1
|
Georgiou K, Kolocouris A. Conformational heterogeneity and structural features for function of the prototype viroporin influenza AM2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184387. [PMID: 39424094 DOI: 10.1016/j.bbamem.2024.184387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The 97-residue influenza A matrix 2 (ΑM2) protein, a prototype for viroporins, transports protons through water molecules and His37. We discuss structural biology and molecular biophysics experiments and some functional assays that have transformed over 40 years our understanding of the structure and function of AM2. The structural studies on ΑM2 have been performed with different conditions (pH, temperature, lipid, constructs) and using various protein constructs, e.g., AM2 transmembrane (AM2TM) domain, AM2 conductance domain (AM2CD), ectodomain-containing or ectodomain-truncated, AM2 full length (AM2FL) and aimed to describe the different conformations and structural details that are necessary for the stability and function of AM2. However, the conclusions from these experiments appeared sometimes ambiguous and caused exciting debates. This was not due to inaccurate measurements, but instead because of the different membrane mimetic environment used, e.g., detergent, micelles or phospholipid bilayer, the method (e.g., X-ray crystallography, solid state NMR, solution NMR, native mass spectrometry), the used protein construct (e.g., AM2TM or AM2CD), or the amino acids residues to follow observables (e.g., NMR chemical shifts). We present these results according to the different used biophysical methods, the research groups and often by keeping a chronological order for presenting the progress in the research. We discuss ideas for additional research on structural details of AM2 and how the present findings can be useful to explore new routes of influenza A inhibition. The AM2 research can provide inspiration to study other viroporins as drug targets.
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece.
| |
Collapse
|
2
|
Gamage YI, Wadumesthri Y, Gutiérrez HR, Voronine DV, Pan J. The impact of transmembrane peptides on lipid bilayer structure and mechanics: A study of the transmembrane domain of the influenza A virus M2 protein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184373. [PMID: 39047857 DOI: 10.1016/j.bbamem.2024.184373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Transmembrane peptides play important roles in many biological processes by interacting with lipid membranes. This study investigates how the transmembrane domain of the influenza A virus M2 protein, M2TM, affects the structure and mechanics of model lipid bilayers. Atomic force microscopy (AFM) imaging revealed small decreases in bilayer thickness with increasing peptide concentrations. AFM-based force spectroscopy experiments complemented by theoretical model analysis demonstrated significant decreases in bilayer's Young's modulus (E) and lateral area compressibility modulus (KA). This suggests that M2TM disrupts the cohesive interactions between neighboring lipid molecules, leading to a decrease in both the bilayer's resistance to indentation (E) and its ability to resist lateral compression/expansion (KA). The large decreases in bilayer elastic parameters (i.e., E and KA) contrast with small changes in bilayer thickness, implying that bilayer mechanics are not solely dictated by bilayer thickness in the presence of transmembrane peptides. The observed significant reduction in bilayer mechanical properties suggests a softening effect on the bilayer, potentially facilitating membrane curvature generation, a crucial step for M2-mediated viral budding. In parallel, our Raman spectroscopy revealed small but statistically significant changes in hydrocarbon chain vibrational dynamics, indicative of minor disordering in lipid chain conformation. Our findings provide useful insights into the complex interplay between transmembrane peptides and lipid bilayers, highlighting the significance of peptide-lipid interactions in modulating membrane structure, mechanics, and molecular dynamics.
Collapse
Affiliation(s)
| | - Yasinthara Wadumesthri
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | | | - Dmitri V Voronine
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America.
| |
Collapse
|
3
|
Sanders G, Borbat PP, Georgieva ER. Conformations of influenza A M2 protein in DOPC/DOPS and E. coli native lipids and proteins. Biophys J 2024; 123:2584-2593. [PMID: 38932458 PMCID: PMC11365223 DOI: 10.1016/j.bpj.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IM2) protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPC/DOPS) bilayers to those in isolated Escherichia coli (E. coli) membranes, having preserved its native proteins and lipids. IM2 is a single-pass transmembrane protein known to assemble into a homo-tetrameric proton channel. To represent this channel, we made a construct containing the IM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitution, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the electron spin resonance (ESR) study. For this particular residue, we probed the conformations of the spin-labeled IM2 reconstituted in DOPC/DOPS and isolated E. coli membranes using continuous-wave ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400. The continuous-wave ESR spectra corresponded to very slow spin-label motion in both environments. In all cases, the DEER data were reconstructed into distance distributions with well-resolved peaks at 1.68 and 2.37 nm in distance and amplitude ratios of 1.41 ± 0.2 and 2:1, respectively. This suggests four nitroxide spin labels located at the corners of a square, indicative of an axially symmetric tetramer. The distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IM2 TMD tetramer in agreement with the model. Thus, we can conclude that, under conditions of pH 7.4 used in this study, IM2 TMD has similar conformations in model lipid bilayers and membranes made of native E. coli lipids and proteins of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, ACERT, Cornell University, Ithaca, New York
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
4
|
Wu G, Dai Y, Hung I, Gan Z, Terskikh V. 1H/ 17O Chemical Shift Waves in Carboxyl-Bridged Hydrogen Bond Networks in Organic Solids. J Phys Chem A 2024; 128:4288-4296. [PMID: 38748612 DOI: 10.1021/acs.jpca.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We report solid-state 1H and 17O NMR results for four 17O-labeled organic compounds each containing an extensive carboxyl-bridged hydrogen bond (CBHB) network in the crystal lattice: tetrabutylammonium hydrogen di-[17O2]salicylate (1), [17O4]quinolinic acid (2), [17O4]dinicotinic acid (3), and [17O2]Gly/[17O2]Gly·HCl cocrystal (4). The 1H isotropic chemical shifts found for protons involved in different CBHB networks are between 8.2 and 20.5 ppm, which reflect very different hydrogen-bonding environments. Similarly, the 17O isotropic chemical shifts found for the carboxylate oxygen atoms in CBHB networks, spanning a large range between 166 and 341 ppm, are also remarkably sensitive to the hydrogen-bonding environments. We introduced a simple graphical representation in which 1H and 17O chemical shifts are displayed along the H and O atomic chains that form the CBHB network. In such a depiction, because wavy patterns are often observed, we refer to these wavy patterns as 1H/17O chemical shift waves. Typical patterns of 1H/17O chemical shift waves in CBHB networks are discussed. The reported 1H and 17O NMR parameters for the CBHB network models examined in this study can serve as benchmarks to aid in spectral interpretation for CBHB networks in proteins.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa K1A 0R6, Canada
| |
Collapse
|
5
|
Sanders G, Borbat PP, Georgieva ER. A comparative study of influenza A M2 protein conformations in DOPC/DOPS liposomes and in native E. coli membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574681. [PMID: 38260371 PMCID: PMC10802500 DOI: 10.1101/2024.01.08.574681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IAM2) protein reconstituted at pH 7.4 in DOPC/DOPS bilayers to those in isolated E. coli membranes, having preserved its native proteins and lipids. IAM2 is a single-pass transmembrane protein known to assemble into homo-tetrameric proton channel. To represent this channel, we made a construct containing the IAM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitute, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the ESR (electron spin resonance) study. We compared the conformations of the spin-labeled IAM2 residing in DOPC/DOPS and native E. coli membranes using continuous-wave (CW) ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400⩦ The CW ESR spectra corresponded to a nearly rigid limit spin label dynamics in both environments. In all cases, the DEER data were reconstructed into the distance distributions showing well-resolved peaks at 1.68 nm and 2.37 nm. The peak distance ratio was 1.41±0.2 and the amplitude ratio was 2:1. This is what one expects from four nitroxide spin-labels located at the corners of a square, indicative of an axially symmetric tetramer. Distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IAM2 tetramer in agreement with the NMR model. Thus, we can conclude that IAM2 TMD has similar conformations in model and native E. coli membranes of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca NY 14853
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| |
Collapse
|
6
|
Jalily PH, Duncan MC, Fedida D, Wang J, Tietjen I. Put a cork in it: Plugging the M2 viral ion channel to sink influenza. Antiviral Res 2020; 178:104780. [PMID: 32229237 PMCID: PMC7102647 DOI: 10.1016/j.antiviral.2020.104780] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
The ongoing threat of seasonal and pandemic influenza to human health requires antivirals that can effectively supplement existing vaccination strategies. The M2 protein of influenza A virus (IAV) is a proton-gated, proton-selective ion channel that is required for virus replication and is an established antiviral target. While licensed adamantane-based M2 antivirals have been historically used, M2 mutations that confer major adamantane resistance are now so prevalent in circulating virus strains that these drugs are no longer recommended. Here we review the current understanding of IAV M2 structure and function, mechanisms of inhibition, the rise of drug resistance mutations, and ongoing efforts to develop new antivirals that target resistant forms of M2.
Collapse
Affiliation(s)
- Pouria H Jalily
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tuscon, AZ, USA
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Liu Y, Tan J, Zhang J, Li C, Luo Y, Ye S. Influenza A M2 transmembrane domain tunes its conformational heterogeneity and structural plasticity in the lipid bilayer by forming loop structures. Chem Commun (Camb) 2018; 54:5903-5906. [PMID: 29789823 DOI: 10.1039/c8cc01533c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We discovered for the first time that the influenza A virus M2TM tunes its conformational heterogeneity and structural plasticity to respond to environmental cues by undergoing a helix-to-loop transition, resolving controversies regarding the mechanism of proton conduction and plasticity of the M2TM in lipid bilayers.
Collapse
Affiliation(s)
- Yue Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center for Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
8
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
9
|
Windisch D, Ziegler C, Grage SL, Bürck J, Zeitler M, Gor'kov PL, Ulrich AS. Hydrophobic Mismatch Drives the Interaction of E5 with the Transmembrane Segment of PDGF Receptor. Biophys J 2016; 109:737-49. [PMID: 26287626 PMCID: PMC4547410 DOI: 10.1016/j.bpj.2015.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) β in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state 15N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues.
Collapse
Affiliation(s)
- Dirk Windisch
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Colin Ziegler
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcel Zeitler
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
10
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
11
|
Andreas LB, Reese M, Eddy MT, Gelev V, Ni QZ, Miller EA, Emsley L, Pintacuda G, Chou JJ, Griffin RG. Structure and Mechanism of the Influenza A M218-60 Dimer of Dimers. J Am Chem Soc 2015; 137:14877-86. [PMID: 26218479 PMCID: PMC4943461 DOI: 10.1021/jacs.5b04802] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a magic angle spinning (MAS) NMR structure of the drug-resistant S31N mutation of M218-60 from Influenza A. The protein was dispersed in diphytanoyl-sn-glycero-3-phosphocholine lipid bilayers, and the spectra and an extensive set of constraints indicate that M218-60 consists of a dimer of dimers. In particular, ∼280 structural constraints were obtained using dipole recoupling experiments that yielded well-resolved (13)C-(15)N, (13)C-(13)C, and (1)H-(15)N 2D, 3D, and 4D MAS spectra, all of which show cross-peak doubling. Interhelical distances were measured using mixed (15)N/(13)C labeling and with deuterated protein, MAS at ωr/2π = 60 kHz, ω0H/2π = 1000 MHz, and (1)H detection of methyl-methyl contacts. The experiments reveal a compact structure consisting of a tetramer composed of four transmembrane helices, in which two opposing helices are displaced and rotated in the direction of the membrane normal relative to a four-fold symmetric arrangement, yielding a two-fold symmetric structure. Side chain conformations of the important gating and pH-sensing residues W41 and H37 are found to differ markedly from four-fold symmetry. The rmsd of the structure is 0.7 Å for backbone heavy atoms and 1.1 Å for all heavy atoms. This two-fold symmetric structure is different from all of the previous structures of M2, many of which were determined in detergent and/or with shorter constructs that are not fully active. The structure has implications for the mechanism of H(+) transport since the distance between His and Trp residues on different helices is found to be short. The structure also exhibits two-fold symmetry in the vicinity of the binding site of adamantyl inhibitors, and steric constraints may explain the mechanism of the drug-resistant S31N mutation.
Collapse
Affiliation(s)
- Loren B. Andreas
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Marcel Reese
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthew T. Eddy
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vladimir Gelev
- Department of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Boulevard, 1164 Sofia, Bulgaria
| | - Qing Zhe Ni
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric A. Miller
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Guido Pintacuda
- CNRS/ENS Lyon/UCB-Lyon 1, Université de Lyon, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Investigation of the free energy profiles of amantadine and rimantadine in the AM2 binding pocket. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:63-70. [PMID: 26391902 DOI: 10.1007/s00249-015-1077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/20/2015] [Accepted: 08/30/2015] [Indexed: 01/29/2023]
Abstract
The purpose of this work was to study the mechanism of drug resistance of M2 channel proteins by analyzing the interactions between the drugs amantadine and rimantadine and M2 channel proteins (including the wild type and the three mutants V27A, S31N, and G34A) and the drug binding pathways, by use of a computational approach. Our results showed that multiple drug-binding sites were present in the M2 channel, and the trajectory of the drugs through the M2 channel was determined. A novel method was developed to investigate of free energy profiles of the ligand-protein complexes. Our work provides a new explanation of the large amount of experimental data on drug efficacy.
Collapse
|
13
|
Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T. Solid-state NMR methods for oriented membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:48-85. [PMID: 26282196 DOI: 10.1016/j.pnmrs.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Oriented-sample solid-state NMR represents one of few experimental methods capable of characterising the membrane-bound conformation of proteins in the cell membrane. Since the technique was developed 25 years ago, the technique has been applied to study the structure of helix bundle membrane proteins and antimicrobial peptides, characterise protein-lipid interactions, and derive information on dynamics of the membrane anchoring of membrane proteins. We will review the major developments in various aspects of oriented-sample solid-state NMR, including sample-preparation methods, pulse sequences, theory required to interpret the experiments, perspectives for and guidelines to new experiments, and a number of representative applications.
Collapse
Affiliation(s)
- Sara K Hansen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Berit Paaske
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
14
|
Steered molecular dynamics approach for promising drugs for influenza A virus targeting M2 channel proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:447-55. [DOI: 10.1007/s00249-015-1047-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/20/2015] [Accepted: 05/14/2015] [Indexed: 01/14/2023]
|
15
|
Setzler J, Seith C, Brieg M, Wenzel W. SLIM: an improved generalized Born implicit membrane model. J Comput Chem 2015; 35:2027-39. [PMID: 25243932 DOI: 10.1002/jcc.23717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 07/02/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
In most implicit continuum models, membranes are represented as heterogeneous dielectric environments, but their treatment within computationally efficient generalized Born (GB) models is challenging. Despite several previous attempts, an adequate description of multiple dielectric regions in implicit GB-based membrane models that reproduce the qualitative and quantitative features of Poisson-Boltzmann (PB) electrostatics remains an unmet prerequisite of qualitatively correct implicit membrane models. A novel scheme (SLIM) to decompose one environment consisting of multiple dielectric regions into a sum of multiple environments consisting only of two dielectric regions each is proposed to solve this issue. These simpler environments can be treated with established GB methods. This approach captures qualitative features of PB electrostatic that are not present in previous models. Simulations of three membrane proteins demonstrate that this model correctly reproduces known properties of these proteins in agreement with experimental or other computational studies.
Collapse
Affiliation(s)
- Julia Setzler
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | | | | | | |
Collapse
|
16
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
17
|
Bernier SC, Horchani H, Salesse C. Structure and binding of the C-terminal segment of R9AP to lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1967-1979. [PMID: 25614992 DOI: 10.1021/la503867h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phototransduction cascade takes place in disc membranes of photoreceptor cells. Following its activation by light, rhodopsin activates the G-protein transducin causing the dissociation of its GTP-bound α-subunit, which in turn activates phosphodiesterase 6 (PDE6) leading to the hyperpolarization of photoreceptor cells. PDE6 must then be inactivated to return to the dark state. This is achieved by a protein complex which is presumably anchored to photoreceptor disc membranes by means of the transmembrane C-terminal segment of RGS9-1-Anchor Protein (R9AP). Information on the secondary structure and membrane binding properties of the C-terminal segment of R9AP is not yet available to further support its role in the membrane anchoring of this protein. In the present study, circular dichroism and infrared spectroscopy measurements have allowed us to determine that the C-terminal segment of human and bovine R9AP adopts an α-helical structure in solution. Moreover, this C-terminal segment has shown affinity for most of the phospholipids typical of photoreceptor membranes. In fact, the physical state and the type of phospholipid as well as electrostatic interactions influence the binding of the human and bovine peptides to phospholipid monolayers. In addition, these measurements revealed that the human peptide has a high affinity for saturated phosphocholine, which may suggest a possible localization of R9AP in photoreceptor microdomains. Accordingly, infrared spectroscopy measurements have allowed determining that the C-terminal segment of R9AP adopts an ordered α-helical structure in the presence of saturated phospholipid monolayers. Altogether, these data are consistent with the typical α-helical secondary structure and behavior observed for transmembrane segments and with the proposed role of membrane anchoring of the C-terminal segment of human and bovine R9AP.
Collapse
Affiliation(s)
- Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval , Québec (Québec) Canada
| | | | | |
Collapse
|
18
|
Gu R, Liu LA, Wei D. Drug inhibition and proton conduction mechanisms of the influenza a M2 proton channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:205-26. [PMID: 25387967 DOI: 10.1007/978-94-017-9245-5_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The influenza A virus matrix protein 2 (M2 protein) is a pH-regulated proton channel embedded in the viral membrane. Inhibition of the M2 proton channel has been used to treat influenza infections for decades due to the crucial role of this protein in viral infection and replication. However, the widely-used M2 inhibitors, amantadine and rimantadine, have gradually lost their efficiencies because of naturally-occurring drug resistant mutations. Therefore, investigation of the structure and function of the M2 proton channel will not only increase our understanding of this important biological system, but also lead to the design of novel and effective anti-influenza drugs. Despite the simplicity of the M2 molecular structure, the M2 channel is highly flexible and there have been controversies and arguments regarding the channel inhibition mechanism and the proton conduction mechanism. In this book chapter, we will first carefully review the experimental and computational studies of the two possible drug binding sites on the M2 protein and explain the mechanisms regarding how inhibitors prevent proton conduction. Then, we will summarize our recent molecular dynamics simulations of the drug-resistant mutant channels and propose mechanisms for drug resistance. Finally, we will discuss two existing proton conduction mechanisms and talk about the remaining questions regarding the proton-relay process through the channel. The studies reviewed here demonstrate how molecular modeling and simulations have complemented experimental work and helped us understand the M2 channel structure and function.
Collapse
Affiliation(s)
- Ruoxu Gu
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
19
|
Fast Atomic Charge Calculation for Implementation into a Polarizable Force Field and Application to an Ion Channel Protein. J CHEM-NY 2015. [DOI: 10.1155/2015/908204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins. Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT). Atomic charges are obtained via a charge calculation method that depend on the 3D structure of the system in a similar way as atomic charges ofab initiocalculations. Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated. A refined parameterization yielded excellent correlation ofR=0.9967. The method was implemented in the force field COSMOS-NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A virus. Our calculations show that moderate changes of side chain torsion angleχ1and small variations ofχ2of Trp-41 are necessary to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating in accordance with a flipping mechanism.
Collapse
|
20
|
Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci U S A 2014; 112:E119-26. [PMID: 25548160 DOI: 10.1073/pnas.1415908112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 93-residue transmembrane protein CrgA in Mycobacterium tuberculosis is a central component of the divisome, a large macromolecular machine responsible for cell division. Through interactions with multiple other components including FtsZ, FtsQ, FtsI (PBPB), PBPA, and CwsA, CrgA facilitates the recruitment of the proteins essential for peptidoglycan synthesis to the divisome and stabilizes the divisome. CrgA is predicted to have two transmembrane helices. Here, the structure of CrgA was determined in a liquid-crystalline lipid bilayer environment by solid-state NMR spectroscopy. Oriented-sample data yielded orientational restraints, whereas magic-angle spinning data yielded interhelical distance restraints. These data define a complete structure for the transmembrane domain and provide rich information on the conformational ensembles of the partially disordered N-terminal region and interhelical loop. The structure of the transmembrane domain was refined using restrained molecular dynamics simulations in an all-atom representation of the same lipid bilayer environment as in the NMR samples. The two transmembrane helices form a left-handed packing arrangement with a crossing angle of 24° at the conserved Gly39 residue. This helix pair exposes other conserved glycine and alanine residues to the fatty acyl environment, which are potential sites for binding CrgA's partners such as CwsA and FtsQ. This approach combining oriented-sample and magic-angle spinning NMR spectroscopy in native-like lipid bilayers with restrained molecular dynamics simulations represents a powerful tool for structural characterization of not only isolated membrane proteins, but their complexes, such as those that form macromolecular machines.
Collapse
|
21
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
22
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
23
|
Perrin BS, Tian Y, Fu R, Grant CV, Chekmenev EY, Wieczorek W, Dao AE, Hayden RM, Burzynski CM, Venable RM, Sharma M, Opella SJ, Pastor RW, Cotten ML. High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion. J Am Chem Soc 2014; 136:3491-504. [PMID: 24410116 PMCID: PMC3985945 DOI: 10.1021/ja411119m] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Indexed: 01/16/2023]
Abstract
While antimicrobial peptides (AMPs) have been widely investigated as potential therapeutics, high-resolution structures obtained under biologically relevant conditions are lacking. Here, the high-resolution structures of the homologous 22-residue long AMPs piscidin 1 (p1) and piscidin 3 (p3) are determined in fluid-phase 3:1 phosphatidylcholine/phosphatidylglycerol (PC/PG) and 1:1 phosphatidylethanolamine/phosphatidylglycerol (PE/PG) bilayers to identify molecular features important for membrane destabilization in bacterial cell membrane mimics. Structural refinement of (1)H-(15)N dipolar couplings and (15)N chemical shifts measured by oriented sample solid-state NMR and all-atom molecular dynamics (MD) simulations provide structural and orientational information of high precision and accuracy about these interfacially bound α-helical peptides. The tilt of the helical axis, τ, is between 83° and 93° with respect to the bilayer normal for all systems and analysis methods. The average azimuthal rotation, ρ, is 235°, which results in burial of hydrophobic residues in the bilayer. The refined NMR and MD structures reveal a slight kink at G13 that delineates two helical segments characterized by a small difference in their τ angles (<10°) and significant difference in their ρ angles (~25°). Remarkably, the kink, at the end of a G(X)4G motif highly conserved among members of the piscidin family, allows p1 and p3 to adopt ρ angles that maximize their hydrophobic moments. Two structural features differentiate the more potent p1 from p3: p1 has a larger ρ angle and less N-terminal fraying. The peptides have comparable depths of insertion in PC/PG, but p3 is 1.2 Å more deeply inserted than p1 in PE/PG. In contrast to the ideal α-helical structures typically assumed in mechanistic models of AMPs, p1 and p3 adopt disrupted α-helical backbones that correct for differences in the amphipathicity of their N- and C-ends, and their centers of mass lie ~1.2-3.6 Å below the plane defined by the C2 atoms of the lipid acyl chains.
Collapse
Affiliation(s)
- B. Scott Perrin
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ye Tian
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0307, United States
| | - Riqiang Fu
- National High Magnetic
Field Laboratory, Tallahassee, Florida 32310, United
States
| | - Christopher V. Grant
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0307, United States
| | - Eduard Y. Chekmenev
- National High Magnetic
Field Laboratory, Tallahassee, Florida 32310, United
States
| | - William
E. Wieczorek
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Alexander E. Dao
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Robert M. Hayden
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Caitlin M. Burzynski
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Richard M. Venable
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Mukesh Sharma
- Department
of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stanley J. Opella
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0307, United States
| | - Richard W. Pastor
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Myriam L. Cotten
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| |
Collapse
|
24
|
Murray DT, Hung I, Cross TA. Assignment of oriented sample NMR resonances from a three transmembrane helix protein. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 240:34-44. [PMID: 24509383 PMCID: PMC3980497 DOI: 10.1016/j.jmr.2013.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Oriented sample solid state NMR techniques have been routinely employed to determine the structures of membrane proteins with one or two transmembrane helices. For larger proteins the technique has been limited by spectral resolution and lack of assignment strategies. Here, a strategy for resonance assignment is devised and applied to a three transmembrane helix protein. Sequence specific assignments for all labeled transmembrane amino acid sites are obtained, which provide a set of orientational restraints and helix orientations in the bilayer. Our experiments expand the utility of solid state NMR in membrane protein structure characterization to three transmembrane helix proteins and represent a straightforward strategy for routinely characterizing multiple transmembrane helix protein structures.
Collapse
Affiliation(s)
- D T Murray
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - I Hung
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - T A Cross
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
25
|
Yu X, Lorigan GA. Secondary structure, backbone dynamics, and structural topology of phospholamban and its phosphorylated and Arg9Cys-mutated forms in phospholipid bilayers utilizing 13C and 15N solid-state NMR spectroscopy. J Phys Chem B 2014; 118:2124-33. [PMID: 24511878 PMCID: PMC3983341 DOI: 10.1021/jp500316s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phospholamban (PLB) is a membrane protein that regulates heart muscle relaxation rates via interactions with the sarcoplasmic reticulum Ca(2+) ATPase (SERCA). When PLB is phosphorylated or Arg9Cys (R9C) is mutated, inhibition of SERCA is relieved. (13)C and (15)N solid-state NMR spectroscopy is utilized to investigate conformational changes of PLB upon phosphorylation and R9C mutation. (13)C═O NMR spectra of the cytoplasmic domain reveal two α-helical structural components with population changes upon phosphorylation and R9C mutation. The appearance of an unstructured component is observed on domain Ib. (15)N NMR spectra indicate an increase in backbone dynamics of the cytoplasmic domain. Wild-type PLB (WT-PLB), Ser16-phosphorylated PLB (P-PLB), and R9C-mutated PLB (R9C-PLB) all have a very dynamic domain Ib, and the transmembrane domain has an immobile component. (15)N NMR spectra indicate that the cytoplasmic domain of R9C-PLB adopts an orientation similar to P-PLB and shifts away from the membrane surface. Domain Ib (Leu28) of P-PLB and R9C-PLB loses the alignment. The R9C-PLB adopts a conformation similar to P-PLB with a population shift to a more extended and disordered state. The NMR data suggest the more extended and disordered forms of PLB may relate to inhibition relief.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | | |
Collapse
|
26
|
Cross TA, Ekanayake V, Paulino J, Wright A. Solid state NMR: The essential technology for helical membrane protein structural characterization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 239:100-9. [PMID: 24412099 PMCID: PMC3957465 DOI: 10.1016/j.jmr.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 05/21/2023]
Abstract
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.
Collapse
Affiliation(s)
- Timothy A Cross
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Vindana Ekanayake
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Joana Paulino
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Anna Wright
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
27
|
Manor J, Arkin IT. Gaining insight into membrane protein structure using isotope-edited FTIR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23196348 DOI: 10.1016/j.bbamem.2012.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FTIR spectroscopy has long been used as a tool used to gain average structural information on proteins. With the advent of stable isotope editing, FTIR can be used to derive accurate information on isolated amino acids. In particular, in an anisotropic sample such as membrane layers, it is possible to measure the orientation of the peptidic carbonyl groups. Herein, we review the theory that enables one to obtain accurate restraints from FTIR spectroscopy, alongside considerations for sample suitability and general applicability. We also propose approaches that may be used to generate structural models of simple membrane proteins based on FTIR orientational restraints. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, 91904, Israel
| | | |
Collapse
|
28
|
Im W, Jo S, Kim T. An ensemble dynamics approach to decipher solid-state NMR observables of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:252-62. [PMID: 21851810 DOI: 10.1016/j.bbamem.2011.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/22/2011] [Accepted: 07/30/2011] [Indexed: 11/18/2022]
Abstract
Solid-state NMR (SSNMR) is an invaluable tool for determining orientations of membrane proteins and peptides in lipid bilayers. Such orientational descriptions provide essential information about membrane protein functions. However, when a semi-static single conformer model is used to interpret various SSNMR observables, important dynamics information can be missing, and, sometimes, even orientational information can be misinterpreted. In addition, over the last decade, molecular dynamics (MD) simulation and semi-static SSNMR interpretation have shown certain levels of discrepancies in terms of transmembrane helix orientation and dynamics. Dynamic fitting models have recently been proposed to resolve these discrepancies by taking into account transmembrane helix whole body motions using additional parameters. As an alternative approach, we have developed SSNMR ensemble dynamics (SSNMR-ED) using multiple conformer models, which generates an ensemble of structures that satisfies the experimental observables without any fitting parameters. In this review, various computational methods for determining transmembrane helix orientations are discussed, and the distributions of VpuTM (from HIV-1) and WALP23 (a synthetic peptide) orientations from SSNMR-ED simulations are compared with those from MD simulations and semi-static/dynamic fitting models. Such comparisons illustrate that SSNMR-ED can be used as a general means to extract both membrane protein structure and dynamics from the SSNMR measurements. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| | | | | |
Collapse
|
29
|
Murray DT, Lu Y, Cross TA, Quine JR. Geometry of kinked protein helices from NMR data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 210:82-89. [PMID: 21420337 DOI: 10.1016/j.jmr.2011.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/06/2011] [Accepted: 02/11/2011] [Indexed: 05/30/2023]
Abstract
Mathematical questions related to determining the structure of a protein from NMR orientational restraints are discussed. The protein segment is a kinked alpha helix modeled as a regular alpha helix in which two adjacent torsion angles have been varied from their ideal values. Varying these torsion angles breaks the helix into two regular helical segments joined at a kink. The problem is to find the torsion angles at the kink from the relationship of the helical segments to the direction of the magnetic field.
Collapse
Affiliation(s)
- Dylan T Murray
- Institute of Molecular Biophysics, Florida State University, Kasha Laboratory, Tallahassee, FL 32306, USA.
| | | | | | | |
Collapse
|
30
|
Albrieux F, Hamidane HB, Calvo F, Chirot F, Tsybin YO, Antoine R, Lemoine J, Dugourd P. Structural Preferences of Gas-Phase M2TMP Monomers upon Sequence Variations. J Phys Chem A 2011; 115:4711-8. [DOI: 10.1021/jp110732h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Hisham Ben Hamidane
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | - Yury O. Tsybin
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
31
|
Fischer WB, Hsu HJ. Viral channel forming proteins - modeling the target. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:561-71. [PMID: 20546700 PMCID: PMC7094444 DOI: 10.1016/j.bbamem.2010.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/02/2023]
Abstract
The cellular and subcellular membranes encounter an important playground for the activity of membrane proteins encoded by viruses. Viral membrane proteins, similar to their host companions, can be integral or attached to the membrane. They are involved in directing the cellular and viral reproduction, the fusion and budding processes. This review focuses especially on those integral viral membrane proteins which form channels or pores, the classification to be so, modeling by in silico methods and potential drug candidates. The sequence of an isolate of Vpu from HIV-1 is aligned with host ion channels and a toxin. The focus is on the alignment of the transmembrane domains. The results of the alignment are mapped onto the 3D structures of the respective channels and toxin. The results of the mapping support the idea of a 'channel-pore dualism' for Vpu.
Collapse
Affiliation(s)
- Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| | | |
Collapse
|
32
|
Schick S, Chen L, Li E, Lin J, Köper I, Hristova K. Assembly of the m2 tetramer is strongly modulated by lipid chain length. Biophys J 2011; 99:1810-7. [PMID: 20858425 DOI: 10.1016/j.bpj.2010.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 12/17/2022] Open
Abstract
The influenza virus matrix protein 2 (M2) assembles into a tetramer in the host membrane during viral uncoating and maturation. It has been used as a model system to understand the relative contributions of protein-lipid and protein-protein interactions to membrane protein structure and association. Here we investigate the effect of lipid chain length on the association of the M2 transmembrane domain into tetramers using Förster resonance energy transfer. We observe that the interactions between the M2 helices are much stronger in 1,2-dilauroyl-sn-glycero-3-phosphocholine than in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. Thus, lipid chain length and bilayer thickness not only modulate peptide interactions, but could also be a major determinant of the association of transmembrane helices into functional membrane protein oligomers.
Collapse
Affiliation(s)
- Sandra Schick
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
33
|
Vostrikov VV, Daily AE, Greathouse DV, Koeppe RE. Charged or aromatic anchor residue dependence of transmembrane peptide tilt. J Biol Chem 2010; 285:31723-30. [PMID: 20667827 PMCID: PMC2951244 DOI: 10.1074/jbc.m110.152470] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/15/2010] [Indexed: 01/13/2023] Open
Abstract
The membrane-spanning segments of integral membrane proteins often are flanked by aromatic or charged amino acid residues, which may "anchor" the transmembrane orientation. Single spanning transmembrane peptides such as those of the WALP family, acetyl-GWW(LA)(n)LWWA-amide, furthermore adopt a moderate average tilt within lipid bilayer membranes. To understand the anchor residue dependence of the tilt, we introduce Leu-Ala "spacers" between paired anchors and in some cases replace the outer tryptophans. The resulting peptides, acetyl-GX(2)ALW(LA)(6)LWLAX(22)A-amide, have Trp, Lys, Arg, or Gly in the two X positions. The apparent average orientations of the core helical sequences were determined in oriented phosphatidylcholine bilayer membranes of varying thickness using solid-state (2)H NMR spectroscopy. When X is Lys, Arg, or Gly, the direction of the tilt is essentially constant in different lipids and presumably is dictated by the tryptophans (Trp(5) and Trp(19)) that flank the inner helical core. The Leu-Ala spacers are no longer helical. The magnitude of the apparent helix tilt furthermore scales nicely with the bilayer thickness except when X is Trp. When X is Trp, the direction of tilt is less well defined in each phosphatidylcholine bilayer and varies up to 70° among 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, and 1,2-dilauroyl-sn-glycero-3-phosphocholine bilayer membranes. Indeed, the X = Trp case parallels earlier observations in which WALP family peptides having multiple Trp anchors show little dependence of the apparent tilt magnitude on bilayer thickness. The results shed new light on the interactions of arginine, lysine, tryptophan, and even glycine at lipid bilayer membrane interfaces.
Collapse
Affiliation(s)
- Vitaly V. Vostrikov
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Anna E. Daily
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Denise V. Greathouse
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Roger E. Koeppe
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
34
|
Pielak RM, Chou JJ. Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel. Biochem Biophys Res Commun 2010; 401:58-63. [PMID: 20833142 PMCID: PMC3215091 DOI: 10.1016/j.bbrc.2010.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 09/04/2010] [Indexed: 10/19/2022]
Abstract
The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication. It is the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the solution NMR structure of the highly pathogenic, drug resistant mutant V27A. The structure reveals subtle structural differences from wildtype that maybe linked to drug resistance. The V27A mutation significantly decreases hydrophobic packing between the N-terminal ends of the transmembrane helices, which explains the looser, more dynamic tetrameric assembly. The weakened channel assembly can resist drug binding either by destabilizing the rimantadine-binding pocket at Asp44, in the case of the allosteric inhibition model, or by reducing hydrophobic contacts with amantadine in the pore, in the case of the pore-blocking model. Moreover, the V27A structure shows a substantially increased channel opening at the N-terminal end, which may explain the faster proton conduction observed for this mutant. Furthermore, due to the high quality NMR data recorded for the V27A mutant, we were able to determine the structured region connecting the channel domain to the C-terminal amphipathic helices that was not determined in the wildtype structure. The new structural data show that the amphipathic helices are packed much more closely to the channel domain and provide new insights into the proton transfer pathway.
Collapse
Affiliation(s)
- Rafal M. Pielak
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Sharma M, Li C, Busath DD, Zhou HX, Cross TA. Drug sensitivity, drug-resistant mutations, and structures of three conductance domains of viral porins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:538-46. [PMID: 20655872 DOI: 10.1016/j.bbamem.2010.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 11/29/2022]
Abstract
Recent controversies associated with the structure of the M2 protein from influenza A virus and the binding site of drug molecules amantadine and rimantadine motivated the comparison here of the drug binding to three viral porins including the M2 proteins from influenza A and B as well as the viral protein 'u' from HIV-1. While the M2 protein from influenza B does not normally bind amantadine, chimeras with the M2 protein from influenza A show blockage by amantadine. Similarly, Vpu does not normally bind rimantadine, but the single site mutation A18H converts a non-specific channel to a selective proton channel that is sensitive to rimantadine. The comparison of structures and amino acid sequences shows that the membrane protein sample environment can have a significant influence on the structural result. While a bilayer surface bound amphipathic helix has been characterized for AM2, such a helix may be possible for BM2 although it has evaded structural characterization in detergent micelles. A similar amphipathic helix seems less likely for Vpu. Even though the A18H Vpu mutant forms rimantadine sensitive proton channels, the binding of drug and its influence on the protein structure appears to be very different from that for the M2 proteins. Indeed, drug binding and drug resistance in these viral porins appears to result from a complex set of factors.
Collapse
Affiliation(s)
- Mukesh Sharma
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | | | | | | | | |
Collapse
|
36
|
Bartneck M, Keul HA, Singh S, Czaja K, Bornemann J, Bockstaller M, Moeller M, Zwadlo-Klarwasser G, Groll J. Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS NANO 2010; 4:3073-3086. [PMID: 20507158 DOI: 10.1021/nn100262h] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanoparticle-based in vivo applications should consider the omnipresence of the phagocytes in the bloodstream and tissue. We have studied the nanoparticle uptake capacities of the most important human primary leukocyte populations using a nanoparticle library encompassing both rod-shaped and spherical gold nanoparticles with diameters between 15 and 50 nm and a variety of surface chemistries. Cetyltrimethylammoniumbromide (CTAB)-stabilized nanoparticles were internalized rapidly within 15 min and in large amounts by macrophages and to a lower extent also by monocytes. Interestingly, we found that the uptake of nanorods by macrophages was more efficient than that of nanospheres. Blocking experiments and electron microscopic studies revealed macropinocytosis as the major uptake mechanism. Grafting of poly(ethylene oxide) (PEO) onto the nanorods was found to significantly delay their internalization for several hours. The long-term uptake of PEO-coated nanoparticles with positively or negatively charged end groups was almost identical. Particle surface chemistry strongly influenced the expression of inflammation-related genes within 1 day. Furthermore, the macrophage phenotype was significantly affected after 7 days of culture with nanorods depending on the surface chemistry. Thus, in vivo application of nanoparticles with certain surface functionalities may lead to inflammation upon particle accumulation. However, our data also suggest that chemical modifications of nanoparticles may be useful for immunomodulation.
Collapse
Affiliation(s)
- Matthias Bartneck
- Interdisciplinary Centre for Clinical Research BioMAT, Medical Faculty, RWTH Aachen, D-52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pielak RM, Chou JJ. Influenza M2 proton channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:522-9. [PMID: 20451491 DOI: 10.1016/j.bbamem.2010.04.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 12/18/2022]
Abstract
M2 of the influenza virus is an intriguing transmembrane protein that forms a minuscule proton channel in the viral envelope. Its recognized function is to equilibrate pH across the viral membrane during cell entry and across the trans-Golgi membrane of infected cells during viral maturation. It is vital for viral replication and it is a target for the anti-influenza drugs, amantadine and rimantadine. Recently, high resolution structures of M2 channels of both flu A and B have been obtained, providing the desperately needed structural details for understanding the mechanism of proton conductance. In particular, the establishment of the functional solution NMR system of the proton channels enabled simultaneous high resolution structure characterization and measurement of channel dynamics coupled to channel activity. This review summarizes our current understanding of how protons are conducted through the M2 channel from a structural point of view, as well as the modes by which important channel gating elements function during proton conduction.
Collapse
Affiliation(s)
- Rafal M Pielak
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
38
|
Kozakov D, Chuang GY, Beglov D, Vajda S. Where does amantadine bind to the influenza virus M2 proton channel? Trends Biochem Sci 2010; 35:471-5. [PMID: 20382026 DOI: 10.1016/j.tibs.2010.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 03/03/2010] [Accepted: 03/10/2010] [Indexed: 01/25/2023]
Abstract
Structures of the influenza A virus M2 proton channel in the open conformation have been determined by X-ray crystallography, and in the closed conformation by NMR. Whereas the X-ray structure shows a single inhibitor molecule in the middle of the channel, four inhibitor molecules bind the channel's outer surface in the NMR structure. In both structures, the strongest hot spots (i.e., regions that contribute substantially to the free energy of binding any potential ligand) lie inside the pore, and other hot spots are found at exterior locations. By considering all available models, we propose the primary drug binding site is inside the pore, but that exterior binding occurs under appropriate conditions.
Collapse
Affiliation(s)
- Dima Kozakov
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
39
|
Larraillet V, Vorobyev A, Brunet C, Lemoine J, Tsybin YO, Antoine R, Dugourd P. Comparative dissociation of peptide polyanions by electron impact and photo-induced electron detachment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:670-680. [PMID: 20171119 DOI: 10.1016/j.jasms.2010.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 05/28/2023]
Abstract
We compare product-ion mass spectra produced by electron detachment dissociation (EDD) and electron photodetachment dissociation (EPD) of multi-deprotonated peptides on a Fourier transform and a linear ion trap mass spectrometer, respectively. Both methods, EDD and EPD, involve the electron emission-induced formation of a radical oxidized species from a multi-deprotonated precursor peptide. Product-ion mass spectra display mainly fragment ions resulting from backbone cleavages of C(alpha)-C bond ruptures yielding a and x ions. Fragment ions originating from N-C(alpha) backbone bond cleavages are also observed, in particular by EPD. Although EDD and EPD methods involve the generation of a charge-reduced radical anion intermediate by electron emission, the product ion abundance distributions are drastically different. Both processes seem to be triggered by the location and the recombination of radicals (both neutral and cation radicals). Therefore, EPD product ions are predominantly formed near tryptophan and histidine residues, whereas in EDD the negative charge solvation sites on the backbone seem to be the most favorable for the nearby bond dissociation.
Collapse
|
40
|
Chuang GY, Kozakov D, Brenke R, Beglov D, Guarnieri F, Vajda S. Binding hot spots and amantadine orientation in the influenza a virus M2 proton channel. Biophys J 2010; 97:2846-53. [PMID: 19917240 DOI: 10.1016/j.bpj.2009.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/12/2009] [Accepted: 09/02/2009] [Indexed: 01/08/2023] Open
Abstract
Structures of truncated versions of the influenza A virus M2 proton channel have been determined recently by x-ray crystallography in the open conformation of the channel, and by NMR in the closed state. The structures differ in the position of the bound inhibitors. The x-ray structure shows a single amantadine molecule in the middle of the channel, whereas in the NMR structure four drug molecules bind at the channel's outer surface. To study this controversy we applied computational solvent mapping, a technique developed for the identification of the most druggable binding hot spots of proteins. The method moves molecular probes--small organic molecules containing various functional groups--around the protein surface, finds favorable positions using empirical free energy functions, clusters the conformations, and ranks the clusters on the basis of the average free energy. The results of the mapping show that in both structures the primary hot spot is an internal cavity overlapping the amantadine binding site seen in the x-ray structure. However, both structures also have weaker hot spots at the exterior locations that bind rimantadine in the NMR structure, although these sites are partially due to the favorable interactions with the interfacial region of the lipid bilayer. As confirmed by docking calculations, the open channel binds amantadine at the more favorable internal site, in good agreement with the x-ray structure. In contrast, the NMR structure is based on a peptide/micelle construct that is able to accommodate the small molecular probes used for the mapping, but has a too narrow pore for the rimantadine to access the internal hot spot, and hence the drug can bind only at the exterior sites.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
41
|
Flu channel drug resistance: a tale of two sites. Protein Cell 2010; 1:246-58. [PMID: 21203971 DOI: 10.1007/s13238-010-0025-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/18/2010] [Indexed: 10/19/2022] Open
Abstract
The M2 proteins of influenza A and B virus, AM2 and BM2, respectively, are transmembrane proteins that oligomerize in the viral membrane to form proton-selective channels. Proton conductance of the M2 proteins is required for viral replication; it is believed to equilibrate pH across the viral membrane during cell entry and across the trans-Golgi membrane of infected cells during viral maturation. In addition to the role of M2 in proton conductance, recent mutagenesis and structural studies suggest that the cytoplasmic domains of the M2 proteins also play a role in recruiting the matrix proteins to the cell surface during virus budding. As viral ion channels of minimalist architecture, the membrane-embedded channel domain of M2 has been a model system for investigating the mechanism of proton conduction. Moreover, as a proven drug target for the treatment of influenza A infection, M2 has been the subject of intense research for developing new anti-flu therapeutics. AM2 is the target of two anti-influenza A drugs, amantadine and rimantadine, both belonging to the adamantane class of compounds. However, resistance of influenza A to adamantane is now widespread due to mutations in the channel domain of AM2. This review summarizes the structure and function of both AM2 and BM2 channels, the mechanism of drug inhibition and drug resistance of AM2, as well as the development of new M2 inhibitors as potential anti-flu drugs.
Collapse
|
42
|
Chu S, Abu-Baker S, Lu J, Lorigan GA. (15)N Solid-state NMR spectroscopic studies on phospholamban at its phosphorylated form at ser-16 in aligned phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:312-7. [PMID: 20044975 DOI: 10.1016/j.bbamem.2009.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/17/2022]
Abstract
Wild-type phospholamban (WT-PLB) is a pentameric transmembrane protein that regulates the cardiac cycle (contraction and relaxation). From a physiological prospective, unphosphorylated WT-PLB inhibits sarcoplasmic reticulum ATPase activity; whereas, its phosphorylated form relieves the inhibition in a mechanism that is not completely understood. In this study, site-specifically (15)N-Ala-11- and (15)N-Leu-7-labeled WT-PLB and the corresponding phosphorylated forms (P-PLB) were incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine/2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPC/DOPE) mechanically oriented lipid bilayers. The aligned (15)N-labeled Ala-11 and Leu-7 WT-PLB samples show (15)N resonance peaks at approximately 71ppm and 75ppm, respectively, while the corresponding phosphorylated forms P-PLB show (15)N peaks at 92ppm and 99ppm, respectively. These (15)N chemical shift changes upon phosphorylation are significant and in agreement with previous reports, which indicate that phosphorylation of WT-PLB at Ser-16 alters the structural properties of the cytoplasmic domain with respect to the lipid bilayers.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
43
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
44
|
Wang J, Pielak RM, McClintock MA, Chou JJ. Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 2009; 16:1267-71. [PMID: 19898475 PMCID: PMC3148584 DOI: 10.1038/nsmb.1707] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/24/2009] [Indexed: 12/11/2022]
Abstract
Influenza B virus contains an integral membrane protein, BM2, that oligomerizes in the viral membrane to form pH-activated proton channel. Here we report the solution structures of both the membrane-embedded channel domain and the cytoplasmic domain of BM2. The channel domain forms a left-handed coiled-coil tetramer with a helical packing angle of -37{degree sign} to form a polar pore in the membrane for conducting ions. Mutagenesis and proton flux experiments identified residues involved in proton relay and suggest a mechanism of proton conductance. The cytoplasmic domain of BM2 also forms a coiled-coil tetramer. It has a bipolar charge distribution, in which a negatively charged region interacts specifically with the M1 matrix protein that is involved in packaging the genome in the virion. This interaction suggests another role of BM2 in recruiting the matrix proteins to the cell surface during virus budding. Therefore BM2 is an unusual membrane protein which has the dual functionality of conducting ions and recruiting proteins to the membrane.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
45
|
Cady SD, Luo W, Hu F, Hong M. Structure and function of the influenza A M2 proton channel. Biochemistry 2009; 48:7356-64. [PMID: 19601584 DOI: 10.1021/bi9008837] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The M2 protein of influenza A viruses forms a tetrameric pH-activated proton-selective channel that is targeted by the amantadine class of antiviral drugs. Its ion channel function has been extensively studied by electrophysiology and mutagenesis; however, the molecular mechanism of proton transport is still elusive, and the mechanism of inhibition by amantadine is controversial. We review the functional data on proton channel activity, molecular dynamics simulations of the proton conduction mechanism, and high-resolution structural and dynamical information of this membrane protein in lipid bilayers and lipid-mimetic detergents. These studies indicate that elucidation of the structural basis of M2 channel activity and inhibition requires thorough examination of the complex dynamics and conformational plasticity of the protein in different lipid bilayers and lipid-mimetic environments.
Collapse
Affiliation(s)
- Sarah D Cady
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
46
|
Ben Hamidane H, He H, Tsybin OY, Emmett MR, Hendrickson CL, Marshall AG, Tsybin YO. Periodic sequence distribution of product ion abundances in electron capture dissociation of amphipathic peptides and proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1182-92. [PMID: 19297190 DOI: 10.1016/j.jasms.2009.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 01/14/2009] [Accepted: 02/08/2009] [Indexed: 05/11/2023]
Abstract
The rules for product ion formation in electron capture dissociation (ECD) mass spectrometry of peptides and proteins remain unclear. Random backbone cleavage probability and the nonspecific nature of ECD toward amino acid sequence have been reported, contrary to preferential channels of fragmentation in slow heating-based tandem mass spectrometry. Here we demonstrate that for amphipathic peptides and proteins, modulation of ECD product ion abundance (PIA) along the sequence is pronounced. Moreover, because of the specific primary (and presumably secondary) structure of amphipathic peptides, PIA in ECD demonstrates a clear and reproducible periodic sequence distribution. On the one hand, the period of ECD PIA corresponds to periodic distribution of spatially separated hydrophobic and hydrophilic domains within the peptide primary sequence. On the other hand, the same period correlates with secondary structure units, such as alpha-helical turns, known for solution-phase structure. Based on a number of examples, we formulate a set of characteristic features for ECD of amphipathic peptides and proteins: (1) periodic distribution of PIA is observed and is reproducible in a wide range of ECD parameters and on different experimental platforms; (2) local maxima of PIA are not necessarily located near the charged site; (3) ion activation before ECD not only extends product ion sequence coverage but also preserves ion yield modulation; (4) the most efficient cleavage (e.g. global maximum of ECD PIA distribution) can be remote from the charged site; (5) the number and location of PIA maxima correlate with amino acid hydrophobicity maxima generally to within a single amino acid displacement; and (6) preferential cleavage sites follow a selected hydrogen spine in an alpha-helical peptide segment. Presently proposed novel insights into ECD behavior are important for advancing understanding of the ECD mechanism, particularly the role of peptide sequence on PIA. An improved ECD model could facilitate protein sequencing and improve identification of unknown proteins in proteomics technologies. In structural biology, the periodic/preferential product ion yield in ECD of alpha-helical structures potentially opens the way toward de novo site-specific secondary structure determination of peptides and proteins in the gas phase and its correlation with solution-phase structure.
Collapse
Affiliation(s)
- Hisham Ben Hamidane
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
47
|
Tiburu EK, Bowman AL, Struppe JO, Janero DR, Avraham HK, Makriyannis A. Solid-state NMR and molecular dynamics characterization of cannabinoid receptor-1 (CB1) helix 7 conformational plasticity in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1159-67. [PMID: 19366584 PMCID: PMC3712639 DOI: 10.1016/j.bbamem.2009.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 11/30/2022]
Abstract
Little direct information is available regarding the influence of membrane environment on transmembrane (TM) G-protein-coupled receptor (GPCR) conformation and dynamics. The human CB1 cannabinoid receptor (hCB1) is a prominent GPCR pharmacotherapeutic target in which helix 7 appears critical to ligand recognition. We have chemically synthesized a hCB1 peptide corresponding to a segment of TM helix 7 and the entire contiguous helix 8 domain (fourth cytoplasmic loop) and reconstituted it in defined phospholipid-bilayer model membranes. Using an NMR-based strategy combined with molecular dynamics simulations, we provide the first direct experimental description of the orientation of hCB1 helix 7 in phospholipid membranes of varying thickness and the mechanism by which helix-7 conformation adjusts to avoid hydrophobic mismatch. Solid-state (15)N NMR data show that hCB1 helices 7 and 8 reconstituted into phospholipid bilayers are oriented in a TM and in-plane (i.e., parallel to the phospholipid membrane surface) fashion, respectively. TM helix orientation is influenced by the thickness of the hydrophobic membrane bilayer as well as the interaction of helix 8 with phospholipid polar headgroups. Molecular dynamics simulations show that a decrease in phospholipid chain-length induces a kink at P394 in TM helix 7 to avoid hydrophobic mismatch. Thus, the NP(X)nY motif found in hCB1 and highly conserved throughout the GPCR superfamily is important for flexing helix 7 to accommodate bilayer thickness. Dynamic modulation of hCB1-receptor TM helix conformation by its membrane environment may have general relevance to GPCR structure and function.
Collapse
Affiliation(s)
- Elvis K. Tiburu
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Anna L. Bowman
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - David R. Janero
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci U S A 2009; 106:7379-84. [PMID: 19383794 DOI: 10.1073/pnas.0902548106] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The influenza A virus M2 proton channel equilibrates pH across the viral membrane during entry and across the trans-Golgi membrane of infected cells during viral maturation. It is an important target of adamantane-family antiviral drugs, but drug resistance has become a critical problem. Two different sites for drug interaction have been proposed. One is a lipid-facing pocket between 2 adjacent transmembrane helices (around Asp-44), at which the drug binds and inhibits proton conductance allosterically. The other is inside the pore (around Ser-31), at which the drug directly blocks proton passage. Here, we describe structural and functional experiments on the mechanism of drug inhibition and resistance. The solution structure of the S31N drug-resistant mutant of M2, a mutant of the highly pathogenic avian influenza subtype H5N1, shows that replacing Ser-31 with Asn has little effect on the structure of the channel pore, but dramatically reduces drug binding to the allosteric site. Mutagenesis and liposomal proton flux assays show that replacing the key residue (Asp-44) in the lipid-facing binding pocket with Ala has a dramatic effect on drug sensitivity, but that the channel remains fully drug sensitive when replacing Ser-31 with Ala. Chemical cross-linking studies indicate an inverse correlation between channel stability and drug resistance. The lipid-facing pocket contains residues from 2 adjacent channel-forming helices. Therefore, it is present only when the helices are tightly packed in the closed conformation. Thus, drug-resistant mutants impair drug binding by destabilizing helix-helix assembly.
Collapse
|
49
|
Kandasamy SK, Lee DK, Nanga RP, Xu J, Santos JS, Larson RG, Ramamoorthy A. Solid-state NMR and molecular dynamics simulations reveal the oligomeric ion-channels of TM2-GABAA stabilized by intermolecular hydrogen bonding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:686-95. [DOI: 10.1016/j.bbamem.2008.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 11/16/2022]
|
50
|
Otomo K, Toyama A, Miura T, Takeuchi H. Interactions between histidine and tryptophan residues in the BM2 proton channel from influenza B virus. J Biochem 2009; 145:543-54. [PMID: 19155268 DOI: 10.1093/jb/mvp009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The BM2 protein of influenza B virus forms a transmembrane proton channel essential for the virus infection. We investigated the structure and mechanism of the BM2 proton channel by using a 31-mer peptide (BM2-TMP) representing the putative transmembrane domain of BM2, with special focus on His19, Trp23 and His27. Like the full-length protein, BM2-TMP formed a transmembrane proton channel activated at acidic pH with a midpoint of transition at pH 6.4 +/- 0.1. Mutation of His19 to Ala almost abolished the channel activity, whereas the His27-to-Ala mutant retained partial activity. The proton selectivity of the channel was lost upon substitution of Phe for Trp23. Comparison of CD, fluorescence and Raman spectra measured for wild-type and mutated BM2-TMP at varied pH showed the pK(a) of the imidazole ring to be approximately 6.5 for His19 and approximately 7.6 for His27. Analysis of the pH-dependent fluorescence and Raman intensities suggested the occurrence of cation-pi interaction between the protonated imidazole ring of His and the indole ring of Trp. The His19-Trp23 cation-pi interaction below pH 6.5 is likely to trigger the opening of the proton channel, whereas His27 is not essential but enhances the channel activity through interaction with Trp23, which constitutes the proton-selective gate.
Collapse
Affiliation(s)
- Kohei Otomo
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|