1
|
Wang S, Guo Z, Wang X, Wang N, Wang J, Zheng N, Zheng R, Fang W, Chen Y, Wang Q, Zhang D. Dietary L-carnitine supplementation changes lipid metabolism and glucose utilization of Rhynchocypris lagowskii fed diets with different lipid sources. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:77-96. [PMID: 36604356 DOI: 10.1007/s10695-022-01166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The widely available crop oil is an effective alternative to the increasingly scarce marine fish oil. However, simple alternative strategies have led to declining growth and the edible value of farmed fish. It is worthwhile to explore the effects of micro supplements in diets to improve the tolerance of fish to different dietary lipid sources, which finally optimizes the feeding strategies. This study aimed to investigate the regulation of L-carnitine and dietary oil conditions on nutrient composition, lipid metabolism, and glucose regulation of Rhynchocypris lagowskii. Four diets were prepared according to fish oil, fish oil supplemented with L-carnitine, corn oil, and corn oil supplemented with L-carnitine, and FO, LCFO, CO, and LCCO were labeled, respectively. R. lagowskii was fed experimental diets for 8 weeks, and the glucose tolerance test was performed. The CO diet significantly resulted in higher crude lipid content in muscle but a lower level of serum lipid parameters of R. lagowskii than the FO diet. However, dietary L-carnitine supplementation significantly reduced the crude lipid content in the hepatopancreas and muscle of the fish fed with the CO diet yet increased the serum lipid parameters. Additionally, the crude lipid content of muscle was reduced in the fish fed with an FO diet supplemented with L-carnitine. Compared with the FO diet, the CO diet significantly reduced the ratio of n3/n6 polyunsaturated fatty acid in the hepatopancreas and muscle of R.lagowskii. Dietary L-carnitine supplementation significantly reduced the contents of total saturated fatty acids and total monounsaturated fatty acids in hepatopancreas under both dietary lipid sources. The CO diet significantly up-regulated the expression of genes related to lipid uptake and adipogenesis in hepatopancreas, including lipoprotein lipase (lpl), acetyl-coenzyme A carboxylase alpha (accα), and sterol regulatory element binding protein-1 (srebp1), compared with the FO diet. While dietary L-carnitine supplementation significantly down-regulated the expressions of lpl, accα, srebp1, and fatty acid synthase in hepatopancreas and muscle of fish under both dietary lipid sources, along with up-regulated expression of carnitine palmitoyltransferase 1 in hepatopancreas. Moreover, the fish fed with a CO diet significantly increased the expression of glucose uptake and clearance and significantly down-regulated the expressions of glucose regulation-related genes, including glucose transporter 1, glycogen synthase 1, and phosphofructokinase in hepatopancreas and muscle, resulting in slower glucose uptake and clearance than fish fed with FO diet. Nevertheless, dietary L-carnitine supplementation up-regulated the expression of gluconeogenesis-related genes, including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the hepatopancreas of R. lagowskii under both dietary lipid sources. In conclusion, a higher dietary n6 PUFA resulted in lipid deposition, decreased serum lipid parameters, and limited serum glucose utilization of R. lagowskii. While the regulatory effect of L-carnitine on lipid metabolism and glucose utilization of R. lagowskii varies with dietary lipid sources and tissues.
Collapse
Affiliation(s)
- Sen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Zhixin Guo
- College of Life Science, Tonghua Normal University, Jilin, 134001, Tonghua, China
| | - Xin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Ning Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Jiajing Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Nan Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Rongxin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Wenhao Fang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Yuke Chen
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China.
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China.
| |
Collapse
|
2
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Huang X, Song X, Wang X, Zhou H, Liu C, Mai K, He G. Dietary lysine level affects digestive enzyme, amino acid transport and hepatic intermediary metabolism in turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1091-1103. [PMID: 35842553 DOI: 10.1007/s10695-022-01098-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Lysine is one of the most important essential amino acids in fish, especially in the feed formulated with high levels of plant ingredients. Lysine restriction always led to growth inhibition and poor feed utilization. However, little information was available on its effects on digestion, absorption, and metabolism response in fish. In the present study, three experimental diets were formulated with three lysine levels, 1.69% (LL group), 3.32% (ML group), and 4.90% (HL group). A 10-week feeding trial was carried out to explore the effects of dietary lysine levels on the digestive enzymes, amino acid transporters, and hepatic intermediary metabolism in turbot (Scophthalmus maximus). As the results showed, the activities of lipase and trypsin in ML group were higher than in other groups. Lysine restriction inhibited the expression levels of peptides and amino acid transporters such as PpeT1, y+LAT2, b0,+AT, and rBAT but significantly induced the expression of CAT1. Meanwhile, lysine deficiency elevated the content of T-CHO and LDL-C in plasma, while a higher HDL-C/LDL-C ratio was observed in ML group. For hepatic intermediary metabolism, the increase of lysine level induced the mRNA expression of G6Pase1 and FBPase, but no differences were observed in the expression of the key regulators in glycolysis pathway, such as GK and PK. Furthermore, an appropriate increase in the level of lysine promoted the genes involved in lipolysis, including PPARα, ACOX1, CPT1A, and LPL. However, no differences were observed in the expression of PPARγ, FAS, SREBP1, and LXR, which were important genes related to lipid synthesis. These results provide clues on the metabolic responses on dietary lysine in teleost.
Collapse
Affiliation(s)
- Xinrui Huang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Xinxin Song
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China.
- Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China.
| | - Huihui Zhou
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Chengdong Liu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Gen He
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
4
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
5
|
Gallardo-Escribano C, Buonaiuto V, Ruiz-Moreno MI, Vargas-Candela A, Vilches-Perez A, Benitez-Porres J, Romance-Garcia AR, Ruiz-Moreno A, Gomez-Huelgas R, Bernal-Lopez MR. Epigenetic approach in obesity: DNA methylation in a prepubertal population which underwent a lifestyle modification. Clin Epigenetics 2020; 12:144. [PMID: 32967728 PMCID: PMC7509923 DOI: 10.1186/s13148-020-00935-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metabolically healthy obesity (MHO) is a considerably controversial concept as it is considered a transitory condition towards the development of different pathologies (type 2 diabetes, insulin resistance, or cardiovascular disease). MHO is closely related to lifestyle and environmental factors. Epigenetics has become an essential biological tool to analyze the link between obesity and metabolic status. The aim of this study was to determine whether MHO status is conditioned by the DNA methylation (DNAm) of several genes related to lipid metabolism (lipoprotein lipase, retinoid X receptor alpha, liver X receptor, stearoyl-CoA desaturase, sterol regulatory element binding factor 1), and inflammation (LEP) in peripheral blood mononuclear cells (PBMCs) from 131 prepubertal subjects with MHO phenotype after lifestyle modifications with personalized Mediterranean diet (MedDiet) combined with a physical activity (PA) program. RESULTS The DNAm of all studied genes were significantly modified in the population after 12 months of lifestyle modifications (MedDiet and PA). In addition, associations were found between the DNAm studies and BMI, homeostatic model assessment of insulin resistance, monounsaturated fatty acid and polyunsaturated fatty acid, moderate-vigorous PA, fat mass, and adherence to MedDiet. CONCLUSIONS It was found that DNAm of genes related to lipid metabolism and inflammation are also present in childhood and that this methylation profile can be modified by interventions based on MedDiet and PA.
Collapse
Affiliation(s)
| | - Verónica Buonaiuto
- Internal Medicine Department, Instituto de Investigación Biomédica de Malaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain
| | - M Isabel Ruiz-Moreno
- Internal Medicine Department, Instituto de Investigación Biomédica de Malaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain
| | - Antonio Vargas-Candela
- Internal Medicine Department, Instituto de Investigación Biomédica de Malaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain
| | - Alberto Vilches-Perez
- Endocrinology and Nutrition Department, Instituto de Investigación Biomédica de Malaga (IBIMA), University Hospital Virgen de la Victoria, Malaga, Spain
| | - Javier Benitez-Porres
- Department of Human Physiology, Physical Education and Sports. Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Angel Ramon Romance-Garcia
- Biodynamic and Body Composition Laboratory. Department of Didactics of Language, Arts, and Sport. Faculty of Education Science, University of Málaga, Malaga, Spain
| | - Alejandro Ruiz-Moreno
- Internal Medicine Department, Instituto de Investigación Biomédica de Malaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain
| | - Ricardo Gomez-Huelgas
- Internal Medicine Department, Instituto de Investigación Biomédica de Malaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain.
- CIBER Patofisiología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - M Rosa Bernal-Lopez
- Internal Medicine Department, Instituto de Investigación Biomédica de Malaga (IBIMA), Regional University Hospital of Malaga, Malaga, Spain.
- CIBER Patofisiología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
6
|
Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1. Exp Cell Res 2019; 387:111753. [PMID: 31837293 DOI: 10.1016/j.yexcr.2019.111753] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for MetS. In this study, we aim to explore the function of human circular RNA H19 (hsa_circH19) in human adipose-derived stem cells (hADSCs). METHODS The blood samples from MetS patients and normal subjects were used to determine the expression level of the hsa_circH19. After knock-down of hsa_circH19 in hADSCs, we measured the expression of adipogenic genes. Oil red O, Nile red staining assay and triglyceride assessment were performed to examine the role of hsa_circH19 in hADSCs differentiation. Then, RNA Pull-down and RIP assays were conducted to explore the related RNA binding protein of hsa_circH19. IF was performed to determine the potential molecular regulatory mechanism. RESULTS After accounting for confounding factors, high levels of hsa_circH19 remained an independent risk factor for MetS. Furthermore, the knockdown of hsa_circH19 significantly increased the expression of adipogenic genes and the formation of lipid droplets. Bioinformatics analyses revealed that has_circH19 shared multiple binding sites with polypyrimidine tract-binding protein 1 (PTBP1) and their interaction was validated by circRNA pull-down and RIP assays. Mechanistically, depletion of hsa_circH19 triggered translocation of sterol-regulatory element binding proteins (SREBP1) from cytoplasm to nucleus in the presence of PTBP1. CONCLUSION Our experiments suggest that knockdown of hsa_circH19 promotes hADCSs adipogenic differentiation via targeting of PTBP1. In consequence, the expression of hsa_circH19 might correlated to lipid metabolism in adipose tissue from MetS.
Collapse
|
7
|
GR and Foxa1 promote the transcription of ANGPTL4 in bovine adipocytes. Mol Cell Probes 2019; 48:101443. [DOI: 10.1016/j.mcp.2019.101443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 11/17/2022]
|
8
|
Engin A. Fat Cell and Fatty Acid Turnover in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:135-160. [PMID: 28585198 DOI: 10.1007/978-3-319-48382-5_6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. Inhibition of adipose triglyceride lipase leads to an accumulation of triglyceride, whereas inhibition of hormone-sensitive lipase leads to the accumulation of diacylglycerol. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride turnover. Excess triacylglycerols (TAGs), sterols and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets. Following the release of lipid droplets from endoplasmic reticulum, cytoplasmic lipid droplets increase their volume either by local TAG synthesis or by homotypic fusion. The number and the size of lipid droplet distribution is correlated with obesity. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome-dependent caspase-1 activation in hypertrophic adipocytes induces obese adipocyte death by pyroptosis. Actually adipocyte death may be a prerequisite for the transition from hypertrophic to hyperplastic obesity. Major transcriptional factors, CCAAT/enhancer-binding proteins beta and delta, play a central role in the subsequent induction of critical regulators, peroxisome-proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha and sterol regulatory element-binding protein 1, in the transcriptional control of adipogenesis in obesity.Collectively, in this chapter the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of lipid droplet interactions with the other cellular organelles are reviewed. Furthermore, in addition to lipid droplet growth, the functional link between the adipocyte-specific lipid droplet-associated protein and fatty acid turn-over is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Kanaki M, Tiniakou I, Thymiakou E, Kardassis D. Physical and functional interactions between nuclear receptor LXRα and the forkhead box transcription factor FOXA2 regulate the response of the human lipoprotein lipase gene to oxysterols in hepatic cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:848-860. [PMID: 28576574 DOI: 10.1016/j.bbagrm.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
Lipoprotein lipase (LPL) catalyzes the hydrolysis of triglycerides from triglyceride-rich lipoproteins such as VLDL and chylomicrons in the circulation. Mutations in LPL or its activator apolipoprotein C-II cause hypertriglyceridemia in humans and animal models. The levels of LPL in the liver are low but they can be strongly induced by a high cholesterol diet or by synthetic ligands of Liver X Receptors (LXRs). However, the mechanism by which LXRs activate the human LPL gene is unknown. In the present study we show that LXR agonists increased the mRNA and protein levels as well as the promoter activity of human LPL in HepG2 cells. A promoter deletion analysis defined the proximal -109/-28 region, which contains a functional FOXA2 element, as essential for transactivation by ligand-activated LXRα/RXRα heterodimers. Silencing of endogenous FOXA2 in HepG2 cells by siRNAs or by treatment with insulin compromised the induction of the LPL gene by LXR agonists whereas mutations in the FOXA2 site abolished the synergistic transactivation of the LPL promoter by LXRα/RXRα and FOXA2. Physical and functional interactions between LXRα and FOXA2 were established in vitro and ex vivo. In summary, the present study revealed a novel mechanism of human LPL gene induction by oxysterols in the liver with is based on physical and functional interactions between transcription factors LXRα and FOXA2. This mechanism, which may not be restricted to the LPL gene, is critically important for a better understanding of the regulation of cholesterol and triglyceride metabolism in the liver under healthy or pathological states.
Collapse
Affiliation(s)
- Maria Kanaki
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Ioanna Tiniakou
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece,.
| |
Collapse
|
10
|
Jang J, Jung Y, Seo SJ, Kim SM, Shim YJ, Cho SH, Chung SI, Yoon Y. Berberine activates AMPK to suppress proteolytic processing, nuclear translocation and target DNA binding of SREBP-1c in 3T3-L1 adipocytes. Mol Med Rep 2017; 15:4139-4147. [PMID: 28487951 PMCID: PMC5436149 DOI: 10.3892/mmr.2017.6513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) and sterol regulatory element binding protein (SREBP)‑1c are major therapeutic targets in the treatment of metabolic diseases. In the present study, the fat‑reducing mechanisms of berberine (BBR), a natural isoquinoline, was investigated by examining the AMPK‑mediated modulation of SREBP‑1c in 3T3‑L1 adipocytes. BBR activated AMPK in a dose‑ and time‑dependent manner, and increased the phosphorylation of the 125‑kDa precursor form of SREBP‑1c, which suppressed its proteolytic processing into the mature 68‑kDa form and its subsequent nuclear translocation. The binding of nuclear SREBP‑1c to its E‑box motif‑containing target DNA sequence was decreased following treatment with BBR, which led to a decrease in the expression of lipogenic genes and subsequently reduced intracellular fat accumulation. Transfection with AMPKα1 siRNA, and not control siRNA, inhibited BBR‑induced phosphorylation of the 125‑kDa SREBP‑1c, which confirmed that AMPK was responsible for phosphorylating SREBP‑1c. AMPKα1 siRNA transfection rescued the proteolytic processing, nuclear translocation and target DNA binding of SREBP‑1c that had been suppressed by BBR. In addition, BBR‑induced suppression of lipogenic gene expression and intracellular fat accumulation were rescued by AMPKα1 siRNA transfection. In conclusion, the results of the present study demonstrate that BBR activates AMPK to induce phosphorylation of SREBP‑1c, thereby suppressing proteolytic processing, nuclear translocation and target DNA binding of SREBP‑1c, which leads to a reduction in lipogenic gene expression and intracellular fat accumulation. The results of the present study indicate that BBR may be a potential candidate for the development of drugs to treat obesity.
Collapse
Affiliation(s)
- Jaewoong Jang
- Department of Microbiology, Chung‑Ang University College of Medicine, Dongjak‑gu, Seoul 156‑756, Republic of Korea
| | - Yoonju Jung
- Department of Microbiology, Chung‑Ang University College of Medicine, Dongjak‑gu, Seoul 156‑756, Republic of Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung‑Ang University College of Medicine, Dongjak‑gu, Seoul 156‑756, Republic of Korea
| | - Seok-Min Kim
- School of Mechanical Engineering, Chung‑Ang University, Dongjak‑gu, Seoul 156‑756, Republic of Korea
| | - Yae Jie Shim
- College of General Studies, Sangmyung University, Jongno‑gu, Seoul 110‑743, Republic of Korea
| | - Soo Hyun Cho
- Department of Family Medicine, College of Medicine, Chung‑Ang University Hospital, Dongjak‑gu, Seoul 156‑755, Republic of Korea
| | - Sang-In Chung
- Department of Microbiology, Chung‑Ang University College of Medicine, Dongjak‑gu, Seoul 156‑756, Republic of Korea
| | - Yoosik Yoon
- Department of Microbiology, Chung‑Ang University College of Medicine, Dongjak‑gu, Seoul 156‑756, Republic of Korea
| |
Collapse
|
11
|
Hong YF, Kim H, Kim HS, Park WJ, Kim JY, Chung DK. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages. PLoS One 2016; 11:e0154302. [PMID: 27120199 PMCID: PMC4847857 DOI: 10.1371/journal.pone.0154302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/11/2016] [Indexed: 12/30/2022] Open
Abstract
Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent.
Collapse
Affiliation(s)
- Yi-Fan Hong
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 446–701, Republic of Korea
- Skin Biotechnology Center, Kyung Hee University, Yongin, 446–701, Republic of Korea
| | - Hangeun Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 446–701, Republic of Korea
- Skin Biotechnology Center, Kyung Hee University, Yongin, 446–701, Republic of Korea
| | - Hye Sun Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 446–701, Republic of Korea
| | - Woo Jung Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 446–701, Republic of Korea
| | - Joo-Yun Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 446–701, Republic of Korea
- * E-mail: (JYK); (DKC)
| | - Dae Kyun Chung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 446–701, Republic of Korea
- Skin Biotechnology Center, Kyung Hee University, Yongin, 446–701, Republic of Korea
- RNA Inc., #308 Life Sceince Building, Kyung Hee University Global Campus, Yongin, 446–701, Republic of Korea
- * E-mail: (JYK); (DKC)
| |
Collapse
|
12
|
Zhu WF, Zhu JF, Liang L, Shen Z, Wang YM. Maternal undernutrition leads to elevated hepatic triglycerides in male rat offspring due to increased expression of lipoprotein lipase. Mol Med Rep 2016; 13:4487-93. [PMID: 27035287 DOI: 10.3892/mmr.2016.5040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 12/08/2016] [Indexed: 11/06/2022] Open
Abstract
Small for gestational age (SGA) at birth increases the risk of developing metabolic syndrome, which encompasses various symptoms including hypertriglyceridemia. The aim of the present study was to determine whether maternal undernutrition during pregnancy may lead to alterations in hepatic triglyceride content and the gene expression levels of hepatic lipoprotein lipase (LPL) in SGA male offspring. The present study focused on the male offspring in order to prevent confounding factors, such as estrus cycle and hormone profile. Female Sprague Dawley rats were arbitrarily assigned to receive an ad libitum chow diet or 50% food restricted diet from pregnancy day 1 until parturition. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to measure the gene expression levels of hepatic LPL at day 1 and upon completion of the third week of age. Chromatin immunoprecipitation quantified the binding activity of liver X receptor‑α (LXR‑α) gene to the LXR response elements (LXRE) on LPL promoter and LPL epigenetic characteristics. At 3 weeks of age, SGA male offspring exhibited significantly elevated levels of hepatic triglycerides, which was concomitant with increased expression levels of LPL. Since LPL is regulated by LXR‑α, the expression levels of LXR‑α were detected in appropriate for gestational age and SGA male offspring. Maternal undernutrition during pregnancy led to an increase in the hepatic expression levels of LXR‑α, and enriched binding to the putative LXR response elements in the LPL promoter regions in 3‑week‑old male offspring. In addition, enhanced acetylation of histone H3 [H3 lysine (K)9 and H3K14] was detected surrounding the LPL promoter. The results of the present study indicated that maternal undernutrition during pregnancy may lead to an increase in hepatic triglycerides, via alterations in the transcriptional and epigenetic regulation of the LPL gene.
Collapse
Affiliation(s)
- Wei-Fen Zhu
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Jian-Fang Zhu
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Zheng Shen
- Department of Central Laboratory, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying-Min Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
13
|
Zhao WS, Hu SL, Yu K, Wang H, Wang W, Loor J, Luo J. Lipoprotein lipase, tissue expression and effects on genes related to fatty acid synthesis in goat mammary epithelial cells. Int J Mol Sci 2014; 15:22757-71. [PMID: 25501331 PMCID: PMC4284735 DOI: 10.3390/ijms151222757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Lipoprotein lipase (LPL) serves as a central factor in hydrolysis of triacylglycerol and uptake of free fatty acids from the plasma. However, there are limited data concerning the action of LPL on the regulation of milk fat synthesis in goat mammary gland. In this investigation, we describe the cloning and sequencing of the LPL gene from Xinong Saanen dairy goat mammary gland, along with a study of its phylogenetic relationships. Sequence analysis showed that goat LPL shares similarities with other species including sheep, bovine, human and mouse. LPL mRNA expression in various tissues determined by RT-qPCR revealed the highest expression in white adipose tissue, with lower expression in heart, lung, spleen, rumen, small intestine, mammary gland, and kidney. Expression was almost undetectable in liver and muscle. The expression profiles of LPL gene in mammary gland at early, peak, mid, late lactation, and the dry period were also measured. Compared with the dry period, LPL mRNA expression was markedly greater at early lactation. However, compared with early lactation, the expression was lower at peak lactation and mid lactation. Despite those differences, LPL mRNA expression was still greater at peak, mid, and late lactation compared with the dry period. Using goat mammary epithelial cells (GMEC), the in vitro knockdown of LPL via shRNA or with Orlistat resulted in a similar degree of down-regulation of LPL (respectively). Furthermore, knockdown of LPL was associated with reduced mRNA expression of SREBF1, FASN, LIPE and PPARG but greater expression of FFAR3. There was no effect on ACACA expression. Orlistat decreased expression of LIPE, FASN, ACACA, and PPARG, and increased FFAR3 and SREBF1 expression. The pattern of LPL expression was similar to the changes in milk fat percentage in lactating goats. Taken together, results suggest that LPL may play a crucial role in fatty acid synthesis.
Collapse
Affiliation(s)
- Wang-Sheng Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shi-Liang Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Kang Yu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wei Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Juan Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:163-71. [PMID: 25463481 DOI: 10.1016/j.bbalip.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.
Collapse
|
15
|
Wang J, Yan S, Zhang W, Zhang H, Dai J. Integrated proteomic and miRNA transcriptional analysis reveals the hepatotoxicity mechanism of PFNA exposure in mice. J Proteome Res 2014; 14:330-41. [PMID: 25181679 DOI: 10.1021/pr500641b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl chemicals (PFASs) are a class of highly stable man-made compounds, and their toxicological impacts are currently of worldwide concern. Administration of perfluorononanoic acid (PFNA), a perfluorocarboxylic acid (PFCA) with a nine carbon backbone, resulted in dose-dependent hepatomegaly in mice (0, 0.2, 1, and 5 mg/kg body weight, once a day for 14 days) and an increase in hepatic triglycerides (TG) and total cholesterol (TCHO) in the median dose group as well as serum transaminases in the high dose group. Using isobaric tags for relative and absolute quantitation (iTRAQ), we identified 108 (80 up-regulated, 28 down-regulated) and 342 hepatic proteins (179 up-regulated, 163 down-regulated) that exhibited statistically significant changes (at least a 1.2-fold alteration and P < 0.05) in the 1 and 5 mg/kg/d PFNA treatment groups, respectively. Sixty-six proteins (54 up-regulated, 12 down-regulated) significantly changed in both of the two treatment groups. Among these 54 up-regulated proteins, most were proteins related to the lipid metabolism process (31 proteins). The mRNA analysis results further suggested that PFNA exposure not only resulted in a fatty acid oxidation effect but also activated mouse liver genes involved in fatty acid and cholesterol synthesis. Additionally, three (2 down-regulated, 1 up-regulated) and 30 (14 down-regulated, 16 up-regulated) microRNAs (miRNAs) exhibited at least a 2-fold alteration (P < 0.05) in the 1 and 5 mg/kg/d PFNA treatment groups, respectively, Three miRNAs (up-regulated: miR-34a; down-regulated: miR-362-3p and miR-338-3p) significantly changed in both of the two treatment groups. The repression effect of miR-34a on fucosyltransferase 8 (Fut8) and lactate dehydrogenase (Ldha) was confirmed by luciferase activity assay and Western blot analysis. The results implied that PFNA exerted a hepatic effect, at least partially, by miRNAs mediated post-translational protein repression.
Collapse
Affiliation(s)
- Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:919-33. [PMID: 24721265 DOI: 10.1016/j.bbalip.2014.03.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/01/2023]
Abstract
The enzyme lipoprotein lipase (LPL), originally identified as the clearing factor lipase, hydrolyzes triglycerides present in the triglyceride-rich lipoproteins VLDL and chylomicrons. LPL is primarily expressed in tissues that oxidize or store fatty acids in large quantities such as the heart, skeletal muscle, brown adipose tissue and white adipose tissue. Upon production by the underlying parenchymal cells, LPL is transported and attached to the capillary endothelium by the protein GPIHBP1. Because LPL is rate limiting for plasma triglyceride clearance and tissue uptake of fatty acids, the activity of LPL is carefully controlled to adjust fatty acid uptake to the requirements of the underlying tissue via multiple mechanisms at the transcriptional and post-translational level. Although various stimuli influence LPL gene transcription, it is now evident that most of the physiological variation in LPL activity, such as during fasting and exercise, appears to be driven via post-translational mechanisms by extracellular proteins. These proteins can be divided into two main groups: the liver-derived apolipoproteins APOC1, APOC2, APOC3, APOA5, and APOE, and the angiopoietin-like proteins ANGPTL3, ANGPTL4 and ANGPTL8, which have a broader expression profile. This review will summarize the available literature on the regulation of LPL activity in various tissues, with an emphasis on the response to diverse physiological stimuli.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| |
Collapse
|
17
|
Bouvy-Liivrand M, Heinäniemi M, John E, Schneider JG, Sauter T, Sinkkonen L. Combinatorial regulation of lipoprotein lipase by microRNAs during mouse adipogenesis. RNA Biol 2014; 11:76-91. [PMID: 24457907 PMCID: PMC3929427 DOI: 10.4161/rna.27655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression directly through base pairing to their targets or indirectly through participating in multi-scale regulatory networks. Often miRNAs take part in feed-forward motifs where a miRNA and a transcription factor act on shared targets to achieve accurate regulation of processes such as cell differentiation. Here we show that the expression levels of miR-27a and miR-29a inversely correlate with the mRNA levels of lipoprotein lipase (Lpl), their predicted combinatorial target, and its key transcriptional regulator peroxisome proliferator-activated receptor gamma (Pparg) during 3T3-L1 adipocyte differentiation. More importantly, we show that Lpl, a key lipogenic enzyme, can be negatively regulated by the two miRNA families in a combinatorial fashion on the mRNA and functional level in maturing adipocytes. This regulation is mediated through the Lpl 3'UTR as confirmed by reporter gene assays. In addition, a small mathematical model captures the dynamics of this feed-forward motif and predicts the changes in Lpl mRNA levels upon network perturbations. The obtained results might offer an explanation to the dysregulation of LPL in diabetic conditions and could be extended to quantitative modeling of regulation of other metabolic genes under similar regulatory network motifs.
Collapse
Affiliation(s)
- Maria Bouvy-Liivrand
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine; University of Luxembourg; Esch-Sur-Alzette, Luxembourg
| | - Merja Heinäniemi
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
- Institute of Biomedicine; School of Medicine; University of Eastern Finland; Kuopio, Finland
| | - Elisabeth John
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine; University of Luxembourg; Esch-Sur-Alzette, Luxembourg
- Saarland University Medical Center; Department of Medicine II; Homburg, Saar, Germany
| | - Thomas Sauter
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| |
Collapse
|
18
|
Oppi-Williams C, Suagee J, Corl B. Regulation of lipid synthesis by liver X receptor α and sterol regulatory element-binding protein 1 in mammary epithelial cells. J Dairy Sci 2013; 96:112-21. [DOI: 10.3168/jds.2011-5276] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 09/07/2012] [Indexed: 01/29/2023]
|
19
|
Regulation of endothelial lipase and systemic HDL cholesterol levels by SREBPs and VEGF-A. Atherosclerosis 2012; 225:335-40. [DOI: 10.1016/j.atherosclerosis.2012.09.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/17/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022]
|
20
|
Takasu S, Mutoh M, Takahashi M, Nakagama H. Lipoprotein lipase as a candidate target for cancer prevention/therapy. Biochem Res Int 2011; 2012:398697. [PMID: 22028972 PMCID: PMC3199119 DOI: 10.1155/2012/398697] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/17/2011] [Indexed: 12/30/2022] Open
Abstract
Epidemiological studies have shown that serum triglyceride (TG) levels are linked with risk of development of cancer, including colorectal and pancreatic cancers, and their precancerous lesions. Thus, it is assumed that serum TG plays an important role in carcinogenesis, and the key enzyme lipoprotein lipase (LPL), which catalyzes the hydrolysis of plasma TG, may therefore be involved. Dysregulation of LPL has been reported to contribute to many human diseases, such as atherosclerosis, chylomicronaemia, obesity, and type 2 diabetes. Recently, it has been reported that LPL gene deficiency, such as due to chromosome 8p22 loss, LPL gene polymorphism, and epigenetic changes in its promoter region gene, increases cancer risk, especially in the prostate. In animal experiments, high serum TG levels seem to promote sporadic/carcinogen-induced genesis of colorectal and pancreatic cancers. Interestingly, tumor suppressive effects of LPL inducers, such as PPAR ligands, NO-1886, and indomethacin, have been demonstrated in animal models. Moreover, recent evidence that LPL plays important roles in inflammation and obesity implies that it is an appropriate general target for chemopreventive and chemotherapeutic agents.
Collapse
Affiliation(s)
- Shinji Takasu
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Michihiro Mutoh
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Mami Takahashi
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Nakagama
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
21
|
Cruz-Garcia L, Sánchez-Gurmaches J, Gutiérrez J, Navarro I. Regulation of LXR by fatty acids, insulin, growth hormone and tumor necrosis factor-α in rainbow trout myocytes. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:125-36. [DOI: 10.1016/j.cbpa.2011.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/15/2011] [Accepted: 05/17/2011] [Indexed: 01/27/2023]
|
22
|
Abstract
Lipoprotein lipase (LPL) is a multifunctional enzyme produced by many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. LPL is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins (VLDL). LPL-catalyzed reaction products, fatty acids, and monoacylglycerol are in part taken up by the tissues locally and processed differentially; e.g., they are stored as neutral lipids in adipose tissue, oxidized, or stored in skeletal and cardiac muscle or as cholesteryl ester and TG in macrophages. LPL is regulated at transcriptional, posttranscriptional, and posttranslational levels in a tissue-specific manner. Nutrient states and hormonal levels all have divergent effects on the regulation of LPL, and a variety of proteins that interact with LPL to regulate its tissue-specific activity have also been identified. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle accumulate TG in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. Mice with LPL deletion in skeletal muscle have reduced TG accumulation and increased insulin action on glucose transport in muscle. Ultimately, this leads to increased lipid partitioning to other tissues, insulin resistance, and obesity. Mice with LPL deletion in the heart develop hypertriglyceridemia and cardiac dysfunction. The fact that the heart depends increasingly on glucose implies that free fatty acids are not a sufficient fuel for optimal cardiac function. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and the many aspects of obesity and other metabolic disorders that relate to energy balance, insulin action, and body weight regulation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
23
|
Bi Y, Cai M, Liang H, Sun W, Li X, Wang C, Zhu Y, Chen X, Li M, Weng J. Increased carnitine palmitoyl transferase 1 expression and decreased sterol regulatory element-binding protein 1c expression are associated with reduced intramuscular triglyceride accumulation after insulin therapy in high-fat-diet and streptozotocin-induced diabetic rats. Metabolism 2009; 58:779-86. [PMID: 19375767 DOI: 10.1016/j.metabol.2009.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 01/27/2009] [Indexed: 01/06/2023]
Abstract
We previously reported that early insulin treatment reduced intramuscular triglyceride content in type 2 diabetes mellitus Sprague-Dawley rats; the underlying mechanisms are, however, not completely understood. Here we investigated the regulation of insulin on molecular expressions involved in lipid metabolism pathways in skeletal muscle of high-fat-diet and streptozotocin-induced diabetic Sprague-Dawley rats. Neutral protamine Hagedorn insulin and gliclazide were initiated at the third day after streptozotocin injection and lasted for 3 weeks. Compared with normal rats, untreated diabetic rats had a 30% and 61% increase in lipoprotein lipase protein expression and activity, which were decreased by insulin and gliclazide (P < .05). Fatty acid translocase protein was down-regulated by 45% in untreated diabetic rats, which was up-regulated by 31% and 26% with insulin and gliclazide, respectively (P < .05). Insulin failed to affect fatty acid transport protein 1 and fatty acid binding protein expressions. Carnitine palmitoyl transferase 1 had a 47% decrease in untreated diabetic rats, which was normalized by insulin (P < .05). Moreover, compared with normal rats, untreated diabetic rats had higher expressions of sterol regulatory element-binding protein 1c, tumor necrosis factor alpha, and Tyr(705) phosphorylation of signal transducer and activator of transcription 3 levels, which all were down-regulated after insulin treatment. These results suggested that early insulin reduced intramuscular triglyceride levels in diabetic rats potentially through amelioration of lipid dysfunction and inhibition of lipid synthesis.
Collapse
Affiliation(s)
- Yan Bi
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zou Y, Du H, Yin M, Zhang L, Mao L, Xiao N, Ren G, Zhang C, Pan J. Effects of high dietary fat and cholesterol on expression of PPAR alpha, LXR alpha, and their responsive genes in the liver of apoE and LDLR double deficient mice. Mol Cell Biochem 2008; 323:195-205. [PMID: 19067122 DOI: 10.1007/s11010-008-9982-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/28/2008] [Indexed: 11/28/2022]
Abstract
The significance of transcription factors PPAR alpha, LXR alpha, and their responsive/target genes for the pathogenesis of atherosclerosis in apolipoprotein E and low-density lipoprotein receptor double deficient (AL) mice fed with high fat and cholesterol (HF) diet were studied. C57BL/6J wild-type (WT) mice were used as control to the AL mice. Plasma lipid metabolites and morphological atherosclerotic lesions in aortic wall were determined. Semi- and real-time quantitative RT-PCR were used to measure gene expression patterns between AL mice and the controls, which were fed with HF or normal chow diet. The results showed that in AL mice fed with HF diet, plasma lipid levels, hepatic lipid accumulation, and atherogenesis together with upregulated PPAR alpha, LXR alpha, and their target genes, i.e., FAT, SCD1, FAS, Angptl3, and apoB100 significantly increased in a 12-week long feeding period. In contrast, apoAI, apoAIV, apoF, LPL, and SR-BI were decreased compared to chow-fed group. In WT mice, PPAR alpha, LXR alpha, FAS, Angpt13, CPT1, apoF, ACOX1, LPL, and SR-BI were increased with HF treatment, while apoAI and apoAIV were decreased markedly. The different changes of lipid metabolism-related genes between AL and WT mice, fed with HF diet or chow diet indicated that the mechanisms of dietary effects on gene mutant mice are different from those of intact WT mice. Since lipid metabolic system defected genetically in AL mice, we suggest that the changes of PPAR alpha, LXR alpha, and their target genes aggravated lipid metabolic disorder in the liver and further accelerated the development of atherosclerosis on a stress of HF diet feeding in AL mice.
Collapse
Affiliation(s)
- Yanyan Zou
- The Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Effect of dietary conjugated linoleic acid isomers on lipid metabolism in hamsters fed high-carbohydrate and high-fat diets. Br J Nutr 2008; 101:1630-8. [PMID: 18983716 DOI: 10.1017/s0007114508118785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dietary conjugated linoleic acids (CLA) have been reported to have a number of isomer-dependent effects on lipid metabolism including reduction in adipose tissue deposition, changes in plasma lipoprotein concentrations and hepatic lipid accumulation. The aim of this study was to compare the effect of individual CLA isomers against lipogenic and high 'Western' fat background diets. Golden Syrian hamsters were fed a high-carbohydrate rodent chow or chow supplemented with 17.25 % fat formulated to represent the type and amount of fatty acids found in a typical 'Western' diet (including 0.2 % cholesterol). Diets were further supplemented with 0.25 % (w/w) rapeseed oil, cis9, trans11 (c9,t11)-CLA or trans10, cis12 (t10,c12)-CLA. Neither isomer had a significant impact on plasma lipid or lipoprotein concentrations. The t10,c12-CLA isomer significantly reduced perirenal adipose tissue depot mass. While adipose tissue acetyl CoA carboxylase and fatty acid synthase mRNA concentrations (as measured by quantitative PCR) were unaffected by CLA, lipoprotein lipase mRNA was specifically reduced by t10,c12-CLA, on both background diets (P < 0.001). This was associated with a specific reduction of sterol regulatory element binding protein 1c expression in perirenal adipose tissue (P = 0.018). The isomers appear to have divergent effects on liver TAG content with c9,t11-CLA producing lower concentrations than t10,c12-CLA. We conclude that t10,c12-CLA modestly reduces adipose tissue deposition in the Golden Syrian hamster independently of background diet and this may possibly result from reduced uptake of lipoprotein fatty acids, as a consequence of reduced lipoprotein lipase gene expression.
Collapse
|
26
|
Vergès B, Florentin E, Baillot-Rudoni S, Monier S, Petit JM, Rageot D, Gambert P, Duvillard L. Effects of 20 mg rosuvastatin on VLDL1-, VLDL2-, IDL- and LDL-ApoB kinetics in type 2 diabetes. Diabetologia 2008; 51:1382-90. [PMID: 18535816 DOI: 10.1007/s00125-008-1046-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS In addition to its efficacy in reducing LDL-cholesterol, rosuvastatin has been shown to significantly decrease plasma triacylglycerol. The use of rosuvastatin may be beneficial in patients with type 2 diabetes, who usually have increased triacylglycerol levels. However, its effects on the metabolism of triacylglycerol-rich lipoproteins in type 2 diabetic patients remains unknown. METHODS We performed a randomised double-blind crossover trial of 6-week treatment with placebo or rosuvastatin 20 mg in eight patients with type 2 diabetes who were being treated with oral glucose-lowering agents. In each patient, an in vivo kinetic study of apolipoprotein B (ApoB)-containing lipoproteins with [13C]leucine was performed at the end of each treatment period. A central randomisation centre used computer-generated tables to allocate treatments. Participants, caregivers and those assessing the outcomes were blinded to group assignment. RESULTS Rosuvastatin 20 mg significantly reduced plasma LDL-cholesterol, triacylglycerol and total ApoB. It also significantly reduced ApoB pool sizes of larger triacylglycerol-rich VLDL particles (VLDL1; p = 0.011), smaller VLDL particles (VLDL2; p = 0.011), intermediate density lipoprotein (IDL; p = 0.011) and LDL (p = 0.011). This reduction was associated with a significant increase in the total fractional catabolic rate of VLDL1-ApoB (6.70 +/- 3.24 vs 4.52 +/- 2.34 pool/day, p = 0.049), VLDL2-ApoB (8.72 +/- 3.37 vs 5.36 +/- 2.64, p = 0.011), IDL-ApoB (7.06 +/- 1.68 vs 4.21 +/- 1.51, p = 0.011) and LDL-ApoB (1.02 +/- 0.27 vs 0.59 +/- 0.13, p = 0.011). Rosuvastatin did not change the production rates of VLDL2-, IDL- or LDL-, but did reduce VLDL1-ApoB production rate (12.4 +/- 4.5 vs 19.5 +/- 8.4 mg kg(-1) day(-1), p = 0.035). No side effects of rosuvastatin were observed during the study. CONCLUSIONS/INTERPRETATION In type 2 diabetic patients rosuvastatin 20 mg not only induces a significant increase of LDL-ApoB catabolism (73%), but also has favourable effects on the catabolism of triacylglycerol-rich lipoproteins, e.g. a significant increase in the catabolism of VLDL1-ApoB (48%), VLDL2-ApoB (63%) and IDL-ApoB (68%), and a reduction in the production rate of VLDL1-ApoB (-36%). The effects of rosuvastatin on the metabolism of triacylglycerol-rich lipoproteins may be beneficial for prevention of atherosclerosis in type 2 diabetic patients.
Collapse
Affiliation(s)
- B Vergès
- Service Endocrinologie, Diabétologie et Maladies métaboliques, Centre Hospitalier Universitaire de Dijon, Hôpital du Bocage, Dijon, BP 77908, 21079, France.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gévry N, Schoonjans K, Guay F, Murphy BD. Cholesterol supply and SREBPs modulate transcription of the Niemann-Pick C-1 gene in steroidogenic tissues. J Lipid Res 2008; 49:1024-33. [PMID: 18272928 DOI: 10.1194/jlr.m700554-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We tested whether sterol-regulatory element binding proteins (SREBPs) mediate sterol-regulated transactivation of the Niemann-Pick C-1 (NPC-1) gene. Loading granulosa cells with 22- or 25-hydroxycholesterol decreased NPC-1 mRNA, whereas culturing in cholesterol-depleted medium or inhibition of cholesterol biosynthesis increased NPC-1 promoter activity and NPC-1 mRNA abundance. Cotransfection of SREBP1a, SREBP1c, and SREBP2 and the NPC-1 promoter-luciferase reporter into granulosa cell lines increased the transcriptional activity of porcine, human, and mouse NPC-1 promoters. Deletion analysis of the 5' flanking region of the pig NPC-1 gene demonstrated significant promoter activity between fragments -934 and -636 bp upstream from the transcription initiation site. Sequence analysis revealed three sterol-regulatory elements (SREs) clustered between -558 and -650 bp. Each site, along with E-box sequences, bound recombinant SREBP in electromobility shift assays. Mutation of all three sites attenuated the SREBP induction of promoter activity. Chromatin immunoprecipitation (ChIP) assays revealed that cholesterol depletion enriched the association of both SREBP and acetylated histone H3 with the NPC-1 promoter fragment containing the three SREs. ChIP analysis confirmed that SREBP's association with SRE and the E-box was enriched in cells cultured in cholesterol-depleted medium. We conclude that NPC-1 is sterol-regulated, achieved by SREBP acting via SRE and the E-box sequences.
Collapse
Affiliation(s)
- Nicolas Gévry
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St. Hyacinthe, Quebec, Canada J2S 7C6
| | | | | | | |
Collapse
|
28
|
Tiwari R, Singh V, Barthwal M. Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 2008; 28:483-544. [DOI: 10.1002/med.20118] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Niho N, Mutoh M, Komiya M, Ohta T, Sugimura T, Wakabayashi K. Improvement of hyperlipidemia by indomethacin in Min mice. Int J Cancer 2007; 121:1665-9. [PMID: 17546600 DOI: 10.1002/ijc.22872] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apc gene-deficient Min and Apc(1309) mice feature a hyperlipidemic state with a markedly low expression level of lipoprotein lipase (LPL) compared to their wild-type counterparts. We previously showed that induction of LPL mRNA by peroxisome proliferator-activated receptor (PPAR) alpha and gamma agonists or an LPL selective inducer suppresses both high serum lipid levels and intestinal polyp formation in these model animals. Since the general cyclooxygenase inhibitor, indomethacin, is known to suppress intestinal tumor development, but not to affect serum lipids, its influence in Min mice was here investigated. Treatment with 2.5, 5 and 10 ppm indomethacin in the diet for 14 weeks from 6 weeks of age caused significant dose-dependent reduction in serum triglycerides, along with a reduction in the numbers of intestinal polyps to 25% of the untreated control value. LPL mRNA levels in the liver were slightly increased by indomethacin treatment. We further performed oligonucleotide microarray analysis and quantitative PCR analysis and found 8 lipid metabolism-related genes, regulated by sterol regulatory element binding protein-1c, to be modulated by indomethacin-treatment in the Min mouse liver. Furthermore, TNFalpha was downregulated. These results indicate that indomethacin might suppress intestinal tumor formation together with a hyperlipidemic state by regulating LPL and other lipid metabolic factors.
Collapse
Affiliation(s)
- Naoko Niho
- Cancer Prevention Basic Research Project, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 2007; 8:18. [PMID: 17535427 PMCID: PMC1892011 DOI: 10.1186/1471-2121-8-18] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 05/29/2007] [Indexed: 02/08/2023] Open
Abstract
Background Potential therapeutic use of mesenchymal stem cells (MSCs) is likely to require large-scale in vitro expansion of the cells before transplantation. MSCs from adipose tissue can be cultured extensively until senescence. However, little is known on the differentiation potential of adipose stem cells (ASCs) upon extended culture and on associated epigenetic alterations. We examined the adipogenic differentiation potential of clones of human ASCs in early passage culture and upon senescence, and determined whether senescence was associated with changes in adipogenic promoter DNA methylation. Results ASC clones cultured to senescence display reduced adipogenic differentiation capacity in vitro, on the basis of limited lipogenesis and reduced transcriptional upregulation of FABP4 and LPL, two adipogenic genes, while LEP and PPARG2 transcription remains unaffected. In undifferentiated senescent cells, PPARG2 and LPL expression is unaltered, whereas LEP and FABP4 transcript levels are increased but not in all clones. Bisulfite sequencing analysis of DNA methylation reveals overall relative stability of LEP, PPARG2, FABP4 and LPL promoter CpG methylation during senescence and upon differentiation. Mosaicism in methylation profiles is maintained between and within ASC clones, and any CpG-specific methylation change detected does not necessarily relate to differentiation potential. One exception to this contention is CpG No. 21 in the LEP promoter, whose senescence-related methylation may impair upregulation of the gene upon adipogenic stimulation. Conclusion Senescent ASCs display reduced in vitro differentiation ability and transcriptional activation of adipogenic genes upon differentiation induction. These restrictions, however, cannot in general be attributed to specific changes in DNA methylation at adipogenic promoters. There also seems to be a correlation between CpGs that are hypomethylated and important transcription factor binding sites.
Collapse
|
31
|
Beyea MM, Heslop CL, Sawyez CG, Edwards JY, Markle JG, Hegele RA, Huff MW. Selective Up-regulation of LXR-regulated Genes ABCA1, ABCG1, and APOE in Macrophages through Increased Endogenous Synthesis of 24(S),25-Epoxycholesterol. J Biol Chem 2007; 282:5207-16. [PMID: 17186944 DOI: 10.1074/jbc.m611063200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver X receptor (LXR) activation represents a mechanism to prevent macrophage foam cell formation. Previously, we demonstrated that partial inhibition of oxidosqualene:lanosterol cyclase (OSC) stimulated synthesis of the LXR agonist 24(S),25-epoxycholesterol (24(S),25-epoxy) and enhanced ABCA1-mediated cholesterol efflux. In contrast to a synthetic, nonsteroidal LXR activator, TO-901317, triglyceride accumulation was not observed. In the present study, we determined whether endogenous 24(S),25-epoxy synthesis selectively enhanced expression of macrophage LXR-regulated cholesterol efflux genes but not genes that regulate fatty acid metabolism. THP-1 human macrophages incubated with the OSC inhibitor (OSCi) RO0714565 (15 nM) significantly reduced cholesterol synthesis and maximized synthesis of 24(S),25-epoxy. Endogenous 24(S),25-epoxy increased ABCA1, ABCG1, and APOE mRNA abundance and consequently increased cholesterol efflux to apoAI. In contrast, OSCi had no effect on LXR-regulated genes LPL (lipoprotein lipase) and FAS (fatty acid synthase). TO-901317 (>or=10 nM) significantly enhanced expression of all genes examined. OSCi and TO-901317 increased the mRNA and precursor form of SREBP-1c, a major regulator of fatty acid and triglyceride synthesis. However, conversion of the precursor to the active form (nSREBP-1c) was blocked by OSCi-induced 24(S),25-epoxy but not by TO-901317 (>or=10 nm), which instead markedly increased nSREBP-1c. Disruption of nSREBP-1c formation by 24(S),25-epoxy accounted for diminished FAS and LPL expression. In summary, endogenous synthesis of 24(S),25-epoxy selectively up-regulates expression of macrophage LXR-regulated cholesterol efflux genes without stimulating genes linked to fatty acid and triglyceride synthesis.
Collapse
Affiliation(s)
- Michael M Beyea
- Robarts Research Institute Vascular Biology Group, Department of Biochemistry, University of Western, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Hsu SC, Huang CJ. Reduced fat mass in rats fed a high oleic acid-rich safflower oil diet is associated with changes in expression of hepatic PPARalpha and adipose SREBP-1c-regulated genes. J Nutr 2006; 136:1779-85. [PMID: 16772437 DOI: 10.1093/jn/136.7.1779] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PPARs and sterol regulatory element-binding protein-1c (SREPB-1c) are fatty acid-regulated transcription factors that control lipid metabolism at the level of gene expression. This study compared a high oleic acid-rich safflower oil (ORSO) diet and a high-butter diet for their effect on adipose mass and expressions of genes regulated by PPAR and SREPB-1c in rats. Four groups of Wistar rats were fed 30S (30% ORSO), 5S (5% ORSO), 30B (29% butter + 1% ORSO), or 5B (4% butter plus 1% ORSO) diets for 15 wk. Compared with the 30B group, the 30S group had less retroperitoneal white adipose tissue (RWAT) mass and lower mRNA expressions of lipoprotein lipase, adipocyte fatty acid-binding protein, fatty acid synthase, acetyl CoA carboxylase, and SREBP-1c in the RWAT, higher mRNA expressions of acyl CoA oxidase, carnitine palmitoyl-transferase 1A, fatty acid binding protein, and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in the liver (P < 0.05). The 18:2(n-6) and 20:4(n-6) contents in the liver and RWAT of the 30S group were >2 fold those of the 30B group (P < 0.05). These results suggested that the smaller RWAT mass in rats fed the high-ORSO diet might be related to the higher tissue 18:2(n-6) and 20:4(n-6). This in turn could upregulate the expressions of fatty acid catabolic genes through the activation of PPARalpha in the liver and downregulate the expressions of lipid storage and lipogenic gene through the suppression of SREBP-1c in the RWAT.
Collapse
Affiliation(s)
- Shan-Ching Hsu
- Division of Nutritional Science, Institute of Microbiology and Biochemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
33
|
Sandberg MB, Bloksgaard M, Duran-Sandoval D, Duval C, Staels B, Mandrup S. The Gene Encoding Acyl-CoA-binding Protein Is Subject to Metabolic Regulation by Both Sterol Regulatory Element-binding Protein and Peroxisome Proliferator-activated Receptor α in Hepatocytes. J Biol Chem 2005; 280:5258-66. [PMID: 15611101 DOI: 10.1074/jbc.m407515200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acyl-CoA-binding protein (ACBP) is a 10-kDa intracellular lipid-binding protein that transports acylCoA esters. The protein is expressed in most cell types at low levels; however, expression is particularly high in cells with a high turnover of fatty acids. Here we confirm a previous observation that ACBP expression in rodent liver is down-regulated by fasting, and we show that insulin but not glucose is the inducer of ACBP expression in primary rat hepatocytes. In keeping with the regulation by insulin, we show that ACBP is a sterol regulatory element-binding protein 1c (SREBP-1c) target gene in hepatocytes. Members of the SREBP family activate the rat ACBP gene through binding sites for SREBP and the auxiliary factors Sp1 and nuclear factor Y in the proximal promoter. In addition, we show that ACBP is a peroxisome proliferator-activated receptor (PPAR) alpha target gene in cultured hepatocytes and is induced in the liver by fibrates in a PPARalpha-dependent manner. Thus, ACBP is a dual PPARalpha and SREBP-1c target gene in hepatocytes. Fasting leads to reduced activity of SREBP but increased activity of PPARalpha in hepatocytes, and in keeping with ACBP being a dual target gene, we show that ACBP expression is significantly lower in livers from PPARalpha knock-out mice than in livers from wild type mice. In conclusion, expression of ACBP in rodent hepatocytes is subject to dual metabolic regulation by PPARalpha and SREBP-1c, which may reflect the need for ACBP during lipogenic as well as lipo-oxidative conditions.
Collapse
Affiliation(s)
- Maria B Sandberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Schneider JG, Eynatten MV, Dugi KA. Atorvastatin Increases Lipoprotein Lipase Expression in vitro and Activity in vivo. J Atheroscler Thromb 2005; 12:232-3. [PMID: 16148403 DOI: 10.5551/jat.12.232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Schmitz G, Heimerl S, Langmann T. Zinc finger protein ZNF202 structure and function in transcriptional control of HDL metabolism. Curr Opin Lipidol 2004; 15:199-208. [PMID: 15017363 DOI: 10.1097/00041433-200404000-00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The zinc finger protein ZNF202 is a transcriptional repressor controlling promoter elements predominantly found in genes involved in lipid metabolism and energy homeostasis. Here we summarize the structure, regulation and modulation of ZNF202 function by protein interactions. RECENT FINDINGS We review recent data and discuss the importance of the steadily growing list of ZNF202 target genes, defining a central role for ZNF202 as a key transcriptional regulator in metabolic disorders. Furthermore, we provide an interlink between transcriptional repression by ZNF202 and enhancement of gene activation via nuclear receptor coactivation by SCAN domain protein 1. SUMMARY The novel findings suggest that ZNF202 together with other SCAN domain proteins orchestrates a complex transcriptional regulatory network, which justifies a further exploration of its potential as a therapeutic target in lipid disorders such as atherosclerosis and associated metabolic syndromes.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | | | |
Collapse
|
36
|
Ng DS, Xie C, Maguire GF, Zhu X, Ugwu F, Lam E, Connelly PW. Hypertriglyceridemia in Lecithin-cholesterol Acyltransferase-deficient Mice Is Associated with Hepatic Overproduction of Triglycerides, Increased Lipogenesis, and Improved Glucose Tolerance. J Biol Chem 2004; 279:7636-42. [PMID: 14668345 DOI: 10.1074/jbc.m309439200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lecithin-cholesterol acyltransferase deficiency is frequently associated with hypertriglyceridemia (HTG) in animal models and humans. We investigated the mechanism of HTG in the ldlr-/- x lcat-/- (double knockout (dko)) mice using the ldlr-/- x lcat+/+ (knock-out (ko)) littermates as control. Mean fasting triglyceride (TG) levels in the dko mice were elevated 1.75-fold compared with their controls (p < 0.002). Both the very low density lipoprotein and the low density lipoprotein/intermediate density lipoprotein fractions separated by fast protein liquid chromatography were TG-enriched in the dko mice. In vitro lipolysis assay revealed that the dko mouse very low density lipoprotein (d < 1.019 g/ml) fraction separated by ultracentrifugation was a more efficient substrate for lipolysis by exogenous bovine lipoprotein lipase. Post-heparin lipoprotein lipase activity was reduced by 61% in the dko mice. Hepatic TG production rate, determined after intravenous Triton WR1339 injection, was increased 8-fold in the dko mice. Hepatic mRNA levels of sterol regulatory element binding protein-1 (srebp-1) and its target genes acetyl-CoA carboxylase-1 (acc-1), fatty acid synthase (fas), and stearoyl-CoA desaturase-1 (scd-1) were significantly elevated in the dko mice compared with the ko control. The hepatic mRNA levels of LXRalpha (lxralpha) and its target genes including angiopoietin-like protein 3 (angptl-3) in the dko mice were unchanged. Fasting glucose and insulin levels were reduced by 31 and 42%, respectively in the dko mice, in conjunction with a 49% reduction in hepatic pepck-1 mRNA (p = 0.014). Both the HTG and the improved fasting glucose phenotype seen in the dko mice are at least in part attributable to an up-regulation of the hepatic srebp-1c gene.
Collapse
MESH Headings
- Acetyl-CoA Carboxylase/genetics
- Animals
- Blood Glucose/analysis
- CCAAT-Enhancer-Binding Proteins/genetics
- Cholesterol/blood
- DNA-Binding Proteins/genetics
- Fasting
- Fatty Acid Synthases/genetics
- Fatty Acids, Nonesterified/metabolism
- Hypertriglyceridemia/enzymology
- Insulin/blood
- Lecithin Cholesterol Acyltransferase Deficiency/blood
- Lipids/blood
- Lipoproteins, HDL/blood
- Lipoproteins, LDL/blood
- Lipoproteins, VLDL/blood
- Lipoproteins, VLDL/metabolism
- Liver/chemistry
- Liver/metabolism
- Liver X Receptors
- Mice
- Mice, Knockout
- Orphan Nuclear Receptors
- Phosphatidylcholine-Sterol O-Acyltransferase/genetics
- Phosphatidylcholine-Sterol O-Acyltransferase/physiology
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sterol Regulatory Element Binding Protein 1
- Transcription Factors
- Triglycerides/blood
Collapse
Affiliation(s)
- Dominic S Ng
- Department of Medicine, St. Michael's Hospital, Toronto, Ontario M5B 1A6, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Fayard E, Schoonjans K, Annicotte JS, Auwerx J. Liver receptor homolog 1 controls the expression of carboxyl ester lipase. J Biol Chem 2003; 278:35725-31. [PMID: 12853459 DOI: 10.1074/jbc.m302370200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The orphan nuclear receptor liver receptor homolog 1 (LRH-1) plays a central role in cholesterol homeostasis by regulating a number of hepatic and intestinal genes critical for reverse cholesterol transport and bile acid homeostasis. Herein, we describe the identification of carboxyl ester lipase (CEL) as a novel target of LRH-1 in pancreas, a tissue in which LRH-1 is abundantly expressed. In situ hybridization and gene expression studies demonstrate that both LRH-1 and CEL are co-expressed and confined to the exocrine pancreas. LRH-1 interacts with a consensus LRH-1 response element in the human CEL promoter, which is perfectly conserved in the rat gene, and induces CEL promoter activity in cotransfection assays. As reported for other LRH-1 target genes, the nuclear receptor short heterodimer partner represses LRH-1-induced CEL promoter activity. Chromatin immunoprecipitation demonstrates that binding of LRH-1 to the CEL promoter increases histone H4 acetylation corresponding with the activation of endogenous CEL gene transcription. Our data, identifying CEL as the first pancreatic LRH-1 target gene, indicate that LRH-1 is an important player in enterohepatic cholesterol homeostasis.
Collapse
Affiliation(s)
- Elisabeth Fayard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, B.P. 10142, F-67404 Illkirch, C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
38
|
McAteer MA, Grimsditch DC, Vidgeon-Hart M, Benson GM, Salter AM. Dietary cholesterol reduces lipoprotein lipase activity in the atherosclerosis-susceptible Bio F(1)B hamster. Br J Nutr 2003; 89:341-50. [PMID: 12628029 DOI: 10.1079/bjn2002802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have compared lipoprotein metabolism in, and susceptibility to atherosclerosis of, two strains of male Golden Syrian hamster, the Bio F(1)B hybrid and the dominant spot normal inbred (DSNI) strain. When fed a normal low-fat diet containing approximately 40 g fat and 0.3 g cholesterol/kg, triacylglycerol-rich lipoprotein (chylomicron+VLDL) and HDL-cholesterol were significantly higher (P<0.001) in Bio F(1)B hamsters than DSNI hamsters. When this diet was supplemented with 150 g coconut oil and either 0.5 or 5.0 g cholesterol/kg, significant differences were seen in response. In particular, the high-cholesterol diet produced significantly greater increases in plasma cholesterol and triacylglycerol in the Bio F(1)B compared with the DSNI animals (P=0.002 and P<0.001 for cholesterol and triacylglycerol, respectively). This was particularly dramatic in non-fasting animals, suggesting an accumulation of chylomicrons. In a second experiment, animals were fed 150 g coconut oil/kg and 5.0 g cholesterol/kg for 6 and 12 months. Again, the Bio F(1)B animals showed dramatic increases in plasma cholesterol and triacylglycerol, and this was confirmed as primarily due to a rise in chylomicron concentration. Post-heparin lipoprotein lipase activity was significantly reduced (P<0.001) in the Bio F(1)B compared with the DSNI animals at 6 months, and virtually absent at 12 months. Bio F(1)B animals were also shown to develop significantly more (P<0.001) atherosclerosis. These results indicate that, in the Bio F(1)B hybrid hamster, cholesterol feeding reduces lipoprotein lipase activity, thereby causing the accumulation of chylomicrons that may be associated with their increased susceptibility to atherosclerosis.
Collapse
Affiliation(s)
- Martina A McAteer
- Division of Nutritional Biochemistry, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | | | | | | | | |
Collapse
|
39
|
Kamei Y, Mizukami J, Miura S, Suzuki M, Takahashi N, Kawada T, Taniguchi T, Ezaki O. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett 2003; 536:232-6. [PMID: 12586369 DOI: 10.1016/s0014-5793(03)00062-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipoprotein lipase (LPL) plays a role in lipid usage in skeletal muscle by hydrolyzing plasma triglycerides into fatty acids, which are further utilized for beta-oxidation. Lipid usage is stimulated during fasting, diabetes mellitus and exercise, concomitant with enhanced LPL expression in skeletal muscle. Here we show that the forkhead type transcription factor FKHR is strongly induced in skeletal muscle in fasting mice, in mice with streptozotocin-induced diabetes and in mice after treadmill running. Ectopic expression of FKHR enhanced LPL gene expression in C2C12 muscle cells in culture. These results implicate FKHR as an important modulator of lipid metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Yasutomi Kamei
- PRESTO, Japan Science and Technology Corporation, National Institute of Health and Nutrition, 1-23-1, Toyama Shinjuku-ku, Tokyo 162-863, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Shimano H. Sterol regulatory element-binding protein family as global regulators of lipid synthetic genes in energy metabolism. VITAMINS AND HORMONES 2003; 65:167-94. [PMID: 12481547 DOI: 10.1016/s0083-6729(02)65064-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sterol regulatory element-binding proteins (SREBPs) have been established as lipid synthetic transcription factors for cholesterol and fatty acid synthesis. SREBPs are synthesized as membrane-bound precursors with their N-terminal active portions entering the nucleus to activate target genes after proteolytic cleavage in a sterol-regulated manner. This cleavage step is regulated by a putative sterol-sensing molecule, SREBP-activating protein (SCAP), that forms a complex with SREBPs and traffics between the rough endoplasmic reticulum and Golgi. DNA cis-elements that SREBPs bind, originally identified as sterol-regulatory elements (SREs), now expands to a variety of SRE-like sequences and some of E-boxes, which makes SREBPs eligible to regulate a wide range of lipid genes. Animal experiments including transgenic and knockout mice suggest that three isoforms, SREBP-1a, -1c, and -2, have different roles in lipid synthesis. In differentiated tissues and organs, SREBP-1c is involved in fatty acid, whereas SREBP-2 plays a major role in regulation of cholesterol synthesis. SREBP-1a is expressed in growing cells, providing both cholesterol and fatty acids that are required for membrane synthesis. SREBP-1c seems to be a mediator for insulin/glucose signaling to lipogenesis, and could be involved in insulin resistance, remnant lipoproteins, and fatty livers. Future studies in this field will certainly focus on understanding the molecular mechanisms sensing cellular sterol and energy states leading to the activation of SREBP-mediated gene transcription.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
41
|
Abstract
Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.
Collapse
Affiliation(s)
- Martin Merkel
- Department of Medicine, University of Hamburg, Hamburg, Germany. Department of Medicine, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | |
Collapse
|
42
|
Lefrere I, De Coppet P, Camelin JC, Le Lay S, Mercier N, Elshourbagy N, Bril A, Berrebi-Bertrand I, Feve B, Krief S. Neuropeptide AF and FF modulation of adipocyte metabolism. Primary insights from functional genomics and effects on beta-adrenergic responsiveness. J Biol Chem 2002; 277:39169-78. [PMID: 12149260 DOI: 10.1074/jbc.m205084200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of a neuropeptide AF and FF receptor (NPFF-R2) mRNA in human adipose tissue (Elshourbagy, N. A., Ames, R. S., Fitzgerald, L. R., Foley, J. J., Chambers, J. K., Szekeres, P. G., Evans, N. A., Schmidt, D. B., Buckley, P. T., Dytko, G. M., Murdock, P. R., Tan, K. B., Shabon, U., Nuthulaganti, P., Wang, D. Y., Wilson, S., Bergsma, D. J., and Sarau, H. M. (2000) J. Biol. Chem. 275, 25965-25971) suggested these peptides, principally recognized for their pain modulating effects, may also impact on adipocyte metabolism, an aspect that has not been explored previously. Our aim was thus to obtain more insights into the actions of these peptides on adipocytes, an approach initially undertaken with a functional genomic assay. First we showed that 3T3-L1 adipocytes express both NPFF-R1 and NPFF-R2 transcripts, and that NPAF binds adipocyte membranes with a nanomolar affinity as assessed by surface plasmon resonance technology. Then, and following a 24-h treatment with NPFF or NPAF (1 microm), we have measured using real-time quantitative reverse transcriptase-PCR the mRNA steady state levels of already well characterized genes involved in key pathways of adipose metabolism. Among the 45 genes tested, few were modulated by NPFF ( approximately 10%) and a larger number by NPAF ( approximately 27%). Interestingly, NPAF increased the mRNA levels of beta2- and beta3-adrenergic receptors (AR), and to a lesser extent those of beta1-ARs. These variations in catecholamine receptor mRNAs correlated with a clear induction in the density of beta2- and beta3-AR proteins, and in the potency of beta-AR subtype-selective agonists to stimulate adenylyl cyclase activity. Altogether, these data show that NPFF-R1 and NPFF-R2 are functionally present in adipocytes and suggest that besides their well described pain modulation effects, NPAF and to a lesser extent NPFF, may have a global impact on body energy storage and utilization.
Collapse
MESH Headings
- 3T3 Cells
- Adenylyl Cyclases/metabolism
- Adipocytes/metabolism
- Adipose Tissue/metabolism
- Animals
- Biosensing Techniques
- Cell Membrane/metabolism
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Glycerolphosphate Dehydrogenase/metabolism
- Humans
- Mice
- Neuropeptides/metabolism
- Oligopeptides/metabolism
- Protein Binding
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Surface Plasmon Resonance
- Time Factors
Collapse
Affiliation(s)
- Isabelle Lefrere
- GlaxoSmithKline Laboratoires Pharmaceutiques, 4 rue du Chesnay-Beauregard, BP 58, 35762 Saint-Grégoire, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 2002; 13:471-81. [PMID: 12352010 DOI: 10.1097/00041433-200210000-00002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize and discuss recent advances in the understanding of the physiological role of lipoprotein lipase in lipid and energy metabolism. RECENT FINDINGS Studies on the transcriptional and the posttranscriptional level of lipoprotein lipase expression have provided new insights into the complex mechanisms that are involved in the regulation of the enzyme. Additionally a large body of evidence from both human studies and animal models suggests that the level of lipoprotein lipase expression in a given tissue is the rate limiting process for the uptake of triglyceride derived fatty acids. Imbalances in the partitioning of fatty acids among peripheral tissues have major metabolic consequences. For example, in mice both decreased lipoprotein lipase activities in adipose tissue and increased activity in muscle are associated with resistance to obesity; lack of lipoprotein lipase activity in macrophages is correlated with a decreased susceptibility to develop atherosclerotic lesions and overexpression of the enzyme in muscle is associated with increased blood glucose levels and insulin resistance. SUMMARY Considering the central role of lipoprotein lipase in energy metabolism it is a reasonable goal to discover and develop new drugs that affect the tissue specific expression pattern of the enzyme.
Collapse
Affiliation(s)
- Karina Preiss-Landl
- Institute of Molecular Bioloogy, Biochemistry and Microbiology, Karl-Frasnzens-University, Graz, Heinrichstrasse 31a, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
44
|
Brendel C, Schoonjans K, Botrugno OA, Treuter E, Auwerx J. The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity. Mol Endocrinol 2002; 16:2065-76. [PMID: 12198243 DOI: 10.1210/me.2001-0194] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The small heterodimer partner SHP (NR0B2) is an unusual nuclear receptor that lacks the typical DNA binding domain common to most nuclear receptors. SHP has been reported to act as a corepressor for several nuclear receptors, but its exact mechanism of action is still elusive. Here we show that SHP can interact with the liver X receptors LXRalpha (NR1H3) and LXRbeta (NR1H2), as demonstrated by glutathione-S-transferase pull-down assays, mammalian two-hybrid, and coimmunoprecipitation experiments. In transfection assays, SHP inhibits the expression of an artificial reporter driven by an LXR-response element and represses the transcriptional activation by LXR of the human ATP-binding cassette transporter 1 (ABCA1) promoter. Treatment of Caco-2 cells with bile acids, which activate farnesoid X receptor and subsequently induce SHP, leads to the repression of the human ABCG1 gene, an established LXR target gene. These results demonstrate that SHP is able to interact with LXR and to modulate its transcriptional activity.
Collapse
Affiliation(s)
- Carole Brendel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, BP 1042, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
45
|
Ikeda S, Miyazaki H, Nakatani T, Kai Y, Kamei Y, Miura S, Tsuboyama-Kasaoka N, Ezaki O. Up-regulation of SREBP-1c and lipogenic genes in skeletal muscles after exercise training. Biochem Biophys Res Commun 2002; 296:395-400. [PMID: 12163031 DOI: 10.1016/s0006-291x(02)00883-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exercise increases utilization of lipids and carbohydrates in skeletal muscles. After exercise, replenishment of glycogen and triglyceride occurs in skeletal muscles. To elucidate the mechanism of lipid filling effect after exercise training, expression patterns of genes related to triglyceride synthesis were examined under several exercise conditions. Mice exercised by 2-week swimming had 1.4-2.0-fold increases of sterol regulatory element-binding protein 1 (SREBP-1) mRNA in skeletal muscles after the last swimming, with increases of lipogenic genes, such as acetyl-CoA carboxylase-1 (ACC-1), stearoyl-CoA desaturase-1 (SCD-1), and acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) mRNAs. An increase of SREBP-1 mRNA was observed after the 6-h treadmill running training but not after 1-h single treadmill running. Increase of SREBP-1 mRNA was due to the increase of SREBP-1c isoform but not of SREBP-1a. These data indicate that SREBP-1c, a key transcription factor of liver triglyceride synthesis, might also be responsible for skeletal muscle triglyceride synthesis after chronic exercise training.
Collapse
Affiliation(s)
- Shinobu Ikeda
- Division of Clinical Nutrition, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Miserez AR, Muller PY, Spaniol V. Indinavir inhibits sterol-regulatory element-binding protein-1c-dependent lipoprotein lipase and fatty acid synthase gene activations. AIDS 2002; 16:1587-94. [PMID: 12172079 DOI: 10.1097/00002030-200208160-00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND A syndrome characterized by hypertriglyceridaemia, hypercholesterolaemia, hyperinsulinaemia, and lipodystrophy has been found to be associated with highly active antiretroviral treatment (HAART) including protease inhibitors. A marker predicting this syndrome has been previously identified in the gene encoding the sterol-regulatory element-binding protein (SREBP)-1c, a regulator of triglycerides, cholesterol, insulin, and adipocytes. OBJECTIVE A possible inhibition of SREBP-1c-dependent genes by the protease inhibitor indinavir and its possible reversal by the lipid-lowering drug simvastatin were studied. METHODS The effects of indinavir and simvastatin on the inhibition/activation of SREBP-1c-dependent genes were compared with the effects of indinavir and simvastatin on the inhibition/activation of SREBP-1c-independent genes. RESULTS Indinavir inhibited the SREBP-1c-dependent genes encoding the lipoprotein lipase (103 nmol/l resulted in an inhibition of 12.4%; P = 0.0051) and the fatty acid synthase (103 nmol/l resulted in an inhibition of 30.3%; P = 0.036) in a dose-dependent fashion but not the SREBP-1c-independent gene encoding the low-density lipoprotein receptor. Simvastatin antagonized the indinavir-induced SREBP-1c-inhibition. CONCLUSIONS Indinavir inhibits important effector genes of the SREBP-1c pathway, explaining major HAART-related adverse effects.
Collapse
Affiliation(s)
- André R Miserez
- Cardiovascular Genetics, Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
47
|
Yahagi N, Shimano H, Hasty AH, Matsuzaka T, Ide T, Yoshikawa T, Amemiya-Kudo M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga JI, Harada K, Gotoda T, Nagai R, Ishibashi S, Yamada N. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. J Biol Chem 2002; 277:19353-7. [PMID: 11923308 DOI: 10.1074/jbc.m201584200] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is a common nutritional problem often associated with diabetes, insulin resistance, and fatty liver (excess fat deposition in liver). Leptin-deficient Lep(ob)/Lep(ob) mice develop obesity and those obesity-related syndromes. Increased lipogenesis in both liver and adipose tissue of these mice has been suggested. We have previously shown that the transcription factor sterol regulatory element-binding protein-1 (SREBP-1) plays a crucial role in the regulation of lipogenesis in vivo. To explore the possible involvement of SREBP-1 in the pathogenesis of obesity and its related syndromes, we generated mice deficient in both leptin and SREBP-1. In doubly mutant Lep(ob/ob) x Srebp-1(-/-) mice, fatty livers were markedly attenuated, but obesity and insulin resistance remained persistent. The mRNA levels of lipogenic enzymes such as fatty acid synthase were proportional to triglyceride accumulation in liver. In contrast, the mRNA abundance of SREBP-1 and lipogenic enzymes in the adipose tissue of Lep(ob)/Lep(ob) mice was profoundly decreased despite sustained fat, which could explain why the SREBP-1 disruption had little effect on obesity. In conclusion, SREBP-1 regulation of lipogenesis is highly involved in the development of fatty livers but does not seem to be a determinant of obesity in Lep(ob)/Lep(ob) mice.
Collapse
Affiliation(s)
- Naoya Yahagi
- Department of Internal Medicine, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Han J, Farmer SR, Kirkland JL, Corkey BE, Yoon R, Pirtskhalava T, Ido Y, Guo W. Octanoate attenuates adipogenesis in 3T3-L1 preadipocytes. J Nutr 2002; 132:904-10. [PMID: 11983812 DOI: 10.1093/jn/132.5.904] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preadipocytes exposed to octanoate accumulate less lipid than cells exposed to long-chain fatty acids. This effect of octanoate involves significant attenuation of expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor (PPAR)gamma, steroid regulatory binding element protein (SREBP)-1c and CCAAT element binding protein (C/EBPalpha) at both the mRNA and protein levels. Expression of differentiation markers, including adipocyte fatty acid binding protein (ALBP), glycerol-3-phosphate dehydrogenase (GPDH) and leptin, was also significantly diminished by octanoate. However, octanoate did not prevent the decrease in preadipocyte factor-1 (Pref-1) expression that occurs during adipogenesis, nor did it inhibit the early induction of C/EBPbeta,delta. Treatment with synthetic PPARgamma ligands partially offset the inhibitory effect of octanoate on differentiation. Ectopic expression of PPARgamma2 in 3T3-L1 cells partially restored lipid accretion and GPDH activity in octanoate-treated cells. Adding octanoate together with troglitazone attenuated the effects of troglitazone on adipocyte differentiation in both normal 3T3-L1 cells and engineered 3T3-L1 cells that expressed ectopic PPARgamma2, implying that octanoate might compete against troglitazone for its binding to PPARgamma. These results suggest that octanoate may block adipogenesis at least in part by its influence on the expression/activation of PPARgamma.
Collapse
Affiliation(s)
- Jianrong Han
- Departments of Medicine and Biochemistry, Obesity Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Roglans N, Verd JC, Peris C, Alegret M, Vázquez M, Adzet T, Díaz C, Hernández G, Laguna JC, Sánchez RM. High doses of atorvastatin and simvastatin induce key enzymes involved in VLDL production. Lipids 2002; 37:445-54. [PMID: 12056585 DOI: 10.1007/s11745-002-0916-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Treatments with high doses of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors may induce the expression of sterol regulatory element binding protein (SREBP)-target genes, causing different effects from those attributed to the reduction of hepatic cholesterol content. The aim of this study was to investigate the effects of high doses of statins on the key enzymes involved in VLDL production in normolipidemic rats. To examine whether the effects caused by statin treatment are a consequence of HMG-CoA reductase inhibition, we tested the effect of atorvastatin on these enzymes in mevalonate-fed rats. Atorvastatin and simvastatin enhanced not only HMG-CoA reductase but also the expression of the SREBP-2 gene itself. As a result of the overexpression of SREBP-2 caused by the statin treatment, genes regulated basically by SREBP-1, as FA synthase and acetyl-coenzyme A carboxylase, were also induced and their mRNA levels increased. DAG acyltransferase and microsomal TG transfer protein mRNA levels as well as phosphatidate phosphohydrolase activity were increased by both statins. Simvastatin raised liver cholesterol content, ACAT mRNA levels, and CTP:phosphocholine cytidylyltransferase activity, whereas it reduced liver DAG and phospholipid content. Mevalonate feeding reversed all changes induced by the atorvastatin treatment. These results show that treatment with high doses of statins induces key enzymes controlling rat liver lipid synthesis and VLDL assembly, probably as a result of SREBP-2 overexpression. Despite the induction of the key enzymes involved in VLDL production, both statins markedly reduced plasma TG levels, suggesting that different mechanisms may be involved in the hypotriglyceridemic effect of statins at high or low doses.
Collapse
Affiliation(s)
- Núria Roglans
- Departamento Farmacología y Química Terapéutica, Facultad de Farmacia, Núcleo Universitario de Pedralbes, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hughes TR, Tengku-Muhammad TS, Irvine SA, Ramji DP. A novel role of Sp1 and Sp3 in the interferon-gamma -mediated suppression of macrophage lipoprotein lipase gene transcription. J Biol Chem 2002; 277:11097-106. [PMID: 11796707 DOI: 10.1074/jbc.m106774200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of macrophage lipoprotein lipase by cytokines is of potentially crucial importance in the pathogenesis of atherosclerosis. We have shown previously that macrophage lipoprotein lipase expression is suppressed by interferon-gamma (IFN-gamma) at the transcriptional level. We investigated the regulatory sequence elements and the transcription factors that are involved in this response. We demonstrated that the -31/+187 sequence contains the minimal IFN-gamma-responsive elements. Electrophoretic mobility shift assays showed that the binding of proteins to two regions in the -31/+187 sequence was reduced dramatically when the cells were exposed to IFN-gamma. Both competition electrophoretic mobility shift assays and antibody supershift assays showed that the interacting proteins were composed of Sp1 and Sp3. Mutations of the Sp1/Sp3-binding sites in the minimal IFN-gamma-responsive elements abolished the IFN-gamma-mediated suppression of promoter activity, whereas multimers of the sequence were able to impart the response to a heterologous promoter. Western blot analysis showed that IFN-gamma reduced the steady state levels of Sp3 protein. In contrast, the cytokine decreased the DNA binding activity of Sp1 without affecting the protein levels. These studies therefore reveal a novel mechanism for IFN-gamma-mediated regulation of macrophage gene transcription.
Collapse
Affiliation(s)
- Timothy R Hughes
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, P. O. Box 911, Cardiff CF10 3US, United Kingdom
| | | | | | | |
Collapse
|