1
|
Saha SK, Sarkar M, Srivastava M, Dutta S, Sen S. Nuclear α-actinin-4 regulates breast cancer invasiveness and EMT. Cytoskeleton (Hoboken) 2024. [PMID: 39143850 DOI: 10.1002/cm.21901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key process where cells lose their adhesion properties and augment their invasive properties. α-Actinin4 (ACTN4) is an actin crosslinking protein that responds to mechanical stimuli and is found to be elevated in breast cancer patients. While ACTN4 has been implicated in regulating cancer invasiveness by modulating cytoskeletal organization, its nuclear functions remain much less explored. Here we address this question by first establishing a correlation between nuclear localization and invasiveness in breast cancer cells. Using cancer databases, we then establish a correlation between ACTN4 expression and EMT in breast cancer. Interestingly, TGFβ-induced EMT induction in MCF10A normal mammary epithelial cells leads to increased ACTN4 expression and nuclear enrichment. We then show that ACTN4 knockdown in MDA-MB-231 breast cancer cells, which harbor sizeable fraction of nuclear ACTN4, leads to reduced invasiveness and loss of mesenchymal traits. Similar behavior was observed in knockdown cells expressing K255E ACTN4, which is primarily localized to the cytosol. Together, our findings establish a role for nuclear ACTN4 in regulating invasiveness via modulation of EMT.
Collapse
Affiliation(s)
- Sumon Kumar Saha
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Madhurima Sarkar
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | | | - Sarbajeet Dutta
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
2
|
Park J, Lee M, Lee B, Castaneda N, Tetard L, Kang EH. Crowding tunes the organization and mechanics of actin bundles formed by crosslinking proteins. FEBS Lett 2020; 595:26-40. [PMID: 33020904 DOI: 10.1002/1873-3468.13949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
Fascin and α-actinin form higher-ordered actin bundles that mediate numerous cellular processes including cell morphogenesis and movement. While it is understood crosslinked bundle formation occurs in crowded cytoplasm, how crowding affects the bundling activities of the two crosslinking proteins is not known. Here, we demonstrate how solution crowding modulates the organization and mechanical properties of fascin- and α-actinin-induced bundles, utilizing total internal reflection fluorescence and atomic force microscopy imaging. Molecular dynamics simulations support the inference that crowding reduces binding interaction between actin filaments and fascin or the calponin homology 1 domain of α-actinin evidenced by interaction energy and hydrogen bonding analysis. Based on our findings, we suggest a mechanism of crosslinked actin bundle assembly and mechanics in crowded intracellular environments.
Collapse
Affiliation(s)
- Jinho Park
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Myeongsang Lee
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Briana Lee
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Nicholas Castaneda
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.,Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Ellen Hyeran Kang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.,Department of Physics, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
3
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
4
|
Vélez-Ortega AC, Frolenkov GI. Building and repairing the stereocilia cytoskeleton in mammalian auditory hair cells. Hear Res 2019; 376:47-57. [PMID: 30638948 DOI: 10.1016/j.heares.2018.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Despite all recent achievements in identification of the molecules that are essential for the structure and mechanosensory function of stereocilia bundles in the auditory hair cells of mammalian species, we still have only a rudimentary understanding of the mechanisms of stereocilia formation, maintenance, and repair. Important molecular differences distinguishing mammalian auditory hair cells from hair cells of other types and species have been recently revealed. In addition, we are beginning to solve the puzzle of the apparent life-long stability of the stereocilia bundles in these cells. New data link the stability of the cytoskeleton in the mammalian auditory stereocilia with the normal activity of mechanotransduction channels. These data suggest new ideas on how a terminally-differentiated non-regenerating hair cell in the mammalian cochlea may repair and tune its stereocilia bundle throughout the life span of the organism.
Collapse
Affiliation(s)
- A Catalina Vélez-Ortega
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| | - Gregory I Frolenkov
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| |
Collapse
|
5
|
Wang J, Meng J, Wang X, Zeng Y, Li L, Xin Y, Yao X, Liu W. Analysis of Equine ACTN3 Gene Polymorphisms in Yili Horses. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Schön M, Mey I, Steinem C. Influence of cross-linkers on ezrin-bound minimal actin cortices. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:91-101. [PMID: 30093083 DOI: 10.1016/j.pbiomolbio.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
The actin cortex is a thin network coupled to the plasma membrane of cells, responsible for e.g., cell shape, motility, growth and division. Several model systems for minimal actin cortices (MACs) have been discussed in literature trying to mimic the complex interplay of membrane and actin. We recapitulate on different types of MACs using either three dimensional droplet interfaces or lipid bilayers to which F-actin networks are attached to or planar lipid bilayers with bound actin networks. Binding of the network to the membrane interface significantly influences its properties as well as its dynamics. This in turn also influences, how cross-linkers as well as myosin motors act on the network. Here, we describe the coupling of a filamentous actin network to a model membrane via the protein ezrin, a member of the ezrin-radixin-moesin family, which forms a direct linkage between the plasma membrane and the cortical web. Ezrin binding to the membrane is achieved by the lipid PtdIns(4,5)P2, while attachment to F-actin is mediated via the C-terminal domain of the protein leading to a two dimensional arrangement of actin filaments on the membrane. Addition of cross-linkers such as fascin and α-actinin influences the architecture of the actin network, which we have investigated by means of fluorescence microscopy. The results are discussed in terms of the dynamics of the filaments on the membrane surface.
Collapse
Affiliation(s)
- Markus Schön
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ingo Mey
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
| | - Claudia Steinem
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
| |
Collapse
|
7
|
Hsu CP, Moghadaszadeh B, Hartwig JH, Beggs AH. Sarcomeric and nonmuscle α-actinin isoforms exhibit differential dynamics at skeletal muscle Z-lines. Cytoskeleton (Hoboken) 2018; 75:213-228. [PMID: 29518289 PMCID: PMC5943145 DOI: 10.1002/cm.21442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 01/12/2023]
Abstract
The α-actinin proteins are a highly conserved family of actin crosslinkers that mediate interactions between several cytoskeletal and sarcomeric proteins. Nonsarcomeric α-actinin-1 and α-actinin-4 crosslink actin filaments in the cytoskeleton, while sarcomeric α-actinin-2 and α-actinin-3 serve a crucial role in anchoring actin filaments to the muscle Z-line. To assess the difference in turnover dynamics and structure/function properties between the α-actinin isoforms at the sarcomeric Z-line, we used Fluorescence Recovery After Photobleaching (FRAP) in primary myofiber cultures. We found that the recovery kinetics of these proteins followed three distinct patterns: α-actinin-2/α-actinin-3 had the slowest turn over, α-actinin-1 recovered to an intermediate degree, and α-actinin-4 had the fastest recovery. Interestingly, the isoforms' patterns of recovery were reversed at adhesion plaques in fibroblasts. This disparity suggests that the different α-actinin isoforms have unique association kinetics in myofibers and that nonmuscle isoform interactions are more dynamic at the sarcomeric Z-line. Protein domain-specific investigations using α-actinin-2/4 chimeric proteins showed that differential dynamics between sarcomeric and nonmuscle isoforms are regulated by cooperative interactions between the N-terminal actin-binding domain, the spectrin-like linker region and the C-terminal calmodulin-like EF hand domain. Together, these findings demonstrate that α-actinin isoforms are unique in binding dynamics at the Z-line and suggest differentially evolved interactive and Z-line association capabilities of each functional domain.
Collapse
Affiliation(s)
- Cynthia P Hsu
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John H Hartwig
- Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Multimodal and Polymorphic Interactions between Anillin and Actin: Their Implications for Cytokinesis. J Mol Biol 2017; 429:715-731. [DOI: 10.1016/j.jmb.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/23/2022]
|
9
|
Structural implications of Ca 2+-dependent actin-bundling function of human EFhd2/Swiprosin-1. Sci Rep 2016; 6:39095. [PMID: 27974828 PMCID: PMC5156911 DOI: 10.1038/srep39095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 01/20/2023] Open
Abstract
EFhd2/Swiprosin-1 is a cytoskeletal Ca2+-binding protein implicated in Ca2+-dependent cell spreading and migration in epithelial cells. EFhd2 domain architecture includes an N-terminal disordered region, a PxxP motif, two EF-hands, a ligand mimic helix and a C-terminal coiled-coil domain. We reported previously that EFhd2 displays F-actin bundling activity in the presence of Ca2+ and this activity depends on the coiled-coil domain and direct interaction of the EFhd2 core region. However, the molecular mechanism for the regulation of F-actin binding and bundling by EFhd2 is unknown. Here, the Ca2+-bound crystal structure of the EFhd2 core region is presented and structures of mutants defective for Ca2+-binding are also described. These structures and biochemical analyses reveal that the F-actin bundling activity of EFhd2 depends on the structural rigidity of F-actin binding sites conferred by binding of the EF-hands to Ca2+. In the absence of Ca2+, the EFhd2 core region exhibits local conformational flexibility around the EF-hand domain and C-terminal linker, which retains F-actin binding activity but loses the ability to bundle F-actin. In addition, we establish that dimerisation of EFhd2 via the C-terminal coiled-coil domain, which is necessary for F-actin bundling, occurs through the parallel coiled-coil interaction.
Collapse
|
10
|
Li Y, Christensen JR, Homa KE, Hocky GM, Fok A, Sees JA, Voth GA, Kovar DR. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast. Mol Biol Cell 2016; 27:1821-33. [PMID: 27075176 PMCID: PMC4884072 DOI: 10.1091/mbc.e16-01-0010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction.
Collapse
Affiliation(s)
- Yujie Li
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Glen M Hocky
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - Alice Fok
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637 Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
11
|
Shams H, Golji J, Garakani K, Mofrad MRK. Dynamic Regulation of α-Actinin's Calponin Homology Domains on F-Actin. Biophys J 2016; 110:1444-55. [PMID: 27028653 PMCID: PMC4816760 DOI: 10.1016/j.bpj.2016.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/24/2022] Open
Abstract
α-Actinin is an essential actin cross-linker involved in cytoskeletal organization and dynamics. The molecular conformation of α-actinin's actin-binding domain (ABD) regulates its association with actin and thus mutations in this domain can lead to severe pathogenic conditions. A point mutation at lysine 255 in human α-actinin-4 to glutamate increases the binding affinity resulting in stiffer cytoskeletal structures. The role of different ABD conformations and the effect of K255E mutation on ABD conformations remain elusive. To evaluate the impact of K255E mutation on ABD binding to actin we use all-atom molecular dynamics and free energy calculation methods and study the molecular mechanism of actin association in both wild-type α-actinin and in the K225E mutant. Our models illustrate that the strength of actin association is indeed sensitive to the ABD conformation, predict the effect of K255E mutation--based on simulations with the K237E mutant chicken α-actinin--and evaluate the mechanism of α-actinin binding to actin. Furthermore, our simulations showed that the calmodulin domain binding to the linker region was important for regulating the distance between actin and ABD. Our results provide valuable insights into the molecular details of this critical cellular phenomenon and further contribute to an understanding of cytoskeletal dynamics in health and disease.
Collapse
Affiliation(s)
- Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Javad Golji
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Kiavash Garakani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
12
|
Kannan N, Tang VW. Synaptopodin couples epithelial contractility to α-actinin-4-dependent junction maturation. J Cell Biol 2016; 211:407-34. [PMID: 26504173 PMCID: PMC4621826 DOI: 10.1083/jcb.201412003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel tension-sensitive junctional protein, synaptopodin, can relay biophysical input from cellular actomyosin contractility to induce biochemical changes at cell–cell contacts, resulting in structural reorganization of the junctional complex and epithelial barrier maturation. The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components.
Collapse
Affiliation(s)
- Nivetha Kannan
- Program in Global Public Health, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| |
Collapse
|
13
|
Karlsson G, Persson C, Mayzel M, Hedenström M, Backman L. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2. Proteins 2016; 84:461-6. [PMID: 26800385 DOI: 10.1002/prot.24992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/12/2022]
Abstract
Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker.
Collapse
Affiliation(s)
- Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | - Cecilia Persson
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | - Maxim Mayzel
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | | | - Lars Backman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
14
|
Bartram MP, Habbig S, Pahmeyer C, Höhne M, Weber LT, Thiele H, Altmüller J, Kottoor N, Wenzel A, Krueger M, Schermer B, Benzing T, Rinschen MM, Beck BB. Three-layered proteomic characterization of a novel ACTN4 mutation unravels its pathogenic potential in FSGS. Hum Mol Genet 2016; 25:1152-64. [PMID: 26740551 DOI: 10.1093/hmg/ddv638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023] Open
Abstract
Genetic diseases constitute the most important cause for end-stage renal disease in children and adolescents. Mutations in the ACTN4 gene, encoding the actin-binding protein α-actinin-4, are a rare cause of autosomal dominant familial focal segmental glomerulosclerosis (FSGS). Here, we report the identification of a novel, disease-causing ACTN4 mutation (p.G195D, de novo) in a sporadic case of childhood FSGS using next generation sequencing. Proteome analysis by quantitative mass spectrometry (MS) of patient-derived urinary epithelial cells indicated that ACTN4 levels were significantly decreased when compared with healthy controls. By resolving the peptide bearing the mutated residue, we could proof that the mutant protein is less abundant when compared with the wild-type protein. Further analyses revealed that the decreased stability of p.G195D is associated with increased ubiquitylation in the vicinity of the mutation site. We next defined the ACTN4 interactome, which was predominantly composed of cytoskeletal modulators and LIM domain-containing proteins. Interestingly, this entire group of proteins, including several highly specific ACTN4 interactors, was globally decreased in the patient-derived cells. Taken together, these data suggest a mechanistic link between ACTN4 instability and proteome perturbations of the ACTN4 interactome. Our findings advance the understanding of dominant effects exerted by ACTN4 mutations in FSGS. This study illustrates the potential of genomics and complementary, high-resolution proteomics analyses to study the pathogenicity of rare gene variants.
Collapse
Affiliation(s)
- Malte P Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sandra Habbig
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Department of Pediatrics
| | - Caroline Pahmeyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | - Marcus Krueger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
15
|
Anatomy of the red cell membrane skeleton: unanswered questions. Blood 2015; 127:187-99. [PMID: 26537302 DOI: 10.1182/blood-2014-12-512772] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias.
Collapse
|
16
|
Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proc Natl Acad Sci U S A 2015; 112:6619-24. [PMID: 25918384 DOI: 10.1073/pnas.1505652112] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease.
Collapse
|
17
|
Ribeiro EDA, Pinotsis N, Ghisleni A, Salmazo A, Konarev PV, Kostan J, Sjöblom B, Schreiner C, Polyansky AA, Gkougkoulia EA, Holt MR, Aachmann FL, Zagrović B, Bordignon E, Pirker KF, Svergun DI, Gautel M, Djinović-Carugo K. The structure and regulation of human muscle α-actinin. Cell 2014; 159:1447-60. [PMID: 25433700 PMCID: PMC4259493 DOI: 10.1016/j.cell.2014.10.056] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
The spectrin superfamily of proteins plays key roles in assembling the actin cytoskeleton in various cell types, crosslinks actin filaments, and acts as scaffolds for the assembly of large protein complexes involved in structural integrity and mechanosensation, as well as cell signaling. α-actinins in particular are the major actin crosslinkers in muscle Z-disks, focal adhesions, and actin stress fibers. We report a complete high-resolution structure of the 200 kDa α-actinin-2 dimer from striated muscle and explore its functional implications on the biochemical and cellular level. The structure provides insight into the phosphoinositide-based mechanism controlling its interaction with sarcomeric proteins such as titin, lays a foundation for studying the impact of pathogenic mutations at molecular resolution, and is likely to be broadly relevant for the regulation of spectrin-like proteins. Structure of human α-actinin-2 in an autoinhibited closed conformation Facilitation of PIP2-induced allosteric modulation for opening and titin binding Essentiality of structural flexibility for crosslinking antiparallel F-actin Relevance for the intramolecular pseudoligand regulation mechanism of the spectrin family
Collapse
Affiliation(s)
- Euripedes de Almeida Ribeiro
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Nikos Pinotsis
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Andrea Ghisleni
- British Heart Foundation Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London, London SE1 1UL, UK
| | - Anita Salmazo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Petr V Konarev
- European Molecular Biology Laboratory, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
| | - Julius Kostan
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Björn Sjöblom
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Claudia Schreiner
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria; M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Eirini A Gkougkoulia
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Mark R Holt
- British Heart Foundation Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London, London SE1 1UL, UK
| | - Finn L Aachmann
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Bojan Zagrović
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Enrica Bordignon
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland; Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Katharina F Pirker
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
| | - Mathias Gautel
- British Heart Foundation Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London, London SE1 1UL, UK.
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|
18
|
Sharma S, Zhu H, Grintsevich EE, Reisler E, Gimzewski JK. Correlative nanoscale imaging of actin filaments and their complexes. NANOSCALE 2013; 5:5692-702. [PMID: 23727693 PMCID: PMC4030708 DOI: 10.1039/c3nr01039b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Huanqi Zhu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
| | - Elena E. Grintsevich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- California NanoSystems Institute, University of California, Los Angeles, California, USA
- International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
19
|
Abstract
Alpha-actinins (ACTNs) were originally identified as cytoskeletal proteins which cross-link filamentous actin to establish cytoskeletal architect that protects cells from mechanical stress and controls cell movement. Notably, unlike other ACTNs, alpha-actinin 4 (ACTN4) displays unique characteristics in signaling transduction, nuclear translocation, and gene expression regulation. Initial reports indicated that ACTN4 is part of the breast cancer cell motile apparatus and is highly expressed in the nucleus. These results imply that ACTN4 plays a role in breast cancer tumorigenesis. While several observations in breast cancer and other cancers support this hypothesis, little direct evidence links the tumorigenic phenotype with ACTN4-mediated pathological mechanisms. Recently, several studies have demonstrated that in addition to its role in coordinating cytoskeleton, ACTN4 interacts with signaling mediators, chromatin remodeling factors, and transcription factors including nuclear receptors. Thus, ACTN4 functions as a versatile promoter for breast cancer tumorigenesis and appears to be an ideal drug target for future therapeutic development.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- Department of Biochemistry, School of Medicine, Case Western Reserve University-CWRU, The Comprehensive Cancer Center of CWRU, Cleveland, Ohio, USA
| | | |
Collapse
|
20
|
Zou X, Cheng H, Zhang Y, Fang C, Xia Y. The antigen-binding fragment of anti-double-stranded DNA IgG enhances F-actin formation in mesangial cells by binding to alpha-actinin-4. Exp Biol Med (Maywood) 2012; 237:1023-31. [PMID: 22929799 DOI: 10.1258/ebm.2012.012033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Anti-double-stranded DNA (dsDNA) IgG causes renal damage in patients with lupus nephritis by cross-reacting with multiple autoantigens, including alpha-actinin-4, in mesangial cells (MCs). However, how the cross-reactions play a role in mesangial phenotypic abnormalities is not well understood. Here, we investigated the effects of the fragment antigen-binding (Fab) of anti-dsDNA IgG3 on the biochemical properties of alpha-actinin-4. Experiments revealed that anti-dsDNA Fab specifically binds to alpha-actinin-4, but not G-actin. The binding by anti-dsDNA Fab sequentially increases the positive charge of alpha-actinin-4 and inhibits the affinity of alpha-actinin-4 to calcium ions. By the low shear viscosity and a co-sedimentation assay, we found that the alpha-actinin-4-induced F-actin gelation improves when anti-dsDNA Fab is added. However, the Fab control has no such effect on F-actin gelation. Furthermore, the in vitro cultured MCs exhibit higher F-actin expression and transforming growth factor- β1 synthesis after the incubation with anti-dsDNA Fab. Therefore, our results indicated that anti-dsDNA Fab may enhance F-actin formation by the proprietary modification of alpha-actinin-4, which could partially explain the myofibroblast-like phenotype of MCs in anti-dsDNA-positive lupus nephritis.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Department of Medicine, Renmin Hospital of Wuhan University, Wuhan 430060
- Department of Dermatology, Hubei Maternity and Child Health Hospital, Wuhan 430070
| | - Hong Cheng
- Department of Medicine, Renmin Hospital of Wuhan University, Wuhan 430060
| | - Yi Zhang
- Department of Medicine, Renmin Hospital of Wuhan University, Wuhan 430060
- Department of Medicine, Gezhouba Central Hospital, The Third Clinical Hospital of Three Gorges University, Yichang 443002
| | - Chunhong Fang
- Department of Dermatology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Yumin Xia
- Department of Dermatology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| |
Collapse
|
21
|
Vishwanatha KS, Wang YP, Keutmann HT, Mains RE, Eipper BA. Structural organization of the nine spectrin repeats of Kalirin. Biochemistry 2012; 51:5663-73. [PMID: 22738176 DOI: 10.1021/bi300583s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sequence analysis suggests that KALRN, a Rho GDP/GTP exchange factor genetically linked to schizophrenia, could contain as many as nine tandem spectrin repeats (SRs). We expressed and purified fragments of Kalirin containing from one to five putative SRs to determine whether they formed nested structures that could endow Kalirin with the flexible rodlike properties characteristic of spectrin and dystrophin. Far-UV circular dichroism studies indicated that Kalirin contains nine SRs. On the basis of thermal denaturation, sensitivity to chemical denaturants, and the solubility of pairs of repeats, the nine SRs of Kalirin form nested structures. Modeling studies confirmed this conclusion and identified an exposed loop in SR5; consistent with the modeling, this loop was extremely labile to proteolytic cleavage. Analysis of a direpeat fragment (SR4:5) encompassing the region of Kalirin known to interact with NOS2, DISC-1, PAM, and Arf6 identified this as the least stable region. Analytical ultracentrifugation indicated that SR1:3, SR4:6, and SR7:9 were monomers and adopted an extended conformation. Gel filtration suggested that ΔKal7, a natural isoform that includes SR5:9, was monomeric and was not more extended than SR5:9. Similarly, the nine SRs of Kal7, which was also monomeric, were not more extended than SR5:9. The rigidity and flexibility of the nine SRs of Kal7, which separate its essential N-terminal Sec14p domain from its catalytic domain, play an essential role in its contribution to the formation and function of dendritic spines.
Collapse
Affiliation(s)
- K S Vishwanatha
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
22
|
Jayadev R, Kuk CY, Low SH, Murata-Hori M. Calcium sensitivity of α-actinin is required for equatorial actin assembly during cytokinesis. Cell Cycle 2012; 11:1929-37. [PMID: 22544326 DOI: 10.4161/cc.20277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The actin cross-linking protein, α-actinin, plays a crucial role in mediating furrow ingression during cytokinesis. However, the mechanism by which its dynamics are regulated during this process is poorly understood. Here we have investigated the role of calcium sensitivity of α-actinin in the regulation of its dynamics by generating a functional calcium-insensitive mutant (EFM). GFP-tagged EFM (EFM-GFP) localized to the equatorial regions during cell division. However, the maximal equatorial accumulation of EFM-GFP was significantly smaller in comparison to α-actinin-GFP when it was expressed in normal cells and cells depleted of endogenous α-actinin. No apparent defects in cytokinesis were observed in these cells. However, F-actin levels at the equator were significantly reduced in cells expressing EFM-GFP as compared with α-actinin-GFP at furrow initiation but were recovered during furrow ingression. These results suggest that calcium sensitivity of α-actinin is required for its equatorial accumulation that is crucial for the initial equatorial actin assembly but is dispensable for cytokinesis. Equatorial RhoA localization was not affected by EFM-GFP overexpression, suggesting that equatorial actin assembly is predominantly driven by the RhoA-dependent mechanism. Our observations shed new light on the role and regulation of the accumulation of pre-existing actin filaments in equatorial actin assembly during cytokinesis.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Cell Biology Program, Temasek Life Sciences Laboratory; Singapore
| | | | | | | |
Collapse
|
23
|
Perz-Edwards RJ, Reedy MK. Electron microscopy and x-ray diffraction evidence for two Z-band structural states. Biophys J 2011; 101:709-17. [PMID: 21806939 DOI: 10.1016/j.bpj.2011.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/02/2011] [Accepted: 06/17/2011] [Indexed: 01/18/2023] Open
Abstract
In vertebrate muscles, Z-bands connect adjacent sarcomeres, incorporate several cell signaling proteins, and may act as strain sensors. Previous electron microscopy (EM) showed Z-bands reversibly switch between a relaxed, "small-square" structure, and an active, "basketweave" structure, but the mechanism of this transition is unknown. Here, we found the ratio of small-square to basketweave in relaxed rabbit psoas muscle varied with temperature, osmotic pressure, or ionic strength, independent of activation. By EM, the A-band and both Z-band lattice spacings varied with temperature and pressure, not ionic strength; however, the basketweave spacing was consistently 10% larger than small-square. We next sought evidence for the two Z-band structures in unfixed muscles using x-ray diffraction, which indicated two Z-reflections whose intensity ratios and spacings correspond closely to the EM measurements for small-square and basketweave if the EM spacings are adjusted for 20% shrinkage due to EM processing. We conclude that the two Z-reflections arise from the small-square and basketweave forms of the Z-band as seen by EM. Regarding the mechanism of transition during activation, the effects of Ca(2+) in the presence of force inhibitors suggested that the interconversion of Z-band forms was correlated with tropomyosin movement on actin.
Collapse
|
24
|
Nonlinear viscoelasticity of actin transiently cross-linked with mutant α-actinin-4. J Mol Biol 2011; 411:1062-71. [PMID: 21762701 DOI: 10.1016/j.jmb.2011.06.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/27/2011] [Accepted: 06/29/2011] [Indexed: 01/17/2023]
Abstract
Filamentous actin and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. They can also play a critical role in disease; for example, mutations in α-actinin-4 (Actn4), a dynamic actin cross-linking protein, cause proteinuric disease in humans and mice. Amino acid substitutions strongly affect the binding affinity and protein structure of Actn4. To study the physical impact of such substitutions on the underlying cytoskeletal network, we examine the bulk mechanical behavior of in vitro actin networks cross-linked with wild-type and mutant Actn4. These networks exhibit a complex viscoelastic response and are characterized by fluid-like behavior at the longest timescales, a feature that can be quantitatively accounted for through a model governed by dynamic cross-linking. The elastic behavior of the network is highly nonlinear, becoming much stiffer with applied stress. This nonlinear elastic response is also highly sensitive to the mutations of Actn4. In particular, we observe that actin networks cross-linked with Actn4 bearing the disease-causing K255E mutation are more brittle, with a lower breaking stress in comparison to networks cross-linked with wild-type Actn4. Furthermore, a mutation that ablates the first actin binding site (ABS1) in Actn4 abrogates the network's ability to stress-stiffen is standard nomenclature. These changes in the mechanical properties of actin networks cross-linked with mutant Actn4 may represent physical determinants of the underlying disease mechanism in inherited focal segmental glomerulosclerosis.
Collapse
|
25
|
Intertwined αβ spectrin meeting helical actin protofilament in the erythrocyte membrane skeleton: wrap-around vs. point-attachment. Ann Biomed Eng 2011; 39:1984-93. [PMID: 21416170 PMCID: PMC3110870 DOI: 10.1007/s10439-011-0293-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/03/2011] [Indexed: 11/24/2022]
Abstract
Our 3-D model for a junctional complex (JC) in the erythrocyte membrane skeleton proposed that the helical actin protofilament functions as a mechanical axis for three pairs of αβ spectrin (Sp), and each pair wraps around the protofilament in a back-to-back fashion. The distal end of each Sp is further associated with the lipid bilayer by a suspension complex (SC). Here, we detail how splitting and rejoining of αβ Sp around a protofilament may form a loop that sustains and equilibrates tension. Sequential association of β and α Sp solves the challenge of constructing multiple loops along the protofilament, and topological connection facilitates their re-association. The wrap-around model minimizes the strain of the actin binding site on β Sp due to tension, redirection, or sliding of intertwined Sp. Pairing Sp balances the opposing forces and provides a mechanism for elastic recovery. The wrap-around junction thus provides mechanical advantages over a point-attachment junction in maintaining the integrity and functionality of the network. Severing α or β Sp may convert a wrapping-around junction to a point-attachment junction. In that case, a “bow up” motion of JC during deformation may disturb or flip the overlaid lipid bilayer, and mark stressed erythrocytes for phagocytosis.
Collapse
|
26
|
Alpha-actinin: a multidisciplinary protein with important role in B-cell driven autoimmunity. Autoimmun Rev 2011; 10:389-96. [PMID: 21241830 DOI: 10.1016/j.autrev.2010.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 12/27/2010] [Indexed: 12/13/2022]
Abstract
Alpha-actinin (α-actinin) is a ubiquitous cytoskeletal protein, which belongs to the superfamily of filamentous actin (F-actin) crosslinking proteins. It is present in multiple subcellular regions of both muscle and non-muscle cells, including cell-cell and cell-matrix contact sites, cellular protrusions and stress fiber dense regions and thus, it seems to bear multiple important roles in the cell by linking the cytoskeleton to many different transmembrane proteins in a variety of junctions. Four isoforms of human α-actinin have already been identified namely, the "muscles" α-actinin-2 and α-actinin-3 and the "non-muscles" α-actinin-1 and α-actinin-4. The precise functions of α-actinin isoforms as well as the precise role and significance of their binding to F-actin particularly in-vivo, have been elusive. They are generally believed to represent key structural components of large-scale F-actin cohesion in cells required for cell shape and motility. α-Actinin-2 has been implicated in myopathies such as nemalin body myopathy, hypertrophic and dilated cardiomyopathy and it may have at least an indirect pathogenetic role in diseases of the central nervous system (CNS) like schizophrenia, epilepsy, ischemic brain damage, CNS lupus and neurodegenerative disorders. The role of "non-muscle" α-actinins in the kidney seems to be crucial as an essential component of the glomerular filtration barrier. Therefore, they have been implicated in the pathogenesis of familial focal segmental glomerulosclerosis, nephrotic syndrome, IgA nephropathy, focal segmental glomerulosclerosis and minimal change disease. α-Actinin is also expressed on the membrane and cytosol of parenchymal and ductal cells of the liver and it seems that it interacts with hepatitis C virus in an essential way for the replication of the virus. Finally α-actinin, especially α-actinin-4, has been implicated in cancer cell progression and metastasis, as well as the migration of several cell types participating in the immune response. Based on these functions, the accumulating reported evidence of the importance of α-actinin as a target autoantigen in the pathogenesis of autoimmune diseases, particularly systemic lupus erythematosus and autoimmune hepatitis, is also discussed along with the possible perspectives that are potentially emerging from the study of this peculiar molecule in health and disease.
Collapse
|
27
|
Low SH, Mukhina S, Srinivas V, Ng CZ, Murata-Hori M. Domain analysis of α-actinin reveals new aspects of its association with F-actin during cytokinesis. Exp Cell Res 2010; 316:1925-34. [DOI: 10.1016/j.yexcr.2010.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/02/2010] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
28
|
The carboxyterminal EF domain of erythroid alpha-spectrin is necessary for optimal spectrin-actin binding. Blood 2010; 116:2600-7. [PMID: 20585040 DOI: 10.1182/blood-2009-12-260612] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrin and protein 4.1R crosslink F-actin, forming the membrane skeleton. Actin and 4.1R bind to one end of β-spectrin. The adjacent end of α-spectrin, called the EF domain, is calmodulin-like, with calcium-dependent and calcium-independent EF hands. The severely anemic sph(1J)/sph(1J) mouse has very fragile red cells and lacks the last 13 amino acids in the EF domain, implying that the domain is critical for skeletal integrity. To test this, we constructed a minispectrin heterodimer from the actin-binding domain, the EF domain, and 4 adjacent spectrin repeats in each chain. The minispectrin bound to F-actin in the presence of native human protein 4.1R. Formation of the spectrin-actin-4.1R complex was markedly attenuated when the minispectrin contained the shortened sph(1J) α-spectrin. The α-spectrin deletion did not interfere with spectrin heterodimer assembly or 4.1R binding but abolished the binary interaction between spectrin and F-actin. The data show that the α-spectrin EF domain greatly amplifies the function of the β-spectrin actin-binding domain (ABD) in forming the spectrin-actin-4.1R complex. A model, based on the structure of α-actinin, suggests that the EF domain modulates the function of the ABD and that the C-terminal EF hands (EF(34)) may bind to the linker that connects the ABD to the first spectrin repeat.
Collapse
|
29
|
Holterhoff CK, Saunders RH, Brito EE, Wagner DS. Sequence and expression of the zebrafish alpha-actinin gene family reveals conservation and diversification among vertebrates. Dev Dyn 2010; 238:2936-47. [PMID: 19842183 DOI: 10.1002/dvdy.22123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alpha-actinins are actin microfilament crosslinking proteins. Vertebrate actinins fall into two classes: the broadly-expressed actinins 1 and 4 (actn1 and actn4) and muscle-specific actinins, actn2 and actn3. Members of this family have numerous roles, including regulation of cell adhesion, cell differentiation, directed cell motility, intracellular signaling, and stabilization of f-actin at the sarcomeric Z-line in muscle. Here we identify five zebrafish actinin genes including two paralogs of ACTN3. We describe the temporal and spatial expression patterns of these genes through embryonic development. All zebrafish actinin genes have unique expression profiles, indicating specialization of each gene. In particular, the muscle actinins display preferential expression in different domains of axial, pharyngeal, and cranial musculature. There is no identified avian actn3 and approximately 16% of humans are null for ACTN3. Duplication of actn3 in the zebrafish indicates that variation in actn3 expression may promote physiological diversity in muscle function among vertebrates.
Collapse
|
30
|
Abstract
Lipid monolayers have traditionally been used in electron microscopy (EM) to form two-dimensional (2D) protein arrays for structural studies by electron crystallography. More recently, monolayers containing Nickel-nitrilotriacetic acid (Ni-NTA) lipids have been used to combine the purification and preparation of single-particle EM specimens of His-tagged proteins into a single, convenient step. This monolayer purification technique was further simplified by introducing the Affinity Grid, an EM grid that features a predeposited Ni-NTA lipid-containing monolayer. In this contribution, we provide a detailed description for the use of monolayer purification and Affinity Grids, discuss their advantages and limitations, and present examples to illustrate specific applications of the methods.
Collapse
|
31
|
Luther PK. The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. J Muscle Res Cell Motil 2009; 30:171-85. [PMID: 19830582 PMCID: PMC2799012 DOI: 10.1007/s10974-009-9189-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/23/2009] [Indexed: 02/04/2023]
Abstract
The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc.
Collapse
Affiliation(s)
- Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
32
|
Tang J, Lee KK, Bothner B, Baker TS, Yeager M, Johnson JE. Dynamics and stability in maturation of a T=4 virus. J Mol Biol 2009; 392:803-12. [PMID: 19627990 DOI: 10.1016/j.jmb.2009.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/11/2009] [Accepted: 07/14/2009] [Indexed: 11/19/2022]
Abstract
Nudaurelia capensis omega virus is a T=4, icosahedral virus with a bipartite, positive-sense RNA genome. Expression of the coat protein gene in a baculovirus system was previously shown to result in the formation of procapsids when purified at pH 7.6. Procapsids are round, porous particles (480 A diameter) and have T=4 quasi-symmetry. Reduction of pH from 7.6 to 5.0 resulted in virus-like particles (VLP(5.0)) that are morphologically identical with authentic virions, with an icosahedral-shaped capsid and a maximum dimension of 410 A. VLP(5.0) undergoes a maturation cleavage between residues N570 and F571, creating the covalently independent gamma peptide (residues 571-641) that remains associated with the particle. This cleavage also occurs in authentic virions, and in each case, it renders the morphological change irreversible (i.e., capsids do not expand when the pH is raised back to 7.6). However, a non-cleavable mutant, N570T, undergoes the transition reversibly (NT(7.6)<-->NT(5.0)). We used electron cryo-microscopy and three-dimensional image reconstruction to study the icosahedral structures of NT(7.6), NT(5.0), and VLP(5.0) at about 8, 6, and 6 A resolution, respectively. We employed the 2. 8-A X-ray model of the mature virus, determined at pH 7.0 (XR(7.0)), to establish (1) how and why procapsid and capsid structures differ, (2) why lowering pH drives the transition, and (3) why the non-cleaving NT(5.0) is reversible. We show that procapsid assembly minimizes the differences in quaternary interactions in the particle. The two classes of 2-fold contacts in the T=4 surface lattice are virtually identical, both mediated by similarly positioned but dynamic gamma peptides. Furthermore, quasi and icosahedral 3-fold interactions are indistinguishable. Maturation results from neutralizing the repulsive negative charge at subunit interfaces with significant differentiation of quaternary interactions (one 2-fold becomes flat, mediated by a gamma peptide, while the other is bent with the gamma peptide disordered) and dramatic stabilization of the particle. The gamma peptide at the flat contact remains dynamic when cleavage cannot occur (NT(5.0)) but becomes totally immobilized by noncovalent interactions after cleavage (VLP(5.0)).
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
33
|
Jarosch R. Large-scale models reveal the two-component mechanics of striated muscle. Int J Mol Sci 2008; 9:2658-2723. [PMID: 19330099 PMCID: PMC2635638 DOI: 10.3390/ijms9122658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022] Open
Abstract
This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and alpha-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical "two-component model" of active muscle differentiated a "contractile component" which stretches the "series elastic component" during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic alpha-actinin Z-filaments (provided with force-regulating sites for Ca(2+) binding), the thin filament rotations change the torsional twist of the four Z-filaments as the "series elastic components". Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.
Collapse
Affiliation(s)
- Robert Jarosch
- Formerly Institute of Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria. E-Mail:
| |
Collapse
|
34
|
Tang J, Olson N, Jardine PJ, Grimes S, Anderson DL, Baker TS. DNA poised for release in bacteriophage phi29. Structure 2008; 16:935-43. [PMID: 18547525 DOI: 10.1016/j.str.2008.02.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 01/12/2023]
Abstract
We present here the first asymmetric, three-dimensional reconstruction of a tailed dsDNA virus, the mature bacteriophage phi29, at subnanometer resolution. This structure reveals the rich detail of the asymmetric interactions and conformational dynamics of the phi29 protein and DNA components, and provides novel insight into the mechanics of virus assembly. For example, the dodecameric head-tail connector protein undergoes significant rearrangement upon assembly into the virion. Specific interactions occur between the tightly packed dsDNA and the proteins of the head and tail. Of particular interest and novelty, an approximately 60A diameter toroid of dsDNA was observed in the connector-lower collar cavity. The extreme deformation that occurs over a small stretch of DNA is likely a consequence of the high pressure of the packaged genome. This toroid structure may help retain the DNA inside the capsid prior to its injection into the bacterial host.
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sprague CR, Fraley TS, Jang HS, Lal S, Greenwood JA. Phosphoinositide binding to the substrate regulates susceptibility to proteolysis by calpain. J Biol Chem 2008; 283:9217-23. [PMID: 18258589 DOI: 10.1074/jbc.m707436200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Calpain-mediated proteolysis regulates cytoskeletal dynamics and is altered during aging and the progression of numerous diseases or pathological conditions. Although several cytoskeletal proteins have been identified as substrates, how localized calpain activity is regulated and the mechanisms controlling substrate recognition are not clear. In this study, we report that phosphoinositide binding regulates the susceptibility of the cytoskeletal adhesion protein alpha-actinin to proteolysis by calpains 1 and 2. At first, alpha-actinin did not appear to be a substrate for calpain 2; however, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) binding to alpha-actinin resulted in nearly complete proteolysis of the full-length protein, producing stable breakdown products. Calpain 1 was able to cleave alpha-actinin in the absence of phosphoinositide binding; however, PtdIns(3,4,5)P(3) binding increased the rate of proteolysis, and phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)) binding significantly inhibited cleavage. Phosphoinositide binding appeared to regulate calpain proteolysis of alpha-actinin by modulating the exposure of a highly sensitive cleavage site within the calponin homology 2 domain. In U87MG glioblastoma cells, which contain elevated levels of PtdIns(3,4,5)P(3), alpha-actinin colocalized with calpain within dynamic actin cytoskeletal structures. Furthermore, proteolysis of alpha-actinin producing stable breakdown products was observed in U87MG cells treated with calcium ionophore to activate the calcium-dependent calpains. Additional evidence of PtdIns(3,4,5)P(3)-mediated calpain proteolysis of alpha-actinin was observed in rat embryonic fibroblasts. These results suggest that PtdIns(3,4,5)P(3) binding is a critical determinant for alpha-actinin proteolysis by calpain. In conclusion, phosphoinositide binding to the substrate is a potential mechanism for regulating susceptibility to proteolysis by calpain.
Collapse
Affiliation(s)
- Chelsea R Sprague
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
36
|
Lorenzi M, Gimona M. Synthetic actin-binding domains reveal compositional constraints for function. Int J Biochem Cell Biol 2008; 40:1806-16. [PMID: 18296101 DOI: 10.1016/j.biocel.2008.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position.
Collapse
Affiliation(s)
- Maria Lorenzi
- Consorzio Mario Negri Sud, Department of Cell Biology and Oncology, Via Nazionale 8a, I-66030 Santa Maria Imbaro, Italy
| | | |
Collapse
|
37
|
Hiroi Y, Guo Z, Li Y, Beggs AH, Liao JK. Dynamic regulation of endothelial NOS mediated by competitive interaction with alpha-actinin-4 and calmodulin. FASEB J 2008; 22:1450-7. [PMID: 18180332 DOI: 10.1096/fj.07-9309com] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alpha-actinins are critical components of the actin cytoskeleton. Here we show that alpha-actinins serve another important biological function by binding to and competitively inhibiting calcium-dependent activation of endothelial NOS (eNOS). Alpha-actinin-2 was found to associate with eNOS in a yeast two-hybrid screen. In vascular endothelial cells, which only express alpha-actinin-1 and -4, alpha-actinin-4 interacted and colocalized with eNOS. Addition of alpha-actinin-4 directly inhibited eNOS recombinant protein, and overexpression of alpha-actinin-4 inhibited eNOS activity in eNOS-transfected COS-7 cells and bovine aortic endothelial cells (BAECs). In contrast, knockdown of alpha-actinin-4 by siRNA increased eNOS activity in BAECs. The alpha-actinin-4-binding site on eNOS was mapped to a central region comprising the calmodulin-binding domain, and the eNOS-binding site on alpha-actinin-4 was mapped to the fourth spectrin-like rod domain, R4. Treatment of endothelial cells with a calcium ionophore, A23187, decreased alpha-actinin-4-eNOS interaction, leading to translocation of alpha-actinin-4 from plasma membrane to cytoplasm. Indeed, addition of calmodulin displaced alpha-actinin-4 binding to eNOS and increased eNOS activity. These findings indicate that eNOS activity in vascular endothelial cells is tonically and dynamically regulated by competitive interaction with alpha-actinin-4 and calmodulin.
Collapse
Affiliation(s)
- Yukio Hiroi
- Vascular Medicine Research, Brigham & Women's Hospital, 65 Landsdowne Street, Boston, MA 02139, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
The mechanical properties of cytoskeletal actin bundles play an essential role in numerous physiological processes, including hearing, fertilization, cell migration, and growth. Cells employ a multitude of actin-binding proteins to actively regulate bundle dimensions and cross-linking properties to suit biological function. The mechanical properties of actin bundles vary by orders of magnitude depending on diameter and length, cross-linking protein type and concentration, and constituent filament properties. Despite their importance to cell function, the molecular design principles responsible for this mechanical behavior remain unknown. Here, we examine the mechanics of cytoskeletal bundles using a molecular-based model that accounts for the discrete nature of constituent actin filaments and their distinct cross-linking proteins. A generic competition between filament stretching and cross-link shearing determines three markedly different regimes of mechanical response that are delineated by the relative values of two simple design parameters, revealing the universal nature of bundle-bending mechanics. In each regime, bundle-bending stiffness displays distinct scaling behavior with respect to bundle dimensions and molecular composition, as observed in reconstituted actin bundles in vitro. This mechanical behavior has direct implications on the physiological bending, buckling, and entropic stretching behavior of cytoskeletal processes, as well as reconstituted actin systems. Results are used to predict the bending regimes of various in vivo cytoskeletal bundles that are not easily accessible to experiment and to generate hypotheses regarding implications of the isolated behavior on in vivo bundle function.
Collapse
|
39
|
Full SJ, Deinzer ML, Ho PS, Greenwood JA. Phosphoinositide binding regulates alpha-actinin CH2 domain structure: analysis by hydrogen/deuterium exchange mass spectrometry. Protein Sci 2007; 16:2597-604. [PMID: 17965186 DOI: 10.1110/ps.073146807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.
Collapse
Affiliation(s)
- Stephen J Full
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
40
|
Weins A, Schlondorff JS, Nakamura F, Denker BM, Hartwig JH, Stossel TP, Pollak MR. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci U S A 2007; 104:16080-5. [PMID: 17901210 PMCID: PMC2042165 DOI: 10.1073/pnas.0702451104] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alpha-actinin-4 is a widely expressed protein that employs an actin-binding site with two calponin homology domains to crosslink actin filaments (F-actin) in a Ca(2+)-sensitive manner in vitro. An inherited, late-onset form of kidney failure is caused by point mutations in the alpha-actinin-4 actin-binding domain. Here we show that alpha-actinin-4/F-actin aggregates, observed in vivo in podocytes of humans and mice with disease, likely form as a direct result of the increased actin-binding affinity of the protein. We document that exposure of a buried actin-binding site 1 in mutant alpha-actinin-4 causes an increase in its actin-binding affinity, abolishes its Ca(2+) regulation in vitro, and diverts its normal localization from actin stress fibers and focal adhesions in vivo. Inactivation of this buried actin-binding site returns the affinity of the mutant to that of the WT protein and abolishes aggregate formation in cells. In vitro, actin filaments crosslinked by the mutant alpha-actinin-4 exhibit profound changes of structural and biomechanical properties compared with WT alpha-actinin-4. On a molecular level, our findings elucidate the physiological importance of a dynamic interaction of alpha-actinin with F-actin in podocytes in vivo. We propose that a conformational change with full exposure of actin-binding site 1 could function as a switch mechanism to regulate the actin-binding affinity of alpha-actinin and possibly other calponin homology domain proteins under physiological conditions.
Collapse
MESH Headings
- Actinin/chemistry
- Actinin/genetics
- Actinin/metabolism
- Actinin/ultrastructure
- Actins/metabolism
- Actins/ultrastructure
- Amino Acid Substitution
- Animals
- Binding Sites/genetics
- Cells, Cultured
- Glomerulosclerosis, Focal Segmental/genetics
- Glomerulosclerosis, Focal Segmental/metabolism
- Humans
- In Vitro Techniques
- Kinetics
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Microfilament Proteins/chemistry
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microfilament Proteins/ultrastructure
- Microscopy, Electron, Transmission
- Models, Biological
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/ultrastructure
Collapse
Affiliation(s)
| | | | - Fumihiko Nakamura
- Translational Medicine Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | | | - John H. Hartwig
- Translational Medicine Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Thomas P. Stossel
- Translational Medicine Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Martin R. Pollak
- *Renal and
- To whom correspondence should be addressed at:
Brigham and Women's Hospital/Harvard Medical School, Harvard Institutes of Medicine, Room 534, 4 Blackfan Circle, Boston, MA 02115. E-mail:
| |
Collapse
|
41
|
Merrill MA, Malik Z, Akyol Z, Bartos JA, Leonard AS, Hudmon A, Shea MA, Hell JW. Displacement of alpha-actinin from the NMDA receptor NR1 C0 domain By Ca2+/calmodulin promotes CaMKII binding. Biochemistry 2007; 46:8485-97. [PMID: 17602661 PMCID: PMC2547089 DOI: 10.1021/bi0623025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ca2+ influx through the N-methyl-d-aspartate (NMDA)-type glutamate receptor triggers activation and postsynaptic accumulation of Ca2+/calmodulin-dependent kinase II (CaMKII). CaMKII, calmodulin, and alpha-actinin directly bind to the short membrane proximal C0 domain of the C-terminal region of the NMDA receptor NR1 subunit. In a negative feedback loop, calmodulin mediates Ca2+-dependent inactivation of the NMDA receptor by displacing alpha-actinin from NR1 C0 upon Ca2+ influx. We show that Ca2+-depleted calmodulin and alpha-actinin simultaneously bind to NR1 C0. Upon addition of Ca2+, calmodulin dislodges alpha-actinin. Either the N- or C-terminal half of calmodulin is sufficient for Ca2+-induced displacement of alpha-actinin. Whereas alpha-actinin directly antagonizes CaMKII binding to NR1 C0, the addition of Ca2+/calmodulin shifts binding of NR1 C0 toward CaMKII by displacing alpha-actinin. Displacement of alpha-actinin results in the simultaneous binding of calmodulin and CaMKII to NR1 C0. Our results reveal an intricate mechanism whereby Ca2+ functions to govern the complex interactions between the two most prevalent signaling molecules in synaptic plasticity, the NMDA receptor and CaMKII.
Collapse
Affiliation(s)
- Michelle A. Merrill
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Zulfiqar Malik
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Zeynep Akyol
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Jason A. Bartos
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - A. Soren Leonard
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Andy Hudmon
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Madeline A. Shea
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Johannes W. Hell
- Address correspondence to: Johannes W. Hell, Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Road, 2-512 BSB, Iowa City, IA 52242-1109; Tel: (319) 384 4732; Fax: (319) 335 8930
| |
Collapse
|
42
|
Norville JE, Kelly DF, Knight TF, Belcher AM, Walz T. 7A projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals. J Struct Biol 2007; 160:313-23. [PMID: 17638580 PMCID: PMC2149845 DOI: 10.1016/j.jsb.2007.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/17/2007] [Accepted: 06/05/2007] [Indexed: 11/24/2022]
Abstract
Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7A resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date.
Collapse
Affiliation(s)
- Julie E Norville
- MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
43
|
Taylor DW, Kelly DF, Cheng A, Taylor KA. On the freezing and identification of lipid monolayer 2-D arrays for cryoelectron microscopy. J Struct Biol 2007; 160:305-12. [PMID: 17561414 PMCID: PMC2268103 DOI: 10.1016/j.jsb.2007.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 11/22/2022]
Abstract
Lipid monolayers provide a convenient vehicle for the crystallization of biological macromolecules for 3-D electron microscopy. Although numerous examples of 3-D images from 2-D protein arrays have been described from negatively stained specimens, only six structures have been done from frozen-hydrated specimens. We describe here a method that makes high quality frozen-hydrated specimens of lipid monolayer arrays for cryoelectron microscopy. The method uses holey carbon films with patterned holes for monolayer recovery, blotting and plunge freezing to produce thin aqueous films which cover >90% of the available grid area. With this method, even specimens with relatively infrequent crystals can be screened using automated data collection techniques. Though developed for microscopic examination of 2-D arrays, the method may have wider application to the preparation of single particle specimens for 3-D image reconstruction.
Collapse
Affiliation(s)
- Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA.
| | | | | | | |
Collapse
|
44
|
Hampton CM, Taylor DW, Taylor KA. Novel structures for alpha-actinin:F-actin interactions and their implications for actin-membrane attachment and tension sensing in the cytoskeleton. J Mol Biol 2007; 368:92-104. [PMID: 17331538 PMCID: PMC1919418 DOI: 10.1016/j.jmb.2007.01.071] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/22/2007] [Accepted: 01/25/2007] [Indexed: 01/25/2023]
Abstract
We have applied correspondence analysis to electron micrographs of 2-D rafts of F-actin cross-linked with alpha-actinin on a lipid monolayer to investigate alpha-actinin:F-actin binding and cross-linking. More than 8000 actin crossover repeats, each with one to five alpha-actinin molecules bound, were selected, aligned, and grouped to produce class averages of alpha-actinin cross-links with approximately 9-fold improvement in the stochastic signal-to-noise ratio. Measurements and comparative molecular models show variation in the distance separating actin-binding domains and the angle of the alpha-actinin cross-links. Rafts of F-actin and alpha-actinin formed predominantly polar 2-D arrays of actin filaments, with occasional insertion of filaments of opposite polarity. Unique to this study are the numbers of alpha-actinin molecules bound to successive crossovers on the same actin filament. These "monofilament"-bound alpha-actinin molecules may reflect a new mode of interaction for alpha-actinin, particularly in protein-dense actin-membrane attachments in focal adhesions. These results suggest that alpha-actinin is not simply a rigid spacer between actin filaments, but rather a flexible cross-linking, scaffolding, and anchoring protein. We suggest these properties of alpha-actinin may contribute to tension sensing in actin bundles.
Collapse
Affiliation(s)
| | | | - Kenneth A. Taylor
- *Corresponding Author Phone: (850)644-3357, Fax: (850)644-7244, e-mail:
| |
Collapse
|
45
|
Claessens MMAE, Bathe M, Frey E, Bausch AR. Actin-binding proteins sensitively mediate F-actin bundle stiffness. NATURE MATERIALS 2006; 5:748-53. [PMID: 16921360 DOI: 10.1038/nmat1718] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/24/2006] [Indexed: 05/07/2023]
Abstract
Bundles of filamentous actin (F-actin) form primary structural components of a broad range of cytoskeletal processes including filopodia, sensory hair cell bristles and microvilli. Actin-binding proteins (ABPs) allow the cell to tailor the dimensions and mechanical properties of the bundles to suit specific biological functions. Therefore, it is important to obtain quantitative knowledge on the effect of ABPs on the mechanical properties of F-actin bundles. Here we measure the bending stiffness of F-actin bundles crosslinked by three ABPs that are ubiquitous in eukaryotes. We observe distinct regimes of bundle bending stiffness that differ by orders of magnitude depending on ABP type, concentration and bundle size. The behaviour observed experimentally is reproduced quantitatively by a molecular-based mechanical model in which ABP shearing competes with F-actin extension/compression. Our results shed new light on the biomechanical function of ABPs and demonstrate how single-molecule properties determine mesoscopic behaviour. The bending mechanics of F-actin fibre bundles are general and have implications for cytoskeletal mechanics and for the rational design of functional materials.
Collapse
Affiliation(s)
- Mireille M A E Claessens
- Lehrstuhl für Biophysik-E22, Department of Physics, Technische Universität München, D-85748 Garching, Germany
| | | | | | | |
Collapse
|
46
|
Nyman-Huttunen H, Tian L, Ning L, Gahmberg CG. alpha-Actinin-dependent cytoskeletal anchorage is important for ICAM-5-mediated neuritic outgrowth. J Cell Sci 2006; 119:3057-66. [PMID: 16820411 DOI: 10.1242/jcs.03045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intercellular adhesion molecule-5 (ICAM-5, telencephalin) is a dendrite-expressed membrane glycoprotein of telencephalic neurons in the mammalian brain. By deletion of the cytoplasmic and membrane-spanning domains of ICAM-5, we observed that the membrane distribution of ICAM-5 was determined by the cytoplasmic portion. Therefore we have characterized the intracellular associations of ICAM-5 by using a bacterially expressed glutathione S-transferase (GST) fusion protein encompassing the cytoplasmic part of ICAM-5. One of the main proteins in the neuronal cell line Paju that bound to the ICAM-5 cytodomain was alpha-actinin. ICAM-5 expressed in transfected Paju cells was found in alpha-actinin immunoprecipitates, and ICAM-5 colocalized with alpha-actinin both in Paju cells and in dendritic filopodia and spines of primary hippocampal neurons. We were also able to coprecipitate alpha-actinin from rat brain homogenate. Binding to alpha-actinin appeared to be mediated mainly through the N-terminal region of the ICAM-5 cytodomain, as the ICAM-5(857-861) cytoplasmic peptide (KKGEY) mediated efficient binding to alpha-actinin. Surface plasmon resonance analysis showed that the turnover of the interaction was rapid. In a mutant cell line, Paju-ICAM-5-KK/AA, the distribution was altered, which implies the importance of the lysines in the interaction. Furthermore, we found that the ICAM-5/alpha-actinin interaction is involved in neuritic outgrowth and the ICAM-5(857-861) cytoplasmic peptide induced morphological changes in Paju-ICAM-5 cells. In summary, these results show that the interaction between ICAM-5 and alpha-actinin is mediated through binding of positively charged amino acids near the transmembrane domain of ICAM-5, and this interaction may play an important role in neuronal differentiation.
Collapse
Affiliation(s)
- Henrietta Nyman-Huttunen
- Division of Biochemistry, Faculty of Biosciences, PO Box 56 (Viikinkaari 5), 00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
47
|
Scott DL, Diez G, Goldmann WH. Protein-lipid interactions: correlation of a predictive algorithm for lipid-binding sites with three-dimensional structural data. Theor Biol Med Model 2006; 3:17. [PMID: 16569237 PMCID: PMC1523333 DOI: 10.1186/1742-4682-3-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/28/2006] [Indexed: 01/08/2023] Open
Abstract
Background Over the past decade our laboratory has focused on understanding how soluble cytoskeleton-associated proteins interact with membranes and other lipid aggregates. Many protein domains mediating specific cell membrane interactions appear by fluorescence microscopy and other precision techniques to be partially inserted into the lipid bilayer. It is unclear whether these protein-lipid-interactions are dependent on shared protein motifs or unique regional physiochemistry, or are due to more global characteristics of the protein. Results We have developed a novel computational program that predicts a protein's lipid-binding site(s) from primary sequence data. Hydrophobic labeling, Fourier transform infrared spectroscopy (FTIR), film balance, T-jump, CD spectroscopy and calorimetry experiments confirm that the interfaces predicted for several key cytoskeletal proteins (alpha-actinin, Arp2, CapZ, talin and vinculin) partially insert into lipid aggregates. The validity of these predictions is supported by an analysis of the available three-dimensional structural data. The lipid interfaces predicted by our algorithm generally contain energetically favorable secondary structures (e.g., an amphipathic alpha-helix flanked by a flexible hinge or loop region), are solvent-exposed in the intact protein, and possess favorable local or global electrostatic properties. Conclusion At present, there are few reliable methods to determine the region of a protein that mediates biologically important interactions with lipids or lipid aggregates. Our matrix-based algorithm predicts lipid interaction sites that are consistent with the available biochemical and structural data. To determine whether these sites are indeed correctly identified, and whether use of the algorithm can be safely extended to other classes of proteins, will require further mapping of these sites, including genetic manipulation and/or targeted crystallography.
Collapse
Affiliation(s)
- David L Scott
- Renal Unit, Leukocyte Biology & Inflammation Program, Structural Biology Program and the Massachusetts General Hospital/Harvard Medical School, 149 13Street, Charlestown, MA 02129, USA
| | - Gerold Diez
- Friedrich-Alexander-University of Erlangen-Nuremberg, Center for Medical Physics and Technology, Biophysics Group, Henkestrasse 91, 91052 Erlangen, Germany
| | - Wolfgang H Goldmann
- Renal Unit, Leukocyte Biology & Inflammation Program, Structural Biology Program and the Massachusetts General Hospital/Harvard Medical School, 149 13Street, Charlestown, MA 02129, USA
- Friedrich-Alexander-University of Erlangen-Nuremberg, Center for Medical Physics and Technology, Biophysics Group, Henkestrasse 91, 91052 Erlangen, Germany
| |
Collapse
|
48
|
Tang J, Johnson JM, Dryden KA, Young MJ, Zlotnick A, Johnson JE. The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism. J Struct Biol 2006; 154:59-67. [PMID: 16495083 DOI: 10.1016/j.jsb.2005.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
The coat protein (CP) of cowpea chlorotic mottle virus assembles exclusively into a T=3 capsid in vivo and, under proper conditions, in vitro. The N-terminal domain of CP has been implicated in proper assembly and was viewed as a required switch for mediating hexamer and pentamer formation in T=3 assembly. We observed that a mutant CP lacking most of the N-terminal domain, NDelta34, assembles, in vitro, into statistically predictable numbers of: native-like T=3 capsids of 90 dimers; "T=2" capsids of 60 dimers; T=1 capsids of 30 dimers. We generated cryo-EM image reconstructions of each form and built pseudo-atomic models based on the subunits from the crystal structure of plant-derived T=3 virus allowing a detailed comparison of stabilizing interactions in the three assemblies. The statistical nature of the distribution of assembly products and the observed structures indicates that the N-terminus of CP is not a switch that is required to form the proper ratio of hexamers and pentamers for T=3 assembly; rather, it biases the direction of assembly to T=3 particles from the possibilities available to NDelta34 through flexible dimer hinges and variations in subunit contacts. Our results are consistent with a pentamer of dimers (PODs) nucleating assembly in all cases but subunit dimers can be added with different trajectories that favor specific T=3 or T=1 global particle geometries. Formation of the "T=2" particles appears to be fundamentally different in that they not only nucleate with PODs, but assembly propagates by the addition of mostly, if not exclusively PODs generating an entirely new subunit interface in the process. These results show that capsid geometry is flexible and may readily adapt to new requirements as the virus evolves.
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nakamura F, Hartwig JH, Stossel TP, Szymanski PT. Ca2+ and calmodulin regulate the binding of filamin A to actin filaments. J Biol Chem 2005; 280:32426-33. [PMID: 16030015 DOI: 10.1074/jbc.m502203200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Filamin A (FLNa) cross-links actin filaments (F-actin) into three-dimensional gels in cells, attaches F-actin to membrane proteins, and is a scaffold that collects numerous and diverse proteins. We report that Ca(2+)-calmodulin binds the actin-binding domain (ABD) of FLNa and dissociates FLNa from F-actin, thereby dissolving FLNa.F-actin gels. The FLNa ABD has two calponin homology domains (CH1 and CH2) separated by a linker. Recombinant CH1 but neither FLNa nor its ABD binds Ca(2+)-calmodulin in the absence of F-actin. Extending recombinant CH1 to include the negatively charged region linker domain makes it, like full-length FLNa, unable to bind Ca(2+)-calmodulin. Ca(2+)-calmodulin does, however, dissociate the FLNa ABD from F-actin provided that the CH2 domain is present. These findings identify the first evidence for direct regulation of FLNa, implicating a mechanism whereby Ca(2+)-calmodulin selectively targets the FLNa.F-actin complex.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- Hematology Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
50
|
Kelly DF, Taylor KA. Identification of the beta1-integrin binding site on alpha-actinin by cryoelectron microscopy. J Struct Biol 2005; 149:290-302. [PMID: 15721583 DOI: 10.1016/j.jsb.2004.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/16/2004] [Indexed: 11/29/2022]
Abstract
Cell-matrix adhesions in migrating cells are usually mediated by integrins, alpha-beta heterodimeric transmembrane proteins that link extracellular matrix molecules such as fibronectin to the cytoskeleton. We have synthesized the cytoplasmic domain of the beta1-integrin (residues H738-K778) with a histidine tag at its N-terminus. The binding of this peptide to a lipid monolayer containing a chelated-nickel group (dimyristoylphosphatidyl choline-suberimide-nitriloacetic acid:nickel salt) mimics the native environment at the cytoplasmic leaflet of the plasma membrane. A Nanogold particle was covalently linked to cysteines introduced at the C-terminus and after residue T757 on the integrin peptide, and co-crystallized with chicken smooth muscle alpha-actinin. The 2-D arrays of the beta1-integrin-alpha-actinin complex were examined by cryoelectron microscopy, with and without the gold label. Averaged projections were calculated for each specimen along with a difference map to determine the relative position of the gold-labeled beta1-integrin peptide. The difference maps indicate that the beta1-integrin cytoplasmic domain binds alpha-actinin between the first and second, 3-helix motifs in the central rod domain.
Collapse
Affiliation(s)
- Deborah F Kelly
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | |
Collapse
|