• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4622684)   Today's Articles (299)   Subscriber (49407)
For: Antson AA, Smith DJ, Roper DI, Lewis S, Caves LS, Verma CS, Buckley SL, Lillford PJ, Hubbard RE. Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol 2001;305:875-89. [PMID: 11162099 DOI: 10.1006/jmbi.2000.4336] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Number Cited by Other Article(s)
1
Muraoka M. Measurement of Ice-Binding Protein Inhibition of Non-ice Crystal Growth. Methods Mol Biol 2024;2730:155-167. [PMID: 37943457 DOI: 10.1007/978-1-0716-3503-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
2
Melnik BS, Glukhova KA, Sokolova (Voronova) EA, Balalaeva IV, Garbuzynskiy SO, Finkelstein AV. Physics of Ice Nucleation and Antinucleation: Action of Ice-Binding Proteins. Biomolecules 2023;14:54. [PMID: 38254654 PMCID: PMC10813080 DOI: 10.3390/biom14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]  Open
3
Masuda Y, Kheawkanha T, Nagahama A, Kawasaki K, Konno T, Yamanaka K, Tatemoto H. Antifreeze protein type III addition to freezing extender comprehensively improves post-thaw sperm properties in Okinawan native Agu pig. Anim Reprod Sci 2023;252:107232. [PMID: 37075564 DOI: 10.1016/j.anireprosci.2023.107232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
4
Midya US, Bandyopadhyay S. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive Tenebrio molitor Antifreeze Protein. J Phys Chem B 2023;127:121-132. [PMID: 36594578 DOI: 10.1021/acs.jpcb.2c06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
5
Monteiro MM, de Mello Seal DC, de Souza JH, Trevisan M, Arruda LCP, Silva SV, Guerra MMP. Effect of antifreeze protein type III on frozen/thawed of spermatozoa recover from goat epididymis. Res Vet Sci 2023;154:108-112. [PMID: 36571888 DOI: 10.1016/j.rvsc.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
6
Guo HB, Perminov A, Bekele S, Kedziora G, Farajollahi S, Varaljay V, Hinkle K, Molinero V, Meister K, Hung C, Dennis P, Kelley-Loughnane N, Berry R. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci Rep 2022;12:10696. [PMID: 35739160 PMCID: PMC9226352 DOI: 10.1038/s41598-022-14382-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022]  Open
7
Ghalamara S, Silva S, Brazinha C, Pintado M. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. BIORESOUR BIOPROCESS 2022;9:5. [PMID: 38647561 PMCID: PMC10992025 DOI: 10.1186/s40643-022-00494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022]  Open
8
Baskaran A, Kaari M, Venugopal G, Manikkam R, Joseph J, Bhaskar PV. Anti freeze proteins (Afp): Properties, sources and applications - A review. Int J Biol Macromol 2021;189:292-305. [PMID: 34419548 DOI: 10.1016/j.ijbiomac.2021.08.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
9
Biswas A, Barone V, Daidone I. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. J Phys Chem Lett 2021;12:8777-8783. [PMID: 34491750 PMCID: PMC8450935 DOI: 10.1021/acs.jpclett.1c01855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/16/2021] [Indexed: 05/30/2023]
10
Mehdipour M, Daghigh-Kia H, Najafi A, Martínez-Pastor F. Type III antifreeze protein (AFP) improves the post-thaw quality and in vivo fertility of rooster spermatozoa. Poult Sci 2021;100:101291. [PMID: 34217904 PMCID: PMC8260870 DOI: 10.1016/j.psj.2021.101291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023]  Open
11
Pal P, Chakraborty S, Jana B. Differential Hydration of Ice‐Binding Surface of Globular and Hyperactive Antifreeze Proteins. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
12
Gruneberg AK, Graham LA, Eves R, Agrawal P, Oleschuk RD, Davies PL. Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology 2021;99:28-39. [PMID: 33529683 DOI: 10.1016/j.cryobiol.2021.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 01/06/2023]
13
Choi SR, Lee J, Seo YJ, Kong HS, Kim M, Jin E, Lee JR, Lee JH. Molecular basis of ice-binding and cryopreservation activities of type III antifreeze proteins. Comput Struct Biotechnol J 2021;19:897-909. [PMID: 33598104 PMCID: PMC7851773 DOI: 10.1016/j.csbj.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/08/2023]  Open
14
Hobbs RS, Hall JR, Graham LA, Davies PL, Fletcher GL. Antifreeze protein dispersion in eelpouts and related fishes reveals migration and climate alteration within the last 20 Ma. PLoS One 2020;15:e0243273. [PMID: 33320906 PMCID: PMC7737890 DOI: 10.1371/journal.pone.0243273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/18/2020] [Indexed: 12/31/2022]  Open
15
Kozuch DJ, Stillinger FH, Debenedetti PG. Genetic Algorithm Approach for the Optimization of Protein Antifreeze Activity Using Molecular Simulations. J Chem Theory Comput 2020;16:7866-7873. [PMID: 33201707 DOI: 10.1021/acs.jctc.0c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
16
Jang H, Kwon HJ, Sun WS, Hwang S, Hwang IS, Kim S, Lee JH, Lee SG, Lee JW. Effects of Leucosporidium-derived ice-binding protein (LeIBP) on bull semen cryopreservation. Vet Med Sci 2020;6:447-453. [PMID: 32323490 PMCID: PMC7397894 DOI: 10.1002/vms3.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 12/02/2022]  Open
17
Kumari S, Muthachikavil AV, Tiwari JK, Punnathanam SN. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020;36:2439-2448. [PMID: 32069407 DOI: 10.1021/acs.langmuir.0c00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
18
Surís-Valls R, Voets IK. Peptidic Antifreeze Materials: Prospects and Challenges. Int J Mol Sci 2019;20:E5149. [PMID: 31627404 PMCID: PMC6834126 DOI: 10.3390/ijms20205149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022]  Open
19
Chakraborty S, Jana B. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Phys Chem Chem Phys 2019;21:19298-19310. [DOI: 10.1039/c9cp03135a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Muraoka M, Ohtake M, Yamamoto Y. Kinetic inhibition effect of Type I and III antifreeze proteins on unidirectional tetrahydrofuran hydrate crystal growth. RSC Adv 2019;9:11530-11537. [PMID: 35520232 PMCID: PMC9063353 DOI: 10.1039/c9ra00627c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022]  Open
21
Brotzakis ZF, Voets IK, Bakker HJ, Bolhuis PG. Water structure and dynamics in the hydration layer of a type III anti-freeze protein. Phys Chem Chem Phys 2018;20:6996-7006. [PMID: 29468240 DOI: 10.1039/c8cp00170g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein. Proc Natl Acad Sci U S A 2018;115:5456-5461. [PMID: 29735675 PMCID: PMC6003529 DOI: 10.1073/pnas.1800635115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
23
Ice cream structure modification by ice-binding proteins. Food Chem 2018;246:164-171. [DOI: 10.1016/j.foodchem.2017.10.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022]
24
Mahatabuddin S, Tsuda S. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018;1081:321-337. [PMID: 30288717 DOI: 10.1007/978-981-13-1244-1_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
25
Verreault D, Alamdari S, Roeters SJ, Pandey R, Pfaendtner J, Weidner T. Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water. Phys Chem Chem Phys 2018;20:26926-26933. [DOI: 10.1039/c8cp03382j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
26
Shtukenberg AG, Ward MD, Kahr B. Crystal Growth with Macromolecular Additives. Chem Rev 2017;117:14042-14090. [DOI: 10.1021/acs.chemrev.7b00285] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
27
Ice crystal growth inhibition by peptides from fish gelatin hydrolysate. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
28
Zhou H, Infante Ferreira C. Effect of type-III Anti-Freeze Proteins (AFPs) on CO2 hydrate formation rate. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.03.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
29
Stevens CA, Semrau J, Chiriac D, Litschko M, Campbell RL, Langelaan DN, Smith SP, Davies PL, Allingham JS. Peptide backbone circularization enhances antifreeze protein thermostability. Protein Sci 2017;26:1932-1941. [PMID: 28691252 DOI: 10.1002/pro.3228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022]
30
Kim HJ, Lee JH, Hur YB, Lee CW, Park SH, Koo BW. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar Drugs 2017;15:md15020027. [PMID: 28134801 PMCID: PMC5334608 DOI: 10.3390/md15020027] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022]  Open
31
Phippen SW, Stevens CA, Vance TDR, King NP, Baker D, Davies PL. Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances Ice-Binding Activities. Biochemistry 2016;55:6811-6820. [PMID: 27951652 DOI: 10.1021/acs.biochem.6b00864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
32
Choi SR, Seo YJ, Kim M, Eo Y, Ahn HC, Lee AR, Park CJ, Ryu KS, Cheong HK, Lee SS, Jin E, Lee JH. NMR study of the antifreeze activities of active and inactive isoforms of a type III antifreeze protein. FEBS Lett 2016;590:4202-4212. [PMID: 27718246 DOI: 10.1002/1873-3468.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 11/06/2022]
33
Bar Dolev M, Braslavsky I, Davies PL. Ice-Binding Proteins and Their Function. Annu Rev Biochem 2016;85:515-42. [DOI: 10.1146/annurev-biochem-060815-014546] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
34
Yoshida K, Baron AQR, Uchiyama H, Tsutsui S, Yamaguchi T. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering. J Chem Phys 2016;144:134505. [PMID: 27059578 DOI: 10.1063/1.4944987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
35
Rating antifreeze proteins: Not a breeze. Proc Natl Acad Sci U S A 2016;113:3714-6. [PMID: 27035992 DOI: 10.1073/pnas.1602196113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
36
Interaction of ice binding proteins with ice, water and ions. Biointerphases 2016;11:018906. [PMID: 26787386 DOI: 10.1116/1.4939462] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
37
Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci U S A 2016;113:3740-5. [PMID: 26936953 DOI: 10.1073/pnas.1524109113] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
38
Sun T, Gauthier SY, Campbell RL, Davies PL. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. J Phys Chem B 2015;119:12808-15. [PMID: 26371748 DOI: 10.1021/acs.jpcb.5b06474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
39
Ruiz-Arellano RR, Medrano FJ, Moreno A, Romero A. Structure of struthiocalcin-1, an intramineral protein from Struthio camelus eggshell, in two crystal forms. ACTA ACUST UNITED AC 2015;71:809-18. [PMID: 25849392 DOI: 10.1107/s139900471500125x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022]
40
PROVESI JG, AMANTE ER. Revisão: Proteínas anticongelantes – uma tecnologia emergente para o congelamento de alimentos. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2015. [DOI: 10.1590/1981-6723.7714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
41
Choi YG, Park CJ, Kim HE, Seo YJ, Lee AR, Choi SR, Lee SS, Lee JH. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase. JOURNAL OF BIOMOLECULAR NMR 2015;61:137-150. [PMID: 25575834 DOI: 10.1007/s10858-014-9895-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
42
Observation of ice-like water layers at an aqueous protein surface. Proc Natl Acad Sci U S A 2014;111:17732-6. [PMID: 25468976 DOI: 10.1073/pnas.1414188111] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
43
Gaukel V, Leiter A, Spieß WE. Synergism of different fish antifreeze proteins and hydrocolloids on recrystallization inhibition of ice in sucrose solutions. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2014.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
44
Banerjee R, Chakraborti P, Bhowmick R, Mukhopadhyay S. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium. J Biomol Struct Dyn 2014;33:1424-41. [PMID: 25190099 DOI: 10.1080/07391102.2014.952665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
45
Lotze S, Olijve LLC, Voets IK, Bakker HJ. Observation of vibrational energy exchange in a type-III antifreeze protein. J Phys Chem B 2014;118:8962-71. [PMID: 25051212 DOI: 10.1021/jp503481e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
46
Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J 2014;281:3576-90. [PMID: 24938370 DOI: 10.1111/febs.12878] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022]
47
Do H, Kim SJ, Kim HJ, Lee JH. Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1. ACTA ACUST UNITED AC 2014;70:1061-73. [PMID: 24699650 DOI: 10.1107/s1399004714000996] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/15/2014] [Indexed: 11/10/2022]
48
Basu K, Garnham CP, Nishimiya Y, Tsuda S, Braslavsky I, Davies P. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity. J Vis Exp 2014:e51185. [PMID: 24457629 DOI: 10.3791/51185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]  Open
49
Mizrahy O, Bar-Dolev M, Guy S, Braslavsky I. Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide. PLoS One 2013;8:e59540. [PMID: 23555701 PMCID: PMC3605400 DOI: 10.1371/journal.pone.0059540] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/15/2013] [Indexed: 12/29/2022]  Open
50
Hakim A, Nguyen JB, Basu K, Zhu DF, Thakral D, Davies PL, Isaacs FJ, Modis Y, Meng W. Crystal structure of an insect antifreeze protein and its implications for ice binding. J Biol Chem 2013;288:12295-304. [PMID: 23486477 DOI: 10.1074/jbc.m113.450973] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA