1
|
Shi T, Zhou Z, Xiang T, Suo Y, Shi X, Li Y, Zhang P, Dai J, Sheng L. Cytoskeleton dysfunction of motor neuron in spinal muscular atrophy. J Neurol 2024; 272:19. [PMID: 39666039 PMCID: PMC11638312 DOI: 10.1007/s00415-024-12724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletions or mutations of survival of motor neuron 1 (SMN1) gene. To date, the mechanism of selective cell death of motor neurons as a hallmark of SMA is still unclear. The severity of SMA is dependent on the amount of survival motor neuron (SMN) protein, which is an essential and ubiquitously expressed protein involved in various cellular processes including regulation of cytoskeletal dynamics. In this review, we discuss the effect of SMN ablation on cytoskeleton organization including actin dynamics, growth cone formation, axonal stability, neurite outgrowth, microtubule stability, synaptic vesicle dynamics and neurofilament protein release in SMA. We also summarized a list of critical proteins such as profilin-2 (PFN2), plastin-3 (PLS3), stathmin-1 (STMN1), microtubule-associated protein 1B (MAP1B) and neurofilament which play an important role in modulating cytoskeleton in SMA. Our aim is to highlight how cytoskeletal defects contribute to motor neuron degeneration in SMA disease progression and concentrating on cytoskeleton dynamics may be a promising approach to develop new therapy or biomarker.
Collapse
Affiliation(s)
- Tianyu Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Zijie Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Taiyang Xiang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yinxuan Suo
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xiaoyan Shi
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Yaoyao Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
2
|
Adami R, Bottai D. NSC Physiological Features in Spinal Muscular Atrophy: SMN Deficiency Effects on Neurogenesis. Int J Mol Sci 2022; 23:ijms232315209. [PMID: 36499528 PMCID: PMC9736802 DOI: 10.3390/ijms232315209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022] Open
Abstract
While the U.S. Food and Drug Administration and the European Medicines Evaluation Agency have recently approved new drugs to treat spinal muscular atrophy 1 (SMA1) in young patients, they are mostly ineffective in older patients since many motor neurons have already been lost. Therefore, understanding nervous system (NS) physiology in SMA patients is essential. Consequently, studying neural stem cells (NSCs) from SMA patients is of significant interest in searching for new treatment targets that will enable researchers to identify new pharmacological approaches. However, studying NSCs in these patients is challenging since their isolation damages the NS, making it impossible with living patients. Nevertheless, it is possible to study NSCs from animal models or create them by differentiating induced pluripotent stem cells obtained from SMA patient peripheral tissues. On the other hand, therapeutic interventions such as NSCs transplantation could ameliorate SMA condition. This review summarizes current knowledge on the physiological properties of NSCs from animals and human cellular models with an SMA background converging on the molecular and neuronal circuit formation alterations of SMA fetuses and is not focused on the treatment of SMA. By understanding how SMA alters NSC physiology, we can identify new and promising interventions that could help support affected patients.
Collapse
|
3
|
Minasov G, Inniss NL, Shuvalova L, Anderson WF, Satchell KJF. Structure of the Monkeypox virus profilin-like protein A42R reveals potential functional differences from cellular profilins. Acta Crystallogr F Struct Biol Commun 2022; 78:371-377. [PMID: 36189721 PMCID: PMC9527652 DOI: 10.1107/s2053230x22009128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
The infectious disease human monkeypox is spreading rapidly in 2022, causing a global health crisis. The genomics of Monkeypox virus (MPXV) have been extensively analyzed and reported, although little is known about the virus-encoded proteome. In particular, there are no reported experimental MPXV protein structures other than computational models. Here, a 1.52 Å resolution X-ray structure of the MPXV protein A42R, the first MPXV-encoded protein with a known structure, is reported. A42R shows structural similarity to profilins, which are cellular proteins that are known to function in the regulation of actin cytoskeletal assembly. However, structural comparison of A42R with known members of the profilin family reveals critical differences that support prior biochemical findings that A42R only weakly binds actin and does not bind poly(L-proline). In addition, the analysis suggests that A42R may make distinct interactions with phosphatidylinositol lipids. Overall, the data suggest that the role of A42R in the replication of orthopoxviruses may not be readily determined by comparison to cellular profilins. Furthermore, these findings support the need for increased efforts to determine high-resolution structures of other MPXV proteins to inform physiological studies of the poxvirus infection cycle and to reveal potential new strategies to combat human monkeypox should this emerging infectious disease with pandemic potential become more common in the future.
Collapse
Affiliation(s)
- George Minasov
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicole L. Inniss
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J. F. Satchell
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Murk K, Ornaghi M, Schiweck J. Profilin Isoforms in Health and Disease - All the Same but Different. Front Cell Dev Biol 2021; 9:681122. [PMID: 34458253 PMCID: PMC8387879 DOI: 10.3389/fcell.2021.681122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Profilins are small actin binding proteins, which are structurally conserved throughout evolution. They are probably best known to promote and direct actin polymerization. However, they also participate in numerous cell biological processes beyond the roles typically ascribed to the actin cytoskeleton. Moreover, most complex organisms express several profilin isoforms. Their cellular functions are far from being understood, whereas a growing number of publications indicate that profilin isoforms are involved in the pathogenesis of various diseases. In this review, we will provide an overview of the profilin family and "typical" profilin properties including the control of actin dynamics. We will then discuss the profilin isoforms of higher animals in detail. In terms of cellular functions, we will focus on the role of Profilin 1 (PFN1) and Profilin 2a (PFN2a), which are co-expressed in the central nervous system. Finally, we will discuss recent findings that link PFN1 and PFN2a to neurological diseases, such as amyotrophic lateral sclerosis (ALS), Fragile X syndrome (FXS), Huntington's disease and spinal muscular atrophy (SMA).
Collapse
Affiliation(s)
- Kai Murk
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marta Ornaghi
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Schiweck
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Walter LM, Rademacher S, Pich A, Claus P. Profilin2 regulates actin rod assembly in neuronal cells. Sci Rep 2021; 11:10287. [PMID: 33986363 PMCID: PMC8119500 DOI: 10.1038/s41598-021-89397-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear and cytoplasmic actin-cofilin rods are formed transiently under stress conditions to reduce actin filament turnover and ATP hydrolysis. The persistence of these structures has been implicated in disease pathology of several neurological disorders. Recently, the presence of actin rods has been discovered in Spinal Muscular Atrophy (SMA), a neurodegenerative disease affecting predominantly motoneurons leading to muscle weakness and atrophy. This finding underlined the importance of dysregulated actin dynamics in motoneuron loss in SMA. In this study, we characterized actin rods formed in a SMA cell culture model analyzing their composition by LC–MS-based proteomics. Besides actin and cofilin, we identified proteins involved in processes such as ubiquitination, translation or protein folding to be bound to actin rods. This suggests their sequestration to actin rods, thus impairing important cellular functions. Moreover, we showed the involvement of the cytoskeletal protein profilin2 and its upstream effectors RhoA/ROCK in actin rod assembly in SMA. These findings implicate that the formation of actin rods exerts detrimental effects on motoneuron homeostasis by affecting actin dynamics and disturbing essential cellular pathways.
Collapse
Affiliation(s)
- Lisa Marie Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pich
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
6
|
Karlsson R, Dráber P. Profilin-A master coordinator of actin and microtubule organization in mammalian cells. J Cell Physiol 2021; 236:7256-7265. [PMID: 33821475 DOI: 10.1002/jcp.30379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The last two decades have witnessed a tremendous increase in cell biology data. Not least is this true for studies of the dynamic organization of the microfilament and microtubule systems in animal cells where analyses of the molecular components and their interaction patterns have deepened our understanding of these complex force-generating machineries. Previous observations of a molecular cross-talk between the two systems have now led to the realization of the existence of several intricate mechanisms operating to maintain their coordinated cellular organization. In this short review, we relate to this development by discussing new results concerning the function of the actin regulator profilin 1 as a control component of microfilament-microtubule cross-talk.
Collapse
Affiliation(s)
- Roger Karlsson
- Department of Molecular Biosciences, WGI, Stockholm University, Stockholm, Sweden
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Ree R, Kind L, Kaziales A, Varland S, Dai M, Richter K, Drazic A, Arnesen T. PFN2 and NAA80 cooperate to efficiently acetylate the N-terminus of actin. J Biol Chem 2020; 295:16713-16731. [PMID: 32978259 PMCID: PMC7864067 DOI: 10.1074/jbc.ra120.015468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Indexed: 12/01/2022] Open
Abstract
The actin cytoskeleton is of profound importance to cell shape, division, and intracellular force generation. Profilins bind to globular (G-)actin and regulate actin filament formation. Although profilins are well-established actin regulators, the distinct roles of the dominant profilin, profilin 1 (PFN1), versus the less abundant profilin 2 (PFN2) remain enigmatic. In this study, we use interaction proteomics to discover that PFN2 is an interaction partner of the actin N-terminal acetyltransferase NAA80, and further confirm this by analytical ultracentrifugation. Enzyme assays with NAA80 and different profilins demonstrate that PFN2 binding specifically increases the intrinsic catalytic activity of NAA80. NAA80 binds PFN2 through a proline-rich loop, deletion of which abrogates PFN2 binding. Small-angle X-ray scattering shows that NAA80, actin, and PFN2 form a ternary complex and that NAA80 has partly disordered regions in the N-terminus and the proline-rich loop, the latter of which is partly ordered upon PFN2 binding. Furthermore, binding of PFN2 to NAA80 via the proline-rich loop promotes binding between the globular domains of actin and NAA80, and thus acetylation of actin. However, the majority of cellular NAA80 is stably bound to PFN2 and not to actin, and we propose that this complex acetylates G-actin before it is incorporated into filaments. In conclusion, we reveal a functionally specific role of PFN2 as a stable interactor and regulator of the actin N-terminal acetyltransferase NAA80, and establish the modus operandi for NAA80-mediated actin N-terminal acetylation, a modification with a major impact on cytoskeletal dynamics.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Kaziales
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sylvia Varland
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Minglu Dai
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Klaus Richter
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
9
|
Identification of secretion domain of Neospora caninum profilin. Biochem Biophys Res Commun 2020; 522:8-13. [PMID: 31735333 DOI: 10.1016/j.bbrc.2019.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022]
Abstract
Profilin (PROF) is a small actin-binding protein presented in apicomplexan protozoa. It was previously reported that Neospora caninum profilin (NcPROF) is secreted into the hemolymph of silkworm larvae regardless of the lack of an identified regular secretion signal peptide. To date, which domain is required for its secretion still remains unknown. To this end, we express a fluorescent protein (mCherry) fused with NcPROF at its N-terminus or C-terminus. Both fusion proteins were expressed and secreted into the culture supernatant from Bm5 cells or hemolymph from silkworm larvae, respectively. To further narrow down the C-terminal minimal domain required for its secretion, we constructed three truncated C-terminal domain constructions, ΔN (aa41-163), ΔN1 (aa50-163), and ΔN2 (aa144-163) respectively. All three fusion proteins were detected in the culture supernatant of Bm5 cells and silkworm hemolymph. Surprisingly, a 20-aa C-terminal α-helix domain facilitates the secretion of mCherry, allowing purification of ΔN2-mCherry from silkworm larval hemolymph by affinity chromatography. Taken together, the secretion domain from NcPROF was identified, indicating that can be utilized for the secretory expression of recombinant proteins in the future.
Collapse
|
10
|
Pinto-Costa R, Sousa MM. Profilin as a dual regulator of actin and microtubule dynamics. Cytoskeleton (Hoboken) 2019; 77:76-83. [PMID: 31811707 DOI: 10.1002/cm.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Although originally identified as G-actin sequestering proteins, profilins are emerging as critical regulators of actin dynamics, capable of interacting with multiple acting binding proteins, and being able to link membrane lipids to cytoskeleton components. Recently, in addition to its actin, poly-proline, and phosphatidylinositol binding domains, profilin has been shown to contain residues specialized in microtubule binding. Here we will discuss in a critical perspective the emerging body of data supporting that profilins are central mediators of actin microfilament and microtubule interaction. We will also address the unanswered questions in the field, including the nature of the interaction of profilin with microtubules, and its effect on microtubule dynamics. These recent discoveries deepen our understanding on how different cytoskeleton components are integrated within cells.
Collapse
Affiliation(s)
- Rita Pinto-Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, Porto, Portugal
| | - Mónica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Walter LM, Franz P, Lindner R, Tsiavaliaris G, Hensel N, Claus P. Profilin2a-phosphorylation as a regulatory mechanism for actin dynamics. FASEB J 2019; 34:2147-2160. [PMID: 31908005 DOI: 10.1096/fj.201901883r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/16/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
Profilin is a major regulator of actin dynamics in multiple specific processes localized in different cellular compartments. This specificity is not only meditated by its binding to actin but also its interaction with phospholipids such as phosphatidylinositol (4,5)-bisphosphate (PIP2 ) at the membrane and a plethora of proteins containing poly-L-proline (PLP) stretches. These interactions are fine-tuned by posttranslational modifications such as phosphorylation. Several phospho-sites have already been identified for profilin1, the ubiquitously expressed isoform. However, little is known about the phosphorylation of profilin2a. Profilin2a is a neuronal isoform important for synapse function. Here, we identified several putative profilin2a phospho-sites in silico and tested recombinant phospho-mimetics with regard to their actin-, PLP-, and PIP2 -binding properties. Moreover, we assessed their impact on actin dynamics employing a pyrene-actin polymerization assay. Results indicate that distinct phospho-sites modulate specific profilin2a functions. We could identify a molecular switch site at serine residue 71 which completely abrogated actin binding-as well as other sites important for fine-tuning of different functions, for example, tyrosine 29 for PLP binding. Our findings suggest that differential profilin2a phosphorylation is a sensitive mechanism for regulating its neuronal functions. Moreover, the dysregulation of profilin2a phosphorylation may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Lisa Marie Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Peter Franz
- Institute of Cellular Biophysics, Hannover Medical School, Hannover, Germany
| | - Robert Lindner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | | | - Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| |
Collapse
|
12
|
Ohta K, Matsumoto Y, Nishio M. Profilin2 is required for filamentous actin formation induced by human parainfluenza virus type 2. Virology 2019; 533:108-114. [PMID: 31150988 DOI: 10.1016/j.virol.2019.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022]
Abstract
We previously reported that human parainfluenza virus type 2 (hPIV-2) promoted RhoA activation and subsequent filamentous actin (F-actin) formation. Actin-binding proteins, such as profilin and cofilin, are involved in the regulation of F-actin formation by RhoA signaling. In the present study, we identified profilin2 as a key molecule that is involved in hPIV-2-induced F-actin formation. Immunoprecipitation assays demonstrated that hPIV-2 V protein binds to profilin2 but not to profilin1. Mutation of Trp residues within C-terminal region of V protein abolished the binding capacity to profilin2. Depletion of profilin2 resulted in the inhibition of hPIV-2-induced F-actin formation and the suppression of hPIV-2 growth. Overexpression of wild type V but not Trp-mutated V protein reduced the quantity of actin co-immunoprecipitated with profilin2. Taken together, these results suggest that hPIV-2 V protein promotes F-actin formation by affecting actin-profilin2 interaction through its binding to profilin2.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Japan
| | - Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Japan.
| |
Collapse
|
13
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Hensel N, Claus P. The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist 2017; 24:54-72. [PMID: 28459188 DOI: 10.1177/1073858417705059] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are neurodegenerative diseases with overlapping clinical phenotypes based on impaired motoneuron function. However, the pathomechanisms of both diseases are largely unknown, and it is still unclear whether they converge on the molecular level. SMA is a monogenic disease caused by low levels of functional Survival of Motoneuron (SMN) protein, whereas ALS involves multiple genes as well as environmental factors. Recent evidence argues for involvement of actin regulation as a causative and dysregulated process in both diseases. ALS-causing mutations in the actin-binding protein profilin-1 as well as the ability of the SMN protein to directly bind to profilins argue in favor of a common molecular mechanism involving the actin cytoskeleton. Profilins are major regulat ors of actin-dynamics being involved in multiple neuronal motility and transport processes as well as modulation of synaptic functions that are impaired in models of both motoneuron diseases. In this article, we review the current literature in SMA and ALS research with a focus on the actin cytoskeleton. We propose a common molecular mechanism that explains the degeneration of motoneurons for SMA and some cases of ALS.
Collapse
Affiliation(s)
- Niko Hensel
- 1 Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,2 Niedersachsen Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Peter Claus
- 1 Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,2 Niedersachsen Network on Neuroinfectiology (N-RENNT), Hannover, Germany.,3 Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
15
|
Rennella E, Sekhar A, Kay LE. Self-Assembly of Human Profilin-1 Detected by Carr-Purcell-Meiboom-Gill Nuclear Magnetic Resonance (CPMG NMR) Spectroscopy. Biochemistry 2017; 56:692-703. [PMID: 28052669 DOI: 10.1021/acs.biochem.6b01263] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein oligomerization in the cell has important implications for both health and disease, and an understanding of the mechanisms by which proteins can self-associate is, therefore, of critical interest. Initial stages of the oligomerization process can be hard to detect, as they often involve the formation of sparsely populated and transient states that are difficult to characterize by standard biophysical approaches. Using relaxation dispersion nuclear magnetic resonance spectroscopy, we study the oligomerization of human profilin-1, a protein that regulates the polymerization of actin. We show that in solution and at millimolar concentrations profilin-1 is predominantly monomeric. However, fits of concentration-dependent relaxation data are consistent with the formation of a higher-order oligomer that is generated via a multistep process. Together with crystallographic data for profilin-2, a homologue of the protein studied here, our results suggest that profilin-1 forms a sparsely populated tetrameric conformer in solution.
Collapse
Affiliation(s)
- Enrico Rennella
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Ashok Sekhar
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto , Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Structure and Function, Hospital for Sick Children , 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
16
|
Lorente G, Syriani E, Morales M. Actin filaments at the leading edge of cancer cells are characterized by a high mobile fraction and turnover regulation by profilin I. PLoS One 2014; 9:e85817. [PMID: 24465723 PMCID: PMC3895011 DOI: 10.1371/journal.pone.0085817] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Cellular motility is the basis for cancer cell invasion and metastasis. In the case of breast cancer, the most common type of cancer among women, metastasis represents the most devastating stage of the disease. The central role of cellular motility in cancer development emphasizes the importance of understanding the specific mechanisms involved in this process. In this context, tumor development and metastasis would be the consequence of a loss or defect of the mechanisms that control cytoskeletal remodeling. Profilin I belongs to a family of small actin binding proteins that are thought to assist in actin filament elongation at the leading edge of migrating cells. Traditionally, Profilin I has been considered to be an essential control element for actin polymerization and cell migration. Expression of Profilin I is down-regulated in breast and various other cancer cells. In MDA-MB-231 cells, a breast cancer cell line, further inhibition of Profilin I expression promotes hypermotility and metastatic spread, a finding that contrasts with the proposed role of Profilin in enhancing polymerization. In this report, we have taken advantage of the fluorescence recovery after photobleaching (FRAP) of GFP-actin to quantify and compare actin dynamics at the leading edge level in both cancer and non-cancer cell models. Our results suggest that (i) a high level of actin dynamics (i.e., a large mobile fraction of actin filaments and a fast turnover) is a common characteristic of some cancer cells; (ii) actin polymerization shows a high degree of independence from the presence of extracellular growth factors; and (iii) our results also corroborate the role of Profilin I in regulating actin polymerization, as raising the intracellular levels of Profilin I decreased the mobile fraction ratio of actin filaments and slowed their polymerization rate; furthermore, increased Profilin levels also led to reduced individual cell velocity and directionality.
Collapse
Affiliation(s)
- Gisela Lorente
- Neurophysiology Laboratory, Deptartment of Physiological Sciences I, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Emilio Syriani
- Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, CIBIR Piqueras 98, Logroño, La Rioja, Spain
| | - Miguel Morales
- Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, CIBIR Piqueras 98, Logroño, La Rioja, Spain
- * E-mail:
| |
Collapse
|
17
|
Jimenez-Lopez JC, Rodríguez-García MI, Alché JD. Analysis of the effects of polymorphism on pollen profilin structural functionality and the generation of conformational, T- and B-cell epitopes. PLoS One 2013; 8:e76066. [PMID: 24146818 PMCID: PMC3798325 DOI: 10.1371/journal.pone.0076066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022] Open
Abstract
An extensive polymorphism analysis of pollen profilin, a fundamental regulator of the actin cytoskeleton dynamics, has been performed with a major focus in 3D-folding maintenance, changes in the 2-D structural elements, surface residues involved in ligands-profilin interactions and functionality, and the generation of conformational and lineal B- and T-cell epitopes variability. Our results revealed that while the general fold is conserved among profilins, substantial structural differences were found, particularly affecting the special distribution and length of different 2-D structural elements (i.e. cysteine residues), characteristic loops and coils, and numerous micro-heterogeneities present in fundamental residues directly involved in the interacting motifs, and to some extension these residues nearby to the ligand-interacting areas. Differential changes as result of polymorphism might contribute to generate functional variability among the plethora of profilin isoforms present in the olive pollen from different genetic background (olive cultivars), and between plant species, since biochemical interacting properties and binding affinities to natural ligands may be affected, particularly the interactions with different actin isoforms and phosphoinositides lipids species. Furthermore, conspicuous variability in lineal and conformational epitopes was found between profilins belonging to the same olive cultivar, and among different cultivars as direct implication of sequences polymorphism. The variability of the residues taking part of IgE-binding epitopes might be the final responsible of the differences in cross-reactivity among olive pollen cultivars, among pollen and plant-derived food allergens, as well as between distantly related pollen species, leading to a variable range of allergy reactions among atopic patients. Identification and analysis of commonly shared and specific epitopes in profilin isoforms is essential to gain knowledge about the interacting surface of these epitopes, and for a better understanding of immune responses, helping design and development of rational and effective immunotherapy strategies for the treatment of allergy diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Plant/chemistry
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/classification
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/classification
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Food Hypersensitivity/immunology
- Humans
- Models, Molecular
- Molecular Sequence Data
- Olea/chemistry
- Phylogeny
- Plant Proteins/chemistry
- Pollen/chemistry
- Polymorphism, Genetic/immunology
- Profilins/chemistry
- Profilins/classification
- Profilins/genetics
- Profilins/immunology
- Protein Structure, Tertiary
- Sequence Alignment
- Structural Homology, Protein
Collapse
Affiliation(s)
- Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of plants, Estación Experimental del Zaidín (EEZ), High Council for Scientific Research (CSIC), Granada, Spain
- * E-mail: (JCJL); (JDA)
| | - María I. Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of plants, Estación Experimental del Zaidín (EEZ), High Council for Scientific Research (CSIC), Granada, Spain
| | - Juan D. Alché
- Department of Biochemistry, Cell and Molecular Biology of plants, Estación Experimental del Zaidín (EEZ), High Council for Scientific Research (CSIC), Granada, Spain
- * E-mail: (JCJL); (JDA)
| |
Collapse
|
18
|
Mouneimne G, Hansen SD, Selfors LM, Petrak L, Hickey MM, Gallegos LL, Simpson KJ, Lim J, Gertler FB, Hartwig JH, Mullins RD, Brugge JS. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion. Cancer Cell 2012; 22:615-30. [PMID: 23153535 PMCID: PMC3500527 DOI: 10.1016/j.ccr.2012.09.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/06/2012] [Accepted: 09/28/2012] [Indexed: 01/17/2023]
Abstract
Dynamic actin cytoskeletal reorganization is integral to cell motility. Profilins are well-characterized regulators of actin polymerization; however, functional differences among coexpressed profilin isoforms are not well defined. Here, we demonstrate that profilin-1 and profilin-2 differentially regulate membrane protrusion, motility, and invasion; these processes are promoted by profilin-1 and suppressed by profilin-2. Compared to profilin-1, profilin-2 preferentially drives actin polymerization by the Ena/VASP protein, EVL. Profilin-2 and EVL suppress protrusive activity and cell motility by an actomyosin contractility-dependent mechanism. Importantly, EVL or profilin-2 downregulation enhances invasion in vitro and in vivo. In human breast cancer, lower EVL expression correlates with high invasiveness and poor patient outcome. We propose that profilin-2/EVL-mediated actin polymerization enhances actin bundling and suppresses breast cancer cell invasion.
Collapse
Affiliation(s)
- Ghassan Mouneimne
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Scott D. Hansen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Laura M. Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Lara Petrak
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Michele M. Hickey
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Lisa L. Gallegos
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, 3002
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3050
| | - James Lim
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Frank B. Gertler
- The Koch Institute for integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John H. Hartwig
- Division of Translational Medicine at Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Corresponding author: , Phone: 617 432 3974, Fax: 617 432 3969
| |
Collapse
|
19
|
Krishnan K, Moens PDJ. Structure and functions of profilins. Biophys Rev 2009; 1:71-81. [PMID: 28509986 PMCID: PMC5425664 DOI: 10.1007/s12551-009-0010-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022] Open
Abstract
Profilins are small actin-binding proteins found in eukaryotes and certain viruses that are involved in cell development, cytokinesis, membrane trafficking, and cell motility. Originally identified as an actin sequestering/binding protein, profilin has been involved in actin polymerization dynamics. It catalyzes the exchange of ADP/ATP in actin and increases the rate of polymerization. Profilins also interact with polyphosphoinositides (PPI) and proline-rich domains containing proteins. Through its interaction with PPIs, profilin has been linked to signaling pathways between the cell membrane and the cytoskeleton, while its role in membrane trafficking has been associated with its interaction with proline-rich domain-containing proteins. Depending on the organism, profilin is present in a various number of isoforms. Four isoforms of profilin have been reported in higher organisms, while only one or two isoforms are expressed in single-cell organisms. The affinity of these isoforms for their ligands varies between isoforms and should therefore modulate their functions. However, the significance and the functions of the different isoforms are not yet fully understood. The structures of many profilin isoforms have been solved both in the presence and the absence of actin and poly-L-proline. These structural studies will greatly improve our understanding of the differences and similarities between the different profilins. Structural stability studies of different profilins are also shedding some light on our understanding of the profilin/ligand interactions. Profilin is a multifaceted protein for which a dramatic increase in potential functions has been found in recent years; as such, it has been implicated in a variety of physiological and pathological processes.
Collapse
Affiliation(s)
- Kannan Krishnan
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, McClymont Bldg, Armidale, NSW, 2351, Australia
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, McClymont Bldg, Armidale, NSW, 2351, Australia.
| |
Collapse
|
20
|
Lai SL, Chan TH, Lin MJ, Huang WP, Lou SW, Lee SJ. Diaphanous-related formin 2 and profilin I are required for gastrulation cell movements. PLoS One 2008; 3:e3439. [PMID: 18941507 PMCID: PMC2565064 DOI: 10.1371/journal.pone.0003439] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/14/2008] [Indexed: 11/18/2022] Open
Abstract
Intensive cellular movements occur during gastrulation. These cellular movements rely heavily on dynamic actin assembly. Rho with its associated proteins, including the Rho-activated formin, Diaphanous, are key regulators of actin assembly in cellular protrusion and migration. However, the function of Diaphanous in gastrulation cell movements remains unclear. To study the role of Diaphanous in gastrulation, we isolated a partial zebrafish diaphanous-related formin 2 (zdia2) clone with its N-terminal regulatory domains. The GTPase binding domain of zDia2 is highly conserved compared to its mammalian homologues. Using a yeast two-hybrid assay, we showed that zDia2 interacts with constitutively-active RhoA and Cdc42. The zdia2 mRNAs were ubiquitously expressed during early embryonic development in zebrafish as determined by RT-PCR and whole-mount in situ hybridization analyses. Knockdown of zdia2 by antisense morpholino oligonucleotides (MOs) blocked epiboly formation and convergent extension in a dose-dependent manner, whereas ectopic expression of a human mdia gene partially rescued these defects. Time-lapse recording further showed that bleb-like cellular processes of blastoderm marginal deep marginal cells and pseudopod-/filopod-like processes of prechordal plate cells and lateral cells were abolished in the zdia2 morphants. Furthermore, zDia2 acts cell-autonomously since transplanted zdia2-knockdown cells exhibited low protrusive activity with aberrant migration in wild type host embryos. Lastly, co-injection of antisense MOs of zdia2 and zebrafish profilin I (zpfn 1), but not zebrafish profilin II, resulted in a synergistic inhibition of gastrulation cell movements. These results suggest that zDia2 in conjunction with zPfn 1 are required for gastrulation cell movements in zebrafish.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Tun-Hao Chan
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Meng-Ju Lin
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Wei-Pang Huang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Show-Wan Lou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Abstract
Thirty years after its initial characterization and more than 1000 publications listed in PubMed describing its properties, the small (ca 15 kDa) protein profilin continues to surprise us with new, recently discovered functions. Originally described as an actin-binding protein, profilin has now been shown to interact with more than a dozen proteins in mammalian cells. Some of the more recently described and intriguing interactions are within neurons involving a neuronal profilin family member. Profilin is now regarded as a regulator of various cellular processes such as cytoskeletal dynamics, membrane trafficking and nuclear transport. Profilin is a necessary element in key steps of neuronal differentiation and synaptic plasticity, and embodies properties postulated for a synaptic tag. These findings identify profilin as an important factor linking cellular and behavioural plasticity in neural circuits.
Collapse
Affiliation(s)
- Andreas Birbach
- Medical University of Vienna, Währingerstrasse 13a, A-1090 Vienna, Austria.
| |
Collapse
|
22
|
Okada T, Sano M, Yamamoto Y, Muramatsu H. Evaluation of interaction forces between profilin and designed peptide probes by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:4050-5. [PMID: 18335966 DOI: 10.1021/la703344u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We evaluated the binding affinity of peptide probes for profilin (protein) using force curve measurement techniques and atomic force microscopy (AFM). The peptide probes designed and synthesized for this investigation were H-A3GP5GP5GP5G-OH (1), H-A3GP5G-OH (2), H-A3G7-OH (3), and H-A3G-OH (4). Each peptide probe was immobilized on a cantilever tip, and the interaction force to profilin, immobilized on a mica substrate, was examined by force curve measurements. The retraction forces obtained showed a sequence-dependent affinity of the peptide probe for profilin. The retraction force for peptide probe 1 was the largest of the four probes examined, and it confirmed that peptide probe 1 has high affinity for profilin. The single molecular retraction force between peptide probe 1 and profilin was estimated to be 96 pN, as determined by Gaussian fitting to the histogram of the retraction forces.
Collapse
Affiliation(s)
- Tomoko Okada
- School of Bionics, Tokyo University of Technology, Katakura, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Kursula P, Kursula I, Massimi M, Song YH, Downer J, Stanley WA, Witke W, Wilmanns M. High-resolution Structural Analysis of Mammalian Profilin 2a Complex Formation with Two Physiological Ligands: The Formin Homology 1 Domain of mDia1 and the Proline-rich Domain of VASP. J Mol Biol 2008; 375:270-90. [DOI: 10.1016/j.jmb.2007.10.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 12/28/2022]
|
24
|
Butler-Cole C, Wagner MJ, Da Silva M, Brown GD, Burke RD, Upton C. An ectromelia virus profilin homolog interacts with cellular tropomyosin and viral A-type inclusion protein. Virol J 2007; 4:76. [PMID: 17650322 PMCID: PMC1964790 DOI: 10.1186/1743-422x-4-76] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/24/2007] [Indexed: 11/10/2022] Open
Abstract
Background Profilins are critical to cytoskeletal dynamics in eukaryotes; however, little is known about their viral counterparts. In this study, a poxviral profilin homolog, ectromelia virus strain Moscow gene 141 (ECTV-PH), was investigated by a variety of experimental and bioinformatics techniques to characterize its interactions with cellular and viral proteins. Results Profilin-like proteins are encoded by all orthopoxviruses sequenced to date, and share over 90% amino acid (aa) identity. Sequence comparisons show highest similarity to mammalian type 1 profilins; however, a conserved 3 aa deletion in mammalian type 3 and poxviral profilins suggests that these homologs may be more closely related. Structural analysis shows that ECTV-PH can be successfully modelled onto both the profilin 1 crystal structure and profilin 3 homology model, though few of the surface residues thought to be required for binding actin, poly(L-proline), and PIP2 are conserved. Immunoprecipitation and mass spectrometry identified two proteins that interact with ECTV-PH within infected cells: alpha-tropomyosin, a 38 kDa cellular actin-binding protein, and the 84 kDa product of vaccinia virus strain Western Reserve (VACV-WR) 148, which is the truncated VACV counterpart of the orthopoxvirus A-type inclusion (ATI) protein. Western and far-western blots demonstrated that the interaction with alpha-tropomyosin is direct, and immunofluorescence experiments suggest that ECTV-PH and alpha-tropomyosin may colocalize to structures that resemble actin tails and cellular protrusions. Sequence comparisons of the poxviral ATI proteins show that although full-length orthologs are only present in cowpox and ectromelia viruses, an ~ 700 aa truncated ATI protein is conserved in over 90% of sequenced orthopoxviruses. Immunofluorescence studies indicate that ECTV-PH localizes to cytoplasmic inclusion bodies formed by both truncated and full-length versions of the viral ATI protein. Furthermore, colocalization of ECTV-PH and truncated ATI protein to protrusions from the cell surface was observed. Conclusion These results suggest a role for ECTV-PH in intracellular transport of viral proteins or intercellular spread of the virus. Broader implications include better understanding of the virus-host relationship and mechanisms by which cells organize and control the actin cytoskeleton.
Collapse
Affiliation(s)
- Christine Butler-Cole
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Mary J Wagner
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Melissa Da Silva
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Gordon D Brown
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
25
|
Okada T, Yamamoto Y, Miyachi H, Karube I, Muramatsu H. Application of peptide probe for evaluating affinity properties of proteins using quartz crystal microbalance. Biosens Bioelectron 2007; 22:1480-6. [PMID: 16919931 DOI: 10.1016/j.bios.2006.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/22/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
This study proved a possibility of a peptide probe for evaluating affinity properties of proteins. We have designed and synthesized three different peptide probes, H-Ala3-(Gly-Pro5)3-Gly-OH (peptide A), H-Ala3-(Gly-Pro5)-Gly-OH (peptide B) and H-Ala3-Gly-OH (peptide C) for testing their affinities to profilin. Each peptide probe was immobilized on a quartz crystal microbalance (QCM) sensor. The QCM sensor with the peptide A showed a 93 Hz decrease of resonant frequency which indicated profilin bound to the QCM sensor in a single layer. In a successive reaction with actin, the QCM analysis resulted in a 123 Hz decrease of resonant frequency which showed actin bound to the QCM sensor. A fluorescence microscope image of the sensor surface exhibited clear fluorescence after binding a rhodamine labeled actin on the sensor surface. These results supported stepwise reactions of profilin binding to the peptide A and actin binding to profilin. In the three peptide probes, the peptide A showed the highest affinity to profilin, i.e., sequence dependent affinity was confirmed.
Collapse
Affiliation(s)
- Tomoko Okada
- School of Bionics, Tokyo University of Technology, Katakura, Hachioji, Tokyo 192-0982, Japan
| | | | | | | | | |
Collapse
|
26
|
Birbach A, Verkuyl JM, Matus A. Reversible, activity-dependent targeting of profilin to neuronal nuclei. Exp Cell Res 2006; 312:2279-87. [PMID: 16716297 DOI: 10.1016/j.yexcr.2006.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 03/17/2006] [Accepted: 03/23/2006] [Indexed: 01/28/2023]
Abstract
The actin cytoskeleton in pyramidal neurons plays a major role in activity-dependent processes underlying neuronal plasticity. The small actin-binding protein profilin shows NMDA receptor-dependent accumulation in dendritic spines, which is correlated with suppression of actin dynamics and long-term stabilization of synaptic morphology. Here we show that following NMDA receptor activation profilin also accumulates in the nucleus of hippocampal neurons via a process involving rearrangement of the actin cytoskeleton. This simultaneous targeting to dendritic spines and the cell nucleus suggests a novel mechanism of neuronal plasticity in which profilin both tags activated synapses and influences nuclear events.
Collapse
Affiliation(s)
- Andreas Birbach
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | | | | |
Collapse
|
27
|
Bruno LS, Li X, Wang L, Soares RV, Siqueira CC, Oppenheim FG, Troxler RF, Offner GD. Two-hybrid analysis of human salivary mucin MUC7 interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:65-72. [PMID: 16203048 DOI: 10.1016/j.bbamcr.2005.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/18/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
MUC7 is a low molecular weight monomeric mucin secreted by submandibular, sublingual and minor salivary glands. This mucin has been implicated in the non-immune host defense system in the oral cavity since it binds and agglutinates a variety of oral microbes. To investigate interactions between this mucin and other secretory salivary proteins, a submandibular gland prey library was screened with baits encoding the N- and C-terminal regions of MUC7 in the yeast two-hybrid system. The N-terminal region interacted with several secretory salivary proteins, whereas the C-terminal region did not. Interacting proteins included amylase, acidic proline-rich protein 2, basic proline-rich protein 3, lacrimal proline-rich protein 4, statherin and histatin 1. Formation of complexes between these proteins and the N-terminal region of MUC7 was confirmed in Far Western blotting experiments. Interactions between mucin and non-mucin proteins in saliva could protect complex partners from proteolysis, modulate the biological activity of complexed proteins or serve as a delivery system for distribution of secretory salivary proteins throughout the oral cavity.
Collapse
Affiliation(s)
- Lucila S Bruno
- Department of Biochemistry, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sankian M, Varasteh A, Pazouki N, Mahmoudi M. Sequence homology: a poor predictive value for profilins cross-reactivity. Clin Mol Allergy 2005; 3:13. [PMID: 16153305 PMCID: PMC1253521 DOI: 10.1186/1476-7961-3-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 09/10/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Profilins are highly cross-reactive allergens which bind IgE antibodies of almost 20% of plant-allergic patients. This study is aimed at investigating cross-reactivity of melon profilin with other plant profilins and the role of the linear and conformational epitopes in human IgE cross-reactivity. METHODS Seventeen patients with melon allergy were selected based on clinical history and a positive skin prick test to melon extract. Melon profilin has been cloned and expressed in E. coli. The IgE binding and cross-reactivity of the recombinant profilin were measured by ELISA and inhibition ELISA. The amino acid sequence of melon profilin was compared with other profilin sequences. A combination of chemical cleavage and immunoblotting techniques were used to define the role of conformational and linear epitopes in IgE binding. Comparative modeling was used to construct three-dimensional models of profilins and to assess theoretical impact of amino acid differences on conformational structure. RESULTS Profilin was identified as a major IgE-binding component of melon. Alignment of amino acid sequences of melon profilin with other profilins showed the most identity with watermelon profilin. This melon profilin showed substantial cross-reactivity with the tomato, peach, grape and Cynodon dactylon (Bermuda grass) pollen profilins. Cantaloupe, watermelon, banana and Poa pratensis (Kentucky blue grass) displayed no notable inhibition. Our experiments also indicated human IgE only react with complete melon profilin. Immunoblotting analysis with rabbit polyclonal antibody shows the reaction of the antibody to the fragmented and complete melon profilin. Although, the well-known linear epitope of profilins were identical in melon and watermelon, comparison of three-dimensional models of watermelon and melon profilins indicated amino acid differences influence the electric potential and accessibility of the solvent-accessible surface of profilins that may markedly affect conformational epitopes. CONCLUSION Human IgE reactivity to melon profilin strongly depends on the highly conserved conformational structure, rather than a high degree of amino acid sequence identity or even linear epitopes identity.
Collapse
Affiliation(s)
- Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran
| | - Abdolreza Varasteh
- Immunobiochemistry Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran
| | - Nazanin Pazouki
- Immunobiochemistry Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Molecular biology Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran
| |
Collapse
|
29
|
Fetterer RH, Miska KB, Jenkins MC, Barfield RC. A conserved 19-kDa Eimeria tenella antigen is a profilin-like protein. J Parasitol 2005; 90:1321-8. [PMID: 15715222 DOI: 10.1645/ge-307r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A wide range of recombinant proteins from Eimeria species have been reported to offer some degree of protection against infection and disease, but the specific biological function of these proteins is largely unknown. Previous studies have demonstrated a 19-kDa protein of unknown function designated SZ-1 in sporozoites and merozoites of Eimeria acervulina that can be used to confer partial protection against coccidiosis. Reverse transcriptase-polymerase chain reaction indicated that the gene for SZ-1 is expressed by all the asexual stages of Eimeria tenella. Rabbit antisera to recombinant SZ-1 recognized an approximately 19-kDa protein from extracts of E. tenella sporozoites, merozoites, sporulated oocysts, and oocysts in various stages of sporulation. Immunofluorescence antibody staining indicated specific staining of E. tenella sporozoites and merozoites. Staining was most intense in the cytoplasm of the posterior end of the parasite. The primary amino acid sequence of the gene for E. tenella SZ-1 deduced from the E. tenella genome indicated a conserved domain for the actin-regulatory protein profilin. A conserved binding site for poly-L-proline (PLP), characteristic of profilin was also observed. SZ-1 was separated from soluble extract of E. tenella proteins by affinity chromatography using a PLP ligand, confirming the ability of SZ-1 to bind PLP. SZ-1 also partially inhibited the polymerization of actin. The current results are consistent with the classification of SZ-1 as a profilin-related protein.
Collapse
Affiliation(s)
- R H Fetterer
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Profilins are small actin-binding proteins that are essential in all organisms that have been examined to date. In vitro, profilins regulate the dynamics of actin polymerization, which is their key role in vivo during cell motility. However, there is growing evidence that, apart from actin binding, profilins function as hubs that control a complex network of molecular interactions. Profilins interact with a plethora of proteins and the importance of this aspect of their function is just beginning to be understood. In this article, I will summarize recent findings in mammalian cells and mice, and discuss the evidence of a role for profilins in cellular processes such as membrane trafficking, small-GTPase signaling and nuclear activities, in addition to neurological diseases and tumor formation.
Collapse
Affiliation(s)
- Walter Witke
- EMBL, Program for Mouse Biology, Campus Adriano Buzzati-Traverso, 00016 Monterotondo, Italy.
| |
Collapse
|
31
|
Pekkala M, Hieta R, Bergmann U, Kivirikko KI, Wierenga RK, Myllyharju J. The peptide-substrate-binding domain of collagen prolyl 4-hydroxylases is a tetratricopeptide repeat domain with functional aromatic residues. J Biol Chem 2004; 279:52255-61. [PMID: 15456751 DOI: 10.1074/jbc.m410007200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen prolyl 4-hydroxylases catalyze the formation of 4-hydroxyproline in -X-Pro-Gly-sequences and have an essential role in collagen synthesis. The vertebrate enzymes are alpha2beta2 tetramers in which the catalytic alpha-subunits contain separate peptide-substrate-binding and catalytic domains. We report on the crystal structure of the peptide-substrate-binding domain of the human type I enzyme refined at 2.3 A resolution. It was found to belong to a family of tetratricopeptide repeat domains that are involved in many protein-protein interactions and consist of five alpha-helices forming two tetratricopeptide repeat motifs plus the solvating helix. A prominent feature of its concave surface is a deep groove lined by tyrosines, a putative binding site for proline-rich Tripeptides. Solvent-exposed side chains of three of the tyrosines have a repeat distance similar to that of a poly-L-proline type II helix. The aromatic surface ends at one of the tyrosines, where the groove curves almost 90 degrees away from the linear arrangement of the three tyrosine side chains, possibly inducing a bent conformation in the bound peptide. This finding is consistent with previous suggestions by others that a minimal structural requirement for proline 4-hydroxylation may be a sequence in the poly-L-proline type II conformation followed by a beta-turn in the Pro-Gly segment. Site-directed mutagenesis indicated that none of the tyrosines was critical for tetramer assembly, whereas most of them were critical for the binding of a peptide substrate and inhibitor both to the domain and the alpha2beta2 enzyme tetramer.
Collapse
Affiliation(s)
- Mira Pekkala
- Department of Biochemistry and Biocenter Oulu and Collagen Research Unit, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Hieta R, Kukkola L, Permi P, Pirilä P, Kivirikko KI, Kilpeläinen I, Myllyharju J. The peptide-substrate-binding domain of human collagen prolyl 4-hydroxylases. Backbone assignments, secondary structure, and binding of proline-rich peptides. J Biol Chem 2003; 278:34966-74. [PMID: 12824157 DOI: 10.1074/jbc.m303624200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of 4-hydroxyproline by the hydroxylation of proline residues in -Xaa-Pro-Gly-sequences. The vertebrate enzymes are alpha 2 beta 2 tetramers in which protein-disulfide isomerase serves as the beta subunit. Two isoforms of the catalytic alpha subunit have been identified and shown to form [alpha(I)]2 beta 2 and [alpha(II)]2 beta 2 tetramers, the type I and type II C-P4Hs, respectively. The peptide-substrate-binding domain of type I C-P4H has been shown to be located between residues 138 and 244 in the 517-residue alpha(I) subunit and to be distinct from the catalytic domain that is located in the C-terminal region. We report here that a recombinant human C-P4H alpha(I) polypeptide Phe144-Ser244 forms a folded domain consisting of five alpha helices and one short beta strand. This structure is quite different from those of other proline-rich peptide-binding modules, which consist mainly of beta strands. Binding of the peptide (Pro-Pro-Gly)2 to this domain caused major chemical shifts in many backbone amide resonances, the residues showing the largest shifts being mainly hydrophobic, including three tyrosines. The Kd values determined by surface plasmon resonance and isothermal titration calorimetry for the binding of several synthetic peptides to the alpha(I) and the corresponding alpha(II) domain were very similar to the Km and Ki values for these peptides as substrates and inhibitors of the type I and type II C-P4H tetramers. The Kd values of the alpha(I) and alpha(II) domains for (Gly-Pro-4Hyp)5 were much higher than those for (Pro-Pro-Gly)5, indicating a marked decrease in the affinity of hydroxylated peptides for the domain. Many characteristic features of the binding of peptides to the type I and type II C-P4H tetramers can thus be explained by the properties of binding to this domain rather than the catalytic domain.
Collapse
Affiliation(s)
- Reija Hieta
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
NMR characteristics of a model left-handed 3(1)-helical peptide are reported in this study. With temperature and sequence corrections on the predicted random coil (15)N chemical shifts, a significant (15)N chemical shift deviation is observed for the model 3(1) peptide. The (15)N chemical shift differences also correlate well with the molar ellipticities (at 220 nm) of the CD spectra at different temperatures, indicating that the (15)N chemical shift is a sensitive probe for 3(1)-helices. The average (3)J(HNalpha) and (1)J(CalphaHalpha) values of the model peptide are determined to be 6.5 and 142.6 Hz, respectively, which are consistent with the values calculated from the geometry of 3(1)-helices. With careful measurements of amide (15)N chemical shifts and incorporating temperature and sequence effect corrections, the (15)N chemical shifts can be used together with (3)J(HNalpha) and (1)J(CalphaHalpha) to differentiate 3(1)-helices from random coils with high confidence. Based on the observed NMR characteristics, a strategy is developed for probing left-handed 3(1)-helical structures from other secondary structures.
Collapse
Affiliation(s)
- Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | | |
Collapse
|
34
|
Aravind L, Mazumder R, Vasudevan S, Koonin EV. Trends in protein evolution inferred from sequence and structure analysis. Curr Opin Struct Biol 2002; 12:392-9. [PMID: 12127460 DOI: 10.1016/s0959-440x(02)00334-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Complementary developments in comparative genomics, protein structure determination and in-depth comparison of protein sequences and structures have provided a better understanding of the prevailing trends in the emergence and diversification of protein domains. The investigation of deep relationships among different classes of proteins involved in key cellular functions, such as nucleic acid polymerases and other nucleotide-dependent enzymes, indicates that a substantial set of diverse protein domains evolved within the primordial, ribozyme-dominated RNA world.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
35
|
Lambrechts A, Jonckheere V, Dewitte D, Vandekerckhove J, Ampe C. Mutational analysis of human profilin I reveals a second PI(4,5)-P2 binding site neighbouring the poly(L-proline) binding site. BMC BIOCHEMISTRY 2002; 3:12. [PMID: 12052260 PMCID: PMC116585 DOI: 10.1186/1471-2091-3-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Accepted: 05/28/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Profilin is a small cytoskeletal protein which interacts with actin, proline-rich proteins and phosphatidylinositol 4,5-bisphosphate (PI(4,5)-P2). Crystallography, NMR and mutagenesis of vertebrate profilins have revealed the amino acid residues that are responsible for the interactions with actin and poly(L-proline) peptides. Although Arg88 of human profilin I was shown to be involved in PI(4,5)-P2-binding, it was suggested that carboxy terminal basic residues may be involved as well. RESULTS Using site directed mutagenesis we have refined the PI(4,5)-P2 binding site of human profilin I. For each mutant we assessed the stability and studied the interactions with actin, a proline-rich peptide and PI(4,5)-P2 micelles. We identified at least two PI(4,5)-P2-binding regions in human profilin I. As expected, one region comprises Arg88 and overlaps with the actin binding site. The second region involves Arg136 in the carboxy terminal helix and neighbours the poly(L-proline) binding site. In addition, we show that adding a small protein tag to the carboxy terminus of profilin strongly reduces binding to poly(L-proline), suggesting local conformational changes of the carboxy terminal alpha-helix may have dramatic effects on ligand binding. CONCLUSIONS The involvement of the two terminal alpha-helices of profilin in ligand binding imposes important structural constraints upon the functions of this region. Our data suggest a model in which the competitive interactions between PI(4,5)-P2 and actin and PI(4,5)-P2 and poly(L-proline) regulate profilin functions.
Collapse
Affiliation(s)
- Anja Lambrechts
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Daisy Dewitte
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Joel Vandekerckhove
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christophe Ampe
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Di Nardo A, Gareus R, Kwiatkowski D, Witke W. Alternative splicing of the mouse profilin II gene generates functionally different profilin isoforms. J Cell Sci 2000; 113 Pt 21:3795-803. [PMID: 11034907 DOI: 10.1242/jcs.113.21.3795] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Profilins are a conserved family of proteins participating in actin dynamics and cell motility. In the mouse, two profilin genes are known. Profilin I is expressed universally at high levels, while profilin II is expressed mainly in the brain. Here we describe the occurrence of two mouse profilin II isoforms, A and B, which are derived by alternative splicing. They are identical through residue 107 of the protein, but then have distinct C-terminal sequences. Profilin IIA binds to poly-L-proline and actin with high affinity similar to profilin I. Profilin IIB on the other hand does not bind to actin and the affinity for poly-L-proline is greatly diminished. However, tubulin was found to bind to GST-profilin IIB, and in vivo GFP-profilin IIB was recruited to spindles and asters during mitosis in HeLa cells. Our results indicate unexpected diversity in the functions of the profilin family of proteins, and suggest that in mouse profilin IIA is intimately involved in actin dynamics, while profilin IIB associates with other cytoskeletal components.
Collapse
Affiliation(s)
- A Di Nardo
- EMBL-Monterotondo, Mouse Biology Programme, Via Ramarini 32, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Lambrechts A, Braun A, Jonckheere V, Aszodi A, Lanier LM, Robbens J, Van Colen I, Vandekerckhove J, Fässler R, Ampe C. Profilin II is alternatively spliced, resulting in profilin isoforms that are differentially expressed and have distinct biochemical properties. Mol Cell Biol 2000; 20:8209-19. [PMID: 11027290 PMCID: PMC86430 DOI: 10.1128/mcb.20.21.8209-8219.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We deduced the structure of the mouse profilin II gene. It contains five exons that can generate four different transcripts by alternative splicing. Two transcripts encode different profilin II isoforms (designated IIa and IIb) that have similar affinities for actin but different affinities for polyphosphoinositides and proline-rich sequences. Profilins IIa and IIb are also present in humans, suggesting that all mammals have three profilin isoforms. Profilin I is the major form in all tissues, except in the brain, where profilin IIa is most abundant. Profilin IIb appears to be a minor form, and its expression is restricted to a limited number of tissues, indicating that the alternative splicing is tightly regulated. Western blotting and whole-mount in situ hybridization show that, in contrast to the expression of profilin I, the expression level of profilin IIa is developmentally regulated. In situ hybridization of adult brain sections reveals overlapping expression patterns of profilins I and IIa.
Collapse
Affiliation(s)
- A Lambrechts
- Department of Biochemistry, Ghent University and Flanders Interuniversity Institute for Biotechnology, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wittenmayer N, Rothkegel M, Jockusch BM, Schlüter K. Functional characterization of green fluorescent protein-profilin fusion proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5247-56. [PMID: 10931210 DOI: 10.1046/j.1432-1327.2000.01600.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the role of profilins in cells, fusion proteins constructed with green fluorescent protein (GFP) should be extremely helpful. As profilins are considerably smaller than the GFP fusion partner (14-17 kDa compared with 27 kDa, respectively), we characterized the fusion proteins in vitro, to ascertain their biological function. We fused mouse profilin I and II to either the C-terminus or N-terminus of GFP. These fusion proteins were expressed in Escherichia coli and affinity-purified on polyproline-Sepharose. Interaction with vasodilator-stimulated phosphoprotein, a proline-rich ligand of profilin, was investigated by ELISA, as was binding to PtdIns(4,5)P2. The affinity for actin was quantitatively determined in polymerization assays. Our results show that fusion of GFP to the C-terminus of profilin I abolishes polyproline binding. In contrast, the other fusion proteins bound to polyproline-Sepharose and VASP. Binding to PtdIns(4,5)P2 was not significantly altered. Furthermore, fusion of either isoform with GFP did not decrease the affinity for actin. In localization studies with mammalian cells, all fusion proteins showed the localization expected for profilin in areas of high actin dynamics, such as leading lamellae and ruffles induced by epidermal growth factor. However, with regard to our in vitro data, we suspect that only a minor fraction of profilin I carrying the GFP at the C-terminus can target these sites. Therefore, other constructs should be preferred for further in vivo studies.
Collapse
Affiliation(s)
- N Wittenmayer
- Cell Biology Group, Zoological Institute, Technical University, Braunschweig, Germany
| | | | | | | |
Collapse
|
39
|
Tung CS, Wall ME, Gallagher SC, Trewhella J. A model of troponin-I in complex with troponin-C using hybrid experimental data: the inhibitory region is a beta-hairpin. Protein Sci 2000; 9:1312-26. [PMID: 10933496 PMCID: PMC2144674 DOI: 10.1110/ps.9.7.1312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We present a model for the skeletal muscle troponin-C (TnC)/troponin-I (TnI) interaction, a critical molecular switch that is responsible for calcium-dependent regulation of the contractile mechanism. Despite concerted efforts by multiple groups for more than a decade, attempts to crystallize troponin-C in complex with troponin-I, or in the ternary troponin-complex, have not yet delivered a high-resolution structure. Many groups have pursued different experimental strategies, such as X-ray crystallography, NMR, small-angle scattering, chemical cross-linking, and fluorescent resonance energy transfer (FRET) to gain insights into the nature of the TnC/TnI interaction. We have integrated the results of these experiments to develop a model of the TnC/TnI interaction, using an atomic model of TnC as a scaffold. The TnI sequence was fit to each of two alternate neutron scattering envelopes: one that winds about TnC in a left-handed sense (Model L), and another that winds about TnC in a right-handed sense (Model R). Information from crystallography and NMR experiments was used to define segments of the models. Tests show that both models are consistent with available cross-linking and FRET data. The inhibitory region TnI(95-114) is modeled as a flexible beta-hairpin, and in both models it is localized to the same region on the central helix of TnC. The sequence of the inhibitory region is similar to that of a beta-hairpin region of the actin-binding protein profilin. This similarity supports our model and suggests the possibility of using an available profilin/actin crystal structure to model the TnI/actin interaction. We propose that the beta-hairpin is an important structural motif that communicates the Ca2+-activated troponin regulatory signal to actin.
Collapse
Affiliation(s)
- C S Tung
- Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | | | |
Collapse
|