1
|
Balasco N, Tagliamonte M, Buonaguro L, Vitagliano L, Paladino A. Structural and Dynamic-Based Characterization of the Recognition Patterns of E7 and TRP-2 Epitopes by MHC Class I Receptors through Computational Approaches. Int J Mol Sci 2024; 25:1384. [PMID: 38338663 PMCID: PMC10855917 DOI: 10.3390/ijms25031384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
A detailed comprehension of MHC-epitope recognition is essential for the design and development of new antigens that could be effectively used in immunotherapy. Yet, the high variability of the peptide together with the large abundance of MHC variants binding makes the process highly specific and large-scale characterizations extremely challenging by standard experimental techniques. Taking advantage of the striking predictive accuracy of AlphaFold, we report a structural and dynamic-based strategy to gain insights into the molecular basis that drives the recognition and interaction of MHC class I in the immune response triggered by pathogens and/or tumor-derived peptides. Here, we investigated at the atomic level the recognition of E7 and TRP-2 epitopes to their known receptors, thus offering a structural explanation for the different binding preferences of the studied receptors for specific residues in certain positions of the antigen sequences. Moreover, our analysis provides clues on the determinants that dictate the affinity of the same epitope with different receptors. Collectively, the data here presented indicate the reliability of the approach that can be straightforwardly extended to a large number of related systems.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology IBPM-CNR c/o Department Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Maria Tagliamonte
- Immunological Models Lab, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)—“Fond. G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.T.); (L.B.)
| | - Luigi Buonaguro
- Immunological Models Lab, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)—“Fond. G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.T.); (L.B.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging IBB-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging IBB-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| |
Collapse
|
2
|
Mauriello A, Cavalluzzo B, Manolio C, Ragone C, Luciano A, Barbieri A, Tornesello ML, Buonaguro FM, Tagliamonte M, Buonaguro L. Long-term memory T cells as preventive anticancer immunity elicited by TuA-derived heteroclitic peptides. J Transl Med 2021; 19:526. [PMID: 34952611 PMCID: PMC8709997 DOI: 10.1186/s12967-021-03194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
The host's immune system may be primed against antigens during the lifetime (e.g. microorganisms antigens-MoAs), and swiftly recalled upon growth of a tumor expressing antigens similar in sequence and structure. C57BL/6 mice were immunized in a preventive setting with tumor antigens (TuAs) or corresponding heteroclitic peptides specific for TC-1 and B16 cell lines. Immediately or 2-months after the end of the vaccination protocol, animals were implanted with cell lines. The specific anti-vaccine immune response as well as tumor growth were regularly evaluated for 2 months post-implantation. The preventive vaccination with TuA or their heteroclitic peptides (hPep) was able to delay (B16) or completely suppress (TC-1) tumor growth when cancer cells were implanted immediately after the end of the vaccination. More importantly, TC-1 tumor growth was significantly delayed, and suppressed in 6/8 animals, also when cells were implanted 2-months after the end of the vaccination. The vaccine-specific T cell response provided a strong immune correlate to the pattern of tumor growth. A preventive immunization with heteroclitic peptides resembling a TuA is able to strongly delay or even suppress tumor growth in a mouse model. More importantly, the same effect is observed also when tumor cells are implanted 2 months after the end of vaccination, which corresponds to 8 - 10 years in human life. The observed potent tumor control indicates that a memory T cell immunity elicited during the lifetime by a antigens similar to a TuA, i.e. viral antigens, may ultimately represent a great advantage for cancer patients and may lead to a novel preventive anti-cancer vaccine strategy.
Collapse
Affiliation(s)
- Angela Mauriello
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Beatrice Cavalluzzo
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Carmen Manolio
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Concetta Ragone
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Mol Biol and Viral Oncogenesis, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Franco M Buonaguro
- Mol Biol and Viral Oncogenesis, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Maria Tagliamonte
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Luigi Buonaguro
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy.
| |
Collapse
|
3
|
Tagliamonte M, Mauriello A, Cavalluzzo B, Ragone C, Manolio C, Luciano A, Barbieri A, Palma G, Scognamiglio G, Di Mauro A, Di Bonito M, Tornesello ML, Buonaguro FM, Vitagliano L, Caporale A, Ruvo M, Buonaguro L. MHC-Optimized Peptide Scaffold for Improved Antigen Presentation and Anti-Tumor Response. Front Immunol 2021; 12:769799. [PMID: 34745146 PMCID: PMC8564487 DOI: 10.3389/fimmu.2021.769799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Tumor Associated Antigens (TAAs) may suffer from an immunological tolerance due to expression on normal cells. In order to potentiate their immunogenicity, heteroclitic peptides (htcPep) were designed according to prediction algorithms. In particular, specific modifications were introduced in peptide residues facing to TCR. Moreover, a MHC-optimized scaffold was designed for improved antigen presentation to TCR by H-2Db allele. The efficacy of such htcPep was assessed in C57BL/6 mice injected with syngeneic melanoma B16F10 or lung TC1 tumor cell lines, in combination with metronomic chemotherapy and immune checkpoint inhibitors. The immunogenicity of htcPep was significantly stronger than the corresponding wt peptide and the modification involving both MHC and TCR binding residues scored the strongest. In particular, the H-2Db-specific scaffold significantly potentiated the peptides' immunogenicity and control of tumor growth was comparable to wt peptide in a therapeutic setting. Overall, we demonstrated that modified TAAs show higher immunogenicity compared to wt peptide. In particular, the MHC-optimized scaffold can present different antigen sequences to TCR, retaining the conformational characteristics of the corresponding wt. Cross-reacting CD8+ T cells are elicited and efficiently kill tumor cells presenting the wild-type antigen. This novel approach can be of high clinical relevance in cancer vaccine development.
Collapse
MESH Headings
- Animals
- Antigen Presentation/drug effects
- Antigen Presentation/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Combined Modality Therapy
- Female
- Histocompatibility Antigens/immunology
- Humans
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/prevention & control
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Treatment Outcome
- Tumor Burden/drug effects
- Tumor Burden/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Mice
Collapse
Affiliation(s)
- Maria Tagliamonte
- Innovative Immunological Models Lab, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Lab, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Lab, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Lab, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Carmen Manolio
- Innovative Immunological Models Lab, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Giuseppe Palma
- Animal Facility, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Andrea Caporale
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Lab, Istituto Nazionale Tumori - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - “Fond G. Pascale”, Naples, Italy
| |
Collapse
|
4
|
Cavalluzzo B, Ragone C, Mauriello A, Petrizzo A, Manolio C, Caporale A, Vitagliano L, Ruvo M, Buonaguro L, Tagliamonte M. Identification and characterization of heteroclitic peptides in TCR-binding positions with improved HLA-binding efficacy. J Transl Med 2021; 19:89. [PMID: 33637105 PMCID: PMC7913412 DOI: 10.1186/s12967-021-02757-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/03/2023] Open
Abstract
The antigenicity as well as the immunogenicity of tumor associated antigens (TAAs) may need to be potentiated in order to break the immunological tolerance. To this aim, heteroclitic peptides were designed introducing specific substitutions in the residue at position 4 (p4) binding to TCR. The effect of such modifications also on the affinity to the major histocompatibility class I (MHC-I) molecule was assessed. The Trp2 antigen, specific for the mouse melanoma B16F10 cells, as well as the HPV-E7 antigen, specific for the TC1 tumor cell lines, were used as models. Affinity of such heteroclitic peptides to HLA was predicted by bioinformatics tools and the most promising ones were validated by structural conformational and HLA binding analyses. Overall, we demonstrated that TAAs modified at the TCR-binding p4 residue are predicted to have higher affinity to MHC-I molecules. Experimental evaluation confirms the stronger binding, suggesting that this strategy may be very effective for designing new vaccines with improved antigenic efficacy.
Collapse
Affiliation(s)
- Beatrice Cavalluzzo
- Innovative Immunological Models Lab, Istituto Nazionale Tumori "Fond. G. Pascale", Via Mariano Semmola, 1, 80131, Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Lab, Istituto Nazionale Tumori "Fond. G. Pascale", Via Mariano Semmola, 1, 80131, Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Lab, Istituto Nazionale Tumori "Fond. G. Pascale", Via Mariano Semmola, 1, 80131, Naples, Italy
| | - Annacarmen Petrizzo
- Innovative Immunological Models Lab, Istituto Nazionale Tumori "Fond. G. Pascale", Via Mariano Semmola, 1, 80131, Naples, Italy
| | - Carmen Manolio
- Innovative Immunological Models Lab, Istituto Nazionale Tumori "Fond. G. Pascale", Via Mariano Semmola, 1, 80131, Naples, Italy
| | - Andrea Caporale
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy.,Istituto Di Cristallografia-CNR, c/o area Science Park S.S. 14 Km 163.5 Basovizza, 34149, Trieste, Italy
| | | | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Lab, Istituto Nazionale Tumori "Fond. G. Pascale", Via Mariano Semmola, 1, 80131, Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Lab, Istituto Nazionale Tumori "Fond. G. Pascale", Via Mariano Semmola, 1, 80131, Naples, Italy.
| |
Collapse
|
5
|
Duru AD, Sun R, Allerbring EB, Chadderton J, Kadri N, Han X, Peqini K, Uchtenhagen H, Madhurantakam C, Pellegrino S, Sandalova T, Nygren PÅ, Turner SJ, Achour A. Tuning antiviral CD8 T-cell response via proline-altered peptide ligand vaccination. PLoS Pathog 2020; 16:e1008244. [PMID: 32365082 PMCID: PMC7224568 DOI: 10.1371/journal.ppat.1008244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/14/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
Viral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape.
Collapse
Affiliation(s)
- Adil Doganay Duru
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- NSU Cell Therapy Institute & Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Eva B. Allerbring
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jesseka Chadderton
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Australia
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Kaliroi Peqini
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Hannes Uchtenhagen
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Chaithanya Madhurantakam
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- Structural and Molecular Biology Laboratory, Department of Biotechnology, TERI, School of Advanced Studies, New Delhi, India
| | - Sara Pellegrino
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Per-Åke Nygren
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Stephen J. Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Australia
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
6
|
Kolawole EM, Andargachew R, Liu B, Jacobs JR, Evavold BD. 2D Kinetic Analysis of TCR and CD8 Coreceptor for LCMV GP33 Epitopes. Front Immunol 2018; 9:2348. [PMID: 30374353 PMCID: PMC6197077 DOI: 10.3389/fimmu.2018.02348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
The LCMV GP33 CD8 epitope has long been one of the most widely used antigens in viral immunology. Of note, almost all of the in vitro analyses of CD8 T cell responses to this epitope make use of an altered peptide ligand (APL) in which the cysteine from the original 9-mer peptide (KAVYNFATC) is substituted by a methionine at position 41 (KAVYNFATM). In addition, it is possible that the antigen processed during natural LCMV infection is an 11-mer peptide (KAVYNFATCGI) rather than the widely used 9-mer. Although previous affinity measurements using purified proteins for these antigen variants revealed minimal differences, we applied highly sensitive two dimensional (2D) biophysical based techniques to further dissect TCR interaction with these closely related GP33 variants. The kinetic analyses of affinity provided by the 2D micropipette adhesion frequency assay (2D-MP) and bond lifetime under force analyzed using a biomembrane force probe (BFP) revealed significant differences between 41M, 41C and the 11-mer 41CGI antigen. We found a hierarchy in 2D affinity as 41M peptide displayed augmented TCR 2D affinity compared to 41C and 41CGI. These differences were also maintained in the presence of CD8 coreceptor and when analysis of total TCR:pMHC and CD8:pMHC bonds were considered. Moreover, the three ligands displayed dramatic differences in the bond lifetimes generated under force, in particular the 41CGI variant with the lowest 2D affinity demonstrated a 15-fold synergistic contribution of the CD8 coreceptor to overall bond lifetime. Our analyses emphasize the sensitivity of single cell and single bond 2D kinetic measurements in distinguishing between related agonist peptides.
Collapse
Affiliation(s)
- Elizabeth M Kolawole
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Baoyu Liu
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jesica R Jacobs
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Brian D Evavold
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Cheloha RW, Sullivan J, Wang T, Sand JM, Sidney J, Sette A, Cook ME, Suresh M, Gellman SH. Consequences of periodic α-to-β(3) residue replacement for immunological recognition of peptide epitopes. ACS Chem Biol 2015; 10:844-54. [PMID: 25559929 PMCID: PMC4372116 DOI: 10.1021/cb500888q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/08/2014] [Indexed: 01/27/2023]
Abstract
Oligomers that contain both α- and β-amino acid residues, or "α/β-peptides", have emerged as promising mimics of signal-bearing polypeptides that can inhibit or augment natural protein-protein interactions. α/β-Peptides that contain a sufficient proportion of β residues evenly distributed along the sequence can be highly resistant to enzymatic degradation, which is favorable with regard to in vivo applications. Little is known, however, about recognition of α/β-peptides by the immune system. Prior studies have focused almost entirely on examples that contain a single β residue; such α/β-peptides frequently retain the immunological profile of the analogous α-peptide. We have conducted α-peptide vs α/β-peptide comparisons involving higher β residue content, focusing on molecules with αααβ and ααβαααβ backbone repeat patterns. Among analogues of an 18-mer derived from the Bim BH3 domain and an 8-mer derived from secreted phospholipase-2 (sPLA2), we find that recognition by antibodies raised against the prototype α-peptide is suppressed by periodic α → β replacements. Complementary studies reveal that antibodies raised against Bim BH3- or sPLA2-derived α/β-peptides fail to recognize prototype α-peptides displaying identical side chain repertoires. Because polypeptides containing d-α-amino acid residues are of growing interest for biomedical applications, we included the enantiomer of the sPLA2-derived α-peptide in these studies; this d-peptide is fully competent as a hapten, but the resulting antibodies do not cross react with the enantiomeric peptide. Among analogues of the 9-mer CD8(+) T-cell viral epitope GP33, we observe that periodic α → β replacements suppress participation in the MHC I + peptide + T-cell receptor ternary complexes that activate cytotoxic T-lymphocytes, due in part to disruption of MHC binding.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Antibodies/isolation & purification
- Antibody Specificity
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Apoptosis Regulatory Proteins/chemistry
- Apoptosis Regulatory Proteins/immunology
- Bcl-2-Like Protein 11
- Binding Sites
- Chickens
- Enzyme-Linked Immunosorbent Assay
- Epitopes/chemistry
- Epitopes/immunology
- Humans
- Kinetics
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Models, Molecular
- Molecular Sequence Data
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/immunology
- Phospholipases A2/chemistry
- Phospholipases A2/immunology
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Stereoisomerism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Ross W. Cheloha
- Department of Chemistry, Department of Surgery, Department of Pathobiological Sciences, Department of Animal
Sciences, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jeremy
A. Sullivan
- Department of Chemistry, Department of Surgery, Department of Pathobiological Sciences, Department of Animal
Sciences, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Tong Wang
- Department of Chemistry, Department of Surgery, Department of Pathobiological Sciences, Department of Animal
Sciences, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jordan M. Sand
- Department of Chemistry, Department of Surgery, Department of Pathobiological Sciences, Department of Animal
Sciences, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - John Sidney
- La
Jolla Institute for Allergy and Immunology, La Jolla, California United States
| | - Alessandro Sette
- La
Jolla Institute for Allergy and Immunology, La Jolla, California United States
| | - Mark E. Cook
- Department of Chemistry, Department of Surgery, Department of Pathobiological Sciences, Department of Animal
Sciences, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - M. Suresh
- Department of Chemistry, Department of Surgery, Department of Pathobiological Sciences, Department of Animal
Sciences, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, Department of Surgery, Department of Pathobiological Sciences, Department of Animal
Sciences, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Allerbring EB, Duru AD, Uchtenhagen H, Madhurantakam C, Tomek MB, Grimm S, Mazumdar PA, Friemann R, Uhlin M, Sandalova T, Nygren PÅ, Achour A. Unexpected T-cell recognition of an altered peptide ligand is driven by reversed thermodynamics. Eur J Immunol 2012; 42:2990-3000. [PMID: 22837158 DOI: 10.1002/eji.201242588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/18/2012] [Accepted: 07/23/2012] [Indexed: 11/07/2022]
Abstract
The molecular basis underlying T-cell recognition of MHC molecules presenting altered peptide ligands is still not well-established. A hierarchy of T-cell activation by MHC class I-restricted altered peptide ligands has been defined using the T-cell receptor P14 specific for H-2D(b) in complex with the immunodominant lymphocytic choriomeningitis virus peptide gp33 (KAVYNFATM). While substitution of tyrosine to phenylalanine (Y4F) or serine (Y4S) abolished recognition by P14, the TCR unexpectedly recognized H-2D(b) in complex with the alanine-substituted semiagonist Y4A, which displayed the most significant structural modification. The observed functional hierarchy gp33 > Y4A > Y4S = Y4F was neither due to higher stabilization capacity nor to differences in structural conformation. However, thermodynamic analysis demonstrated that while recognition of the full agonist H-2D(b) /gp33 was strictly enthalpy driven, recognition of the weak agonist H-2D(b) /Y4A was instead entropy driven with a large reduction in the favorable enthalpy term. The fourfold larger negative heat capacity derived for the interaction of P14 with H-2D(b) /gp33 compared with H-2D(b) /Y4A can possibly be explained by higher water entrapment at the TCR/MHC interface, which is also consistent with the measured opposite entropy contributions for the interactions of P14 with both MHCs. In conclusion, this study demonstrates that P14 makes use of different strategies to adapt to structural modifications in the MHC/peptide complex.
Collapse
Affiliation(s)
- Eva B Allerbring
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Madhurantakam C, Duru AD, Sandalova T, Webb JR, Achour A. Inflammation-associated nitrotyrosination affects TCR recognition through reduced stability and alteration of the molecular surface of the MHC complex. PLoS One 2012; 7:e32805. [PMID: 22431983 PMCID: PMC3303804 DOI: 10.1371/journal.pone.0032805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/03/2012] [Indexed: 01/07/2023] Open
Abstract
Nitrotyrosination of proteins, a hallmark of inflammation, may result in the production of MHC-restricted neoantigens that can be recognized by T cells and bypass the constraints of immunological self-tolerance. Here we biochemically and structurally assessed how nitrotyrosination of the lymphocytic choriomeningitis virus (LCMV)-associated immunodominant MHC class I-restricted epitopes gp33 and gp34 alters T cell recognition in the context of both H-2Db and H-2Kb. Comparative analysis of the crystal structures of H-2Kb/gp34 and H-2Kb/NY-gp34 demonstrated that nitrotyrosination of p3Y in gp34 abrogates a hydrogen bond interaction formed with the H-2Kb residue E152. As a consequence the conformation of the TCR-interacting E152 was profoundly altered in H-2Kb/NY-gp34 when compared to H-2Kb/gp34, thereby modifying the surface of the nitrotyrosinated MHC complex. Furthermore, nitrotyrosination of gp34 resulted in structural over-packing, straining the overall conformation and considerably reducing the stability of the H-2Kb/NY-gp34 MHC complex when compared to H-2Kb/gp34. Our structural analysis also indicates that nitrotyrosination of the main TCR-interacting residue p4Y in gp33 abrogates recognition of H-2Db/gp33-NY complexes by H-2Db/gp33-specific T cells through sterical hindrance. In conclusion, this study provides the first structural and biochemical evidence for how MHC class I-restricted nitrotyrosinated neoantigens may enable viral escape and break immune tolerance.
Collapse
Affiliation(s)
- Chaithanya Madhurantakam
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Adil D. Duru
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Tatyana Sandalova
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John R. Webb
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Adnane Achour
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
10
|
Cale EM, Bazick HS, Rianprakaisang TA, Alam SM, Letvin NL. Mutations in a dominant Nef epitope of simian immunodeficiency virus diminish TCR:epitope peptide affinity but not epitope peptide:MHC class I binding. THE JOURNAL OF IMMUNOLOGY 2011; 187:3300-13. [PMID: 21841125 DOI: 10.4049/jimmunol.1101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.
Collapse
Affiliation(s)
- Evan M Cale
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
11
|
Hardy LL, Wick DA, Webb JR. Conversion of tyrosine to the inflammation-associated analog 3'-nitrotyrosine at either TCR- or MHC-contact positions can profoundly affect recognition of the MHC class I-restricted epitope of lymphocytic choriomeningitis virus glycoprotein 33 by CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:5956-62. [PMID: 18424715 DOI: 10.4049/jimmunol.180.9.5956] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunohistochemical detection of increased levels of protein-associated nitrotyrosine has become widely used as a surrogate marker of in situ inflammation. However, the potential consequences of protein-associated nitrotyrosine formation in terms of cellular immune recognition has received surprisingly little attention. Using a well-defined I-E(K)-restricted epitope of pigeon cytochrome c, we previously demonstrated that conversion of a single tyrosine residue to nitrotyrosine can have a profound effect on recognition by CD4 T cells. In this study, we used the MHC class I-restricted epitope of lymphocytic choriomeningitis virus glycoprotein (gp33) to demonstrate that conversion of tyrosine to nitrotyrosine can also profoundly affect recognition of MHC class I-restricted epitopes. Conversion of the Y4 residue of the gp33 epitope to nitrotyrosine completely abrogated recognition by gp33-specific T cells from P14 TCR-transgenic mice. In contrast, CD8(+) T cells specific for "nitrated gp33" (NY-gp33) can be readily elicited in C57BL/6 mice after immunization with NY-gp33 peptide. Interestingly, T-T hybridomas specific for NY-gp33 peptide were found to fall into two distinct subsets, being specific for NY-gp33 presented in the context of either H-2D(b) or H-2K(b). This latter result is surprising in light of previous structural studies showing that Y4 comprises a critical TCR-contact residue when presented by H-2D(b) but that the same residue points downward into the peptide-binding groove of the MHC when presented by H-2K(b). Together, these results indicate that nitrotyrosine formation can impact T cell recognition both directly, through alteration of TCR-contact residues, or indirectly, through alterations in MHC-contact positions.
Collapse
Affiliation(s)
- Lani L Hardy
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada
| | | | | |
Collapse
|
12
|
Tian S, Maile R, Collins EJ, Frelinger JA. CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. THE JOURNAL OF IMMUNOLOGY 2007; 179:2952-60. [PMID: 17709510 DOI: 10.4049/jimmunol.179.5.2952] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binding of peptide/MHC (pMHC) complexes by TCR initiates T cell activation. Despite long interest, the exact relationship between the biochemistry of TCR/pMHC interaction (particularly TCR affinity or ligand off-rate) and T cell responses remains unresolved, because the number of complexes examined in each independent system has been too small to draw a definitive conclusion. To test the current models of T cell activation, we have analyzed the interactions between the mouse P14 TCR and a set of altered peptides based on the lymphocytic choriomeningitis virus epitope gp33-41 sequence bound to mouse class I MHC D(b). pMHC binding, TCR-binding characteristics, CD8+ T cell cytotoxicity, and IFN-gamma production were measured for the peptides. We found affinity correlated well with both cytotoxicity and IFN-gamma production. In contrast, no correlation was observed between any kinetic parameter of TCR-pMHC interaction and cytotoxicity or IFN-gamma production. This study strongly argues for an affinity threshold model of T cell activation.
Collapse
Affiliation(s)
- Shaomin Tian
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
13
|
Boulter JM, Schmitz N, Sewell AK, Godkin AJ, Bachmann MF, Gallimore AM. Potent T cell agonism mediated by a very rapid TCR/pMHC interaction. Eur J Immunol 2007; 37:798-806. [PMID: 17295390 PMCID: PMC2435421 DOI: 10.1002/eji.200636743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction between T cell receptors (TCR) and peptide-major histocompatibility complex (pMHC) antigens can lead to varying degrees of agonism (T cell activation), or antagonism. The P14 TCR recognises the lymphocytic choriomeningitis virus (LCMV)-derived peptide, gp33 residues 33–41 (KAVYNFATC), presented in the context of H-2Db. The cellular responses to various related H-2Db peptide ligands are very well characterised, and P14 TCR-transgenic mice have been used extensively in models of virus infection, autoimmunity and tumour rejection. Here, we analyse the binding of the P14 soluble TCR to a broad panel of related H-2Db-peptide complexes by surface plasmon resonance, and compare this with their diverse cellular responses. P14 TCR binds H-2Db-gp33 with a KD of 3 µM (±0.5 µM), typical of an immunodominant antiviral TCR, but with unusually fast kinetics (koff=1 s−1), corresponding to a half-life of 0.7 s at 25°C, outside the range previously observed for murine agonist TCR/pMHC interactions. The most striking feature of these data is that a very short half-life does not preclude the ability of a TCR/pMHC interaction to induce antiviral immunity, autoimmune disease and tumour rejection.
Collapse
Affiliation(s)
- Jonathan M Boulter
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Classic major histocompatibility complex (MHC) proteins associate with antigen- and self-derived peptides in an allele-specific manner. Herein we present the crystal structure of the MHC class I protein H-2K(d) (K(d)) expressed by BALB/c mice in complex with an antigenic peptide derived from influenza A/PR/8/34 nucleoprotein (Flu, residues 147-155, TYQRTRALV). Analysis of our structure in conjunction with the sequences of naturally processed epitopes provides a comprehensive understanding of the dominant K(d) peptide-binding motif. We find that Flu residues Tyr(P2), Thr(P5), and Val(P9) are sequestered into the B, C, and F pockets of the K(d) groove, respectively. The shape and chemistry of the polymorphic B pocket make it an optimal binding site for the side chain of Tyr(P2) as the dominant anchoring residue of nonameric peptides. The non-polar F pocket limits the amino acid repertoire at P9 to hydrophobic residues such as Ile, Leu, or Val, whereas the C pocket restricts the size of the P5-anchoring side chain. We also show that Flu is accommodated in the complex through an unfavorable kink in the otherwise extended peptide backbone due to the presence of a prominent ridge in the K(d) groove. Surprisingly, this backbone conformation is strikingly similar to D(b)-presented peptides despite the fact that these proteins employ distinct motif-anchoring strategies. The results presented in this study provide a solid foundation for the understanding of K(d)-restricted antigen presentation and recognition events.
Collapse
Affiliation(s)
- Vesselin Mitaksov
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
15
|
Fagerberg T, Cerottini JC, Michielin O. Structural prediction of peptides bound to MHC class I. J Mol Biol 2005; 356:521-46. [PMID: 16368108 DOI: 10.1016/j.jmb.2005.11.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 11/29/2022]
Abstract
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Collapse
Affiliation(s)
- Theres Fagerberg
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
16
|
Sandalova T, Michaëlsson J, Harris RA, Ljunggren HG, Kärre K, Schneider G, Achour A. Expression, refolding and crystallization of murine MHC class I H-2Db in complex with human beta2-microglobulin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:1090-3. [PMID: 16511243 PMCID: PMC1978157 DOI: 10.1107/s1744309105037942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/17/2005] [Indexed: 11/10/2022]
Abstract
Beta2-microglobulin (beta2m) is non-covalently linked to the major histocompatibility (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I can bind human beta2m (hbeta2m) and such hybrid molecules are often used in structural and functional studies. The replacement of mouse beta2m (mbeta2m) by hbeta2m has important functional consequences for MHC class I complex stability and specificity, but the structural basis for this is unknown. To investigate the impact of species-specific beta2m subunits on MHC class I conformation, murine MHC class I H-2Db in complex with hbeta2m and the peptide gp33 derived from lymphocytic choriomeningitis virus (LCMV) has been expressed, refolded in vitro and crystallized. Crystals containing two complexes per asymmetric unit and belonging to the space group P2(1), with unit-cell parameters a = 68.1, b = 65.2, c = 101.9 A, beta = 102.4 degrees, were obtained.
Collapse
Affiliation(s)
- Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Robert A. Harris
- Center for Molecular Medicine, Karolinska University Hospital in Solna, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Klas Kärre
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Adnane Achour
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital in Huddinge, Stockholm, Sweden
- Correspondence e-mail:
| |
Collapse
|
17
|
Sandalova T, Michaëlsson J, Harris RA, Odeberg J, Schneider G, Kärre K, Achour A. A structural basis for CD8+ T cell-dependent recognition of non-homologous peptide ligands: implications for molecular mimicry in autoreactivity. J Biol Chem 2005; 280:27069-75. [PMID: 15845547 DOI: 10.1074/jbc.m500927200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Molecular mimicry of self-epitopes by viral antigens is one possible pathogenic mechanism underlying induction of autoimmunity. A self-epitope, mDBM, derived from mouse dopamine beta-mono-oxygenase (KALYDYAPI) sharing 44% sequence identity with the lymphocytic choriomeningitis virus-derived immunodominant epitope gp33 (KAVYNFATC/M), has previously been identified as a cross-reactive self-ligand, presentation of which results in autoimmunity. A rat peptide homologue, rDBM (KALYNYAPI, 56% identity to gp33), which displayed similar properties to mDBM, has also been identified. We herein report the crystal structure of H-2Db.rDBM and a comparison with the crystal structures of the cross-reactive H-2Db.gp33 and non-cross-reactive H-2Db.gp33 (V3L) escape variant (KALYNFATM, 88% identity to gp33). Despite the large sequence disparity, rDBM and gp33 peptides are presented in nearly identical manners by H-2Db, with a striking juxtaposition of the central sections of both peptides from residues p3 to p7. The structural similarity provides H-2Db in complex with either a virus-derived or a dopamine beta-mono-oxygenase-derived peptide with a shared antigenic identity that conserves the positioning of the heavy chain and peptide residues that interact with the T cell receptor (TCR). This stands in contrast to the structure of H-2Db.gp33 (V3L), in which a single conserved mutation, also present in rDBM, induces large movements of both the peptide backbone and the side chains that interact with the TCR. The TCR-interacting surfaces of the H-2Db.rDBM and H-2Db.gp33 major histocompatibility complexes are very similar with regard to shape, topology, and charge distribution, providing a structural basis for CD8 T cell activation by molecular mimicry and potential subsequent development of autoreactivity.
Collapse
Affiliation(s)
- Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Microbiology and Tumor Biology Center, and Strategic Research Center IRIS for Studies of Integrated Recognition in the Immune System, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Purtic B, Pitcher LA, van Oers NSC, Wülfing C. T cell receptor (TCR) clustering in the immunological synapse integrates TCR and costimulatory signaling in selected T cells. Proc Natl Acad Sci U S A 2005; 102:2904-9. [PMID: 15703298 PMCID: PMC549456 DOI: 10.1073/pnas.0406867102] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During T cell activation, T cell receptors (TCR) cluster at the center of the T cell/antigen-presenting cell interface forming a key component of the immunological synapse. The function of this TCR clustering is still unresolved. A comprehensive search for such a function yielded a very limited and specific result. A micrometer-scale receptor clustering integrated the TCR and CD28 signals required for IL-2 secretion in primary 5C.C7 T cells, a low-affinity/avidity TCR system. 5C.C7 TCR signaling itself was not affected. In addition, central TCR accumulation was not required for any T cell effector function tested in three other TCR transgenic models. Central TCR accumulation thus had a specific role in signaling integration in low-affinity T cells.
Collapse
Affiliation(s)
- Bozidar Purtic
- Center for Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
19
|
Price DA, West SM, Betts MR, Ruff LE, Brenchley JM, Ambrozak DR, Edghill-Smith Y, Kuroda MJ, Bogdan D, Kunstman K, Letvin NL, Franchini G, Wolinsky SM, Koup RA, Douek DC. T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity 2005; 21:793-803. [PMID: 15589168 DOI: 10.1016/j.immuni.2004.10.010] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 09/29/2004] [Accepted: 10/13/2004] [Indexed: 11/18/2022]
Abstract
Escape from adaptive T cell immunity through transmutation of viral antigenic structure is a cardinal feature in the pathogenesis of SIV/HIV infection and a major obstacle to antiretroviral vaccine development. However, the molecular determinants of this phenomenon at the T cell receptor (TCR)-antigen interface are unknown. Here, we show that mutational escape is intimately linked to the structural configuration of constituent TCR clonotypes within virus-specific CD8(+) T cell populations. Analysis of 3416 SIV-specific TCR sequences revealed that polyclonal T cell populations characterized by highly conserved TCRB CDR3 motifs were rendered ineffectual by single residue mutations in the cognate viral epitope. Conversely, diverse clonotypic repertoires without discernible motifs were not associated with viral escape. Thus, fundamental differences in the mode of antigen engagement direct the pattern of adaptive viral evolution. These findings have profound implications for the development of vaccines that elicit T cell immunity to combat pathogens with unstable genomes.
Collapse
Affiliation(s)
- David A Price
- Human Immunology Section, Vaccine Research Center, NIAID/NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Meijers R, Lai CC, Yang Y, Liu JH, Zhong W, Wang JH, Reinherz EL. Crystal structures of murine MHC Class I H-2 D(b) and K(b) molecules in complex with CTL epitopes from influenza A virus: implications for TCR repertoire selection and immunodominance. J Mol Biol 2004; 345:1099-110. [PMID: 15644207 DOI: 10.1016/j.jmb.2004.11.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/08/2004] [Accepted: 11/09/2004] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocyte (CTL) responses against influenza A virus in C57BL/6 mice are dominated by a small number of viral peptides among many that are capable of binding to major histocompatibility complex (MHC) class I molecules. The basis of this limited immune recognition is unknown. Here, we present X-ray structures of MHC class I molecules in complex with two immunodominant epitopes (PA(224-233)/D(b) and PB1(703-711)/K(b)) and one non-immunogenic epitope (HA(468-477)/D(b)) of the influenza A virus. The immunodominant peptides are each characterized by a bulge at the C terminus, lifting P6 and P7 residues out of the MHC groove, presenting featured structural elements to T-cell receptors (TCRs). Immune recognition of PA(224-233)/D(b) will focus largely on the exposed P7 arginine residue. In contrast, the non-immunogenic HA(468-477) peptide lacks prominent features in this C-terminal bulge. In the K(b)-bound PB1(703-711) epitope, the bulge results from a non-canonical binding motif, such that the mode of presentation of this peptide strongly resembles that of D(b)-bound peptides. Given that PA(224-233)/D(b), PB1(703-711)/K(b) and the previously defined NP(366-374)/D(b) epitopes dominate the primary response to influenza A virus in C57BL/6 mice, our findings indicate that residues of the C-terminal bulge are important in selection of the immunodominant CTL repertoire.
Collapse
Affiliation(s)
- Rob Meijers
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Fridkis-Hareli M, Reinherz EL. New approaches to eliciting protective immunity through T cell repertoire manipulation: the concept of thymic vaccination. MEDICAL IMMUNOLOGY (LONDON, ENGLAND) 2004; 3:2. [PMID: 15588284 PMCID: PMC544398 DOI: 10.1186/1476-9433-3-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 12/08/2004] [Indexed: 12/24/2022]
Abstract
Conventional vaccines afford protection against infectious diseases by expanding existing pathogen-specific peripheral lymphocytes, both CD8 cytotoxic effector (CTL) and CD4 helper T cells. The latter induce B cell maturation and antibody production. As a consequence, lymphocytes within the memory pool are poised to rapidly proliferate at the time of a subsequent infection. The "thymic vaccination" concept offers a novel way to alter the primary T cell repertoire through exposure of thymocytes to altered peptide ligands (APL) with reduced T cell receptor (TCR) affinity relative to cognate antigens recognized by those same TCRs. Thymocyte maturation (i.e. positive selection) is enhanced by low affinity interaction between a TCR and an MHC-bound peptide in the thymus and subsequent emigration of mature cells into the peripheral T lymphocyte pool follows. In principal, such variants of antigens derived from infectious agents could be utilized for peptide-driven maturation of thymocytes bearing pathogen-specific TCRs. To test this idea, APLs of gp33-41, a Db-restricted peptide derived from the lymphocytic choriomeningitis virus (LCMV) glycoprotein, and of VSV8, a Kb-restricted peptide from the vesicular stomatitis virus (VSV) nucleoprotein, have been designed and their influence on thymic maturation of specific TCR-bearing transgenic thymocytes examined in vivo using irradiation chimeras. Injection of APL resulted in positive selection of CD8 T cells expressing the relevant viral specificity and in the export of those virus-specific CTL to lymph nodes without inducing T cell proliferation. Thus, exogenous APL administration offers the potential of expanding repertoires in vivo in a manner useful to the organism. To efficiently peripheralize antigen-specific T cells, concomitant enhancement of mechanisms promoting thymocyte migration appears to be required. This commentary describes the rationale for thymic vaccination and addresses the potential prophylactic and therapeutic applications of this approach for treatment of infectious diseases and cancer. Thymic vaccination-induced peptide-specific T cells might generate effective immune protection against disease-causing agents, including those for which no effective natural protection exists.
Collapse
Affiliation(s)
- Masha Fridkis-Hareli
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, USA
- Department of Medicine, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, USA
- Department of Medicine, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
22
|
Gronski MA, Boulter JM, Moskophidis D, Nguyen LT, Holmberg K, Elford AR, Deenick EK, Kim HO, Penninger JM, Odermatt B, Gallimore A, Gascoigne NRJ, Ohashi PS. TCR affinity and negative regulation limit autoimmunity. Nat Med 2004; 10:1234-9. [PMID: 15467726 DOI: 10.1038/nm1114] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 09/13/2004] [Indexed: 11/09/2022]
Abstract
Autoimmune diseases are often mediated by self-reactive T cells, which must be activated to cause immunopathology. One mechanism, known as molecular mimicry, proposes that self-reactive T cells may be activated by pathogens expressing crossreactive ligands. Here we have developed a model to investigate how the affinity of the T-cell receptor (TCR) for the activating agent influences autoimmunity. Our model shows that an approximately fivefold difference in the TCR affinity for the activating ligand results in a 50% reduction in the incidence of autoimmunity. A reduction in TCR-ligand affinity to approximately 20 times lower than normal does not induce autoimmunity despite the unexpected induction of cytotoxic T lymphocytes (CTLs) and insulitis. Furthermore, in the absence of a key negative regulatory molecule, Cbl-b, 100% of mice develop autoimmunity upon infection with viruses encoding the lower-affinity ligand. Therefore, autoimmune disease is sensitive both to the affinity of the activating ligand and to normal mechanisms that negatively regulate the immune response.
Collapse
Affiliation(s)
- Matthew A Gronski
- Institute for Breast Cancer Research, Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fridkis-Hareli M, Reche PA, Reinherz EL. Peptide variants of viral CTL epitopes mediate positive selection and emigration of Ag-specific thymocytes in vivo. THE JOURNAL OF IMMUNOLOGY 2004; 173:1140-50. [PMID: 15240703 DOI: 10.4049/jimmunol.173.2.1140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During development, thymocytes carrying TCRs mediating low-affinity interactions with MHC-bound self-peptides are positively selected for export into the mature peripheral T lymphocyte pool. Thus, exogenous administration of certain altered peptide ligands (APL) with reduced TCR affinity relative to cognate Ags may provide a tool to elicit maturation of desired TCR specificities. To test this "thymic vaccination" concept, we designed APL of the viral CTL epitopes gp33-41 and vesicular stomatitis virus nucleoprotein octapeptide N52-59 relevant for the lymphocytic choriomeningitis virus-specific P14- and vesicular stomatitis virus-specific N15-TCRs, respectively, and examined their effects on thymocytes in vivo using irradiation chimeras. Injection of APL into irradiated congenic (Ly-5.1) mice, reconstituted with T cell progenitors from the bone marrow of P14 RAG2(-/-) (Ly-5.2) or N15 RAG2(-/-) (Ly-5.2) transgenic mice, resulted in positive selection of T cells expressing the relevant specificity. Moreover, the variants led to export of virus-specific T cells to lymph nodes, but without inducing T cell proliferation. These findings show that the mature T cell repertoire can be altered by in vivo peptide administration through manipulation of thymic selection.
Collapse
Affiliation(s)
- Masha Fridkis-Hareli
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Velloso LM, Michaëlsson J, Ljunggren HG, Schneider G, Achour A. Determination of Structural Principles Underlying Three Different Modes of Lymphocytic Choriomeningitis Virus Escape from CTL Recognition. THE JOURNAL OF IMMUNOLOGY 2004; 172:5504-11. [PMID: 15100292 DOI: 10.4049/jimmunol.172.9.5504] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocytic choriomeningitis virus infection of H-2(b) mice generates a strong CD8(+) CTL response mainly directed toward three immunodominant epitopes, one of which, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. This CTL response acts as a selective agent for the emergence of viral escape variants. These variants generate altered peptide ligands (APLs) that, when presented by class I MHC molecules, antagonize CTL recognition and ultimately allow the virus to evade the cellular immune response. The emergence of APLs of the gp33 epitope is particularly advantageous for LCMV, as it allows viral escape in the context of both H-2D(b) and H-2K(b) MHC class I molecules. We have determined crystal structures of three different APLs of gp33 in complex with both H-2D(b) and H-2K(b). Comparison between these APL/MHC structures and those of the index gp33 peptide/MHC reveals the structural basis for three different strategies used by LCMV viral escape mutations: 1) conformational changes in peptide and MHC residues that are potential TCR contacts, 2) impairment of APL binding to the MHC peptide binding cleft, and 3) introduction of subtle changes at the TCR/pMHC interface, such as the removal of a single hydroxyl group.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Animals
- Antigen Presentation/genetics
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/immunology
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Leucine/genetics
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Phenylalanine/genetics
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Conformation
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Structure-Activity Relationship
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Tyrosine/genetics
- Valine/genetics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Lucas Malard Velloso
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
25
|
Summers K, McKeon S, Sellars J, Keusenkothen M, Morris J, Gloeckner D, Pressley C, Price B, Snow H. Parasitic exploitation as an engine of diversity. Biol Rev Camb Philos Soc 2003; 78:639-75. [PMID: 14700394 DOI: 10.1017/s146479310300616x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parasitic exploitation occurs within and between a wide variety of taxa in a plethora of diverse contexts. Theoretical and empirical analyses indicate that parasitic exploitation can generate substantial genetic and phenotypic polymorphism within species. Under some circumstances, parasitic exploitation may also be an important factor causing reproductive isolation and promoting speciation. Here we review research relevant to the relationship between parasitic exploitation, within species-polymorphism, and speciation in some of the major arenas in which such exploitation has been studied. This includes research on the vertebrate major histocompatibility loci, plant-pathogen interactions, the evolution of sexual reproduction, intragenomic conflict, sexual conflict, kin mimicry and social parasitism, tropical forest diversity and the evolution of language. We conclude by discussing some of the issues raised by comparing the effect of parasitic exploitation on polymorphism and speciation in different contexts.
Collapse
Affiliation(s)
- Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Holmberg K, Mariathasan S, Ohteki T, Ohashi PS, Gascoigne NRJ. TCR binding kinetics measured with MHC class I tetramers reveal a positive selecting peptide with relatively high affinity for TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2427-34. [PMID: 12928390 DOI: 10.4049/jimmunol.171.5.2427] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interaction between TCR and peptide-MHC (pMHC) complexes is crucial for the activation of T cells as well as for positive and negative selection in the thymus. The kinetics and affinity of this interaction and the densities of TCR and pMHC complexes on the cell surface are determining factors for different outcomes during thymic selection. In general, it is thought that agonist pMHC, which cause negative selection, have higher affinities and, in particular, slower off-rates than partial or weak agonists and antagonists, which cause positive selection. In this study, we have used pMHC tetramers to investigate the kinetics of TCR-pMHC interaction for agonist, weak agonist, and antagonist ligands of the anti-lymphocytic choriomeningitis virus P14 TCR. Kinetics determined on the cell surface may be biologically more relevant than methods using soluble proteins. We can distinguish between agonists and weak agonists or antagonists based on the half-life and the avidity of tetramer-TCR interaction. Furthermore, we show that a weak agonist self-peptide that positively selects P14 TCR(+) thymocytes has a tetramer half-life and avidity only slightly weaker than strong agonists. We show that, in fact, it can act as quite a strong agonist, but that its poor ability to stabilize MHC causes it instead to have a weak agonist phenotype.
Collapse
MESH Headings
- Amino Acid Substitution/immunology
- Animals
- Antigen Presentation/immunology
- Binding, Competitive/immunology
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Dose-Response Relationship, Immunologic
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/metabolism
- H-2 Antigens/metabolism
- Half-Life
- Histocompatibility Antigen H-2D
- Kinetics
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oligopeptides/agonists
- Oligopeptides/antagonists & inhibitors
- Oligopeptides/metabolism
- Protein Binding/immunology
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Kaisa Holmberg
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
27
|
Ciatto C, Capitani G, Tissot AC, Pecorari F, Plückthun A, Grütter MG. Structural analysis of mycobacterial and murine hsp60 epitopes in complex with the class I MHC molecule H-2Db. FEBS Lett 2003; 543:11-5. [PMID: 12753896 DOI: 10.1016/s0014-5793(03)00325-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The decameric peptide SALQNAASIA from the Mycobacterium bovis heat shock protein (hsp) 60 is recognized by the murine T-cell receptor UZ-3-4 in complex with the murine class I major histocompatibility complex molecule H-2D(b). This T-cell receptor cross-reacts with the H-2D(b)-bound non-homologous decameric peptide KDIGNIISDA from the murine hsp60, but does not recognize the nonameric mycobacterial peptide SALQNAASI. Cross-recognition of the KDIGNIISDA/H-2D(b) complex induces autoimmune pathology in immunodeficient mice. We solved the X-ray crystal structure of the SALQNAASIA/H-2D(b) complex at 3.0 A resolution, and we modelled the KDIGNIISDA and SALQNAASI peptides in the H-2D(b) binding site. The structural analysis of the H-2D(b)-bound hsp60 epitopes offers insight into T-cell receptor cross-reactivity.
Collapse
Affiliation(s)
- Carlo Ciatto
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Moschella F, Ombra MN, Del Pozzo G, Guardiola J. Administration of different antigenic forms of altered peptide ligands derived from HIV-1 RTase influences their effects on T helper cell activation. Hum Immunol 2003; 64:1-8. [PMID: 12507809 DOI: 10.1016/s0198-8859(02)00783-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic hypervariability of viruses such as HIV-1 facilitates appearance of escape mutants for immune response. HIV-1 isolates display variant epitopes, which may fail to stimulate T-lymphocyte responses or act as natural T-cell receptor antagonists, contributing to viral persistence. We evaluated the effect on epitope specific T-cell reactions of different amino acid substitutions in a residue of the 248-262 sequence of HIV-1 reverse transcriptase (peptide 23), showing variability in different viral isolates. Responses against such a determinant have been detected in long-term nonprogressive patients. The modified antigenic determinant was administered either as synthetic peptide or as recombinant protein. Our results show that certain amino acid substitutions abolished peptide binding to major histocompatibility complex (MHC); other modifications, although not affecting the formation of the MHC/peptide complex, either abrogated T-cell proliferation or exhibited an antagonistic effect. The results suggest that residue 11 of peptide 23 exhibits a double function; its alteration affects both the peptide affinity for the MHC and the MHC/peptide complex affinity for the T-cell receptor. Furthermore, we demonstrated that synthetic ligands and recombinant proteins may produce distinct functional effects, providing evidence that synthetic peptides, compared with corresponding epitopes generated by intracellular processing of recombinant proteins, may bind to the MHC groove in a different conformation.
Collapse
Affiliation(s)
- Federica Moschella
- Division of Medical Oncology, Department of Medicine of the College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
29
|
Achour A, Michaëlsson J, Harris RA, Odeberg J, Grufman P, Sandberg JK, Levitsky V, Kärre K, Sandalova T, Schneider G. A structural basis for LCMV immune evasion: subversion of H-2D(b) and H-2K(b) presentation of gp33 revealed by comparative crystal structure.Analyses. Immunity 2002; 17:757-68. [PMID: 12479822 DOI: 10.1016/s1074-7613(02)00478-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LCMV infection of H-2(b) mice generates a CD8(+) CTL response mainly directed toward three immunodominant epitopes. One of these, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. The virus can escape immune recognition in the context of both these MHC class I molecules through single mutations of the peptide. In order to understand the underlying structural mechanism, we determined the crystal structures of both complexes. The structures reveal that the peptide is presented in two diametrically opposed manners by H-2D(b) and H-2K(b), with residues used as anchor positions in one MHC class I molecule interacting with the TCR in the other. Importantly, the peptide's N-terminal residue p1K protrudes from the binding cleft in H-2K(b). We present structural evidence that explains the functional consequences of single mutations found in escape variants.
Collapse
Affiliation(s)
- Adnane Achour
- Microbiology and Tumor Biology Center, Karolinska Institutet, Royal School of Technology, S-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hunziker L, Recher M, Ciurea A, Martinic MMA, Odermatt B, Hengartner H, Zinkernagel RM. Antagonistic variant virus prevents wild-type virus-induced lethal immunopathology. J Exp Med 2002; 196:1039-46. [PMID: 12391015 PMCID: PMC2194044 DOI: 10.1084/jem.20012045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Altered peptide ligands (APLs) and their antagonistic or partial agonistic character-influencing T cell activation have mainly been studied in vitro Some studies have shown APLs as a viral escape mechanism from cytotoxic CD8(+) T cell responses in vivo. However, whether infection or superinfection with a virus displaying an antagonistic T cell epitope can alter virus-host relationships via inhibiting T cell-mediated immunopathology is unclear. Here, we evaluated a recently described CD4(+) T cell escape lymphocytic choriomeningitis virus (LCMV) variant that in vitro displayed antagonistic characteristics for the major histocompatibility complex class II-restricted mutated epitope. Mice transgenic for the immunodominant LCMV-specific T helper epitope that usually succumb to wild-type LCMV-induced immunopathology, survived if they were simultaneously coinfected with antagonistic variant but not with control virus. The results illustrate that a coinfecting APL-expressing virus can shift an immunopathological virus-host relationships in favor of host survival. This may play a role in poorly cytopathic long-lasting virus carrier states in humans.
Collapse
Affiliation(s)
- Lukas Hunziker
- Institute for Experimental Immunology, University Hospital, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Rudolph MG, Luz JG, Wilson IA. Structural and thermodynamic correlates of T cell signaling. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:121-49. [PMID: 11988465 DOI: 10.1146/annurev.biophys.31.082901.134423] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The first crystal structures of intact T cell receptors (TCRs) bound to class I peptide-MHC (pMHCs) antigens were determined in 1996. Since then, further structures of class I TCR/pMHC complexes have explored the degree of structural variability in the TCR-pMHC system and the structural basis for positive and negative selection. The recent determination of class II and allogeneic class I TCR/pMHC structures, as well as those of accessory molecules (e.g., CD3), has pushed our knowledge of TCR/pMHC interactions into new realms, shedding light on clinical pathologies, such as graft rejection and graft-versus-host disease. Furthermore, the determination of coreceptor structures lays the foundation for a more comprehensive structural description of the supramolecular TCR signaling events and those assemblies that arise in the immunological synapse. While these telling photodocumentaries of the TCR/pMHC interaction are composed mainly from static crystal structures, a full description of the biological snapshots in T cell signaling requires additional analytical methods that record the dynamics of the process. To this end, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and ultracentrifugation (UC) have furnished both affinities and kinetics of the TCR/pMHC association. In the past year, structural, biochemical, and molecular biological data describing TCR/pMHC interactions have sublimely coalesced into a burgeoning well of understanding that promises to deliver further insights into T cell recognition. The coming years will, through a more intimate union of structural and kinetic data, allow many pressing questions to be addressed, such as how TCR/pMHC ligation is affected by coreceptor binding and what is the mechanism of TCR signaling in both early and late stages of T cell engagement with antigen-presenting cells.
Collapse
Affiliation(s)
- Markus G Rudolph
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
32
|
Sebzda E, Bracke M, Tugal T, Hogg N, Cantrell DA. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol 2002; 3:251-8. [PMID: 11836528 DOI: 10.1038/ni765] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cell receptor (TCR) stimulation activates the small GTPase Rap1A, which is reported to antagonize Ras signaling and induces T cell anergy. To address its role in vivo, we generated transgenic mice that constitutively expressed active Rap1A within the T cell lineage. We found that active Rap1A did not interfere with the Ras signaling pathway or antagonize T cell activation. Instead of anergy, the T lymphocytes that constitutively expressed active Rap1A showed enhanced TCR-mediated responses, both in thymocytes and mature T cells. In addition, Rap1A activation was sufficient to induce strong activation of the beta1 and beta2 integrins via an avidity-modulation mechanism. This shows that, far from playing an inhibitory role during T cell activation, Rap1A positively influences T cells by augmenting lymphocyte responses and directing integrin activation.
Collapse
Affiliation(s)
- Eric Sebzda
- Lymphocyte Activation Laboratory, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
33
|
Andersen PS, Menné C, Mariuzza RA, Geisler C, Karjalainen K. A response calculus for immobilized T cell receptor ligands. J Biol Chem 2001; 276:49125-32. [PMID: 11592972 DOI: 10.1074/jbc.m109396200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affinity determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated the importance of receptor cross-linking density in determining TCR signaling. Moreover, it was found that the functional two-dimensional affinity of TCR ligands was affected by the chemical composition of the ligand-presenting surface. This makes it possible that cell-bound TCR ligands, despite their low affinity in solution, are of optimal two-dimensional affinity thereby allowing effective TCR binding under physiological conditions, i.e. at low ligand densities in cellular interfaces.
Collapse
Affiliation(s)
- P S Andersen
- Institute for Medical Microbiology and Immunology, University of Copenhagen, The Panum Institute, Bldg. 24.2, Blegdamsvej 3C, Copenhagen DK-2200, Denmark.
| | | | | | | | | |
Collapse
|
34
|
He X, Tabaczewski P, Ho J, Stroynowski I, Garcia KC. Promiscuous antigen presentation by the nonclassical MHC Ib Qa-2 is enabled by a shallow, hydrophobic groove and self-stabilized peptide conformation. Structure 2001; 9:1213-24. [PMID: 11738047 DOI: 10.1016/s0969-2126(01)00689-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Qa-2 is a nonclassical MHC Ib antigen, which has been implicated in both innate and adaptive immune responses, as well as embryonic development. Qa-2 has an unusual peptide binding specificity in that it requires two dominant C-terminal anchor residues and is capable of associating with a substantially more diverse array of peptide sequences than other nonclassical MHC. RESULTS We have determined the crystal structure, to 2.3 A, of the Q9 gene of murine Qa-2 complexed with a self-peptide derived from the L19 ribosomal protein, which is abundant in the pool of peptides eluted from the Q9 groove. The 9 amino acid peptide is bound high in a shallow, hydrophobic binding groove of Q9, which is missing a C pocket. The peptide makes few specific contacts and exhibits extremely poor shape complementarity to the MHC groove, which facilitates the presentation of a degenerate array of sequences. The L19 peptide is in a centrally bulged conformation that is stabilized by intramolecular interactions from the invariant P7 histidine anchor residue and by a hydrophobic core of preferred secondary anchor residues that have minimal interaction with the MHC. CONCLUSIONS Unexpectedly, the preferred secondary peptide residues that exhibit tenuous contact with Q9 contribute significantly to the overall stability of the peptide-MHC complex. The structure of this complex implies a "conformational" selection by Q9 for peptide residues that optimally stabilize the large bulge rather than making intimate contact with the MHC pockets.
Collapse
Affiliation(s)
- X He
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
35
|
Ciatto C, Tissot AC, Tschopp M, Capitani G, Pecorari F, Plückthun A, Grütter MG. Zooming in on the hydrophobic ridge of H-2D(b): implications for the conformational variability of bound peptides. J Mol Biol 2001; 312:1059-71. [PMID: 11580250 DOI: 10.1006/jmbi.2001.5016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Class I major histocompatibility complex (MHC) molecules, which display intracellularly processed peptides on the cell surface for scanning by T-cell receptors (TCRs), are extraordinarily polymorphic. MHC polymorphism is believed to result from natural selection, since individuals heterozygous at the corresponding loci can cope with a larger number of pathogens. Here, we present the crystal structures of the murine MHC molecule H-2D(b) in complex with the peptides gp276 and np396 from the lymphocytic choriomeningitis virus (LCMV), solved at 2.18 A and 2.20 A resolution, respectively. The most prominent feature of H-2D(b) is a hydrophobic ridge that cuts across its antigen-binding site, which is conserved in the L(d)-like family of class I MHC molecules. The comparison with previously solved crystal structures of peptide/H-2D(b) complexes shows that the hydrophobic ridge focuses the conformational variability of the bound peptides in a "hot-spot", which could allow optimal TCR interaction and discrimination. This finding suggests a functional reason for the conservation of this structural element.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Binding Sites
- Crystallography, X-Ray
- Epitopes/chemistry
- Epitopes/immunology
- Evolution, Molecular
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Hydrogen Bonding
- Lymphocytic choriomeningitis virus/chemistry
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Models, Molecular
- Peptides/chemistry
- Peptides/immunology
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- C Ciatto
- Biochemisches Insitut, der Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
37
|
Puglielli MT, Zajac AJ, van der Most RG, Dzuris JL, Sette A, Altman JD, Ahmed R. In vivo selection of a lymphocytic choriomeningitis virus variant that affects recognition of the GP33-43 epitope by H-2Db but not H-2Kb. J Virol 2001; 75:5099-107. [PMID: 11333891 PMCID: PMC114915 DOI: 10.1128/jvi.75.11.5099-5107.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1999] [Accepted: 03/06/2001] [Indexed: 11/20/2022] Open
Abstract
CD8 T cells drive the protective immune response to lymphocytic choriomeningitis virus (LCMV) infection and are thus a determining force in the selection of viral variants. To examine how escape mutations affect the presentation and recognition of overlapping T-cell epitopes, we isolated an LCMV variant that is not recognized by T-cell receptor (TCR)-transgenic H-2Db-restricted LCMV GP33-41-specific cytotoxic T lymphocytes (CTL). The variant virus carried a single-amino-acid substitution (valine to alanine) at position 35 of the viral glycoprotein. This region of the LCMV glycoprotein encodes both the Db-restricted GP33-43 epitope and a second epitope (GP34-42) presented by the Kb molecule. We determined that the V-to-A CTL escape mutant failed to induce a Db GP33-43-specific CTL response and that Db-restricted GP33-43-specific CTL induced by the wild-type LCMV strain were unable to kill target cells infected with the variant LCMV strain. In contrast, the Kb-restricted response was much less affected. We found that the V-to-A substitution severely impaired peptide binding to Db but not to Kb molecules. Strikingly, the V-to-A mutation did not change any of the anchor residues, and the dramatic effect on binding was therefore unexpected. The strong decrease in Db binding explains why the variant virus escapes the Db GP33-43-specific response but still elicits the Kb-restricted response. These findings also illustrate that mutations within regions encoding overlapping T-cell epitopes can differentially affect the presentation and recognition of individual epitopes.
Collapse
Affiliation(s)
- M T Puglielli
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|