1
|
Adcox HE, Hunt JR, Allen PE, Siff TE, Rodino KG, Ottens AK, Carlyon JA. Orientia tsutsugamushi Ank5 promotes NLRC5 cytoplasmic retention and degradation to inhibit MHC class I expression. Nat Commun 2024; 15:8069. [PMID: 39277599 PMCID: PMC11401901 DOI: 10.1038/s41467-024-52119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
How intracellular bacteria subvert the major histocompatibility complex (MHC) class I pathway is poorly understood. Here, we show that the obligate intracellular bacterium Orientia tsutsugamushi uses its effector protein, Ank5, to inhibit nuclear translocation of the MHC class I gene transactivator, NLRC5, and orchestrate its proteasomal degradation. Ank5 uses a tyrosine in its fourth ankyrin repeat to bind the NLRC5 N-terminus while its F-box directs host SCF complex ubiquitination of NLRC5 in the leucine-rich repeat region that dictates susceptibility to Orientia- and Ank5-mediated degradation. The ability of O. tsutsugamushi strains to degrade NLRC5 correlates with ank5 genomic carriage. Ectopically expressed Ank5 that can bind but not degrade NLRC5 protects the transactivator during Orientia infection. Thus, Ank5 is an immunoevasin that uses its bipartite architecture to rid host cells of NLRC5 and reduce surface MHC class I molecules. This study offers insight into how intracellular pathogens can impair MHC class I expression.
Collapse
Affiliation(s)
- Haley E Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Thomas E Siff
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
2
|
Kanabar D, Goyal M, Kane EI, Chavan T, Kabir A, Wang X, Shukla S, Almasri J, Goswami S, Osman G, Kokolis M, Spratt DE, Gupta V, Muth A. Small-Molecule Gankyrin Inhibition as a Therapeutic Strategy for Breast and Lung Cancer. J Med Chem 2022; 65:8975-8997. [PMID: 35758870 PMCID: PMC9524259 DOI: 10.1021/acs.jmedchem.2c00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gankyrin is an oncoprotein responsible for the development of numerous cancer types. It regulates the expression levels of multiple tumor suppressor proteins (TSPs) in liver cancer; however, gankyrin's regulation of these TSPs in breast and lung cancers has not been thoroughly investigated. Additionally, no small-molecule gankyrin inhibitor has been developed which demonstrates potent anti-proliferative activity against gankyrin overexpressing breast and lung cancers. Herein, we are reporting the structure-based design of gankyrin-binding small molecules which potently inhibited the proliferation of gankyrin overexpressing A549 and MDA-MB-231 cancer cells, reduced colony formation, and inhibited the growth of 3D spheroids in an in vitro tumor simulation model. Investigations demonstrated that gankyrin inhibition occurs through either stabilization or destabilization of its 3D structure. These studies shed light on the mechanism of small-molecule inhibition of gankyrin and demonstrate that gankyrin is a viable therapeutic target for the treatment of breast and lung cancer.
Collapse
Affiliation(s)
- Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Emma I. Kane
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester MA 01610, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Abbas Kabir
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Snehal Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Joseph Almasri
- Department of Chemistry, College of Liberal Arts and Sciences, St. John’s University, Queens NY 11439, USA
| | - Sona Goswami
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Gizem Osman
- Department of Biological Sciences, College of Liberal Arts and Sciences, St. John’s University, Queens NY 11439, USA
| | - Marino Kokolis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester MA 01610, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| |
Collapse
|
3
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
4
|
Camponeschi I, Damasco A, Uversky VN, Giuliani A, Bianchi MM. Phenotypic suppression caused by resonance with light-dark cycles indicates the presence of a 24-hours oscillator in yeast and suggests a new role of intrinsically disordered protein regions as internal mediators. J Biomol Struct Dyn 2020; 39:2490-2501. [PMID: 32223547 DOI: 10.1080/07391102.2020.1749133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mutual interaction between environment and life is a main topic of biological sciences. An interesting aspect of this interaction is the existence of biological rhythms spanning all the levels of organisms from bacteria to humans. On the other hand, the existence of a coupling between external oscillatory stimuli and adaptation and evolution rate of biological systems is a still unexplored issue. Here we give the demonstration of a substantial increase of heritable phenotypic changes in yeast, an organism lacking a photoreception system, when growing at 12 h light/dark cycles, with respect to both stable dark (or light) or non-12 + 12 h cycling. The model system was a yeast strain lacking a gene whose product is at the crossroad of many different physiological regulations, so ruling out any simple explanation in terms of increase in reverse gene mutations. The abundance of intrinsically disordered protein regions (IDPRs) in both deleted gene product and in its vast ensemble of interactors supports the hypothesis that resonance with the environmental cycle might be mediated by intrinsic disorder-driven interactions of protein molecules. This result opens to the speculation of the effect of environment/biological resonance phenomena in evolution and of the role of protein intrinsically disordered regions as internal mediators.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ilaria Camponeschi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza Università di Roma, Roma, Italy
| | - Achille Damasco
- Department of Physics 'Ettore Pancini', Università di Napoli Federico II, Napoli, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Michele M Bianchi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
5
|
Xu Y, Zhou X, Huang M. StaRProtein, a web server for prediction of the stability of repeat proteins. PLoS One 2015; 10:e0119417. [PMID: 25807112 PMCID: PMC4373711 DOI: 10.1371/journal.pone.0119417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins.
Collapse
Affiliation(s)
- Yongtao Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
| | - Xu Zhou
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
A compact native 24-residue supersecondary structure derived from the villin headpiece subdomain. Biophys J 2015; 108:678-86. [PMID: 25650934 DOI: 10.1016/j.bpj.2014.11.3482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/23/2014] [Accepted: 11/20/2014] [Indexed: 11/22/2022] Open
Abstract
Many small proteins fold highly cooperatively in an all-or-none fashion and thus their native states are well protected from thermal fluctuations by an extensive network of interactions across the folded structure. Because protein structures are stabilized by local and nonlocal interactions among distal residues, dissecting individual substructures from the context of folded proteins results in large destabilization and loss of unique three-dimensional structure. Thus, mini-protein substructures can only rarely be derived from natural templates. Here, we describe a compact native 24-residues-long supersecondary structure derived from the hyperstable villin headpiece subdomain consisting of helices 2 and 3 (HP24). Using a combination of experimental techniques, including NMR and small-angle x-ray scattering, as well as all-atom replica exchange molecular-dynamics simulations, we show that a variant with stabilizing substitutions (HP24stab) forms a densely packed and compact conformation. In HP24stab, interactions between helices 2 and 3 are similar to those observed in native folded HP35, and the two helices cooperatively stabilize each other by completing the hydrophobic core lining the central part of HP35. Interestingly, even though the HP24wt fragment shows a more expanded and less structured conformation, NMR and simulations demonstrate a preference for a native-like topology. Thus, the two stabilizing residues in HP24stab shift the energy balance toward the native state, leading to a minimal folding motif.
Collapse
|
7
|
Williams RT, Barnhill LM, Kuo HH, Lin WD, Batova A, Yu AL, Diccianni MB. Chimeras of p14ARF and p16: functional hybrids with the ability to arrest growth. PLoS One 2014; 9:e88219. [PMID: 24505435 PMCID: PMC3914946 DOI: 10.1371/journal.pone.0088219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/03/2014] [Indexed: 01/23/2023] Open
Abstract
The INK4A locus codes for two independent tumor suppressors, p14ARF and p16/CDKN2A, and is frequently mutated in many cancers. Here we report a novel deletion/substitution from CC to T in the shared exon 2 of p14ARF/p16 in a melanoma cell line. This mutation aligns the reading frames of p14ARF and p16 mid-transcript, producing one protein which is half p14ARF and half p16, chimera ARF (chARF), and another which is half p16 and half non-p14ARF/non-p16 amino acids, p16-Alternate Carboxyl Terminal (p16-ACT). In an effort to understand the cellular impact of this novel mutation and others like it, we expressed the two protein products in a tumor cell line and analyzed common p14ARF and p16 pathways, including the p53/p21 and CDK4/cyclin D1 pathways, as well as the influence of the two proteins on growth and the cell cycle. We report that chARF mimicked wild-type p14ARF by inducing the p53/p21 pathway, inhibiting cell growth through G2/M arrest and maintaining a certain percentage of cells in G1 during nocodazole-induced G2 arrest. chARF also demonstrated p16 activity by binding CDK4. However, rather than preventing cyclin D1 from binding CDK4, chARF stabilized this interaction through p21 which bound CDK4. p16-ACT had no p16-related function as it was unable to inhibit cyclin D1/CDK4 complex formation and was unable to arrest the cell cycle, though it did inhibit colony formation. We conclude that these novel chimeric proteins, which are very similar to predicted p16/p14ARF chimeric proteins found in other primary cancers, result in maintained p14ARF-p53-p21 signaling while p16-dependent CDK4 inhibition is lost.
Collapse
Affiliation(s)
- Richard T. Williams
- Department of Pediatric Hematology/Oncology, University of California San Diego, San Diego, California, United States of America
| | - Lisa M. Barnhill
- Department of Pediatric Hematology/Oncology, University of California San Diego, San Diego, California, United States of America
| | - Huan-Hsien Kuo
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Der Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ayse Batova
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Alice L. Yu
- Department of Pediatric Hematology/Oncology, University of California San Diego, San Diego, California, United States of America
| | - Mitchell B. Diccianni
- Department of Pediatric Hematology/Oncology, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhang Y, Zheng Y, Li D, Fan Y. Transcriptomics and identification of the chemoreceptor superfamily of the pupal parasitoid of the oriental fruit fly, Spalangia endius Walker (Hymenoptera: Pteromalidae). PLoS One 2014; 9:e87800. [PMID: 24505315 PMCID: PMC3914838 DOI: 10.1371/journal.pone.0087800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/30/2013] [Indexed: 12/16/2022] Open
Abstract
Background The oriental fruit fly, Bactrocera dorsalis Hendel, causes serious losses to fruit production and is one of the most economically important pests in many countries, including China, Spalangia endius Walker is a pupal parasitoid of various dipteran hosts, and may be considered a potentially important ectoparasitic pupal parasitoid of B. dorsalis. However, lack of genetic information on this organism is an obstacle to understanding the mechanisms behind its interaction with this host. Analysis of the S. endius transcriptome is essential to extend the resources of genetic information on this species and, to support studies on S. endius on the host B. dorsalis. Methodology/Principal Findings We performed de novo assembly RNA-seq of S. endius. We obtained nearly 10 Gbp of data using a HiSeq platform, and 36319 high-quality transcripts using Trinity software. A total of 22443 (61.79%) unigenes were aligned to homologous sequences in the jewel wasp and honeybee (Apis florae) protein set from public databases. A total of 10037 protein domains were identified in 7892 S. endius transcripts using HMMER3 software. We identified expression of six gustatory receptor and 21 odorant receptor genes in the sample, with only one gene having a high expression level in each family. The other genes had a low expression level, including two genes regulated by splicing. This result may be due to the wasps being kept under laboratory conditions. Additionally, a total of 3727 SSR markers were predicted, which could facilitate the identification of polymorphisms and functional genes within wasp populations. Conclusion/Significance This transcriptome greatly improves our genetic understanding of S. endius and provides a large number of gene sequences for further study.
Collapse
Affiliation(s)
- Yuping Zhang
- Plant Protection Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, Guangdong, China
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuan Zheng
- Plant Protection Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, Guangdong, China
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dunsong Li
- Plant Protection Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, Guangdong, China
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
- * E-mail:
| | - Yilin Fan
- Plant Protection Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, Guangdong, China
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Qureshi MA, Jan N, Dar NA, Hussain M, Andrabi KI. A novel p16INK4Amutation associated with esophageal squamous cell carcinoma in a high risk population. Biomarkers 2012; 17:552-6. [DOI: 10.3109/1354750x.2012.699556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Itzhaki LS, Lowe AR. From artificial antibodies to nanosprings: the biophysical properties of repeat proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:153-66. [PMID: 22949117 DOI: 10.1007/978-1-4614-3229-6_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we review recent studies of repeat proteins, a class of proteins consisting of tandem arrays of small structural motifs that stack approximately linearly to produce elongated structures. We discuss the observation that, despite lacking the long-range tertiary interactions that are thought to be the hallmark of globular protein stability, repeat proteins can be as stable and as co-orperatively folded as their globular counterparts. The symmetry inherent in the structures of repeat arrays, however, means there can be many partly folded species (whether it be intermediates or transition states) that have similar stabilities. Consequently they do have distinct folding properties compared with globular proteins and these are manifest in their behaviour both at equilibrium and under kinetic conditions. Thus, when studying repeat proteins one appears to be probing a moving target: a relatively small perturbation, by mutation for example, can result in a shift to a different intermediate or transition state. The growing literature on these proteins illustrates how their modular architecture can be adapted to a remarkable array of biological and physical roles, both in vivo and in vitro. Further, their simple architecture makes them uniquely amenable to redesign-of their stability, folding and function-promising exciting possibilities for future research.
Collapse
Affiliation(s)
- Laura S Itzhaki
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
11
|
Iotti M, Rubini A, Tisserant E, Kholer A, Paolocci F, Zambonelli A. Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biol 2011; 116:261-75. [PMID: 22289772 DOI: 10.1016/j.funbio.2011.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/26/2022]
Abstract
Vegetative incompatibility is a widespread phenomenon in filamentous ascomycetes, which limits formation of viable heterokaryons. Whether this phenomenon plays a role in maintaining the homokaryotic state of the hyphae during the vegetative growth of Tuber spp. Gene expression, polymorphism analysis as well as targeted in vitro experiments allowed us to test whether a heterokaryon incompatibility (HI) system operates in Tuber melanosporum. HI is controlled by different genetic systems, often involving HET domain genes and their partners whose interaction can trigger a cell death reaction. Putative homologues to HI-related genes previously characterized in Neurospora crassa and Podospora anserina were identified in the T. melanosporum genome. However, only two HET domain genes were found. In many other ascomycetes HET domains have been found within different genes including some members of the NWD (NACHT and WD-repeat associated domains) gene family of P. anserina. More than 50 NWD homologues were found in T. melanosporum but none of these contain a HET domain. All these T. melanosporum paralogs showed a conserved gene organization similar to the microexon genes only recently characterized in Schistosoma mansoni. Expression data of the annotated HI-like genes along with low allelic polymorphism suggest that they have cellular functions unrelated to HI. Moreover, morphological analyses did not provide evidence for HI reactions between pairs of genetically different T. melanosporum strains. Thus, the maintenance of the genetic integrity during the vegetative growth of this species likely depends on mechanisms that act before hyphal fusion.
Collapse
Affiliation(s)
- Mirco Iotti
- Dipartimento di Protezione e Valorizzazione Agroalimentare, University of Bologna, Via Fanin 46, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Cabanillas R, Astudillo A, Valle M, de la Rosa J, Álvarez R, Durán NS, Cadiñanos J. Novel germline CDKN2A mutation associated with head and neck squamous cell carcinomas and melanomas. Head Neck 2011; 35:E80-4. [PMID: 22083977 DOI: 10.1002/hed.21911] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2011] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The ability to identify individuals at increased risk of cancer is of immediate clinical relevance. Germline mutations in the CDKN2A locus, encoding the key tumor suppressor proteins p16/INK4A and p14/ARF, are frequently present in kindreds with hereditary cutaneous melanoma but have seldom been reported in families with genetic susceptibility to head and neck squamous cell carcinomas (HNSCC). METHODS We report the pedigree of a patient with an unusually high incidence of HNSCC and melanomas. CDKN2A mutation analysis was performed with standard capillary sequencing and multiplex ligation-dependent probe amplification. RESULTS A previously unreported germline CDKN2A mutation affecting only the p16/INK4A open reading frame, c.106delG (p.Ala36ArgfsX17), was detected in the proband. This mutation causes a premature termination codon. CONCLUSIONS Our report emphasizes the need to consider germinal CDKN2A mutations in the differential diagnosis of familial HNSCC and the importance of awareness of these tumors in carriers of CDKN2A mutations.
Collapse
Affiliation(s)
- Rubén Cabanillas
- Instituto de Medicina Oncológica y Molecular de Asturias, Asturias, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
González D, Lokhande N, Vadde S, Zhao Q, Cassill A, Renthal R. Luminescence resonance energy transfer in the cytoplasm of live Escherichia coli cells. Biochemistry 2011; 50:6789-96. [PMID: 21739954 DOI: 10.1021/bi200779u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescence resonance energy transfer (LRET) offers many advantages for accurate measurements of distances between specific sites in living cells, but progress in developing a methodology for implementing this technique has been limited. We report here the design, expression, and characterization of a test protein for development of a LRET methodology. The protein, which we call DAL, contains the following domains (from the N-terminus): Escherichia coli dihydrofolate reductase (DHFR), the third and fourth ankyrin repeats of p16(INK4a), a lanthanide-binding tag (LBT), and a hexahistidine tag. LBT binds Tb(3+) with a submicromolar dissociation constant. LRET was measured from the Tb(3+) site on LBT to transition metals bound to the hexa-His tag and to fluorescein methotrexate bound to DHFR. The measured distances were consistent with a molecular model constructed from the known crystal structures of the constituent domains of DAL. The results indicate that the two C-terminal ankyrin domains of p16(INK4a) are stably folded when combined with other protein domains. We found that Tb(3+) binds to DAL in the cytoplasm of live E. coli cells, and thus, DAL is useful as an indicator for studies of metal transport. We also used DAL to measure LRET from Tb(3+) to Cu(2+) in the cytoplasm of live E. coli cells. The rates of Tb(3+) and Cu(2+) transport were not affected by a proton uncoupler or an ATP synthase inhibitor. Reversal of the membrane potential had a small inhibitory effect, and removal of lipopolysaccharide had a small accelerating effect on transport. Changing the external pH from 7 to 5 strongly inhibited the Tb(3+) signal, suggesting that the Tb(3+)-LBT interaction is useful as a cytoplasmic pH indicator in the range of approximately pH 5-6.
Collapse
Affiliation(s)
- Daniel González
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | | | | | | | | | | |
Collapse
|
14
|
Fahham N, Sardari S, Ostad SN, Vaziri B, Ghahremani MH. C-terminal domain of p16(INK4a) is adequate in inducing cell cycle arrest, growth inhibition and CDK4/6 interaction similar to the full length protein in HT-1080 fibrosarcoma cells. J Cell Biochem 2011; 111:1598-606. [PMID: 21053367 DOI: 10.1002/jcb.22892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor p16(INK4a) has earned widespread attention in cancer studies since its discovery as an inhibitor of cyclin-dependent kinases (CDKs) 4/6. Structurally, it consists of four complete ankyrin repeats, believed to be involved in CDK4 interaction. According to the previous disparities concerning the importance of domains and inactivating mutations in p16, we aimed to search for the domain possessing the functional properties of the full length protein. Upon our in silico screening analyses followed by experimental assessments, we have identified the novel minimum functional domain of p16 to be the C-terminal half including ankyrin repeats III, IV and the C-terminal flanking region accompanied by loops 2 and 3. Transfection of this truncated form into HT-1080 human fibrosarcoma cells, lacking endogenous p16, revealed that it is able to inhibit cell growth and proliferation equivalent to p16(INK4a). The functional analysis showed that this fragment like p16 can interact with CDK4/6, block the entry into S phase of the cell cycle and suppress growth as indicated by colony formation assay. Identification of p16 minimum functional domain can be of benefit to the future peptidomimetic drug design as well as gene transfer for cancer therapy.
Collapse
Affiliation(s)
- Najmeh Fahham
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | |
Collapse
|
15
|
Busby B, Oashi T, Willis CD, Ackermann MA, Kontrogianni-Konstantopoulos A, Mackerell AD, Bloch RJ. Electrostatic interactions mediate binding of obscurin to small ankyrin 1: biochemical and molecular modeling studies. J Mol Biol 2011; 408:321-34. [PMID: 21333652 DOI: 10.1016/j.jmb.2011.01.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/25/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Small ankyrin 1 (sAnk1; also known as Ank1.5) is an integral protein of the sarcoplasmic reticulum (SR) in skeletal and cardiac muscle cells, where it is thought to bind to the C-terminal region of obscurin, a large modular protein that surrounds the contractile apparatus. Using fusion proteins in vitro, in combination with site-directed mutagenesis and surface plasmon resonance measurements, we previously showed that the binding site on sAnk1 for obscurin consists, in part, of six lysine and arginine residues. Here we show that four charged residues in the high-affinity binding site on obscurin for sAnk1 (between residues 6316 and 6345), consisting of three glutamates and a lysine, are necessary, but not sufficient, for this site on obscurin to bind to sAnk1 with high affinity. We also identify specific complementary mutations in sAnk1 that can partially or completely compensate for the changes in binding caused by charge-switching mutations in obscurin. We used molecular modeling to develop structural models of residues 6322-6339 of obscurin bound to sAnk1. The models, based on a combination of Brownian and molecular dynamics simulations, predict that the binding site on sAnk1 for obscurin is organized as two ankyrin-like repeats, with the last α-helical segment oriented at an angle to nearby helices, allowing lysine 6338 of obscurin to form an ionic interaction with aspartate 111 of sAnk1. This prediction was validated by double-mutant cycle experiments. Our results are consistent with a model in which electrostatic interactions between specific pairs of side chains on obscurin and sAnk1 promote binding and complex formation.
Collapse
Affiliation(s)
- Ben Busby
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Richter M, Bosnali M, Carstensen L, Seitz T, Durchschlag H, Blanquart S, Merkl R, Sterner R. Computational and Experimental Evidence for the Evolution of a (βα)8-Barrel Protein from an Ancestral Quarter-Barrel Stabilised by Disulfide Bonds. J Mol Biol 2010; 398:763-73. [DOI: 10.1016/j.jmb.2010.03.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
|
17
|
Sklenovský P, Otyepka M. In SilicoStructural and Functional Analysis of Fragments of the Ankyrin Repeat Protein p18INK4c. J Biomol Struct Dyn 2010; 27:521-40. [DOI: 10.1080/07391102.2010.10507336] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Kiwerska K, Rydzanicz M, Kram A, Pastok M, Antkowiak A, Domagała W, Szyfter K. Mutational analysis of CDKN2A gene in a group of 390 larynx cancer patients. Mol Biol Rep 2009; 37:325-32. [DOI: 10.1007/s11033-009-9731-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/04/2009] [Indexed: 01/30/2023]
|
19
|
Hardy AP, Prokes I, Kelly L, Campbell ID, Schofield CJ. Asparaginyl beta-hydroxylation of proteins containing ankyrin repeat domains influences their stability and function. J Mol Biol 2009; 392:994-1006. [PMID: 19646994 DOI: 10.1016/j.jmb.2009.07.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 11/25/2022]
Abstract
Recent reports have provided evidence that the beta-hydroxylation of conserved asparaginyl residues in ankyrin repeat domain (ARD) proteins is a common posttranslational modification in animal cells. Here, nuclear magnetic resonance (NMR) and other biophysical techniques are used to study the effect of asparaginyl beta-hydroxylation on the structure and stability of 'consensus' ARD proteins. The NMR analyses support previous work suggesting that a single beta-hydroxylation of asparagine can stabilize the stereotypical ARD fold. A second asparaginyl beta-hydroxylation causes further stabilization. In combination with mutation studies, the biophysical analyses reveal that the stabilizing effect of beta-hydroxylation is, in part, mediated by a hydrogen bond between the asparaginyl beta-hydroxyl group and the side chain of a conserved aspartyl residue, two residues to the N-terminal side of the target asparagine. Removal of this hydrogen bond resulted in reduced stabilization by hydroxylation. Formation of the same hydrogen bond is also shown to be a factor in inhibiting binding of hydroxylated ARDs to factor-inhibiting hypoxia-inducible factor (FIH). The effects of hydroxylation appear to be predominantly localized to the target asparagine and proximal residues, at least in the consensus ARD protein. The results reveal that thermodynamic stability is a factor in determining whether a particular ARD protein is an FIH substrate; a consensus ARD protein with three ankyrin repeats is an FIH substrate, while more stable consensus ARD proteins, with four or five ankyrin repeats, are not. However, NMR studies reveal that the consensus protein with four ankyrin repeats is still able to bind to FIH, suggesting that FIH may interact in cells with natural ankyrin repeats without resulting hydroxylation. Overall, the work provides novel biophysical insights into the mechanism by which asparaginyl beta-hydroxylation stabilizes the ARD proteins and reduces their binding to FIH.
Collapse
Affiliation(s)
- Adam P Hardy
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, The Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | |
Collapse
|
20
|
Kannengiesser C, Brookes S, del Arroyo AG, Pham D, Bombled J, Barrois M, Mauffret O, Avril MFM, Chompret A, Lenoir GM, Sarasin A, Peters G, Bressac-de Paillerets B. Functional, structural, and genetic evaluation of 20 CDKN2A germ line mutations identified in melanoma-prone families or patients. Hum Mutat 2009; 30:564-74. [PMID: 19260062 DOI: 10.1002/humu.20845] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Germline mutations of the CDKN2A gene are found in melanoma-prone families and individuals with multiple sporadic melanomas. The encoded protein, p16(INK4A), comprises four ankyrin-type repeats, and the mutations, most of which are missense and occur throughout the entire coding region, can disrupt the conformation of these structural motifs as well as the association of p16(INK4a) with its physiological targets, the cyclin-dependent kinases (CDKs) CDK4 and CDK6. Assessing pathogenicity of nonsynonymous mutations is critical to evaluate melanoma risk in carriers. In the current study, we investigate 20 CDKN2A germline mutations whose effects on p16(INK4A) structure and function have not been previously documented (Thr18_Ala19dup, Gly23Asp, Arg24Gln, Gly35Ala, Gly35Val, Ala57Val, Ala60Val, Ala60Arg, Leu65dup, Gly67Arg, Gly67_Asn71del, Glu69Gly, Asp74Tyr, Thr77Pro, Arg80Pro, Pro81Thr, Arg87Trp, Leu97Arg, Arg99Pro, and [Leu113Leu;Pro114Ser]). By considering genetic information, the predicted impact of each variant on the protein structure, its ability to interact with CDK4 and impede cell proliferation in experimental settings, we conclude that 18 of the 20 CDKN2A variants can be classed as loss of function mutations, whereas the results for two remain ambiguous. Discriminating between mutant and neutral variants of p16(INK4A) not only adds to our understanding of the functionally critical residues in the protein but provides information that can be used for melanoma risk prediction.
Collapse
|
21
|
Guo Y, Mahajan A, Yuan C, Joo SH, Weghorst CM, Tsai MD, Li J. Comparisons of the conformational stability of cyclin-dependent kinase (CDK) 4-interacting ankyrin repeat (AR) proteins. Biochemistry 2009; 48:4050-62. [PMID: 19320462 DOI: 10.1021/bi802247p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ankyrin repeat (AR) proteins are one of the most abundant repeat protein classes in nature, and they are involved in numerous physiological processes through mediating protein/protein interactions. The repetitive and modular architecture of these AR proteins may lead to biochemical and biophysical properties distinct from those of globular proteins. It has been demonstrated that like most globular proteins, AR proteins exhibit a two-state, cooperative transition in chemical- and heat-induced unfolding. However, the biophysical characteristics underlying such cooperative unfolding remain to be further investigated. In the present study, we evaluated the conformational stability of a group of cyclin-dependent kinase (CDK) 4-interacting AR proteins, P16, P18, IkappaBalpha, gankyrin, and their truncated mutants under different conditions, including the presence of denaturants, temperature, and pH. Our results showed that the first four N-terminal ARs are required to form a potent and stable CDK4 modulator. Moreover, in spite of their similarities in skeleton structure, CDK4 binding, and cooperative unfolding, P16, P18, IkappaBalpha, and gankyrin exhibited considerably different biophysical properties with regard to the conformational stability, and these differences mainly resulted from the discrepancies in the primary sequence of the relatively conserved AR motifs. Our results also demonstrated that these sequence discrepancies are able to influence the function of AR proteins to a certain extent. Overall, our results provide important insights into understanding the biophysical properties of AR proteins.
Collapse
Affiliation(s)
- Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Fahham N, Ghahremani MH, Sardari S, Vaziri B, Ostad SN. Simulation of different truncated p16(INK4a) forms and in silico study of interaction with Cdk4. Cancer Inform 2008; 7:1-11. [PMID: 19352455 PMCID: PMC2664699 DOI: 10.4137/cin.s878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Protein-protein interactions studies can greatly increase the amount of structural and functional information pertaining to biologically active molecules and processes. The information obtained from such studies can lead to design and application of new modification in order to obtain a desired bioactivity. Many application packages and servers performing docking, such as HEX, DOT, AUTODOCK, and ZDOCK are now available for predicting the lowest free energy state of a protein complex. In this study, we have focused on cyclin-dependent kinase 4 (Cdk4), a key molecule in the regulation of cell cycle progression at the G1-S phase restriction point and p16INK4a, a tumor suppressor which inhibits Cdk4 activity. Truncated structures were created to find the more critical regions of p16 for interaction. The tertiary structures were determined by ProSAL, GENO3D Web Server. We evaluated their interactions with Cdk4 using two docking systems, HEX 4.5 and DOT 1. Calculations were performed on a high-speed computer. Minimizations and visualizations were carried out by PdbViewer 3.7. Considering shape and shape/electrostatic total energy, structures containing ANK II, III and IV motifs that lack the N-terminal region of the full length p16 molecule showed the best fit complexes among the p16 truncated forms. The free energies were compatible with that of p16 full length original form, the full length. It seems that the N-terminal of the molecule is not crucial for the interaction since the truncated structure containing only this region did not show a good total energy.
Collapse
Affiliation(s)
- Najmeh Fahham
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute, Tehran, Iran
| | | | | | | | | |
Collapse
|
23
|
Abstract
The complexity of the mechanisms by which proteins fold has been shown by many studies to be governed by their native-state topologies. This was manifested in the ability of the native topology-based model to capture folding mechanisms and the success of folding rate predictions based on various topological measures, such as the contact order. However, while the finer details of topological complexity have been thoroughly examined and related to folding kinetics, simpler characteristics of the protein, such as its overall shape, have been largely disregarded. In this study, we investigated the folding of proteins with an unusual elongated geometry that differs substantially from the common globular structure. To study the effect of the elongation degree on the folding kinetics, we used repeat proteins, which become more elongated as they include more repeating units. Some of these have apparently anomalous experimental folding kinetics, with rates that are often less than expected on the basis of rates for globular proteins possessing similar topological complexity. Using experimental folding rates and a larger set of rates obtained from simulations, we have shown that as the protein becomes increasingly elongated, its folding kinetics becomes slower and deviates more from the rate expected on the basis of topology measures fitted for globular proteins. The observed slow kinetics is a result of a more complex pathway in which stable intermediates composed of several consecutive repeats can appear. We thus propose a novel measure, an elongation-sensitive contact order, that takes into account both the extent of elongation and the topological complexity of the protein. This new measure resolves the apparent discrimination between the folding of globular and elongated repeat proteins. Our study extends the current capabilities of folding-rate predictions by unifying the kinetics of repeat and globular proteins.
Collapse
Affiliation(s)
- Tzachi Hagai
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
24
|
The leucine-rich repeat domain of Internalin B folds along a polarized N-terminal pathway. Structure 2008; 16:705-14. [PMID: 18462675 DOI: 10.1016/j.str.2008.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/08/2008] [Accepted: 02/09/2008] [Indexed: 11/24/2022]
Abstract
The leucine-rich repeat domain of Internalin B is composed of seven tandem leucine-rich repeats, which each contain a short beta strand connected to a 3(10) helix by a short turn, and an N-terminal alpha-helical capping motif. To determine whether folding proceeds along a single, discrete pathway or multiple, parallel pathways, and to map the structure of the transition state ensemble, we examined the effects of destabilizing substitutions of conserved residues in each repeat. We find that, despite the structural redundancy among the repeats, folding proceeds through an N-terminal transition state ensemble in which the extent of structure formation is biased toward repeats one and two and includes both local and interrepeat interactions. Our results suggest that the N-terminal capping motif serves to polarize the folding pathway by acting as a fast-growing nucleus onto which consecutive repeats fold in the transition state ensemble, and highlight the importance of sequence-specific interactions in pathway selection.
Collapse
|
25
|
Barrick D, Ferreiro DU, Komives EA. Folding landscapes of ankyrin repeat proteins: experiments meet theory. Curr Opin Struct Biol 2008; 18:27-34. [PMID: 18243686 DOI: 10.1016/j.sbi.2007.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
Nearly 6% of eukaryotic protein sequences contain ankyrin repeat (AR) domains, which consist of several repeats and often function in binding. AR proteins show highly cooperative folding despite a lack of long-range contacts. Both theory and experiment converge to explain that formation of the interface between elements is more favorable than formation of any individual repeat unit. IkappaBalpha and Notch both undergo partial folding upon binding perhaps influencing the binding free energy. The simple architecture, combined with identification of consensus residues that are important for stability, has enabled systematic perturbation of the energy landscape by single point mutations that affect stability or by addition of consensus repeats. The folding energy landscapes appear highly plastic, with small perturbations re-routing folding pathways.
Collapse
Affiliation(s)
- Doug Barrick
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400N, Charles St. Baltimore, MD 21218, USA
| | | | | |
Collapse
|
26
|
Shi M, Chen YF, Huang F, Liu PC, Zhou XP, Chen XX. Characterization of a novel gene encoding ankyrin repeat domain from Cotesia vestalis polydnavirus (CvBV). Virology 2008; 375:374-82. [DOI: 10.1016/j.virol.2008.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/04/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
27
|
Sklenovský P, Banás P, Otyepka M. Two C-terminal ankyrin repeats form the minimal stable unit of the ankyrin repeat protein p18INK4c. J Mol Model 2008; 14:747-59. [PMID: 18481120 DOI: 10.1007/s00894-008-0300-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/11/2008] [Indexed: 12/24/2022]
Abstract
Ankyrin repeat proteins (ARPs) appear to be abundant in organisms from all phyla, and play critical regulatory roles, mediating specific interactions with target biomolecules and thus ordering the sequence of events in diverse cellular processes. ARPs possess a non-globular scaffold consisting of repeating motifs named ankyrin (ANK) repeats, which stack on each other. The modular architecture of ARPs provides a new paradigm for understanding protein stability and folding mechanisms. In the present study, the stability of various C-terminal fragments of the ARP p18(INK4c) was investigated by all-atomic 450 ns molecular dynamics (MD) simulations in explicit water solvent. Only motifs with at least two ANK repeats made stable systems in the available timescale. All smaller fragments were unstable, readily losing their native fold and alpha-helical content. Since each non-terminal ANK repeat has two hydrophobic sides, we may hypothesize that at least one hydrophobic side must be fully covered and shielded from the water as a necessary, but not sufficient, condition to maintain ANK repeat stability. Consequently, at least two ANK repeats are required to make a stable ARP.
Collapse
Affiliation(s)
- Petr Sklenovský
- Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Faculty of Science, Palacký University, tr. Svobody 26, 771 46, Olomouc, Czech Republic
| | | | | |
Collapse
|
28
|
Phospholipases A(2) in the genome of the sea anemone Nematostella vectensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:226-33. [PMID: 20483221 DOI: 10.1016/j.cbd.2008.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/27/2008] [Accepted: 04/28/2008] [Indexed: 11/22/2022]
Abstract
The genome of the sea anemone Nematostella vectensis (Nv) (Cnidaria, Anthozoa) was sequenced recently (Putnam et al., Science 317: 86, 2007). In the current study, 22 proteins of Nv were identified as putative phospholipases A(2) (PLA(2)) that showed up to 40-50% sequence identity with secreted or intracellular PLA(2)s including those of humans. Nv1-Nv6 PLA(2)s have identity with secreted human group (G)IB and GIIA PLA(2)s and PLA(2)s of the sea anemones Adamsia carciniopados and Urticina crassicornis. Nv7 and Nv8 PLA(2)s have identity with human and bee venom GIII PLA(2)s and Nv9 PLA(2) with GXIIA PLA(2). Nv10-Nv13 PLA(2)s show identity with GIX PLA(2) of Conus magus and bacterial PLA(2)s but no significant identity with any human PLA(2). Nv14 has identity with intracellular GIV PLA(2), Nv15 with GVII PLA(2), Nv16 and Nv17 with GVIII PLA(2), Nv18-Nv20 with GVI PLA(2), and Nv21 and Nv22 with patatin, respectively. The observations indicate that the cnidarian phospholipasome contains a rich array of orthologs of most types of animal PLA(2)s, and that many of the PLA(2)-driven vital functions prevail in these ancient metazoans. Cnidarian PLA(2)s may be considered as evolutionary precursors of PLA(2)s of higher animals.
Collapse
|
29
|
Mallam AL, Jackson SE. Use of protein engineering techniques to elucidate protein folding pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:57-113. [PMID: 19121700 DOI: 10.1016/s0079-6603(08)00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, Cambridge, CB2 1EW, United Kingdom
| | | |
Collapse
|
30
|
Interlandi G, Wetzel SK, Settanni G, Plückthun A, Caflisch A. Characterization and Further Stabilization of Designed Ankyrin Repeat Proteins by Combining Molecular Dynamics Simulations and Experiments. J Mol Biol 2008; 375:837-54. [DOI: 10.1016/j.jmb.2007.09.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 08/11/2007] [Accepted: 09/06/2007] [Indexed: 11/28/2022]
|
31
|
Kloss E, Courtemanche N, Barrick D. Repeat-protein folding: new insights into origins of cooperativity, stability, and topology. Arch Biochem Biophys 2007; 469:83-99. [PMID: 17963718 DOI: 10.1016/j.abb.2007.08.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Although our understanding of globular protein folding continues to advance, the irregular tertiary structures and high cooperativity of globular proteins complicates energetic dissection. Recently, proteins with regular, repetitive tertiary structures have been identified that sidestep limitations imposed by globular protein architecture. Here we review recent studies of repeat-protein folding. These studies uniquely advance our understanding of both the energetics and kinetics of protein folding. Equilibrium studies provide detailed maps of local stabilities, access to energy landscapes, insights into cooperativity, determination of nearest-neighbor interaction parameters using statistical thermodynamics, relationships between consensus sequences and repeat-protein stability. Kinetic studies provide insight into the influence of short-range topology on folding rates, the degree to which folding proceeds by parallel (versus localized) pathways, and the factors that select among multiple potential pathways. The recent application of force spectroscopy to repeat-protein unfolding is providing a unique route to test and extend many of these findings.
Collapse
Affiliation(s)
- Ellen Kloss
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
32
|
Mahajan A, Guo Y, Yuan C, Weghorst CM, Tsai MD, Li J. Dissection of protein-protein interaction and CDK4 inhibition in the oncogenic versus tumor suppressing functions of gankyrin and P16. J Mol Biol 2007; 373:990-1005. [PMID: 17881001 PMCID: PMC2693045 DOI: 10.1016/j.jmb.2007.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/22/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
Protein-protein interactions usually involve a large number of residues; thus it is difficult to elucidate functional and structural roles of specific residues located in the interface. This problem is particularly challenging for ankyrin repeat proteins (ARs), which consist of linear arrays of small repeating units and play critical roles in almost every life process via protein-protein interactions, because the residues involved are discontinuously dispersed in both the ARs and their partners. Our previous studies showed that while both specific CDK4 inhibitor p16INK4A (P16) and gankyrin bind to cyclin-dependent kinase 4 (CDK4) in similar fashion, only P16 inhibits the kinase activity of CDK4. While this could explain why P16 is a tumor suppressor and gankyrin is oncogenic, the structural basis of these contrasting properties was unknown. Here we show that a double mutant of gankyrin, L62H/I79D, inhibits the kinase activity of CDK4, similar to P16, and such CDK4-inhibtory activity is associated with the I79D but not L62H mutation. In addition, mutations at I79 and L62 bring about a moderate decrease in the stability of gankyrin. Further structural and biophysical analyses suggest that the substitution of Ile79 with Asp leads to local conformational changes in loops I-III of gankyrin. Taken together, our results allow the dissection of the "protein-protein binding" and "CDK4 inhibition" functions of P16, show that the difference between tumor suppressing and oncogenic functions of P16 and gankyrin, respectively, mainly resides in a single residue, and provide structural insight to the contrasting biological functions of the two AR proteins.
Collapse
Affiliation(s)
- Anjali Mahajan
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christopher M. Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ming-Daw Tsai
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, USA
- Genomics Research Center and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Junan Li
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, USA
- Correspondence should be addressed to: Dr. Junan Li, Department of Chemistry, 100 West 18 Avenue, The Ohio State University, Columbus, OH 43210. Phone: 1-614-292-6974. Fax: 1-614-292-1532. Email address:
| |
Collapse
|
33
|
Werbeck ND, Itzhaki LS. Probing a moving target with a plastic unfolding intermediate of an ankyrin-repeat protein. Proc Natl Acad Sci U S A 2007; 104:7863-8. [PMID: 17483458 PMCID: PMC1876538 DOI: 10.1073/pnas.0610315104] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeat proteins are composed of tandem arrays of 30- to 40-residue structural motifs and are characterized by short-range interactions between residues close in sequence. Here we have investigated the equilibrium unfolding of D34, a 426-residue fragment of ankyrinR that comprises 12 ankyrin repeats. We show that D34 unfolds via an intermediate in which the C-terminal half of the protein is structured and the N-terminal half is unstructured. Surprisingly, however, we find that we change the unfolding process when we attempt to probe it. Single-site, moderately destabilizing mutations at the C terminus result in different intermediates dominating. The closer to the C terminus the mutation, the fewer repeats are structured in the intermediate; thus, structure in the intermediate frays from the site of the mutation. This behavior contrasts with the robust unfolding of globular proteins in which mutations can destabilize an intermediate but do not cause a different intermediate to be populated. We suggest that, for large repeat arrays, the energy landscape is very rough, with many different low-energy species containing varying numbers of folded modules so the species that dominates can be altered easily by single, conservative mutations. The multiplicity of partly folded states populated in the equilibrium unfolding of D34 is also mirrored by the kinetic folding mechanism of ankyrin-repeat proteins in which we have observed that parallel pathways are accessible from different initiation sites in the structure.
Collapse
Affiliation(s)
- Nicolas D. Werbeck
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Laura S. Itzhaki
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Ferreiro DU, Cervantes CF, Truhlar SME, Cho SS, Wolynes PG, Komives EA. Stabilizing IkappaBalpha by "consensus" design. J Mol Biol 2006; 365:1201-16. [PMID: 17174335 PMCID: PMC1866275 DOI: 10.1016/j.jmb.2006.11.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/27/2006] [Accepted: 11/10/2006] [Indexed: 01/21/2023]
Abstract
IkappaBalpha is the major regulator of transcription factor NF-kappaB function. The ankyrin repeat region of IkappaBalpha mediates specific interactions with NF-kappaB dimers, but ankyrin repeats 1, 5 and 6 display a highly dynamic character when not in complex with NF-kappaB. Using chemical denaturation, we show here that IkappaBalpha displays two folding transitions: a non-cooperative conversion under weak perturbation, and a major cooperative folding phase upon stronger insult. Taking advantage of a native Trp residue in ankyrin repeat (AR) 6 and engineered Trp residues in AR2, AR4 and AR5, we show that the cooperative transition involves AR2 and AR3, while the non-cooperative transition involves AR5 and AR6. The major structural transition can be affected by single amino acid substitutions converging to the "consensus" ankyrin repeat sequence, increasing the native state stability significantly. We further characterized the structural and dynamic properties of the native state ensemble of IkappaBalpha and the stabilized mutants by H/(2)H exchange mass spectrometry and NMR. The solution experiments were complemented with molecular dynamics simulations to elucidate the microscopic origins of the stabilizing effect of the consensus substitutions, which can be traced to the fast conformational dynamics of the folded ensemble.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
| | | | | | | | | | | |
Collapse
|
35
|
Bradley CM, Barrick D. The notch ankyrin domain folds via a discrete, centralized pathway. Structure 2006; 14:1303-12. [PMID: 16905104 DOI: 10.1016/j.str.2006.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 11/26/2022]
Abstract
The Notch ankyrin repeat domain contains seven ankyrin sequence repeats, six of which adopt very similar structures. To determine if folding proceeds along parallel pathways and the order in which repeats become structured during folding, we examined the effect of analogous destabilizing Ala-->Gly substitutions in each repeat on folding kinetics. We find that folding proceeds to an on-pathway kinetic intermediate through a transition state ensemble containing structure in repeats three through five. Repeats two, six, and seven remain largely unstructured in this intermediate, becoming structured in a second kinetic step that leads to the native state. These data suggest that the Notch ankyrin domain folds according to a discrete kinetic pathway despite structural redundancy in the native state and highlight the importance of sequence-specific interactions in controlling pathway selection. This centralized pathway roughly corresponds to a low energy channel through the experimentally determined energy landscape.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
36
|
Interlandi G, Settanni G, Caflisch A. Unfolding transition state and intermediates of the tumor suppressor p16
INK4a
investigated by molecular dynamics simulations. Proteins 2006; 64:178-92. [PMID: 16596641 DOI: 10.1002/prot.20953] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ankyrin repeat is one of the most common protein motifs and is involved in protein-protein interactions. It consists of 33 residues that assume a beta-hairpin helix-loop-helix fold. Mutagenesis and kinetic experiments (Phi-value analysis of the folding transition state) have shown that the tumor suppressor p16(INK4a), a four-repeat protein, unfolds sequentially starting from the two N-terminal repeats. Here, the flexibility of p16(INK4a) at room temperature and its unfolding mechanism at high temperature have been investigated by multiple molecular dynamics runs in explicit water for a total simulation time of 0.65 micros. The transition state ensemble (TSE) of p16(INK4a) was identified by monitoring both the deviation from the experimental Phi values and sudden conformational changes along the unfolding trajectories. Conformations in the TSE have a mainly unstructured second repeat whereas the other repeats are almost completely folded. A rigid-body displacement of the first repeat involving both a rotation and translation is observed in all molecular dynamics simulations at high temperature. The Trp(15), Pro(75), and Ala(76) side-chains are more buried in the TSE than the native state. The sequential unfolding starting at the second repeat is in agreement with the mutagenesis studies whereas the displacement of the first repeat and the presence of nonnative interactions at the TSE are simulation results which supplement the experimental data. Furthermore, the unfolding trajectories reveal the presence of two on-pathway intermediates with partial alpha-helical structure. Finally, on the basis of the available experimental and simulation results we suggest that in modular proteins the shift of the folding TSE toward the native structure upon reduction of the number of tandem repeats is consistent with the Hammond effect.
Collapse
|
37
|
Otyepka M, Sklenovský P, Horinek D, Kubar T, Hobza P. How the Stabilization of INK4 Tumor Suppressor 3D Structure Evaluated by Quantum Chemical and Molecular Mechanics Calculations Corresponds Well with Experimental Results: Interplay of Association Enthalpy, Entropy, and Solvation Effects. J Phys Chem B 2006; 110:4423-9. [PMID: 16509744 DOI: 10.1021/jp056890s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The folding free energy of the INK4c tumor suppressor core, consisting of 10 helices, was determined as the sum of gas-phase interaction enthalpy, gas-phase interaction entropy, and dehydration and hydration free energy. The interaction energy and the hydration free energy were determined using the nonempirical density functional theory (DFT) method, augmented by a dispersion-energy correction term, the semiempirical density-functional tight-binding method covering the dispersion energy, and the density functional theory/conductor-like screening model (DFT/COSMO) procedure, whereas the interaction entropy was calculated with the empirical Cornell et al. force field. Alternatively, all contributions were evaluated consistently using empirical methods. All the values of the interaction energy of helix pairs are stabilizing, and the dominant stabilizing terms stem from the London dispersion energy and, in the case of charged systems, the electrostatic energy. The stabilization energy of the core, determined as the difference of the energy of the core and 10 separate helices, amounts to approximately 450 kcal/mol. Systematically, the difference in the hydration free energy of a helix pair and its separate components is smaller in magnitude than the interaction energy, and it is negative for some pairs while positive for others. The average total free energy of a core formation amounts to -29.6 kcal/mol (yielded by scaled quantum-chemical methods) and +13.9 kcal/mol (resulting from empirical methods). These values are considerably smaller than their single components, which are dominated by the interaction energy. The computationally predicted interval encloses the experimental value of the folding free energy (-2.8 kcal/mol).
Collapse
Affiliation(s)
- Michal Otyepka
- Department of Physical Chemistry, Palacký University, and Center for Biomolecules and Complex Molecular Systems, Tr. Svobody 26, 771 46 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
38
|
Mello CC, Bradley CM, Tripp KW, Barrick D. Experimental characterization of the folding kinetics of the notch ankyrin domain. J Mol Biol 2005; 352:266-81. [PMID: 16095609 DOI: 10.1016/j.jmb.2005.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 06/01/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Proteins constructed from linear arrays of tandem repeats provide a simplified architecture for understanding protein folding. Here, we examine the folding kinetics of the ankyrin repeat domain from the Drosophila Notch receptor, which consists of six folded ankyrin modules and a seventh partly disordered N-terminal ankyrin repeat sequence. Both the refolding and unfolding kinetics are best described as a sum of two exponential phases. The slow, minor refolding phase is limited by prolyl isomerization in the denatured state (D). The minor unfolding phase, which appears as a lag during fluorescence-detected unfolding, is consistent with an on-pathway intermediate (I). This intermediate, although not directly detected during refolding, is shown to be populated by interrupted refolding experiments. When plotted against urea, the rate constants for the major unfolding and refolding phases define a single non-linear v-shaped chevron, as does the minor unfolding phase. These two chevrons, along with unfolding amplitudes, are well-fitted by a sequential three-state model, which yields rate constants for the individual steps in folding and unfolding. Based on these fitted parameters, the D to I step is rate-limiting, and closely matches the major observed refolding phase at low denaturant concentrations. I appears to be midway between N and D in folding free energy and denaturant sensitivity, but has Trp fluorescence properties close to N. Although the Notch ankyrin domain has a simple architecture, folding is slow, with the limiting refolding rate constant as much as seven orders of magnitude smaller than expected from topological predictions.
Collapse
Affiliation(s)
- Cecilia C Mello
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
39
|
Ferreiro DU, Cho SS, Komives EA, Wolynes PG. The energy landscape of modular repeat proteins: topology determines folding mechanism in the ankyrin family. J Mol Biol 2005; 354:679-92. [PMID: 16257414 DOI: 10.1016/j.jmb.2005.09.078] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 09/13/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Proteins consisting of repeating amino acid motifs are abundant in all kingdoms of life, especially in higher eukaryotes. Repeat-containing proteins self-organize into elongated non-globular structures. Do the same general underlying principles that dictate the folding of globular domains apply also to these extended topologies? Using a simplified structure-based model capturing a perfectly funneled energy landscape, we surveyed the predicted mechanism of folding for ankyrin repeat containing proteins. The ankyrin family is one of the most extensively studied classes of non-globular folds. The model based only on native contacts reproduces most of the experimental observations on the folding of these proteins, including a folding mechanism that is reminiscent of a nucleation propagation growth. The confluence of simulation and experimental results suggests that the folding of non-globular proteins is accurately described by a funneled energy landscape, in which topology plays a determinant role in the folding mechanism.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Center for Theoretical Biological Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
40
|
Iturbe-Ormaetxe I, Burke GR, Riegler M, O'Neill SL. Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacteriol 2005; 187:5136-45. [PMID: 16030207 PMCID: PMC1196006 DOI: 10.1128/jb.187.15.5136-5145.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.
Collapse
Affiliation(s)
- Iñaki Iturbe-Ormaetxe
- School of Integrative Biology, The University of Queensland, St. Lucia, QLD 4072, Brisbane, Australia
| | | | | | | |
Collapse
|
41
|
Coinçon M, Heitz A, Chiche L, Derreumaux P. The βαβαβ elementary supersecondary structure of the Rossmann fold from porcine lactate dehydrogenase exhibits characteristics of a molten globule. Proteins 2005; 60:740-5. [PMID: 16001419 DOI: 10.1002/prot.20507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein classifications show that the Rossmann fold, which consists of two betaalphabetaalphabeta motifs (BABAB) related by a rough twofold axis, is the most populated alphabeta fold, and that the betaalphabeta submotif (BAB) is a widespread elementary structural arrangement. Herein, we report MD simulations, circular dichroism and NMR analyses on BAB and BABAB from porcine lactate dehydrogenase to evaluate their intrinsic stability. Our results demonstrate that BAB is not stable in solution and is not a folding nucleus. We also find that BABAB, despite its appearance of a functional and structural unit, is not an independent and thermodynamically stable folding unit. Rather, we show that BABAB retains most native secondary structure but very little tertiary structure, thus displaying characteristics of a molten globule.
Collapse
Affiliation(s)
- Mathieu Coinçon
- Information Génomique et Structurale, CNRS UPR 2589, Marseille Cedex, France
| | | | | | | |
Collapse
|
42
|
Devi VS, Binz HK, Stumpp MT, Plückthun A, Bosshard HR, Jelesarov I. Folding of a designed simple ankyrin repeat protein. Protein Sci 2005; 13:2864-70. [PMID: 15498935 PMCID: PMC2286595 DOI: 10.1110/ps.04935704] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ankyrin repeats (AR) are 33-residue motifs containing a beta-turn, followed by two alpha-helices connected by a loop. AR occur in tandem arrangements and stack side-by-side to form elongated domains involved in very different cellular tasks. Recently, consensus libraries of AR repeats were constructed. Protein E1_5 represents a member of the shortest library, and consists of only a single consensus repeat flanked by designed N- and C-terminal capping repeats. Here we present a biophysical characterization of this AR domain. The protein is compactly folded, as judged from the heat capacity of the native state and from the specific unfolding enthalpy and entropy. From spectroscopic data, thermal and urea-induced unfolding can be modeled by a two-state transition. However, scanning calorimetry experiments reveal a deviation from the two-state behavior at elevated temperatures. Folding and unfolding at 5 degrees C both follow monoexponential kinetics with k(folding) = 28 sec(-1) and k(unfolding) = 0.9 sec(-1). Kinetic and equilibrium unfolding parameters at 5 degrees C agree very well. We conclude that E1_5 folds in a simple two-state manner at low temperatures while equilibrium intermediates become populated at higher temperatures. A chevron-plot analysis indicates that the protein traverses a very compact transition state along the folding/unfolding pathway. This work demonstrates that a designed minimal ankyrin repeat protein has the thermodynamic and kinetic properties of a compactly folded protein, and explains the favorable properties of the consensus framework.
Collapse
Affiliation(s)
- V Sathya Devi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Main ERG, Stott K, Jackson SE, Regan L. Local and long-range stability in tandemly arrayed tetratricopeptide repeats. Proc Natl Acad Sci U S A 2005; 102:5721-6. [PMID: 15824314 PMCID: PMC556279 DOI: 10.1073/pnas.0404530102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Indexed: 11/18/2022] Open
Abstract
The tetratricopeptide repeat (TPR) is a 34-aa alpha-helical motif that occurs in tandem arrays in a variety of different proteins. In natural proteins, the number of TPR motifs ranges from 3 to 16 or more. These arrays function as molecular scaffolds and frequently mediate protein-protein interactions. We have shown that correctly folded TPR domain proteins, exhibiting the typical helix-turn-helix fold, can be designed by arraying tandem repeats of an idealized TPR consensus motif. To date, three designed proteins, CTPR1, CTPR2, and CTPR3 (consensus TPR number of repeats) have been characterized. Their high-resolution crystal structures show that the designed proteins indeed adopt the typical TPR fold, which is specified by the correct positioning of key residues. Here, we present a study of the thermodynamic properties and folding kinetics of this set of designed proteins. Chemical denaturation, monitored by CD and fluorescence, was used to assess the folding and global stability of each protein. NMR-detected amide proton exchange was used to investigate the stability of each construct at a residue-specific level. The results of these studies reveal a stable core, which defines the intrinsic stability of an individual TPR motif. The results also show the relationship between the number of tandem repeats and the overall stability and folding of the protein.
Collapse
Affiliation(s)
- Ewan R G Main
- Department of Molecular Biophysics, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
44
|
Croy CH, Bergqvist S, Huxford T, Ghosh G, Komives EA. Biophysical characterization of the free IkappaBalpha ankyrin repeat domain in solution. Protein Sci 2005; 13:1767-77. [PMID: 15215520 PMCID: PMC2279933 DOI: 10.1110/ps.04731004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The crystal structure of IkappaBalpha in complex with the transcription factor, nuclear factor kappa-B (NF-kappaB) shows six ankyrin repeats, which are all ordered. Electron density was not observed for most of the residues within the PEST sequence, although it is required for high-affinity binding. To characterize the folded state of IkappaBalpha (67-317) when it is not in complex with NF-kappaB, we have carried out circular dichroism (CD) spectroscopy, 8-anilino-1-napthalenesulphonic acid (ANS) binding, differential scanning calorimetry, and amide hydrogen/deuterium exchange experiments. The CD spectrum shows the presence of helical structure, consistent with other ankyrin repeat proteins. The large amount of ANS-binding and amide exchange suggest that the protein may have molten globule character. The amide exchange experiments show that the third ankyrin repeat is the most compact, the second and fourth repeats are somewhat less compact, and the first and sixth repeats are solvent exposed. The PEST extension is also highly solvent accessible. Ikappa Balpha unfolds with a T(m) of 42 degrees C, and forms a soluble aggregate that sequesters helical and variable loop parts of the first, fourth, and sixth repeats and the PEST extension. The second and third repeats, which conform most closely to a consensus for stable ankyrin repeats, appear to remain outside of the aggregate. The ramifications of these observations for the biological function of IkappaBalpha are discussed.
Collapse
Affiliation(s)
- Carrie Hughes Croy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA
| | | | | | | | | |
Collapse
|
45
|
Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 2005; 13:1435-48. [PMID: 15152081 PMCID: PMC2279977 DOI: 10.1110/ps.03554604] [Citation(s) in RCA: 638] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein-protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein-protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition.
Collapse
Affiliation(s)
- Leila K Mosavi
- MC3305, Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
46
|
Tripp KW, Barrick D. The tolerance of a modular protein to duplication and deletion of internal repeats. J Mol Biol 2004; 344:169-78. [PMID: 15504409 DOI: 10.1016/j.jmb.2004.09.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 09/16/2004] [Accepted: 09/17/2004] [Indexed: 11/22/2022]
Abstract
Ankyrin repeat polypeptides contain repeated structural elements that pack to produce modular architectures lacking in close contacts between distant segments of the polypeptide chain. Despite this lack of sequence-distant contacts, ankyrin repeat polypeptides have been shown to fold in a cooperative manner. To determine the distance over which cooperative interactions can be propagated in a repeat protein, and to investigate the tolerance to internal duplication and deletion of modules, we have constructed a series of ankyrin repeat variants of the Notch ankyrin domain in which repeat number is varied by duplication and deletion of internal repeats. A construct with two copies of the fifth ankyrin repeat shows a modest increase in stability compared to the parent construct and retains apparent two-state unfolding behavior. Although constructs containing three and four copies of the fifth repeat retain this increased resistance to urea, they exhibit broad, multi-state unfolding transitions compared to the parent construct. For the Notch ankyrin domain, these larger constructs may represent a limit beyond which full cooperativity cannot be maintained. Deletions of internal repeats from the Notch ankyrin domain significantly destabilize the domain. This severe destabilization, which is larger than that resulting from end-repeat deletion, may arise from unfavorable interactions within the new non-native interfaces produced by internal repeat deletion. These results demonstrate both an asymmetry between the duplication and deletion of internal repeats, and a difference between deletion of internal and end-repeats, suggesting preferred mechanisms for evolution of repeat proteins.
Collapse
Affiliation(s)
- Katherine W Tripp
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21211, USA
| | | |
Collapse
|
47
|
Beddoe T, Bushell SR, Perugini MA, Lithgow T, Mulhern TD, Bottomley SP, Rossjohn J. A Biophysical Analysis of the Tetratricopeptide Repeat-rich Mitochondrial Import Receptor, Tom70, Reveals an Elongated Monomer That Is Inherently Flexible, Unstable, and Unfolds via a Multistate Pathway. J Biol Chem 2004; 279:46448-54. [PMID: 15316022 DOI: 10.1074/jbc.m405639200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins destined for all submitochondrial compartments are translocated across the outer mitochondrial membrane by the TOM (translocase of the outer membrane) complex, which consists of a number of specialized receptor subunits that bind mitochondrial precursor proteins for delivery into the translocation channel. One receptor, Tom70, binds large, hydrophobic mitochondrial precursors. The current model of Tom70-mediated import involves multiple dimers of the receptor recognizing a single molecule of substrate. Here we show via a battery of biophysical and spectroscopic techniques that the cytosolic domain of Tom70 is an elongated monomer. Thermal and urea-induced denaturation revealed that the receptor, which unfolds via a multistate pathway, is a relatively unstable molecule undergoing major conformational change at physiological temperatures. The data suggest that the malleability of the monomeric Tom70 receptor is an important factor in mitochondrial import.
Collapse
Affiliation(s)
- Travis Beddoe
- Protein Crystallography Unit, The ARC Centre for Structural and Functional Microbial Genomics, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Consensus design is a valuable protein-engineering method that is based on statistical information derived from sequence alignments of homologous proteins. Recently, consensus design was adapted to repeat proteins. We discuss the potential of this novel repeat-based approach for the design of consensus repeat proteins and repeat protein libraries and summarize recent results from such experiments.
Collapse
Affiliation(s)
- Patrik Forrer
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
49
|
Mello CC, Barrick D. An experimentally determined protein folding energy landscape. Proc Natl Acad Sci U S A 2004; 101:14102-7. [PMID: 15377792 PMCID: PMC521126 DOI: 10.1073/pnas.0403386101] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Energy landscapes have been used to conceptually describe and model protein folding but have been difficult to measure experimentally, in large part because of the myriad of partly folded protein conformations that cannot be isolated and thermodynamically characterized. Here we experimentally determine a detailed energy landscape for protein folding. We generated a series of overlapping constructs containing subsets of the seven ankyrin repeats of the Drosophila Notch receptor, a protein domain whose linear arrangement of modular structural units can be fragmented without disrupting structure. To a good approximation, stabilities of each construct can be described as a sum of energy terms associated with each repeat. The magnitude of each energy term indicates that each repeat is intrinsically unstable but is strongly stabilized by interactions with its nearest neighbors. These linear energy terms define an equilibrium free energy landscape, which shows an early free energy barrier and suggests preferred low-energy routes for folding.
Collapse
Affiliation(s)
- Cecilia C Mello
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
50
|
Ito T, Hozumi Y, Sakane F, Saino-Saito S, Kanoh H, Aoyagi M, Kondo H, Goto K. Cloning and Characterization of Diacylglycerol Kinase ι Splice Variants in Rat Brain. J Biol Chem 2004; 279:23317-26. [PMID: 15024004 DOI: 10.1074/jbc.m312976200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diacylglycerol kinase (DGK) catalyzes phosphorylation of a second messenger diacylglycerol (DG) to phosphatidic acid in cellular signal transduction. Previous studies have revealed that DGK consists of a family of isozymes including our rat clones. In this study we isolated from rat brain cDNA library the cDNA clones for a rat homologue of DGKiota (rDGKiota-1) that contains two zinc finger-like sequences, the highly conserved DGK catalytic domain, a bipartite nuclear localization signal, and four ankyrin repeats at the carboxyl terminus. In addition, we found novel splice variants, which contain either insertion 1 (71 bp) or insertion 2 (19 bp) or both in the carboxyl-terminal portion. Each of the insertions causes a frameshift, and the resultant premature stop codons produce two truncated forms (termed rDGKiota-2 and -iota-3), the former lacking the ankyrin repeats at the carboxyl terminus and the latter lacking a part of the catalytic domain and the ankyrin repeats. Truncation of the carboxyl-terminal portion clearly exerts effects on the detergent solubility and enzymatic activity of the splice variants, although all three variants showed similar cytoplasmic localization in cDNA-transfected cultured neurons despite the continued presence of the nuclear localization signal sequence. Immunoblot analysis using anti-rDGKiota antibody raised against the common amino-terminal portion clearly shows that these rDGKiota variants are indeed expressed in the brain. These results suggest that the carboxyl-terminal truncated forms of rDGKiota-2 and -iota-3 that exhibit reduced enzymatic activities might show a dominant negative effect against the intact rDGKiota-1, and that the modulation of signal transduction by the splice variants may play some roles in the physiologic and/or pathologic conditions of neurons.
Collapse
Affiliation(s)
- Tsukasa Ito
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|