1
|
Chen C, Li X, Lu C, Zhou X, Chen L, Qiu C, Jin Z, Long J. Advances in alginate lyases and the potential application of enzymatic prepared alginate oligosaccharides: A mini review. Int J Biol Macromol 2024; 260:129506. [PMID: 38244735 DOI: 10.1016/j.ijbiomac.2024.129506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Alginate is mainly a linear polysaccharide composed of randomly arranged β-D-mannuronic acid and α-L-guluronic acid linked by α, β-(1,4)-glycosidic bonds. Alginate lyases degrade alginate mainly adopting a β-elimination mechanism, breaking the glycosidic bonds between the monomers and forming a double bond between the C4 and C5 sugar rings to produce alginate oligosaccharides consisting of 2-25 monomers, which have various physiological functions. Thus, it can be used for the continuous industrial production of alginate oligosaccharides with a specific degree of polymerization, in accordance with the requirements of green exploitation of marine resources. With the development of structural analysis, the quantity of characterized alginate lyase structures is progressively growing, leading to a concomitant improvement in understanding the catalytic mechanism. Additionally, the use of molecular modification methods including rational design, truncated expression of non-catalytic domains, and recombination of conserved domains can improve the catalytic properties of the original enzyme, enabling researchers to screen out the enzyme with the expected excellent performance with high success rate and less workload. This review presents the latest findings on the catalytic mechanism of alginate lyases and outlines the methods for molecular modifications. Moreover, it explores the connection between the degree of polymerization and the physiological functions of alginate oligosaccharides, providing a reference for enzymatic preparation development and utilization.
Collapse
Affiliation(s)
- Chen Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Rønne ME, Tandrup T, Madsen M, Hunt CJ, Myers PN, Moll JM, Holck J, Brix S, Strube ML, Aachmann FL, Wilkens C, Svensson B. Three alginate lyases provide a new gut Bacteroides ovatus isolate with the ability to grow on alginate. Appl Environ Microbiol 2023; 89:e0118523. [PMID: 37791757 PMCID: PMC10617595 DOI: 10.1128/aem.01185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 10/05/2023] Open
Abstract
Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel β-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.
Collapse
Affiliation(s)
- Mette E. Rønne
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tobias Tandrup
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikkel Madsen
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cameron J. Hunt
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pernille N. Myers
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Janne M. Moll
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael L. Strube
- Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Finn L. Aachmann
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Biotechnology and Biomedicine, Structural Enzymology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Ochiai A. Discovery of new functions of food proteins and their structural development for multifunctional applications. Biosci Biotechnol Biochem 2023; 87:1102-1110. [PMID: 37480241 DOI: 10.1093/bbb/zbad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Proteins and peptides derived from various food sources are used in a variety of applications, including functional foods, pharmaceuticals, and cosmetics. The three-dimensional structure of proteins provides useful insights into their functions and essential information for the creation of proteins with new functions. In this review, a series of functional conversion technologies based on protein structural information derived from foods traditionally consumed in Japan, such as natto (fermented soybeans) and rice, are introduced. For natto, we first identified 2 types of Bacillus subtilis-derived endolytic and exolytic enzymes with different modes of action on soybean cell wall polysaccharides and then focused on the technology used to create an endolytic enzyme from an exolytic enzyme. By applying this technology, a method for creating novel bioactive peptides from rice seed proteins was established. The modified peptides created could provide diverse options for the production of substances such as pharmaceuticals and cosmetic materials.
Collapse
Affiliation(s)
- Akihito Ochiai
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Pandey S, Berger BW, Acharya R. Structural Analyses of Substrate-pH Activity Pairing Observed across Diverse Polysaccharide Lyases. Biochemistry 2023; 62:2775-2790. [PMID: 37620757 DOI: 10.1021/acs.biochem.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Anionic polysaccharides found in nature are functionally and structurally diverse, and so are the polysaccharide lyases (PLs) that catalyze their degradation. Atomic superposition of various PL folds according to their cleavable substrate structure confirms the occurrence of structural convergence at PL active sites. This suggests that various PL folds have emerged to cleave a particular class of anionic polysaccharide during the course of evolution. Whereas the structural and mechanistic similarity of PL active site has been highlighted in earlier studies, a detailed understanding regarding functional properties of this catalytic convergence remains an open question, especially the role of extrinsic factors such as pH in the context of substrate binding and catalysis. Our earlier structural and functional work on pH directed multisubstrate specificity of Smlt1473 inspired us to regroup PLs according to substrate type to analyze the pH dependence of their catalytic activity. Interestingly, we find that particular groups of substrates are cleaved in a particular pH range (acidic/neutral/basic) irrespective of PL fold, boosting the idea of functional convergence as well. On the basis of this observation, we set out to define structurally and computationally the key constituents of an active site among PL families. This study delineates the structural determinants of conserved "substrate-pH activity pairing" within and between PL families.
Collapse
Affiliation(s)
- Shubhant Pandey
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050 Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094 Maharashtra, India
| | - Bryan W Berger
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Rudresh Acharya
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050 Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094 Maharashtra, India
| |
Collapse
|
5
|
Zhou L, Meng Q, Zhang R, Jiang B, Liu X, Chen J, Zhang T. Characterization of a Novel Polysaccharide Lyase Family 5 Alginate Lyase with PolyM Substrate Specificity. Foods 2022; 11:3527. [PMID: 36360141 PMCID: PMC9655155 DOI: 10.3390/foods11213527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
Alginate lyases (ALyases) have been widely applied in enzymatically degrading alginate for the preparation of alginate oligosaccharides (AOS), which possess a range of excellent physiological benefits including immunoregulatory, antivirus, and antidiabetic properties. Among the characterized ALyases, the number of ALyases with strict substrate specificity which possess potential in directed preparation of AOS is quite small. ALyases of polysaccharides lyase (PL) 5 family have been reported to perform poly-β-D-mannuronic acid (Poly-M) substrate specificity. However, there have been fewer studies with a comprehensive characterization and comparison of PL 5 family ALyases. In this study, a putative PL 5 family ALyase PMD was cloned from Pseudomonas mendocina and expressed in Escherichia coli. The novel ALyase presented maximum activity at 30 °C and pH 7.0. PMD displayed pH stability properties under the range of pH 5 to pH 9, which retained more than 80% relative activity, even when incubated for 48 h. Product analysis indicated that PMD might be an endolytic ALyase with strict Poly M substrate specificity and yield disaccharide and trisaccharide as main products. In addition, residues K58, R66, Y248, and R344 were proposed to be the potential key residues for catalysis via site-directed mutation. Detailed characterization of PMD and comprehensive comparisons could supply some different information about properties of PL 5 ALyases which might be helpful for its application in the directed production of AOS.
Collapse
Affiliation(s)
- Licheng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qing Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Ran Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd., Weihai 264333, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Madsen M, Rønne ME, Li R, Greco I, Ipsen R, Svensson B. Simulated gastrointestinal digestion of protein alginate complexes: effects of whey protein cross-linking and the composition and degradation of alginate. Food Funct 2022; 13:8375-8387. [PMID: 35848445 DOI: 10.1039/d2fo01256a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alginate and whey protein are common additives in food production improving storage stability, texture and nutritional value. Alginate forms complexes with whey protein and inhibits proteolysis by pepsin and trypsin, but the influence of alginate protein complexation on digestion is poorly understood. This study shows that whey protein cross-linking by microbial transglutaminase dramatically decreased particle size (2-fold) and viscosity of alginate protein complexes. The INFOGEST in vitro simulated gastrointestinal digestion of whey protein was increased by cross-linking (16%) and suppressed by alginate, most pronounced with high mannuronic acid and least with high guluronic acid content. Sizes of alginate whey protein particles increased during gastric digestion, whereas for cross-linked whey protein complexes the size initially increased, but returned to their initial size at the end of gastric digestion. While alginate is not degraded by human enzymes, a few gut bacteria were recently found to encode lyases and other enzymes metabolizing alginate. Alginate lyase added to the intestinal phase enhanced digestion (9%) as controlled by alginate composition and enzyme specificity. Thus we provide evidence that use of hydrocolloids and processing of protein strongly influence digestion and should be considered when using food additives.
Collapse
Affiliation(s)
- Mikkel Madsen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark.
| | - Mette E Rønne
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark.
| | - Ruifen Li
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg, Denmark
| | - Ines Greco
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg, Denmark
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Gheorghita AA, Wolfram F, Whitfield GB, Jacobs HM, Pfoh R, Wong SSY, Guitor AK, Goodyear MC, Berezuk AM, Khursigara CM, Parsek MR, Howell PL. The Pseudomonas aeruginosa homeostasis enzyme AlgL clears the periplasmic space of accumulated alginate during polymer biosynthesis. J Biol Chem 2022; 298:101560. [PMID: 34990713 PMCID: PMC8829089 DOI: 10.1016/j.jbc.2021.101560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein’s role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francis Wolfram
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory B Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Holly M Jacobs
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Roland Pfoh
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven S Y Wong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Allison K Guitor
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mara C Goodyear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alison M Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Gao SK, Yin R, Wang XC, Jiang HN, Liu XX, Lv W, Ma Y, Zhou YX. Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases. Mar Drugs 2021; 19:628. [PMID: 34822499 PMCID: PMC8618178 DOI: 10.3390/md19110628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure-substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (S.-K.G.); (R.Y.); (X.-C.W.); (H.-N.J.); (X.-X.L.); (W.L.); (Y.M.)
| |
Collapse
|
9
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
10
|
Violot S, Galisson F, Carrique L, Jugnarain V, Conchou L, Robert X, Thureau A, Helbert W, Aghajari N, Ballut L. Exploring molecular determinants of polysaccharide Lyase family 6-1 enzyme activity. Glycobiology 2021; 31:1557-1570. [PMID: 34245266 DOI: 10.1093/glycob/cwab073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
The Polysaccharide Lyase Family 6 (PL6) represents one of the 41 polysaccharide lyase families classified in the CAZy database with the vast majority of its members being alginate lyases grouped into three subfamilies, PL6_1-3. To decipher the mode of recognition and action of the enzymes belonging to subfamily PL6_1, we solved the crystal structures of Pedsa0632, Patl3640, Pedsa3628 and Pedsa3807, which all show different substrate specificities and mode of action (endo-/exo-lyase). Thorough exploration of the structures of Pedsa0632 and Patl3640 in complex with their substrates as well as docking experiments confirm that the conserved residues in subsites -1 to +3 of the catalytic site form a common platform which can accommodate various types of alginate in a very similar manner but with a series of original adaptations bringing them their specificities of action. From comparative studies with existing structures of PL6_1 alginate lyases, we observe that in the right-handed parallel β-helix fold shared by all these enzymes, the substrate binding site harbors the same overall conserved structures and organization. Despite this apparent similarity, it appears that members of the PL6_1 subfamily specifically accommodate and catalyze the degradation of different alginates suggesting that this common platform is actually a highly adaptable and specific tool.
Collapse
Affiliation(s)
- Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Frédéric Galisson
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Loïc Carrique
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Vinesh Jugnarain
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Léa Conchou
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Xavier Robert
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | | | - William Helbert
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Grenoble Alpes, CNRS, 38000 Grenoble, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
11
|
Li Q, Zheng L, Guo Z, Tang T, Zhu B. Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases. Crit Rev Biotechnol 2021; 41:953-968. [PMID: 34015998 DOI: 10.1080/07388551.2021.1898330] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alginate, a kind of linear acidic polysaccharide, consists of α-L-guluronate (G) and β-D-mannuronate (M). Both alginate and its degradation products (alginate oligosaccharides) possess abundant biological activities such as antioxidant activity, antitumor activity, and antimicrobial activity. Therefore, alginate and alginate oligosaccharides have great value in food, pharmaceutical, and agricultural fields. Alginate lyase can degrade alginate into alginate oligosaccharides via the β-elimination reaction. It plays an important role in marine carbon recycling and the deep utilization of brown algae. Elucidating the structural features of alginate lyase can improve our knowledge of its catalytic mechanisms. With the development of structural analysis techniques, increasing numbers of alginate lyases have been characterized at the structural level. Hence, it is essential and helpful to summarize and discuss the up-to-date findings. In this review, we have summarized progress on the structural features and the catalytic mechanisms of alginate lyases. Furthermore, the molecular modification strategies and the applications of alginate lyases have also been discussed. This comprehensive information should be helpful to expand the applications of alginate lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zilong Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
12
|
Zhang K, Liu T, Liu W, Lyu Q. Structural insights into the substrate-binding cleft of AlyF reveal the first long-chain alginate-binding mode. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:336-346. [PMID: 33645537 DOI: 10.1107/s205979832100005x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/03/2021] [Indexed: 11/10/2022]
Abstract
The products of alginate degradation, alginate oligosaccharides (AOS), have potential applications in many areas, including functional foods and marine drugs. Enzyme-based approaches using alginate lyases have advantages in the preparation of well defined AOS and have attracted much attention in recent years. However, a lack of structural insight into the whole substrate-binding cleft for most known alginate lyases severely hampers their application in the industrial generation of well defined AOS. To solve this issue, AlyF was co-crystallized with the long alginate oligosaccharide G6 (L-hexaguluronic acid hexasodium salt), which is the longest bound substrate in all solved alginate lyase complex structures. AlyF formed interactions with G6 from subsites -3 to +3 without additional substrate-binding site interactions, suggesting that the substrate-binding cleft of AlyF was fully occupied by six sugars, which was further confirmed by isothermal titration calorimetry and differential scanning calorimetry analyses. More importantly, a combination of structural comparisons and mutagenetic analyses determined that three key loops (loop 1, Lys215-Glu236; loop 2, Gln402-Ile416; loop 3, Arg334-Gly348) mainly function in binding long substrates (degree of polymerization of >4). The potential flexibility of loop 1 and loop 2 might enable the substrate to continue to enter the cleft after binding to subsites +1 to +3; loop 3 stabilizes and orients the substrate at subsites -2 and -3. Taken together, these results provide the first possible alginate lyase-substrate binding profile for long-chain alginates, facilitating the rational design of new enzymes for industrial purposes.
Collapse
Affiliation(s)
- Keke Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tao Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Weizhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
13
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Sun H, Gao L, Xue C, Mao X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci Food Saf 2020; 19:2767-2796. [PMID: 33337030 DOI: 10.1111/1541-4337.12630] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Marine-polysaccharide degrading enzymes have recently been studied extensively. They are particularly interesting as they catalyze the cleavage of glycosidic bonds in polysaccharide macromolecules and produce oligosaccharides with low degrees of polymerization. Numerous findings have demonstrated that marine polysaccharides and their biotransformed products possess beneficial properties including antitumor, antiviral, anticoagulant, and anti-inflammatory activities, and they have great value in healthcare, cosmetics, the food industry, and agriculture. Exploitation of enzymes that can degrade marine polysaccharides is in the ascendant, and is important for high-value use of marine biomass resources. In this review, we describe research and prospects regarding the classification, biochemical properties, and catalytic mechanisms of the main types of marine-polysaccharide degrading enzymes, focusing on chitinase, chitosanase, alginate lyase, agarase, and carrageenase, and their product oligosaccharides. The state-of-the-art discussion of marine-polysaccharide degrading enzymes and their properties offers information that might enable more efficient production of marine oligosaccharides. We also highlight current problems in the field of marine-polysaccharide degrading enzymes and trends in their development. Understanding the properties, catalytic mechanisms, and modification of known enzymes will aid the identification of novel enzymes to degrade marine polysaccharides and facilitation of their use in various biotechnological processes.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Alginate Lyase Aly36B is a New Bacterial Member of the Polysaccharide Lyase Family 36 and Catalyzes by a Novel Mechanism With Lysine as Both the Catalytic Base and Catalytic Acid. J Mol Biol 2019; 431:4897-4909. [DOI: 10.1016/j.jmb.2019.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/22/2022]
|
16
|
Zhu B, Li K, Wang W, Ning L, Tan H, Zhao X, Yin H. Preparation of trisaccharides from alginate by a novel alginate lyase Alg7A from marine bacterium Vibrio sp. W13. Int J Biol Macromol 2019; 139:879-885. [DOI: 10.1016/j.ijbiomac.2019.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/24/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
|
17
|
Liu J, Yang S, Li X, Yan Q, Reaney MJT, Jiang Z. Alginate Oligosaccharides: Production, Biological Activities, and Potential Applications. Compr Rev Food Sci Food Saf 2019; 18:1859-1881. [DOI: 10.1111/1541-4337.12494] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Qiaojuan Yan
- Bioresource Utilization LaboratoryCollege of EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Martin J. T. Reaney
- Dept. of Plant SciencesUniv. of Saskatchewan Saskatoon SK S7N 5A8 Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory (GUSTO)Dept. of Food Science and EngineeringJinan Univ. Guangzhou 510632 China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| |
Collapse
|
18
|
Belik AA, Silchenko AS, Kusaykin MI, Zvyagintseva TN, Ermakova SP. Alginate Lyases: Substrates, Structure, Properties, and Prospects of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Xu F, Wang P, Zhang YZ, Chen XL. Diversity of Three-Dimensional Structures and Catalytic Mechanisms of Alginate Lyases. Appl Environ Microbiol 2018; 84:e02040-17. [PMID: 29150496 PMCID: PMC5772247 DOI: 10.1128/aem.02040-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate is a linear polysaccharide produced mainly by brown algae in marine environments. Alginate consists of a linear block copolymer made up of two monomeric units, β-d-mannuronate (M) and its C-5 epimer α-l-guluronate (G). Alginate lyases are polysaccharide lyases (PL) that degrade alginate via a β-elimination reaction. These enzymes play an important role in marine carbon recycling and also have widespread industrial applications. So far, more than 1,774 alginate lyase sequences have been identified and are distributed into 7 PL families. In this review, the folds, conformational changes during catalysis, and catalytic mechanisms of alginate lyases are described. Thus far, structures for 15 alginate lyases have been solved and are divided into 3 fold classes: the β-jelly roll class (PL7, -14, and -18), the (α/α)n toroid class (PL5, -15, and -17), and the β-helix fold (PL6). These enzymes adopt two different mechanisms for catalysis, and three kinds of conformational changes occur during this process. Moreover, common features in the structures, conformational changes, and catalytic mechanisms are summarized, providing a comprehensive understanding on alginate lyases.
Collapse
Affiliation(s)
- Fei Xu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Peng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
20
|
Qin HM, Miyakawa T, Inoue A, Nishiyama R, Nakamura A, Asano A, Sawano Y, Ojima T, Tanokura M. Structure and Polymannuronate Specificity of a Eukaryotic Member of Polysaccharide Lyase Family 14. J Biol Chem 2017; 292:2182-2190. [PMID: 28011642 PMCID: PMC5313092 DOI: 10.1074/jbc.m116.749929] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Alginate is an abundant algal polysaccharide, composed of β-d-mannuronate and its C5 epimer α-l-guluronate, that is a useful biomaterial in cell biology and tissue engineering, with applications in cancer and aging research. The alginate lyase (EC 4.2.2.3) from Aplysia kurodai, AkAly30, is a eukaryotic member of the polysaccharide lyase 14 (PL-14) family and degrades alginate by cleaving the glycosidic bond through a β-elimination reaction. Here, we present the structural basis for the substrate specificity, with a preference for polymannuronate, of AkAly30. The crystal structure of AkAly30 at a 1.77 Å resolution and the putative substrate-binding model show that the enzyme adopts a β-jelly roll fold at the core of the structure and that Lys-99, Tyr-140, and Tyr-142 form catalytic residues in the active site. Their arrangements allow the carboxyl group of mannuronate residues at subsite +1 to form ionic bonds with Lys-99. The coupled tyrosine forms a hydrogen bond network with the glycosidic bond, and the hydroxy group of Tyr-140 is located near the C5 atom of the mannuronate residue. These interactions could promote the β-elimination of the mannuronate residue at subsite +1. More interestingly, Gly-118 and the disulfide bond formed by Cys-115 and Cys-124 control the conformation of an active-site loop, which makes the space suitable for substrate entry into subsite -1. The cleavage efficiency of AkAly30 is enhanced relative to that of mutants lacking either Gly-118 or the Cys-115-Cys-124 disulfide bond. The putative binding model and mutagenesis studies provide a novel substrate recognition mode explaining the polymannuronate specificity of PL-14 alginate lyases.
Collapse
Affiliation(s)
- Hui-Min Qin
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- the College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, China
| | - Takuya Miyakawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Inoue
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Ryuji Nishiyama
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Akira Nakamura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsuko Asano
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoriko Sawano
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- the Laboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kounodai, Ichikawa-shi, Chiba 272-0827, Japan
| | - Takao Ojima
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Masaru Tanokura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
21
|
Zhou Z, Liu Y, Chang Z, Wang H, Leier A, Marquez-Lago TT, Ma Y, Li J, Song J. Structure-based engineering of a pectate lyase with improved specific activity for ramie degumming. Appl Microbiol Biotechnol 2016; 101:2919-2929. [PMID: 28028551 DOI: 10.1007/s00253-016-7994-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 11/27/2022]
Abstract
Biotechnological applications of microbial pectate lyases (Pels) in plant fiber processing are promising, eco-friendly substitutes for conventional chemical degumming processes. However, to potentiate the enzymes' use for industrial applications, resolving the molecular structure to elucidate catalytic mechanisms becomes necessary. In this manuscript, we report the high resolution (1.45 Å) crystal structure of pectate lyase (pelN) from Paenibacillus sp. 0602 in apo form. Through sequence alignment and structural superposition with other members of the polysaccharide lyase (PL) family 1 (PL1), we determined that pelN shares the characteristic right-handed β-helix and is structurally similar to other members of the PL1 family, while exhibiting key differences in terms of catalytic and substrate binding residues. Then, based on information from structure alignments with other PLs, we engineered a novel pelN. Our rational design yielded a pelN mutant with a temperature for enzymatic activity optimally shifted from 67.5 to 60 °C. Most importantly, this pelN mutant displayed both higher specific activity and ramie fiber degumming ability when compared with the wild-type enzyme. Altogether, our rational design method shows great potential for industrial applications. Moreover, we expect the reported high-resolution crystal structure to provide a solid foundation for future rational, structure-based engineering of genetically enhanced pelNs.
Collapse
Affiliation(s)
- Zhanping Zhou
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yang Liu
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhenying Chang
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huilin Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - André Leier
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Tatiana T Marquez-Lago
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jian Li
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jiangning Song
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
22
|
Inoue A, Anraku M, Nakagawa S, Ojima T. Discovery of a Novel Alginate Lyase from Nitratiruptor sp. SB155-2 Thriving at Deep-sea Hydrothermal Vents and Identification of the Residues Responsible for Its Heat Stability. J Biol Chem 2016; 291:15551-63. [PMID: 27231344 DOI: 10.1074/jbc.m115.713230] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 11/06/2022] Open
Abstract
Extremophiles are expected to represent a source of enzymes having unique functional properties. The hypothetical protein NIS_0185, termed NitAly in this study, was identified as an alginate lyase-homolog protein in the genomic database of ϵ-Proteobacteria Nitratiruptor sp. SB155-2, which was isolated from deep-sea hydrothermal vents at a water depth of 1,000 m. Among the characterized alginate lyases in the polysaccharide lyase family 7 (PL-7), the amino acid sequence of NitAly showed the highest identity (39%) with that of red alga Pyropia yezoensis alginate lyase PyAly. Recombinant NitAly (rNitAly) was successfully expressed in Escherichia coli Purified rNitAly degraded alginate in an endolytic manner. Among alginate block types, polyM was preferable to polyG and polyMG as a substrate, and its end degradation products were mainly tri-, tetra-, and penta-saccharides. The optimum temperature and pH values were 70 °C and around 6, respectively. A high concentration of NaCl (0.8-1.4 m) was required for maximum activity. In addition, a 50% loss of activity was observed after incubation at 67 °C for 30 min. Heat stability was decreased in the presence of 5 mm DTT, and Cys-80 and Cys-232 were identified as the residues responsible for heat stability but not lyase activity. Introducing two cysteines into PyAly based on homology modeling using Pseudomonas aeruginosa alginate lyase PA1167 as the template enhanced its heat stability. Thus, NitAly is a functional alginate lyase, with its unique optimum conditions adapted to its environment. These insights into the heat stability of NitAly could be applied to improve that of other PL-7 alginate lyases.
Collapse
Affiliation(s)
- Akira Inoue
- From the Laboratory of Marine Biotechnology and Microbiology, Division of Applied Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Moe Anraku
- From the Laboratory of Marine Biotechnology and Microbiology, Division of Applied Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Satoshi Nakagawa
- From the Laboratory of Marine Biotechnology and Microbiology, Division of Applied Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Takao Ojima
- From the Laboratory of Marine Biotechnology and Microbiology, Division of Applied Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| |
Collapse
|
23
|
Kim HS, Chu YJ, Park CH, Lee EY, Kim HS. Site-Directed Mutagenesis-Based Functional Analysis and Characterization of Endolytic Lyase Activity of N- and C-Terminal Domains of a Novel Oligoalginate Lyase from Sphingomonas sp. MJ-3 Possessing Exolytic Lyase Activity in the Intact Enzyme. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:782-792. [PMID: 26342491 DOI: 10.1007/s10126-015-9658-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/14/2015] [Indexed: 06/05/2023]
Abstract
A novel oligoalginate lyase from a marine bacterium, Sphingomonas sp. strain MJ-3, exhibited a unique alginate degradation activity that completely depolymerizes alginate to monomers through the formation of oligomers. In order to reveal the reason why MJ-3 oligoalginate can exhibit both endolytic and exolytic alginate lyase activities, ten mutants were developed and characterized on the basis of homology modeling. When the recombinant cell lysates containing the mutated proteins of MJ-3 oligoalginate lyase were allowed to react with alginate, the Asn177Ala, His178Ala, Tyr234Phe, His389Ala, and Tyr426Phe mutants showed reduced oligoalginate lyase activity, whereas the Arg236Ala mutant exhibited endolytic activity. Interestingly, the overexpressed Arg236Ala protein (79.6 kDa) was proteolytically cleaved into two fragments, i.e., the N-terminal 32.0-kDa and the C-terminal 47.6-kDa fragments. Both the purified N-terminal and C-terminal fragments showed endolytic lyase activity. They preferentially degraded a heteropolymeric (polyMG) block than poly-β-D-mannuronate (polyM) or poly-α-L-guluronate (polyG) blocks. These results suggest that the oligoalginate lyase activity of MJ-3 enzyme is derived from the cooperative interaction between the N- and C-terminal endolytic alginate lyase domains in the intact enzyme.
Collapse
Affiliation(s)
- Hae Sol Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea
| | - Yu Jeong Chu
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea
| | - Chang-Ho Park
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 446-701, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 446-701, Republic of Korea.
| | - Hee Sook Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea.
| |
Collapse
|
24
|
Zhu B, Yin H. Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 2015; 6:125-31. [PMID: 25831216 PMCID: PMC4601208 DOI: 10.1080/21655979.2015.1030543] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022] Open
Abstract
Alginate lyases catalyze the degradation of alginate, a complex copolymer of α-L-guluronate and its C5 epimer β-D-mannuronate. The enzymes have been isolated from various kinds of organisms with different substrate specificities, including algae, marine mollusks, marine and terrestrial bacteria, and some viruses and fungi. With the progress of structural biology, many kinds of alginate lyases of different polysaccharide lyases families have been characterized by obtaining crystal structures, and the catalytic mechanism has also been elucidated. Combined with various studies, we summarized the source, classification and properties of the alginate lyases from different polysaccharide lyases families. The relationship between substrate specificity and protein sequence was also investigated.
Collapse
Affiliation(s)
- Benwei Zhu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian, PR China
- University of Chinese Academy of Sciences; Beijing, PR China
| | - Heng Yin
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian, PR China
| |
Collapse
|
25
|
Dong S, Wei TD, Chen XL, Li CY, Wang P, Xie BB, Qin QL, Zhang XY, Pang XH, Zhou BC, Zhang YZ. Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18. J Biol Chem 2014; 289:29558-69. [PMID: 25210041 DOI: 10.1074/jbc.m114.584573] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial alginate lyases, which are members of several polysaccharide lyase (PL) families, have important biological roles and biotechnological applications. The mechanisms for maturation, substrate recognition, and catalysis of PL18 alginate lyases are still largely unknown. A PL18 alginate lyase, aly-SJ02, from Pseudoalteromonas sp. 0524 displays a β-jelly roll scaffold. Structural and biochemical analyses indicated that the N-terminal extension in the aly-SJ02 precursor may act as an intramolecular chaperone to mediate the correct folding of the catalytic domain. Molecular dynamics simulations and mutational assays suggested that the lid loops over the aly-SJ02 active center serve as a gate for substrate entry. Molecular docking and site-directed mutations revealed that certain conserved residues at the active center, especially those at subsites +1 and +2, are crucial for substrate recognition. Tyr(353) may function as both a catalytic base and acid. Based on our results, a model for the catalysis of aly-SJ02 in alginate depolymerization is proposed. Moreover, although bacterial alginate lyases from families PL5, 7, 15, and 18 adopt distinct scaffolds, they share the same conformation of catalytic residues, reflecting their convergent evolution. Our results provide the foremost insight into the mechanisms of maturation, substrate recognition, and catalysis of a PL18 alginate lyase.
Collapse
Affiliation(s)
- Sheng Dong
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Tian-Di Wei
- From the State Key Laboratory of Microbial Technology and
| | - Xiu-Lan Chen
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Chun-Yang Li
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Peng Wang
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Bin-Bin Xie
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Qi-Long Qin
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xi-Ying Zhang
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xiu-Hua Pang
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Bai-Cheng Zhou
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Yu-Zhong Zhang
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| |
Collapse
|
26
|
MacDonald LC, Berger BW. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473. J Biol Chem 2014; 289:18022-32. [PMID: 24808176 DOI: 10.1074/jbc.m114.571299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases.
Collapse
Affiliation(s)
| | - Bryan W Berger
- From the Program in Bioengineering and Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
27
|
MacDonald LC, Berger BW. A polysaccharide lyase from Stenotrophomonas maltophilia with a unique, pH-regulated substrate specificity. J Biol Chem 2013; 289:312-25. [PMID: 24257754 DOI: 10.1074/jbc.m113.489195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysaccharide lyases (PLs) catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. PLs also play important roles in microbial pathogenesis, participating in bacterial invasion and toxin spread into the host tissue via degradation of the host extracellular matrix, or in microbial biofilm formation often associated with enhanced drug resistance. Stenotrophomonas maltophilia is a Gram-negative bacterium that is among the emerging multidrug-resistant organisms associated with chronic lung infections as well as with cystic fibrosis patients. A putative alginate lyase (Smlt1473) from S. maltophilia was heterologously expressed in Escherichia coli, purified in a one-step fashion via affinity chromatography, and activity as well as specificity determined for a range of polysaccharides. Interestingly, Smlt1473 catalyzed the degradation of not only alginate, but poly-β-D-glucuronic acid and hyaluronic acid as well. Furthermore, the pH optimum for enzymatic activity is substrate-dependent, with optimal hyaluronic acid degradation at pH 5, poly-β-D-glucuronic acid degradation at pH 7, and alginate degradation at pH 9. Analysis of the degradation products revealed that each substrate was cleaved endolytically into oligomers comprised predominantly of even numbers of sugar groups, with lower accumulation of trimers and pentamers. Collectively, these results imply that Smlt1473 is a multifunctional PL that exhibits broad substrate specificity, but utilizes pH as a mechanism to achieve selectivity.
Collapse
|
28
|
Thomas F, Lundqvist LCE, Jam M, Jeudy A, Barbeyron T, Sandström C, Michel G, Czjzek M. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem 2013; 288:23021-37. [PMID: 23782694 DOI: 10.1074/jbc.m113.467217] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell walls of brown algae are complex supramolecular assemblies containing various original, sulfated, and carboxylated polysaccharides. Among these, the major marine polysaccharide component, alginate, represents an important biomass that is successfully turned over by the heterotrophic marine bacteria. In the marine flavobacterium Zobellia galactanivorans, the catabolism and uptake of alginate are encoded by operon structures that resemble the typical Bacteroidetes polysaccharide utilization locus. The genome of Z. galactanivorans contains seven putative alginate lyase genes, five of which are localized within two clusters comprising additional carbohydrate-related genes. This study reports on the detailed biochemical and structural characterization of two of these. We demonstrate here that AlyA1PL7 is an endolytic guluronate lyase, and AlyA5 cleaves unsaturated units, α-L-guluronate or β-D-manuronate residues, at the nonreducing end of oligo-alginates in an exolytic fashion. Despite a common jelly roll-fold, these striking differences of the mode of action are explained by a distinct active site topology, an open cleft in AlyA1(PL7), whereas AlyA5 displays a pocket topology due to the presence of additional loops partially obstructing the catalytic groove. Finally, in contrast to PL7 alginate lyases from terrestrial bacteria, both enzymes proceed according to a calcium-dependent mechanism suggesting an exquisite adaptation to their natural substrate in the context of brown algal cell walls.
Collapse
Affiliation(s)
- François Thomas
- University of Marie and Pierre Curie Paris 6, UMR 7139, Marine Plants and Biomolecules, Station Biologique de Roscoff, F-29682 Roscoff, Brittany, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother 2012; 57:137-45. [PMID: 23070175 DOI: 10.1128/aac.01789-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 2 decades of study support the hypothesis that alginate lyases are promising therapeutic candidates for treating mucoid Pseudomonas aeruginosa infections. In particular, the enzymes' ability to degrade alginate, a key component of mucoid biofilm matrix, has been the presumed mechanism by which they disrupt biofilms and enhance antibiotic efficacy. The systematic studies reported here show that, in an in vitro model, alginate lyase dispersion of P. aeruginosa biofilms and enzyme synergy with tobramycin are completely decoupled from catalytic activity. In fact, equivalent antibiofilm effects can be achieved with bovine serum albumin or simple amino acids. These results provide new insights into potential mechanisms of alginate lyase therapeutic activity, and they should motivate a careful reexamination of the fundamental assumptions underlying interest in enzymatic biofilm dispersion.
Collapse
|
30
|
Mikami B, Ban M, Suzuki S, Yoon HJ, Miyake O, Yamasaki M, Ogura K, Maruyama Y, Hashimoto W, Murata K. Induced-fit motion of a lid loop involved in catalysis in alginate lyase A1-III. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1207-16. [PMID: 22948922 DOI: 10.1107/s090744491202495x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/31/2012] [Indexed: 11/11/2022]
Abstract
The structures of two mutants (H192A and Y246F) of a mannuronate-specific alginate lyase, A1-III, from Sphingomonas species A1 complexed with a tetrasaccharide substrate [4-deoxy-L-erythro-hex-4-ene-pyranosyluronate-(mannuronate)(2)-mannuronic acid] were determined by X-ray crystallography at around 2.2 Å resolution together with the apo form of the H192A mutant. The final models of the complex forms, which comprised two monomers (of 353 amino-acid residues each), 268-287 water molecules and two tetrasaccharide substrates, had R factors of around 0.17. A large conformational change occurred in the position of the lid loop (residues 64-85) in holo H192A and Y246F compared with that in apo H192A. The lid loop migrated about 14 Å from an open form to a closed form to interact with the bound tetrasaccharide and a catalytic residue. The tetrasaccharide was bound in the active cleft at subsites -3 to +1 as a substrate form in which the glycosidic linkage to be cleaved existed between subsites -1 and +1. In particular, the O(η) atom of Tyr68 in the closed lid loop forms a hydrogen bond to the side chain of a presumed catalytic residue, O(η) of Tyr246, which acts both as an acid and a base catalyst in a syn mechanism.
Collapse
Affiliation(s)
- Bunzo Mikami
- Department of Applied Life Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Lamppa JW, Ackerman ME, Lai JI, Scanlon TC, Griswold KE. Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreactivity. PLoS One 2011; 6:e17042. [PMID: 21340021 PMCID: PMC3038863 DOI: 10.1371/journal.pone.0017042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
Alginate lyase enzymes represent prospective biotherapeutic agents for treating bacterial infections, particularly in the cystic fibrosis airway. To effectively deimmunize one therapeutic candidate while maintaining high level catalytic proficiency, a combined genetic engineering-PEGylation strategy was implemented. Rationally designed, site-specific PEGylation variants were constructed by orthogonal maleimide-thiol coupling chemistry. In contrast to random PEGylation of the enzyme by NHS-ester mediated chemistry, controlled mono-PEGylation of A1-III alginate lyase produced a conjugate that maintained wild type levels of activity towards a model substrate. Significantly, the PEGylated variant exhibited enhanced solution phase kinetics with bacterial alginate, the ultimate therapeutic target. The immunoreactivity of the PEGylated enzyme was compared to a wild type control using in vitro binding studies with both enzyme-specific antibodies, from immunized New Zealand white rabbits, and a single chain antibody library, derived from a human volunteer. In both cases, the PEGylated enzyme was found to be substantially less immunoreactive. Underscoring the enzyme's potential for practical utility, >90% of adherent, mucoid, Pseudomonas aeruginosa biofilms were removed from abiotic surfaces following a one hour treatment with the PEGylated variant, whereas the wild type enzyme removed only 75% of biofilms in parallel studies. In aggregate, these results demonstrate that site-specific mono-PEGylation of genetically engineered A1-III alginate lyase yielded an enzyme with enhanced performance relative to therapeutically relevant metrics.
Collapse
Affiliation(s)
- John W. Lamppa
- Thayer School of Engineering, Dartmouth
College, Hanover, New Hampshire, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth
College, Hanover, New Hampshire, United States of America
| | - Jennifer I. Lai
- Department of Biological Engineering,
Massachusetts Institute of Technology, Boston, Massachusetts, United States of
America
| | - Thomas C. Scanlon
- Thayer School of Engineering, Dartmouth
College, Hanover, New Hampshire, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth
College, Hanover, New Hampshire, United States of America
- Department of Biological Sciences, Dartmouth
College, Hanover, New Hampshire, United States of America
- Program in Molecular and Cellular Biology,
Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
33
|
Garron ML, Cygler M. Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 2010; 20:1547-73. [PMID: 20805221 DOI: 10.1093/glycob/cwq122] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polysaccharide lyases (PLs) have been assigned to 21 families based on their sequences, with ~ 50 singletons awaiting further classification. For 19 of these families, the structure of at least one protein is known. In this review, we have analyzed the available structural information and show that presently known PL families belong to six general folds. Only two general catalytic mechanisms have been observed among these PLs: (1) metal-assisted neutralization of the acidic group of the sugar next to the cleaved bond, with, rather unusually, arginine or lysine playing the role of Brønsted base and (2) neutralization of the acidic group on the sugar by a close approach of an amino or acidic group forcing its protonation and Tyr or Tyr-His acting as the Brønsted base and acid.
Collapse
Affiliation(s)
- Marie-Line Garron
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
34
|
Shaya D, Zhao W, Garron ML, Xiao Z, Cui Q, Zhang Z, Sulea T, Linhardt RJ, Cygler M. Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate. J Biol Chem 2010; 285:20051-61. [PMID: 20404324 PMCID: PMC2888417 DOI: 10.1074/jbc.m110.101071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/10/2010] [Indexed: 11/06/2022] Open
Abstract
Heparinase II (HepII) is an 85-kDa dimeric enzyme that depolymerizes both heparin and heparan sulfate glycosaminoglycans through a beta-elimination mechanism. Recently, we determined the crystal structure of HepII from Pedobacter heparinus (previously known as Flavobacterium heparinum) in complex with a heparin disaccharide product, and identified the location of its active site. Here we present the structure of HepII complexed with a heparan sulfate disaccharide product, proving that the same binding/active site is responsible for the degradation of both uronic acid epimers containing substrates. The key enzymatic step involves removal of a proton from the C5 carbon (a chiral center) of the uronic acid, posing a topological challenge to abstract the proton from either side of the ring in a single active site. We have identified three potential active site residues equidistant from C5 and located on both sides of the uronate product and determined their role in catalysis using a set of defined tetrasaccharide substrates. HepII H202A/Y257A mutant lost activity for both substrates and we determined its crystal structure complexed with a heparan sulfate-derived tetrasaccharide. Based on kinetic characterization of various mutants and the structure of the enzyme-substrate complex we propose residues participating in catalysis and their specific roles.
Collapse
Affiliation(s)
- David Shaya
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Wenjing Zhao
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Marie-Line Garron
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Zhongping Xiao
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Qizhi Cui
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| | - Zhenqing Zhang
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Traian Sulea
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| | - Robert J. Linhardt
- the Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech 4005, Troy, New York 12180-3590, and
| | - Miroslaw Cygler
- From the Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
- the Biotechnology Research Institute, NRC, Montréal, Québec H4P 2R2, Canada
| |
Collapse
|
35
|
Ochiai A, Yamasaki M, Mikami B, Hashimoto W, Murata K. Crystal structure of exotype alginate lyase Atu3025 from Agrobacterium tumefaciens. J Biol Chem 2010; 285:24519-28. [PMID: 20507980 DOI: 10.1074/jbc.m110.125450] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alginate, a major component of the cell wall matrix in brown seaweeds, is degraded by alginate lyases through a beta-elimination reaction. Almost all alginate lyases act endolytically on substrate, thereby yielding unsaturated oligouronic acids having 4-deoxy-l-erythro-hex-4-enepyranosyluronic acid at the nonreducing end. In contrast, Agrobacterium tumefaciens alginate lyase Atu3025, a member of polysaccharide lyase family 15, acts on alginate polysaccharides and oligosaccharides exolytically and releases unsaturated monosaccharides from the substrate terminal. The crystal structures of Atu3025 and its inactive mutant in complex with alginate trisaccharide (H531A/DeltaGGG) were determined at 2.10- and 2.99-A resolutions with final R-factors of 18.3 and 19.9%, respectively, by x-ray crystallography. The enzyme is comprised of an alpha/alpha-barrel + anti-parallel beta-sheet as a basic scaffold, and its structural fold has not been seen in alginate lyases analyzed thus far. The structural analysis of H531A/DeltaGGG and subsequent site-directed mutagenesis studies proposed the enzyme reaction mechanism, with His(311) and Tyr(365) as the catalytic base and acid, respectively. Two structural determinants, i.e. a short alpha-helix in the central alpha/alpha-barrel domain and a conformational change at the interface between the central and C-terminal domains, are essential for the exolytic mode of action. This is, to our knowledge, the first report on the structure of the family 15 enzyme.
Collapse
Affiliation(s)
- Akihito Ochiai
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
36
|
Hashimoto W, Kawai S, Murata K. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications. Bioeng Bugs 2009; 1:97-109. [PMID: 21326935 DOI: 10.4161/bbug.1.2.10322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/19/2022] Open
Abstract
Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology,; Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | |
Collapse
|
37
|
Ochiai A, Itoh T, Mikami B, Hashimoto W, Murata K. Structural determinants responsible for substrate recognition and mode of action in family 11 polysaccharide lyases. J Biol Chem 2009; 284:10181-9. [PMID: 19193638 PMCID: PMC2665072 DOI: 10.1074/jbc.m807799200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/29/2008] [Indexed: 11/06/2022] Open
Abstract
A saprophytic Bacillus subtilis secretes two types of rhamnogalacturonan (RG) lyases, endotype YesW and exotype YesX, which are responsible for an initial cleavage of the RG type I (RG-I) region of plant cell wall pectin. Polysaccharide lyase family 11 YesW and YesX with a significant sequence identity (67.8%) cleave glycoside bonds between rhamnose and galacturonic acid residues in RG-I through a beta-elimination reaction. Here we show the structural determinants for substrate recognition and the mode of action in polysaccharide lyase family 11 lyases. The crystal structures of YesW in complex with rhamnose and ligand-free YesX were determined at 1.32 and 1.65 A resolution, respectively. The YesW amino acid residues such as Asn(152), Asp(172), Asn(532), Gly(533), Thr(534), and Tyr(595) in the active cleft bind to rhamnose molecules through hydrogen bonds and van der Waals contacts. Other rhamnose molecules are accommodated at the noncatalytic domain far from the active cleft, revealing that the domain possibly functions as a novel carbohydrate-binding module. A structural comparison between YesW and YesX indicates that a specific loop in YesX for recognizing the terminal saccharide molecule sterically inhibits penetration of the polymer over the active cleft. The loop-deficient YesX mutant exhibits YesW-like endotype activity, demonstrating that molecular conversion regarding the mode of action is achieved by the addition/removal of the loop for recognizing the terminal saccharide. This is the first report on a structural insight into RG-I recognition and molecular conversion of exotype to endotype in polysaccharide lyases.
Collapse
|
38
|
Konno N, Ishida T, Igarashi K, Fushinobu S, Habu N, Samejima M, Isogai A. Crystal structure of polysaccharide lyase family 20 endo-beta-1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei. FEBS Lett 2009; 583:1323-6. [PMID: 19306878 DOI: 10.1016/j.febslet.2009.03.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
Abstract
The crystal structure of endo-beta-(1-->4)-glucuronan lyase from Trichoderma reesei (TrGL) has been determined at 1.8A resolution as the first three-dimensional structure of polysaccharide lyase (PL) family 20. TrGL has a typical beta-jelly roll fold, which is similar to glycoside hydrolase family 16 and PL7 enzymes. A calcium ion is bound to the site far from the cleft and appears to contribute to the stability. There are several completely conserved residues in the cleft. Possible catalytic residues are predicted based on structural comparison with PL7 alginate lyase A1-II'.
Collapse
Affiliation(s)
- Naotake Konno
- Department of Biomaterials, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Pacheco B, Maccarana M, Goodlett DR, Malmström A, Malmström L. Identification of the active site of DS-epimerase 1 and requirement of N-glycosylation for enzyme function. J Biol Chem 2008; 284:1741-7. [PMID: 19004833 DOI: 10.1074/jbc.m805479200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dermatan sulfate is a highly sulfated polysaccharide and has a variety of biological functions in development and disease. Iduronic acid domains in dermatan sulfate, which are formed by the action of two DS-epimerases, have a key role in mediating these functions. We have identified the catalytic site and three putative catalytic residues in DS-epimerase 1, His-205, Tyr-261, and His-450, by tertiary structure modeling and amino acid conservation to heparinase II. These residues were systematically mutated to alanine or more conserved residues, which resulted in complete loss of epimerase activity. Based on these data and the close relationship between lyase and epimerase reactions, we propose a model where His-450 functions as a general base abstracting the C5 proton from glucuronic acid. Subsequent cleavage of the glycosidic linkage by Tyr-261 generates a 4,5-unsaturated hexuronic intermediate, which is protonated at the C5 carbon by His-205 from the side of the sugar plane opposite to the side of previous proton abstraction. Concomitant recreation of the glycosidic linkage ends the reaction, generating iduronic acid. In addition, we show that proper N-glycosylation of DS-epimerase 1 is required for enzyme activity. This study represents the first description of the structural basis for epimerization by a glycosaminoglycan epimerase.
Collapse
Affiliation(s)
- Benny Pacheco
- Department of Experimental Medical Science, Lund University, Biomedical Center D12, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Catalytically important amino-acid residues of abalone alginate lyase HdAly assessed by site-directed mutagenesis. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
43
|
Ogura K, Yamasaki M, Mikami B, Hashimoto W, Murata K. Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1. J Mol Biol 2008; 380:373-85. [DOI: 10.1016/j.jmb.2008.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 05/02/2008] [Accepted: 05/07/2008] [Indexed: 11/24/2022]
|
44
|
Rozeboom HJ, Bjerkan TM, Kalk KH, Ertesvåg H, Holtan S, Aachmann FL, Valla S, Dijkstra BW. Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. J Biol Chem 2008; 283:23819-28. [PMID: 18574239 DOI: 10.1074/jbc.m804119200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alginate is a family of linear copolymers of (1-->4)-linked beta-d-mannuronic acid and its C-5 epimer alpha-l-guluronic acid. The polymer is first produced as polymannuronic acid and the guluronic acid residues are then introduced at the polymer level by mannuronan C-5-epimerases. The structure of the catalytic A-module of the Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 has been determined by x-ray crystallography at 2.1-A resolution. AlgE4A folds into a right-handed parallel beta-helix structure originally found in pectate lyase C and subsequently in several polysaccharide lyases and hydrolases. The beta-helix is composed of four parallel beta-sheets, comprising 12 complete turns, and has an amphipathic alpha-helix near the N terminus. The catalytic site is positioned in a positively charged cleft formed by loops extending from the surface encompassing Asp(152), an amino acid previously shown to be important for the reaction. Site-directed mutagenesis further implicates Tyr(149), His(154), and Asp(178) as being essential for activity. Tyr(149) probably acts as the proton acceptor, whereas His(154) is the proton donor in the epimerization reaction.
Collapse
Affiliation(s)
- Henriëtte J Rozeboom
- Laboratory of Biophysical Chemistry, GBB, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ochiai A, Itoh T, Maruyama Y, Kawamata A, Mikami B, Hashimoto W, Murata K. A novel structural fold in polysaccharide lyases: Bacillus subtilis family 11 rhamnogalacturonan lyase YesW with an eight-bladed beta-propeller. J Biol Chem 2007; 282:37134-45. [PMID: 17947240 DOI: 10.1074/jbc.m704663200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhamnogalacturonan (RG) lyase produced by plant pathogenic and saprophytic microbes plays an important role in degrading plant cell walls. An extracellular RG lyase YesW from saprophytic Bacillus subtilis is a member of polysaccharide lyase family 11 and cleaves glycoside bonds in polygalacturonan as well as RG type-I through a beta-elimination reaction. Crystal structures of YesW and its complex with galacturonan disaccharide, a reaction product analogue, were determined at 1.4 and 2.5 A resolutions with final R-factors of 16.4% and 16.6%, respectively. The enzyme is composed of an eight-bladed beta-propeller with a deep cleft in the center as a basic scaffold, and its structural fold has not been seen in polysaccharide lyases analyzed thus far. Structural analysis of the disaccharide-bound YesW and a site-directed mutagenesis study suggested that Arg-452 and Lys-535 stabilize the carboxyl group of the acidic polysaccharide molecule and Tyr-595 makes a stack interaction with the sugar pyranose ring. In addition to amino acid residues binding to the disaccharide, one calcium ion, which is coordinated by Asp-401, Glu-422, His-363, and His-399, may mediate the enzyme activity. This is, to our knowledge, the first report of a new structural category with a beta-propeller fold in polysaccharide lyases and provides structural insights into substrate binding by RG lyase.
Collapse
Affiliation(s)
- Akihito Ochiai
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Kang TS, Radić Z, Talley TT, Jois SDS, Taylor P, Kini RM. Protein folding determinants: structural features determining alternative disulfide pairing in alpha- and chi/lambda-conotoxins. Biochemistry 2007; 46:3338-55. [PMID: 17315952 PMCID: PMC4778399 DOI: 10.1021/bi061969o] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpha-conotoxins isolated from Conus venoms contain 11-19 residues and preferentially fold into the globular conformation that possesses a specific disulfide pairing pattern (C1-3, C2-4). We and others isolated a new family of chi-conotoxins (also called lambda conotoxins) with the conserved cysteine framework of alpha-conotoxins but with alternative disulfide pairing (C1-4, C2-3) resulting in the ribbon conformation. In both families, disulfide pairing and hence folding are important for their biological potency. By comparing the structural differences, we identified potential structural determinants responsible for the folding tendencies of these conotoxins. We examined the role of conserved proline in the first intercysteine loop and the conserved C-terminal amide on folding patterns of synthetic analogues of ImI conotoxin by comparing the isoforms with the regiospecifically synthesized conformers. Deamidation at the C-terminus and substitution of proline in the first intercysteine loop switch the folding pattern from the globular form of alpha-conotoxins to the ribbon form of chi/lambda-conotoxins. The findings are corroborated by reciprocal folding of CMrVIA chi/lambda-conotoxins. Substitution of Lys-6 from the first intercysteine loop of CMrVIA conotoxin with proline, as well as the inclusion of an amidated C-terminal shifted the folding preference of CMrVIA conotoxin from its native ribbon conformation toward the globular conformation. Binding assays of ImI conotoxin analogues with Aplysia and Bulinus acetylcholine binding protein indicate that both these substitutions and their consequent conformational change substantially impact the binding affinity of ImI conotoxin. These results strongly indicate that the first intercysteine loop proline and C-terminal amidation act as conformational switches in alpha- and chi/lambda-conotoxins.
Collapse
Affiliation(s)
- Tse Siang Kang
- Protein Science Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117 543
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Todd T. Talley
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Seetharama D. S. Jois
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117 543
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - R. Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117 543
- Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 13298
- To whom correspondence to should be addressed at Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117 543. Tel: (65) 6516-5235. Fax: (65) 67792486.
| |
Collapse
|
47
|
Itoh T, Ochiai A, Mikami B, Hashimoto W, Murata K. Structure of unsaturated rhamnogalacturonyl hydrolase complexed with substrate. Biochem Biophys Res Commun 2006; 347:1021-9. [PMID: 16870154 DOI: 10.1016/j.bbrc.2006.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/05/2006] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis strain 168 YteR has been identified as a novel enzyme "unsaturated rhamnogalacturonyl hydrolase" classified in glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) produced from plant cell wall RG type-I treated with RG lyases, releasing unsaturated galacturonic acid (DeltaGalA) from the substrate. The most likely candidate catalytic residue is Asp-143. Here, we show the structure of D143N in complex with unsaturated RG disaccharide (substrate) determined at 1.9A resolution by X-ray crystallography. This structural feature directly contributes to the postulation of the enzyme reaction mechanism. YteR triggers the hydration of vinyl ether group in DeltaGalA, but not of glycoside bond, by using Asp-143 as a general acid and base catalyst. Asp-143 donates proton to the double bond of DeltaGalA as an acid catalyst and also deprotonates a water molecule as a base catalyst. Deprotonated water molecule attacks the C5 atom of DeltaGalA.
Collapse
Affiliation(s)
- Takafumi Itoh
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
48
|
Rye CS, Matte A, Cygler M, Withers SG. An atypical approach identifies TYR234 as the key base catalyst in chondroitin AC lyase. Chembiochem 2006; 7:631-7. [PMID: 16521140 DOI: 10.1002/cbic.200500428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chondroitin AC lyase from Flavobacterium heparinum catalyses the degradation of chondroitin by an anionic E1cb elimination mechanism that involves proton abstraction from C5 of glucuronic acid. The lyase also carries out efficient proton transfer to a sugar nitronate anion, which was designed originally as an inhibitor of the enzyme, with a second-order rate constant of kcat/Km=2.7x10(6) M(-1) s(-); this is very similar to that of the natural chondroitin substrate (kcat/Km=1.3x10(6) M(-1) s(-1)). Studies with this nitronate should therefore provide insight into the proton-transfer step (general base catalysis) within this mechanism. Indeed, the Tyr234Phe mutant of the enzyme was essentially inactive with the natural substrate and correspondingly did not catalyse proton transfer to the nitronate, thereby implicating this residue as the general base catalyst. Parallel studies designed to identify the acid catalyst were carried out by using a substrate with a 2,4-dinitrophenol leaving group that needs no acid assistance for departure. These results are consistent with Tyr234 also playing the role of acid catalyst. Not only do these studies confirm the suspected role of Tyr234, but also they validate a new methodology for identification of acid/base catalysts in lyases and epimerases of this type. In addition a structural and mechanistic rationale is provided for different active-site acid/base configurations in syn and anti lyases.
Collapse
Affiliation(s)
- Carl S Rye
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | | | | | | |
Collapse
|
49
|
Shaya D, Tocilj A, Li Y, Myette J, Venkataraman G, Sasisekharan R, Cygler M. Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product. J Biol Chem 2006; 281:15525-35. [PMID: 16565082 DOI: 10.1074/jbc.m512055200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparinase II depolymerizes heparin and heparan sulfate glycosaminoglycans, yielding unsaturated oligosaccharide products through an elimination degradation mechanism. This enzyme cleaves the oligosaccharide chain on the nonreducing end of either glucuronic or iduronic acid, sharing this characteristic with a chondroitin ABC lyase. We have determined the first structure of a heparin-degrading lyase, that of heparinase II from Pedobacter heparinus (formerly Flavobacterium heparinum), in a ligand-free state at 2.15 A resolution and in complex with a disaccharide product of heparin degradation at 2.30 A resolution. The protein is composed of three domains: an N-terminal alpha-helical domain, a central two-layered beta-sheet domain, and a C-terminal domain forming a two-layered beta-sheet. Heparinase II shows overall structural similarities to the polysaccharide lyase family 8 (PL8) enzymes chondroitin AC lyase and hyaluronate lyase. In contrast to PL8 enzymes, however, heparinase II forms stable dimers, with the two active sites formed independently within each monomer. The structure of the N-terminal domain of heparinase II is also similar to that of alginate lyases from the PL5 family. A Zn2+ ion is bound within the central domain and plays an essential structural role in the stabilization of a loop forming one wall of the substrate-binding site. The disaccharide binds in a long, deep canyon formed at the top of the N-terminal domain and by loops extending from the central domain. Based on structural comparison with the lyases from the PL5 and PL8 families having bound substrates or products, the disaccharide found in heparinase II occupies the "+1" and "+2" subsites. The structure of the enzyme-product complex, combined with data from previously characterized mutations, allows us to propose a putative chemical mechanism of heparin and heparan-sulfate degradation.
Collapse
Affiliation(s)
- David Shaya
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Ochiai A, Hashimoto W, Murata K. A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol 2006; 157:642-9. [PMID: 16545947 DOI: 10.1016/j.resmic.2006.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 02/01/2006] [Accepted: 02/09/2006] [Indexed: 11/30/2022]
Abstract
The Gram-negative bacterium Sphingomonas sp. strain A1 (strain A1) has a peculiar biosystem to directly import and depolymerize a macromolecule, alginate, which is encoded by a cluster of genes on the genome. We identified five clustered ORFs homologous to some genes of the strain A1 cluster in the genome of Agrobacterium tumefaciens strain C58 (strain C58). These ORFs are Atu3021, Atu3022, Atu3023, and Atu3024, encoding a putative sugar ABC transporter system and Atu3025, which encodes a putative alginate lyase. We analyzed the involvement of this gene cluster in alginate metabolism. Strain C58 cells grew significantly on low-molecular-weight (LMW) alginate (average molecular weight, 1000), and we detected specific alginate-induced expression of Atu3024 and Atu3025. This strain does not grow on alginate (average molecular weight, 25,600), suggesting that the strain C58 gene cluster is involved in importing and degrading LMW alginate. One protein, Atu3025, purified from strain C58, was identified as an alginate lyase, and the enzyme overexpressed in Escherichia coli was further characterized. Atu3025 released monosaccharides specifically from alginate most efficiently at pH 7.3 and 30 degrees C through a beta-elimination reaction, indicating that Atu3025 is an exotype alginate lyase potentially involved in the assimilation of LMW alginate in strain C58.
Collapse
Affiliation(s)
- Akihito Ochiai
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|