing RNA-targeted therapeutics. Enthusiasm has been further fuelled by the emergence of clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR associated (Cas) systems that allow targeted manipulation of nucleic acids. RNA-targeting CRISPR-Cas systems now provide a novel way to develop RNA-targeted therapeutics and may provide superior efficiency and specificity to existing technologies. In addition, RNA base editing technologies using CRISPR-Cas and other modalities also enable precise alteration of single nucleotides. In this review, we showcase advances made by RNA-targeting systems for ocular disease, discuss applications of ASO and RNAi technologies, highlight emerging CRISPR-Cas systems and consider the implications of RNA-targeting therapeutics in the development of future drugs to treat eye disease.
Collapse
|
3
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
4
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
5
|
Barkau CL, O'Reilly D, Eddington SB, Damha MJ, Gagnon KT. Small nucleic acids and the path to the clinic for anti-CRISPR. Biochem Pharmacol 2021; 189:114492. [PMID: 33647260 PMCID: PMC8725204 DOI: 10.1016/j.bcp.2021.114492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
CRISPR-based therapeutics have entered clinical trials but no methods to inhibit Cas enzymes have been demonstrated in a clinical setting. The ability to inhibit CRISPR-based gene editing or gene targeting drugs should be considered a critical step in establishing safety standards for many CRISPR-Cas therapeutics. Inhibitors can act as a failsafe or as an adjuvant to reduce off-target effects in patients. In this review we discuss the need for clinical inhibition of CRISPR-Cas systems and three existing inhibitor technologies: anti-CRISPR (Acr) proteins, small molecule Cas inhibitors, and small nucleic acid-based CRISPR inhibitors, CRISPR SNuBs. Due to their unique properties and the recent successes of other nucleic acid-based therapeutics, CRISPR SNuBs appear poised for clinical application in the near-term.
Collapse
Affiliation(s)
- Christopher L Barkau
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Daniel O'Reilly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Seth B Eddington
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
6
|
Yang L, Toh DFK, Krishna MS, Zhong Z, Liu Y, Wang S, Gong Y, Chen G. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components. Biochemistry 2020; 59:4429-4438. [PMID: 33166472 DOI: 10.1021/acs.biochem.0c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.
Collapse
Affiliation(s)
- Lixia Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhensheng Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
7
|
Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, Bahal R. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med 2020; 9:jcm9062004. [PMID: 32604776 PMCID: PMC7355792 DOI: 10.3390/jcm9062004] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Antisense oligonucleotides (ASOs) bind sequence specifically to the target RNA and modulate protein expression through several different mechanisms. The ASO field is an emerging area of drug development that targets the disease source at the RNA level and offers a promising alternative to therapies targeting downstream processes. To translate ASO-based therapies into a clinical success, it is crucial to overcome the challenges associated with off-target side effects and insufficient biological activity. In this regard, several chemical modifications and diverse delivery strategies have been explored. In this review, we systematically discuss the chemical modifications, mechanism of action, and optimized delivery strategies of several different classes of ASOs. Further, we highlight the recent advances made in development of ASO-based drugs with a focus on drugs that are approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for clinical applications. We also discuss various promising ASO-based drug candidates in the clinical trials, and the outstanding opportunity of emerging microRNA as a viable therapeutic target for future ASO-based therapies.
Collapse
Affiliation(s)
- Karishma Dhuri
- Department of Pharmaceutical Science, University of Connecticut, Storrs, CT 06269, USA; (K.D.); (C.B.)
| | - Clara Bechtold
- Department of Pharmaceutical Science, University of Connecticut, Storrs, CT 06269, USA; (K.D.); (C.B.)
| | - Elias Quijano
- Department of Genetics, Yale University, New Haven, CT 06520, USA;
| | - Ha Pham
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232-5671, USA;
| | - Anisha Gupta
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA;
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Raman Bahal
- Department of Pharmaceutical Science, University of Connecticut, Storrs, CT 06269, USA; (K.D.); (C.B.)
- Correspondence:
| |
Collapse
|
8
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
9
|
Gait MJ, Arzumanov AA, McClorey G, Godfrey C, Betts C, Hammond S, Wood MJ. Cell-Penetrating Peptide Conjugates of Steric Blocking Oligonucleotides as Therapeutics for Neuromuscular Diseases from a Historical Perspective to Current Prospects of Treatment. Nucleic Acid Ther 2019; 29:1-12. [PMID: 30307373 PMCID: PMC6386087 DOI: 10.1089/nat.2018.0747] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/08/2018] [Indexed: 12/29/2022] Open
Abstract
The review starts with a historical perspective of the achievements of the Gait group in synthesis of oligonucleotides (ONs) and their peptide conjugates toward the award of the 2017 Oligonucleotide Therapeutic Society Lifetime Achievement Award. This acts as a prelude to the rewarding collaborative studies in the Gait and Wood research groups aimed toward the enhanced delivery of charge neutral ON drugs and the development of a series of Arg-rich cell-penetrating peptides called Pip (peptide nucleic acid/phosphorodiamidate morpholino oligonucleotide [PNA/PMO] internalization peptides) as conjugates of such ONs. In this review we concentrate on these developments toward the treatment of the neuromuscular diseases Duchenne muscular dystrophy and spinal muscular atrophy toward a platform technology for the enhancement of cellular and in vivo delivery suitable for widespread use as neuromuscular and neurodegenerative ON drugs.
Collapse
Affiliation(s)
- Michael J. Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrey A. Arzumanov
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corinne Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Suzan Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthew J.A. Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Kulik M, Markowska-Zagrajek A, Wojciechowska M, Grzela R, Wituła T, Trylska J. Helix 69 of Escherichia coli 23S ribosomal RNA as a peptide nucleic acid target. Biochimie 2017; 138:32-42. [PMID: 28396015 DOI: 10.1016/j.biochi.2017.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/03/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
A fragment of 23S ribosomal RNA (nucleotides 1906-1924 in E. coli), termed Helix 69, forms a hairpin that is essential for ribosome function. Helix 69 forms a conformationally flexible inter-subunit connection with helix 44 of 16S ribosomal RNA, and the nucleotide A1913 of Helix 69 influences decoding accuracy. Nucleotides U1911 and U1917 are post-transcriptionally modified with pseudouridines (Ψ) and U1915 with 3-methyl-Ψ. We investigated Helix 69 as a target for a complementary synthetic oligonucleotide - peptide nucleic acid (PNA). We determined thermodynamic properties of Helix 69 and its complexes with PNA and tested the performance of PNA targeted at Helix 69 in inhibiting translation in cell-free extracts and growth of E. coli cells. First, we examined the interactions of a PNA oligomer complementary to the G1907-A1919 fragment of Helix 69 with the sequences corresponding to human and bacterial species (with or without pseudouridine modifications). PNA invades the Helix 69 hairpin creating stable complexes and PNA binding to the pseudouridylated bacterial sequence is stronger than to Helix 69 without any modifications. Second, we confirmed the binding of PNA to 23S rRNA and 70S ribosomes. Third, we verified the efficiency of translation inhibition of these PNA oligomers in the cell-free translation/transcription E. coli system, which were in a similar range as tetracycline. Next, we confirmed that PNA conjugated to the (KFF)3K transporter peptide inhibited E. coli growth in micromolar concentrations. Overall, targeting Helix 69 with PNA or other sequence-specific oligomers could be a promising way to inhibit bacterial translation.
Collapse
Affiliation(s)
- Marta Kulik
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agnieszka Markowska-Zagrajek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland; Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Wojciechowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Tomasz Wituła
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
11
|
Maekawa K, Azuma M, Okuno Y, Tsukamoto T, Nishiguchi K, Setsukinai KI, Maki H, Numata Y, Takemoto H, Rokushima M. Antisense peptide nucleic acid–peptide conjugates for functional analyses of genes in Pseudomonas aeruginosa. Bioorg Med Chem 2016; 23:7234-9. [PMID: 26602085 DOI: 10.1016/j.bmc.2015.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/13/2015] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa is one of the most common and clinically important pathogens because of its resistance to a wide variety of antibiotics. A number of treatments of P. aeruginosa have been developed, but there is still no definitive one. Antisense drugs have a great potential to treat multidrug-resistant P. aeruginosa because this technology, in principle, can inhibit the expression of any essential genes. Nucleic Acid Ther.2012, 22, 323 reported that peptide nucleic acid (PNA) antisenses conjugated to the carrier peptide (RXR)4 and targeted to ftsZ and acpP (essential genes) had antibacterial activity in P. aeruginosa. However, growth inhibition was also found with peptide-PNA antisense conjugates of mismatched sequences (negative controls), and hence there remains a possibility for considerable enhancement of basal level activity due to the general toxicity. To assess the true potential of peptide-PNA conjugates, we measured sequence-dependent knockdown of the (RXR)4-PNA conjugates by using a scrambled sequence as a negative control. In addition, we evaluated (RXR)4-PNA antisenses against three other essential genes (lepB, lptD and mraY) and a non-essential gene (PA1303), and confirmed that multiple sequences targeting only the essential genes showed antimicrobial activity in P. aeruginosa PAO1 cells. We also conducted a rescue experiment and confirmed that the antimicrobial activity of anti-mraY antisenses was an on-target effect, not due to general toxicity. These findings indicate that the (RXR)4–PNA antisense should be a useful tool for target validation of a specific gene and could be a therapeutic platform capable of targeting a variety of genes in P. aeruginosa.
Collapse
|
12
|
Noguchi E, Shigi N, Komiyama M. Intracellular Localization of PNA in Human Cells upon its Introduction by Electroporation. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peptide nucleic acid (PNA) is one of the most useful DNA analogs in a wide variety of gene analysis in human cells. In order to exhibit its maximal functions, PNA must be localized to a desired place (e.g., nucleus, cytoplasm and other organelles). Here, we introduced PNAs into HeLa cells by electroporation and examined their localization at various time points. The PNA which binds to the mitochondrial COII gene was initially accumulated in the nucleus, and thereafter mostly transferred to cytoplasm. This time-dependent intracellular localization of PNA is ascribed to the breakdown of the nuclear envelope in the cell division. On the other hand, another PNA that binds to telomere repeat sequence mostly remained in the nucleus, even after the cell division occurred. The retention of this PNA in the nucleus was further enhanced when it was conjugated with Cy3.
Collapse
Affiliation(s)
- Eri Noguchi
- Research Center for Advanced Science and Technology, The University of Tokyo,4-6-1 Komaba, Meguro-ku, Tokyo, Japan 153-8904
| | - Narumi Shigi
- Research Center for Advanced Science and Technology, The University of Tokyo,4-6-1 Komaba, Meguro-ku, Tokyo, Japan 153-8904
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo,4-6-1 Komaba, Meguro-ku, Tokyo, Japan 153-8904
| |
Collapse
|
13
|
Zhang Y, Friedlander RM. Using non-coding small RNAs to develop therapies for Huntington's disease. Gene Ther 2012; 18:1139-49. [PMID: 22158031 DOI: 10.1038/gt.2011.170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is caused by an expansion of CAG triplets at the 5' end of the HD gene, which encodes a pathologically elongated polyglutamine stretch near the N-terminus of huntingtin. HD is an incurable autosomal-dominant neurodegenerative disease characterized by movement disorder, as well as emotional distress and dementia. The newly discovered roles of the non-coding small RNAs in specific degradation or translational suppression of the targeted mRNAs suggest a potential therapeutic approach of post-transcriptional gene silencing that targets the underlying disease etiology rather than the downstream pathological consequences. From pre-clinical trials in different HD animal models to cells from HD patients, small RNA interference has been applied to 'allele-non-specifically or allele-specifically' silence the mutant HD transgene or endogenous mutant HD allele. Silencing the mutant HD transgene significantly inhibits neurodegeneration, improves motor control, and extends survival of HD mice. With future improvement of mutant allele selectivity (preserving the expression of the neuroprotective wild-type allele), target specificity, efficacy and safety, as well as optimization of delivery methods, small non-coding RNA-based therapeutic applications will be a promising approach to treat HD.
Collapse
Affiliation(s)
- Y Zhang
- Department of Neurological Surgery, UPMC Presbyterian Hospital, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
14
|
Xin G, Zhao X, Duan X, Ning Q, Meng M, Meng D, Liu L. Antitumor effect of a generation 4 polyamidoamine dendrimer/cyclooxygenase-2 antisense oligodeoxynucleotide complex on breast cancer in vitro and in vivo. Cancer Biother Radiopharm 2012; 27:77-87. [PMID: 22242594 DOI: 10.1089/cbr.2011.1028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyclooxygenase (COX)-2 plays critical roles in tumorigenesis, tumor cell growth, and angiogenesis, and inhibiting the expression of COX-2 by gene therapy has showed promising prospects. Vectors are crucial for gene therapy. Polyamidoamine (PAMAM) dendrimers are one type of nano-vectors. In this study, we synthesized a generation 4 polyamidoamine (G4PAMAM) dendrimer/COX-2 antisense oligodeoxynucleotide complex (G4PAMAM/COX-2ASODN), determined the transfection rate of G4PAMAM/COX-2ASODN on cultured breast cancer cells, assessed the cell viability, cell cycle dynamics, and cell invasiveness after transfection, and investigated the effects of G4PAMAM/COX-2ASODN on the expression of COX-2 mRNA and protein and microvessel density (MVD) levels in the tumor tissues of a breast cancer nude mouse model. The results showed that G4PAMAM/COX-2ASODN had a high transfection rate, decreased the cell viability, induced apoptosis and G0/G1 cell cycle arrest, and suppressed cell invasiveness. After treatment with G4PAMAM/COX-2ASODN, the copy number of COX-2 mRNA and protein expression in the tumor tissue were decreased markedly, MVD in the tumor tissue was also decreased, and tumor growth was restrained (p<0. 05). We conclude that COX-2ASODN can be delivered into the cultured and transplanted breast cancer cells efficiently by G4PAMAM, can reduce the expression of COX-2 mRNA and protein, and can lower the MVD of tumor tissues. The G4PAMAM/COX-2ASODN complex has antitumor properties in vitro and in vivo.
Collapse
Affiliation(s)
- Guohong Xin
- Department of Medical Oncology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Lecosnier S, Cordier C, Simon P, François JC, Saison-Behmoaras TE. A steric blocker of translation elongation inhibits IGF-1R expression and cell transformation. FASEB J 2011; 25:2201-10. [PMID: 21402719 DOI: 10.1096/fj.10-169540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is involved in transformation, survival, mitogenesis and differentiation. It is overexpressed in many tumors and a validated target for anticancer therapy. In cell-free systems, polypyrimidic peptide nucleic acids (PNAs) can form triplex-like structures with messenger RNAs and halt the ribosomal machinery during the translation elongation. A 17-mer PNA that formed a PNA(2):mRNA complex with a purine-rich sequence located in the coding region of IGF-1R mRNA induced the synthesis of a truncated IGF-1R in vitro. This PNA down-regulated expression of the receptor by 70-80% in prostate cancer cells without affecting insulin receptor expression that exhibits high homology with IGF-1R. Inhibition occurs at the translational level, since the IGF-1R mRNA level measured by quantitative RT-PCR was not affected by PNA treatment. In addition, IGF-1R knockdown by PNA led to an attenuation of phosphorylation of downstream signaling pathways, PI3K/AKT and MAPK, involved in survival and mitogenesis and also to a decrease in cell transformation. Of the steric blockers tested, which included phosphorodiamidate morpholino oligomers and locked nucleic acids, PNA was unique in its ability to form triplex structures with mRNA and to arrest translation elongation.
Collapse
Affiliation(s)
- Sabine Lecosnier
- Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Unité Mixte de Recherche 7196, Paris, France
| | | | | | | | | |
Collapse
|
16
|
Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry 2010; 49:10166-78. [PMID: 21028906 DOI: 10.1021/bi101208k] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Huntington's disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense oligonucleotides (ASOs) targeted to the expanded CAG repeat within HTT mRNA for their ability to selectively inhibit expression of mutant HTT protein. Several ASOs incorporating a variety of modifications, including bridged nucleic acids and phosphorothioate internucleotide linkages, exhibited allele-selective silencing in patient-derived fibroblasts. Allele-selective ASOs did not affect the expression of other CAG repeat-containing genes and selectivity was observed in cell lines containing minimal CAG repeat lengths representative of most HD patients. Allele-selective ASOs left HTT mRNA intact and did not support ribonuclease H activity in vitro. We observed cooperative binding of multiple ASO molecules to CAG repeat-containing HTT mRNA transcripts in vitro. These results are consistent with a mechanism involving inhibition at the level of translation. ASOs targeted to the CAG repeat of HTT provide a starting point for the development of oligonucleotide-based therapeutics that can inhibit gene expression with allelic discrimination in patients with HD.
Collapse
Affiliation(s)
- Keith T Gagnon
- Department of Pharmacology, UT Southwestern Medical Center, ND8.136B, Dallas, Texas 75390-9041, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Although Nature's antisense approaches are clearly impressive, this Perspectives article focuses on the experimental uses of antisense reagents (ASRs) for control of biological processes. ASRs comprise antisense oligonucleotides (ASOs), and their catalytically active counterparts ribozymes and DNAzymes, as well as small interfering RNAs (siRNAs). ASOs and ribozymes/DNAzymes target RNA molecules on the basis of Watson-Crick base pairing in sequence-specific manner. ASOs generally result in destruction of the target RNA by RNase-H mediated mechanisms, although they may also sterically block translation, also resulting in loss of protein production. Ribozymes and DNAzymes cleave target RNAs after base pairing via their antisense flanking arms. siRNAs, which contain both sense and antisense regions from a target RNA, can mediate target RNA destruction via RNAi and the RISC, although they can also function at the transcriptional level. A considerable number of ASRs (mostly ASOs) have progressed into clinical trials, although most have relatively long histories in Phase I/II settings. Clinical trial results are surprisingly difficult to find, although few ASRs appear to have yet established efficacy in Phase III levels. Evolution of ASRs has included: (a) Modifications to ASOs to render them nuclease resistant, with analogous modifications to siRNAs being developed; and (b) Development of strategies to select optimal sites for targeting. Perhaps the biggest barrier to effective therapies with ASRs is the "Delivery Problem." Various liposomal vehicles have been used for systemic delivery with some success, and recent modifications appear to enhance systemic delivery, at least to liver. Various nanoparticle formulations are now being developed which may also enhance delivery. Going forward, topical applications of ASRs would seem to have the best chances for success. In summary, modifications to ASRs to enhance stability, improve targeting, and incremental improvements in delivery vehicles continue to make ASRs attractive as molecular therapeutics, but their advance toward the bedside has been agonizingly slow.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- DNA, Catalytic/chemistry
- DNA, Catalytic/therapeutic use
- Drug Delivery Systems/methods
- Drug Delivery Systems/trends
- Humans
- Oligonucleotides, Antisense/adverse effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/toxicity
- RNA, Catalytic/chemistry
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Wei-Hua Pan
- Gittlen Cancer Research Foundation, Hershey Medical Center, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
18
|
Fattal E, Barratt G. Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 2009; 157:179-94. [PMID: 19366348 DOI: 10.1111/j.1476-5381.2009.00148.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antisense oligonucleotides and small interfering RNA have enormous potential for the treatment of a number of diseases, including cancer. However, several impediments to their widespread use as drugs still have to be overcome: in particular their lack of stability in physiological fluids and their poor penetration into cells. Association with or encapsulation within nano- and microsized drug delivery systems could help to solve these problems. In this review, we describe the progress that has been made using delivery systems composed of natural or synthetic polymers in the form of complexes, nanoparticles or microparticles.
Collapse
Affiliation(s)
- Elias Fattal
- Univ Paris Sud 11, UMR 8612, Châtenay-Malabry, F-92290, France
| | | |
Collapse
|
19
|
Mansoor M, Melendez AJ. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:275-95. [PMID: 19787090 PMCID: PMC2733095 DOI: 10.4137/grsb.s418] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides (As-ODNs) are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt), 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.
Collapse
Affiliation(s)
- Moizza Mansoor
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
20
|
State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm 2008; 364:237-48. [PMID: 18619528 DOI: 10.1016/j.ijpharm.2008.06.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/07/2008] [Accepted: 06/10/2008] [Indexed: 02/07/2023]
Abstract
Knocking down gene expression using either antisense oligonucleotides (AS-ODNs) or small interfering RNA (siRNAs) has raised a lot of interest in designing new pathways for therapeutics. Despite their potentialities, these negatively charged and hydrophilic molecules request chemical modifications or a carrier that allows cell recognition, cell internalization and moreover subcellular penetration. Although chemical modifications were brought to the basic AS-ODNs and siRNAs, their sensitivity to degradation and poor intracellular penetration is still hampering their clinical applications. We present here the potentialities of polymeric carriers or the use of alternative administration route such as oral, ocular and skin delivery to improve their delivery and to circumvent the hurdles for their clinical applications.
Collapse
|
21
|
Fabani MM, Ivanova GD, Gait MJ. Peptide–Peptide Nucleic Acid Conjugates for Modulation of Gene Expression. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Martin M. Fabani
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Gabriela D. Ivanova
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Michael J. Gait
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| |
Collapse
|
22
|
Horie M, Morita K, Kawakami J, Ando O, Koizumi M, Tsutsumi S. Comparison between properties of 2'-O,4'-C-ethylene-bridged nucleic acid (ENA) phosphorothioate oligonucleotides and N3'-P5' thiophosphoramidate oligonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 25:231-42. [PMID: 16629117 DOI: 10.1080/15257770500446881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synthesis and properties of an oligonucleotide uniformly modified with 2'-O,4-C-ethylene-bridged nucleic acid (ENA) units were compared with those of GRN163, which is modified with N3'-P5' thiophosphoramidates, with the sequence targeting human telomerase RNA subunit. Although an ENA phosphorothioate oligonucleotide, ENA-13, could be synthesized using ENA phosphoramidites on a 100-mg scale, synthesis of GRN163 was very hard even on a 1-micomol scale. In view of both stability of the duplex formation with complementary RNA and the efficiency of cellular uptake by endocytosis, ENA-13 was superior to GRN163. These findings suggest that ENA-13 has useful properties for antisense therapeutic application.
Collapse
Affiliation(s)
- Makiko Horie
- Sankyo Co., Ltd., Lead Discovery Research Laboratories, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Sidahmed AME, Wilkie BN. Control of cytokine gene expression using small RNA interference: blockade of interleukin-10 and interferon-gamma gene expression in pig cells. Vet Immunol Immunopathol 2007; 117:86-94. [PMID: 17368795 DOI: 10.1016/j.vetimm.2007.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 02/13/2007] [Accepted: 02/19/2007] [Indexed: 12/26/2022]
Abstract
The ability of small RNA interference (RNAi) to reduce specific gene expression was tested using interleukin-10 (IL-10) and interferon-gamma (IFN-gamma) production by cultured swine blood mononuclear cells stimulated by Escherichia coli lipopolysaccharide or concanavalin A. Antisense (AS) phosphorothioate oligodeoxynucleotides (ODNs) corresponding to a sequence in the region of the AUG initiation codon of swine IL-10 or IFN-gamma mRNA inhibited production of IL-10 (>or=93.5%) and IFN-gamma (>or=99%) mRNAs. Interleukin-10 and IFN-gamma protein production was inhibited more than 95% by the AS ODNs. Scrambled and sense ODNs RNAi used as negative controls did not alter mRNA expression for either cytokine but slightly reduced IL-10 protein production. Cytokine-specific and control RNAi did not inhibit beta(2)-microglobulin mRNA expression in mitogen-stimulated blood mononuclear cells. Thus AS ODNs RNAi specifically inhibit expression of pig IL-10 and IFN-gamma mRNAs by cultured, mitogen-stimulated blood mononuclear cells and may be an attractive alternative method for studying cytokine function.
Collapse
Affiliation(s)
- A M E Sidahmed
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
24
|
Abstract
Antisense oligonucleotides have been evaluated as antineoplastic agents in a series of clinical trials, with mixed results. However, phase III trials incorporating G3139, a phosphorothioate oligomer targeted to the initiation codon region of the bcl-2 mRNA, have recently been completed in advanced melanoma, myeloma, and chronic lymphocytic leukemia (CLL). This article discusses the mechanism of the antisense effect and its dependence on the cellular internalization of oligonucleotides and the activity of RNase H. It also describes the properties, specific and nonspecific, of phosphorothioate oligonucleotides, the predominant species in current clinical trials, and discusses pharmacokinetic data obtained from earlier phase I and II trials employing these molecules. While the application of antisense technology to the treatment of human cancer is conceptually straightforward, in practice there are many complicated, mechanistically based questions that must be considered.
Collapse
Affiliation(s)
- C A Stein
- Department of Oncology, Albert Einstein-Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| | | | | |
Collapse
|
25
|
Turner JJ, Ivanova GD, Verbeure B, Williams D, Arzumanov AA, Abes S, Lebleu B, Gait MJ. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res 2005; 33:6837-49. [PMID: 16321967 PMCID: PMC1301599 DOI: 10.1093/nar/gki991] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The trans-activation response (TAR) RNA stem–loop that occurs at the 5′ end of HIV RNA transcripts is an important antiviral target and is the site of interaction of the HIV-1 Tat protein together with host cellular factors. Oligonucleotides and their analogues targeted to TAR are potential antiviral candidates. We have investigated a range of cell penetrating peptide (CPP) conjugates of a 16mer peptide nucleic acid (PNA) analogue targeted to the apical stem–loop of TAR and show that disulfide-linked PNA conjugates of two types of CPP (Transportan or a novel chimeric peptide R6-Penetratin) exhibit dose-dependent inhibition of Tat-dependent trans-activation in a HeLa cell assay when incubated for 24 h. Activity is reached within 6 h if the lysosomotropic reagent chloroquine is co-administered. Fluorescein-labelled stably-linked conjugates of Tat, Transportan or Transportan TP10 with PNA were inactive when delivered alone, but attained trans-activation inhibition in the presence of chloroquine. Confocal microscopy showed that such fluorescently labelled CPP–PNA conjugates were sequestered in endosomal or membrane-bound compartments of HeLa cells, which varied in appearance depending on the CPP type. Co-administration of chloroquine was seen in some cases to release fluorescence from such compartments into the nucleus, but with different patterns depending on the CPP. The results show that CPP–PNA conjugates of different types can inhibit Tat-dependent trans-activation in HeLa cells and have potential for development as antiviral agents. Endosomal or membrane release is a major factor limiting nuclear delivery and trans-activation inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Saïd Abes
- UMR 5124 CNRS, CC 086, Université Montpellier 2Place Eugène Bataillon, 34095 Montpellier, France
| | - Bernard Lebleu
- UMR 5124 CNRS, CC 086, Université Montpellier 2Place Eugène Bataillon, 34095 Montpellier, France
| | - Michael J. Gait
- To whom correspondence should be addressed. Tel: +44 1223 248011; Fax: +44 1223 402070;
| |
Collapse
|
26
|
Rathinavelan T, Yathindra N. Molecular dynamics structures of peptide nucleic acid x DNA hybrid in the wild-type and mutated alleles of Ki-ras proto-oncogene--stereochemical rationale for the low affinity of PNA in the presence of an AC mismatch. FEBS J 2005; 272:4055-70. [PMID: 16098189 DOI: 10.1111/j.1742-4658.2005.04817.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The low affinity of peptide nucleic acid (PNA) to hybridize with DNA in the presence of a mismatch endows PNA with a high degree of discriminatory capacity that has been exploited in therapeutics for the selective inhibition of the expression of point-mutated genes. To obtain a structural basis for this intriguing property, molecular dynamics simulations are carried out on PNA x DNA duplexes formed at the Ki-ras proto-oncogene, comprising the point-mutated (GAT), and the corresponding wild-type (GGT) codon 12. The designed PNA forms an A...C mismatch with the wild-type sequence and a perfect A...T pair with the point mutated sequence. Results show that large movements in the pyrimidine base of the A...C mismatch cause loss of stacking, especially with its penultimate base, concomitant with a variable mismatch hydrogen bond, including its occasional absence. These, in turn, bring about dynamic water interactions in the vicinity of the mismatch. Enthalpy loss and the disproportionate entropy gain associated with these are implicated as the factors contributing to the increase in free energy and diminished stability of PNA x DNA duplex with the A...C mismatch. Absence of these in the isosequential DNA duplex, notwithstanding the A...C mismatch, is attributed to the differences in topology of PNA x DNA vis-à-vis DNA duplexes. It is speculated that similar effects might be responsible for the reduced stability observed in PNA x DNA duplexes containing other base pair mismatches, and also in mismatch containing PNA x DNA duplexes.
Collapse
Affiliation(s)
- Thenmalarchelvi Rathinavelan
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India Institute of Bioinformatics and Applied Biotechnology, ITPB, Bangalore, India
| | | |
Collapse
|
27
|
Shi F, Hoekstra D. Effective intracellular delivery of oligonucleotides in order to make sense of antisense. J Control Release 2005; 97:189-209. [PMID: 15196747 DOI: 10.1016/j.jconrel.2004.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 03/12/2004] [Indexed: 01/28/2023]
Abstract
For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the targeting to and association of an ODN sequence with a specific mRNA via base-pairing, resulting in an impairment of functional and/or harmful protein expression in normal and diseased cells/tissue, respectively. Apart from ODN stability, its efficiency very much depends on intracellular delivery and release/access to the target side, issues that are still relatively poorly understood. Since free ODNs enter cells relatively poorly, appropriate carriers, often composed of polymers and cationic lipids, have been developed. Such carriers allow efficient delivery of ODNs into cells in vitro, and the mechanisms of delivery, both in terms of biophysical requirements for the carrier and cell biological features of uptake, are gradually becoming apparent. To become effective, ODNs require delivery into the nucleus, which necessitates release of internalized ODNs from endosomal compartments, an event that seems to depend on the nature of the delivery vehicle and distinct structural shape changes. Interestingly, evidence is accumulating which suggests that by modulating the surface properties of the carrier, the kinetics of such changes can be controlled, thus providing possibilities for programmable release of the carrier contents. Here, consideration will also be given to antisense design and chemistry, and the challenge of extra- and intracellular barriers to be overcome in the delivery process.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
28
|
Robaczewska M, Narayan R, Seigneres B, Schorr O, Thermet A, Podhajska AJ, Trepo C, Zoulim F, Nielsen PE, Cova L. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA). J Hepatol 2005; 42:180-7. [PMID: 15664242 DOI: 10.1016/j.jhep.2004.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 09/17/2004] [Accepted: 10/04/2004] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT) and to compare their efficacy with phosphorothioate oligodeoxynucleotides (S-ODNs). METHODS The effect of two partly overlapping PNAs targeting epsilon and of analogous S-ODNs was tested in cell-free transcription and translation system for DHBV RT expression. In addition their antiviral effect was investigated in primary duck hepatocytes (PDH). RESULTS Both PNAs reproducibly inhibited DHBV RT in a dose-dependent manner with IC(50) of 10nM, whereas up to 600-fold higher concentration of S-ODNs was required for similar inhibition. The PNA targeting the bulge and upper stem of epsilon appeared as more efficient RT inhibitor than the PNA targeting only the bulge. Importantly, the inhibition was highly sequence-specific since double-mismatched PNA had no effect on the RT reaction. Moreover, in PDH the PNA coupled to Arg(7) cationic delivery peptide decreased DHBV replication. CONCLUSIONS We provide the first evidence that PNAs targeting the bulge and upper stem of epsilon can efficiently and in a sequence-specific manner inhibit DHBV RT.
Collapse
|
29
|
Bastide L, Lebleu B, Robbins I. Modulation of nucleic acid information processing by PNAs: Potential use in anti-viral therapeutics. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Nielsen PE. The many faces of PNA. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Pradhan AAA, Clarke PBS. Pharmacologically selective block of mu opioid antinociception by peptide nucleic acid antisense in absence of detectable ex vivo knockdown. Eur J Pharmacol 2004; 506:229-36. [PMID: 15627432 DOI: 10.1016/j.ejphar.2004.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 11/09/2004] [Accepted: 11/12/2004] [Indexed: 12/25/2022]
Abstract
The goal of this study was to determine the neuroanatomical extent of mu opioid receptor knockdown in central nervous system (CNS) following intracerebroventricular (i.c.v.) administration of peptide nucleic acid antisense. Rats received subchronic i.c.v. injections of anti-mu opioid receptor antisense, mismatch or vehicle, and were tested for paw pressure latency following i.c.v. mu opioid receptor agonist ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin; DAMGO) or delta opioid receptor agonist ((+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide; SNC80). The anti-mu opioid receptor antisense (but not mismatch) sequence abolished DAMGO-induced antinociception with no reduction in the delta opioid receptor-mediated response. In contrast, postmortem receptor autoradiographic analysis of CNS areas revealed no change in mu opioid receptor functional response ([35S]GTPgammaS assay) or receptor labelling ([125I]FK-33824 and mu opioid receptor immunoautoradiography). These results provide further evidence for antisense-induced knockdown at the behavioural level in the absence of clear changes at the tissue level.
Collapse
MESH Headings
- Analgesics/antagonists & inhibitors
- Analgesics/metabolism
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/metabolism
- Animals
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Male
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Pain Measurement/drug effects
- Pain Measurement/methods
- Peptide Nucleic Acids/genetics
- Peptide Nucleic Acids/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Amynah A A Pradhan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler Room 1325 Montreal, Quebec, Canada, H3G 1Y6
| | | |
Collapse
|
33
|
Abstract
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.
Collapse
Affiliation(s)
- Peter E Nielsen
- Center for Biomolecular Recognition, IMBG, The Panum Institute, University of Copenhagen, Blegdamsvej 3C, Copenhagen DK-2200N, Denmark.
| |
Collapse
|
34
|
Sénamaud-Beaufort C, Leforestier E, Saison-Behmoaras TE. Short pyrimidine stretches containing mixed base PNAs are versatile tools to induce translation elongation arrest and truncated protein synthesis. Oligonucleotides 2004; 13:465-78. [PMID: 15025913 DOI: 10.1089/154545703322860780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recently, we showed that antisense peptide nucleic acids (PNA) containing a short pyrimidine stretch (C(4)TC(3)) invade Ha-ras mRNA hairpin structures to form highly stable duplex and triplex complexes that contribute to the arrest of translation elongation. The antisense PNA targeted to codon 74 of Ha-ras was designed to bind in antiparallel configuration (the N-terminal of the PNA faces the 3'-end of target mRNA), as PNA/RNA duplexes are most stable in this configuration. In order to show that different sequences in the coding region could be targeted successfully with antisense PNAs, we extended our study to three other purine-rich targets. We show that the tridecamer PNA (targeted to codon 149) containing a CTC(3)T pyrimidine stretch forms with the complementary oligoribonucleotide (ORN) a stable (PNA)(2)/ORN triplex at neutral pH (T(m) = 50 degrees C) and arrests Ha-ras mRNA translation elongation. Interestingly, the thermal stability of triplexes formed with PNAs designed to bind to the complementary ORN in a parallel orientation (the N-terminal of the PNA faces the 5'-end of target) was higher than that formed with antiparallel oriented PNAs (T(m) = 58 degrees C). Because parallel and antiparallel PNAs form stable triplexes with target sequence, they act as translation elongation blockers. These duplex-forming and partly triplex-forming PNAs targeted to Ha-ras mRNA also arrested translation elongation at specific polypurine sites contained in the mRNA coding for HIV-integrase protein. Furthermore, the tridecamer PNA containing the C(3)TC(4) motif was more active than a bis-PNA in which the Hoogsteen recognizing strand was linked to the Watson-Crick recognizing strand by a flexible linker. Pyrimidine-rich, short PNAs that form very stable duplexes with target Ha-ras mRNA inhibit translation by a mechanism that does not involve ribosome elongation arrest, whereas PNAs forming duplex and triplex structures arrest ribosome elongation. The remarkable efficacy of the tridecamer PNAs in arresting translation elongation of HIV-1 integrase mRNA is explained by their ability to form stable triplexes at neutral pH with short purine sequences.
Collapse
Affiliation(s)
- Catherine Sénamaud-Beaufort
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM 5153, CNRS UMR 8646, 75231, Paris, France
| | | | | |
Collapse
|
35
|
Arzumanov A, Stetsenko DA, Malakhov AD, Reichelt S, Sørensen MD, Babu BR, Wengel J, Gait MJ. A structure-activity study of the inhibition of HIV-1 Tat-dependent trans-activation by mixmer 2'-O-methyl oligoribonucleotides containing locked nucleic acid (LNA), alpha-L-LNA, or 2'-thio-LNA residues. Oligonucleotides 2004; 13:435-53. [PMID: 15025911 DOI: 10.1089/154545703322860762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The HIV-1 trans-activation responsive element (TAR) RNA stem-loop interacts with the HIV trans-activator protein Tat and other cellular factors to stimulate transcriptional elongation from the viral long terminal repeat (LTR). Inhibitors of these interactions block full-length transcription and, hence, would potentially inhibit HIV replication. We have studied structure-activity relationships in inhibition of trans-activation by steric block 2'-O-methyl (OMe) oligonucleotides chimeras (mixmers) containing locked nucleic acid (LNA) units. Inhibition was measured both in Tat-dependent in vitro transcription from an HIV-1 DNA template directed by HeLa cell nuclear extract and in a robust HeLa cell reporter assay that involves use of stably integrated plasmids to express firefly luciferase Tat dependently and Renilla luciferase Tat-independently. OMe oligonucleotides with optimally 40%-50% LNA units and a minimum of 12 residues in length were active in the cellular assay when delivered with cationic gemini surfactant GS11 at 50% inhibitory concentrations of 230 +/- 40 nM, whereas activity in the in vitro transcription assay was observed down to 9 residues. No cellular activity was observed for OMe oligonucleotides of 12 or 16 residues, which was shown to be due to poor cellular uptake. Both 12-mer mixmers containing alpha -L-LNA or 2'-thio-LNA (S-LNA) were also active in in vitro transcription and the former in cellular reporter inhibition assays, demonstrating that the property of promotion of cellular uptake by LNA is not due to specific sugar conformational effects. Covalent conjugates of OMe/LNA chimeras with Kaposi-fibroblast growth factor (K-FGF) or Transportan peptides failed to enter HeLa cells without a delivery agent but were fully active when delivered by cationic gemini surfactant, showing that in principle, peptide conjugation does not interfere with cellular activity. Thus, OMe/LNA mixmers are powerful reagents for use as steric block inhibitors of gene expression regulated by protein-RNA interactions within HeLa cell nuclei.
Collapse
Affiliation(s)
- Andrey Arzumanov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
McMahon BM, Stewart J, Fauq A, Younkin S, Younkin L, Richelson E. Peptide nucleic acids targeted to the amyloid precursor protein. J Mol Neurosci 2003; 20:261-5. [PMID: 14501006 DOI: 10.1385/jmn:20:3:261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 03/24/2003] [Indexed: 11/11/2022]
Abstract
The depositing in brain of amyloid beta peptide (Abeta), which is formed by the cleavage of amyloid precursor protein (APP), is likely an etiologic factor in Alzheimer's disease (AD). Of the different forms of Abeta, Abeta(1-42) causes fibril formation and increases aggregation at elevated levels, which can lead to neuronal death. It is hypothesized that if the levels of Abeta, particularly Abeta(1-42), were reduced, then the onset of AD would be slowed or possibly prevented. Therefore, we are using peptide nucleic acids (PNAs) targeted to APP, as well as other key proteins, to try to decrease plasma and brain levels of Abeta(1-40) and Abeta(1-42). This research project was designed to utilize the expertise of our laboratory in the use of PNAs, a third-generation antisense or antigene molecule, to knock down proteins in brain. Antisense compounds specifically knock down the expression of a particular protein by inhibiting translation at the level of mRNA. On the other hand, antigene compounds knock down expression at the level of transcription. For experiments involving antisense strategies, there are several advantages to using PNAs as opposed to the traditional oligonucleotide molecules. We report here the ongoing studies with mice and rats with PNAs targeting APP, as well as BACE.
Collapse
Affiliation(s)
- Beth M McMahon
- Department of Psychiatry, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sun JS, Hélène C. Oligonucleotides and derivatives as gene-specific control agents. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:489-505. [PMID: 14565225 DOI: 10.1081/ncn-120021950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The current achievement of genome sequence projects of a dozen eukaryote organisms (including human genome) and the development of functional genomics are providing the basic knowledge required to utilize gene-specific reagents for both basic understanding of cell physiology and therapeutical development. The field of chemical genomics has the ambitious goal of designing molecules that could act selectively on every single gene or gene product in a cell and in vivo. The progress in oligonucleotide-based approaches will be the topic of this review, however, other nucleic acid- and SELEX-based approaches as well as high sequence-specific low molecular weight DNA-specific ligands will also be discussed.
Collapse
Affiliation(s)
- Jian-Sheng Sun
- Laboratoire de Biophysique, USM0503 Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle, UMR8646 CNRS-MNHN, U565 INSERM, Paris, France.
| | | |
Collapse
|
39
|
Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Modulation of nucleic acid information processing by PNAs: potential use in anti-viral therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4923-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
PNAs as novel cancer therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
|
43
|
Holmes SC, Arzumanov AA, Gait MJ. Steric inhibition of human immunodeficiency virus type-1 Tat-dependent trans-activation in vitro and in cells by oligonucleotides containing 2'-O-methyl G-clamp ribonucleoside analogues. Nucleic Acids Res 2003; 31:2759-68. [PMID: 12771202 PMCID: PMC156719 DOI: 10.1093/nar/gkg384] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report the synthesis of a novel 2'-O-methyl (OMe) riboside phosphoramidite derivative of the G-clamp tricyclic base and incorporation into a series of small steric blocking OMe oligonucleotides targeting the apical stem-loop region of human immunodeficiency virus type 1 (HIV-1) trans- activation-responsive (TAR) RNA. Binding to TAR RNA is substantially enhanced for certain single site substitutions in the centre of the oligonucleotide, and doubly substituted anti-TAR OMe 9mers or 12mers exhibit remarkably low binding constants of <0.1 nM. G-clamp-containing oligomers achieved 50% inhibition of Tat-dependent in vitro transcription at approximately 25 nM, 4-fold lower than for a TAR 12mer OMe oligonucleotide and better than found for any other oligonucleotide tested to date. Addition of one or two OMe G-clamps did not impart cellular trans-activation inhibition activity to cellularly inactive OMe oligonucleotides. Addition of an OMe G-clamp to a 12mer OMe-locked nucleic acid chimera maintained, but did not enhance, inhibition of Tat-dependent in vitro transcription and cellular trans-activation in HeLa cells. The results demonstrate clearly that an OMe G-clamp has remarkable RNA-binding enhancement ability, but that oligonucleotide effectiveness in steric block inhibition of Tat-dependent trans-activation both in vitro and in cells is governed by factors more complex than RNA-binding strength alone.
Collapse
Affiliation(s)
- Stephen C Holmes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
44
|
|
45
|
|
46
|
Modulation of nucleic acid information processing by PNAs: potential use in anti-viral therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/bf02484556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Abstract
Hybridization of oligonucleotides and their analogues to complementary DNA or RNA sequences is complicated by the presence of secondary and tertiary structure in the target. In particular, folding of the target nucleic acid imposes substantial thermodynamic penalties to hybridization. Slower kinetics for hybridization can also be observed, relative to an unstructured target. The development of high affinity oligonucleotide analogues such as peptide nucleic acid (PNA) can compensate for the thermodynamic and kinetic barriers to hybridization. Examples of structured targets successfully hybridized by PNA oligomers include DNA duplexes, DNA hairpins, DNA quadruplexes and an RNA hairpin embedded within a mRNA.
Collapse
Affiliation(s)
- Bruce A Armitage
- Dept of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA.
| |
Collapse
|
48
|
Abstract
Peptide nucleic acid (PNA) is a DNA mimic having a pseudopeptide backbone that makes it extremely stable in biological fluids. PNA binds complementary RNA and DNA with high affinity and specificity. These qualities make PNA a leading agent among "third generation" antisense and antigene agents. Unfortunately, fast progress in the exploration of PNA as an experimental and therapeutical regulator of gene expression has been hampered by the poor cellular uptake of PNA. However, a number of transfection protocols for PNA have now been established. These include microinjection, electroporation, co-transfection with DNA, conjugation to lipophilic moieties, conjugation to peptides, etc. Here we give a short introduction to the basic findings on PNA as an antisense and antigene agent in cell-free in vitro systems. This is followed by a comprehensive evaluation of the most interesting literature concerning cellular delivery and the intracellular effect of PNA. Also the current progress as regards using PNA as co-factor in DNA delivery is reviewed.
Collapse
Affiliation(s)
- Uffe Koppelhus
- Biochemistry Laboratory B, Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, The Panum Institute, Blegdamsvej 3c, 2200 N Copenhagen, Denmark
| | | |
Collapse
|
49
|
Fluiter K, ten Asbroek ALMA, de Wissel MB, Jakobs ME, Wissenbach M, Olsson H, Olsen O, Oerum H, Baas F. In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res 2003; 31:953-62. [PMID: 12560491 PMCID: PMC149205 DOI: 10.1093/nar/gkg185] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Locked nucleic acids (LNA) are novel high-affinity DNA analogs that can be used as genotype-specific drugs. The LNA oligonucleotides (LNA PO ODNs) are very stable in vitro and in vivo without the need for a phosphorothiolated backbone. In this study we tested the biological fate and the efficacy in tumor growth inhibition of antisense oligonucleotides directed against the gene of the large subunit of RNA polymerase II (POLR2A) that are completely synthesized as LNA containing diester backbones. These full LNA oligonucleotides strongly reduce POLR2A protein levels. Full LNA PO ODNs appeared to be very stable compounds when injected into the circulation of mice. Full LNA PO ODNs were continuously administered for 14 days to tumor-bearing nude mice. Tumor growth was inhibited sequence specifically at dosages from 1 mg/kg/day. LNA PO ODNs appeared to be non-toxic at dosages <5 mg/kg/day. Biodistribution studies showed the kidneys to have the highest uptake of LNA PO ODNs and urinary secretion as the major route of clearance. This report shows that LNA PO ODNs are potent genotype-specific drugs that can inhibit tumor growth in vivo.
Collapse
Affiliation(s)
- Kees Fluiter
- Department of Neurogenetics, Academical Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kaushik N, Pandey VN. PNA targeting the PBS and A-loop sequences of HIV-1 genome destabilizes packaged tRNA3(Lys) in the virions and inhibits HIV-1 replication. Virology 2002; 303:297-308. [PMID: 12490391 DOI: 10.1006/viro.2002.1630] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During assembly of the HIV-1 virions, cellular tRNA(Lys)(3) is packaged into the virion particles and is utilized as a primer for the initiation of reverse transcription. The 3'-terminal 18 nucleotides of the cellular tRNA(Lys)(3) are complementary to nucleotides 183-201 of the viral RNA genome, referred to as the primer binding sequence (PBS). Additional sequences (A-Loop) upstream of the PBS are essential for tRNA primer selection. We report here that a PNA targeted to PBS and A-Loop sequence (PNA(PBS)) exhibits high specificity for its target sequence and prevents tRNA(Lys)(3) priming on the viral genome. We also demonstrate that PNA(PBS) is able to invade the duplex region of the tRNA(Lys)(3)-viral RNA complex and destabilize the priming process, thereby inhibiting the in vitro initiation of reverse transcription. The endogenously packaged tRNA(Lys)(3) bound to the PBS region of the viral RNA genome in the HIV-1 virion is efficiently competed out by PNA(PBS), resulting in near complete inhibition of initiation of endogenous reverse transcription. Examination of the effect of PNA(PBS) on HIV-1 production in CEM cells infected with pseudotyped HIV-1 virions carrying luciferase reporter exhibited dramatic reduction of HIV-1 replication by nearly 99%. Analysis of the mechanism of PNA(PBS)-mediated inhibition indicated that PNA(PBS) interferes at the step of reverse transcription. These findings suggest the antiviral efficacy of PNA(PBS) in blocking the process of HIV-1 replication.
Collapse
Affiliation(s)
- Neerja Kaushik
- Center for the Study of Emerging and Re-Emerging Pathogens, Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA.
| | | |
Collapse
|