1
|
Aitha S, Thumma V, Ambala S, Matta R, Panga S, Pochampally J. Bis 1, 2, 3‐ Triazoles Linked Deoxybenzoin Hybrids as Antimicrobial Agents: Synthesis, In Vitro and In Silico Screening. ChemistrySelect 2023. [DOI: 10.1002/slct.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shalini Aitha
- Department of Chemistry Osmania University Hyderabad 500007 Telangana India
- Government Degree College for Women Karimnagar 505001 Telangana India
| | - Vishnu Thumma
- Department of Sciences and Humanities Matrusri Engineering College Hyderabad 500059 Telangana India
| | | | - Raghavender Matta
- Department of Chemistry Osmania University Hyderabad 500007 Telangana India
| | - Shyam Panga
- Dr. N. J. Paulbudhe College of Pharmacy Ahmednagar 414003 Maharashtra India
| | | |
Collapse
|
2
|
Stefaniak J, Nowak MG, Wojciechowski M, Milewski S, Skwarecki AS. Inhibitors of glucosamine-6-phosphate synthase as potential antimicrobials or antidiabetics - synthesis and properties. J Enzyme Inhib Med Chem 2022; 37:1928-1956. [PMID: 35801410 PMCID: PMC9272926 DOI: 10.1080/14756366.2022.2096018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is known as a promising target for antimicrobial agents and antidiabetics. Several compounds of natural or synthetic origin have been identified as inhibitors of this enzyme. This set comprises highly selective l-glutamine, amino sugar phosphate or transition state intermediate cis-enolamine analogues. Relatively low antimicrobial activity of these inhibitors, poorly penetrating microbial cell membranes, has been improved using the pro-drug approach. On the other hand, a number of heterocyclic and polycyclic compounds demonstrating antimicrobial activity have been presented as putative inhibitors of the enzyme, based on the results of molecular docking to GlcN-6-P synthase matrix. The most active compounds of this group could be considered promising leads for development of novel antimicrobial drugs or antidiabetics, provided their selective toxicity is confirmed.
Collapse
Affiliation(s)
- Joanna Stefaniak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Marek Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
3
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, López-Romero E. Cell compensatory responses of fungi to damage of the cell wall induced by Calcofluor White and Congo Red with emphasis on Sporothrix schenckii and Sporothrix globosa. A review. Front Cell Infect Microbiol 2022; 12:976924. [PMID: 36211971 PMCID: PMC9539796 DOI: 10.3389/fcimb.2022.976924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
The cell wall (CW) of fungi exhibits a complex structure and a characteristic chemical composition consisting almost entirely of interacting crystalline and amorphous polysaccharides. These are synthesized by a number of sugar polymerases and depolymerases encoded by a high proportion of the fungal genome (for instance, 20% in Saccharomyces cerevisiae). These enzymes act in an exquisitely coordinated process to assemble the tridimensional and the functional structure of the wall. Apart from playing a critical role in morphogenesis, cell protection, viability and pathogenesis, the CW represents a potential target for antifungals as most of its constituents do not exist in humans. Chitin, β-glucans and cellulose are the most frequent crystalline polymers found in the fungal CW. The hexosamine biosynthesis pathway (HBP) is critical for CW elaboration. Also known as the Leloir pathway, this pathway ends with the formation of UDP-N-GlcNAc after four enzymatic steps that start with fructose-6-phosphate and L-glutamine in a short deviation of glycolysis. This activated aminosugar is used for the synthesis of a large variety of biomacromolecules in a vast number of organisms including bacteria, fungi, insects, crustaceans and mammalian cells. The first reaction of the HBP is catalyzed by GlcN-6-P synthase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16), a critical enzyme that has been considered as a potential target for antifungals. The enzyme regulates the amount of cell UDP-N-GlcNAc and in eukaryotes is feedback inhibited by the activated aminosugar and other factors. The native and recombinant forms of GlcN-6-P synthase has been purified and characterized from both prokaryotic and eukaryotic organisms and demonstrated its critical role in CW remodeling and morphogenesis after exposure of some fungi to agents that stress the cell surface by interacting with wall polymers. This review deals with some of the cell compensatory responses of fungi to wall damage induced by Congo Red and Calcofluor White.
Collapse
|
4
|
Wyllie JA, McKay MV, Barrow AS, Soares da Costa TP. Biosynthesis of uridine diphosphate N-Acetylglucosamine: An underexploited pathway in the search for novel antibiotics? IUBMB Life 2022; 74:1232-1252. [PMID: 35880704 PMCID: PMC10087520 DOI: 10.1002/iub.2664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited. In this review, we examine the enzymes involved in the biosynthesis of one such component, UDP-N-acetylglucosamine, an essential building block and precursor of bacterial peptidoglycan. Furthermore, given the presence of a similar biosynthesis pathway in eukaryotes, we discuss the current knowledge on the differences and similarities between the bacterial and eukaryotic enzymes. Finally, this review also summarises the recent advances made in the development of inhibitors targeting the bacterial enzymes.
Collapse
Affiliation(s)
- Jessica A Wyllie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Mirrin V McKay
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Linhorst A, Lübke T. The Human Ntn-Hydrolase Superfamily: Structure, Functions and Perspectives. Cells 2022; 11:cells11101592. [PMID: 35626629 PMCID: PMC9140057 DOI: 10.3390/cells11101592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
N-terminal nucleophile (Ntn)-hydrolases catalyze the cleavage of amide bonds in a variety of macromolecules, including the peptide bond in proteins, the amide bond in N-linked protein glycosylation, and the amide bond linking a fatty acid to sphingosine in complex sphingolipids. Ntn-hydrolases are all sharing two common hallmarks: Firstly, the enzymes are synthesized as inactive precursors that undergo auto-proteolytic self-activation, which, as a consequence, reveals the active site nucleophile at the newly formed N-terminus. Secondly, all Ntn-hydrolases share a structural consistent αββα-fold, notwithstanding the total lack of amino acid sequence homology. In humans, five subclasses of the Ntn-superfamily have been identified so far, comprising relevant members such as the catalytic active subunits of the proteasome or a number of lysosomal hydrolases, which are often associated with lysosomal storage diseases. This review gives an updated overview on the structural, functional, and (patho-)physiological characteristics of human Ntn-hydrolases, in particular.
Collapse
|
6
|
Lu JQ, Shi WW, Xiao MJ, Tang YS, Zheng YT, Shaw PC. Lyophyllin, a Mushroom Protein from the Peptidase M35 Superfamily Is an RNA N-Glycosidase. Int J Mol Sci 2021; 22:ijms222111598. [PMID: 34769028 PMCID: PMC8584072 DOI: 10.3390/ijms222111598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.
Collapse
Affiliation(s)
- Jia-Qi Lu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei-Wei Shi
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518107, China;
| | - Meng-Jie Xiao
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms, National Kunming High Level Biosafety Research Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
7
|
Das A, Dey S, Chakraborty S, Barman A, Naresh Yadav R, Gazi R, Jana M, Firoj Hossain M. Metal‐Free One‐Pot Synthesis of 2‐(2‐Hydrazinyl) Thiazole Derivatives Using Graphene Oxide in a Green Solvent and Molecular Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arindam Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| | - Sovan Dey
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| | - Sumit Chakraborty
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| | - Anup Barman
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering &Technology Veer Bahadur Singh Purvanchal University Jaunpur 222003 (U.) India
| | - Rabiul Gazi
- Department of Chemistry, Molecular simulation Laboratory National Institute of Technology Rourkela, Rourkela Odisha 769008 India
| | - Madhurima Jana
- Department of Chemistry, Molecular simulation Laboratory National Institute of Technology Rourkela, Rourkela Odisha 769008 India
| | - Md. Firoj Hossain
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| |
Collapse
|
8
|
Ruegenberg S, Mayr FAMC, Atanassov I, Baumann U, Denzel MS. Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1. Nat Commun 2021; 12:2176. [PMID: 33846315 PMCID: PMC8041777 DOI: 10.1038/s41467-021-22320-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
The hexosamine pathway (HP) is a key anabolic pathway whose product uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor for glycosylation processes in mammals. It modulates the ER stress response and HP activation extends lifespan in Caenorhabditis elegans. The highly conserved glutamine fructose-6-phosphate amidotransferase 1 (GFAT-1) is the rate-limiting HP enzyme. GFAT-1 activity is modulated by UDP-GlcNAc feedback inhibition and via phosphorylation by protein kinase A (PKA). Molecular consequences of GFAT-1 phosphorylation, however, remain poorly understood. Here, we identify the GFAT-1 R203H substitution that elevates UDP-GlcNAc levels in C. elegans. In human GFAT-1, the R203H substitution interferes with UDP-GlcNAc inhibition and with PKA-mediated Ser205 phosphorylation. Our data indicate that phosphorylation affects the interactions of the two GFAT-1 domains to control catalytic activity. Notably, Ser205 phosphorylation has two discernible effects: it lowers baseline GFAT-1 activity and abolishes UDP-GlcNAc feedback inhibition. PKA controls the HP by uncoupling the metabolic feedback loop of GFAT-1.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Felix A. M. C. Mayr
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ilian Atanassov
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Martin S. Denzel
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Li P, Li K, Li X, Zhao F, Wang R, Wang J. Improving enzyme activity of glucosamine-6-phosphate synthase by semi-rational design strategy and computer analysis. Biotechnol Lett 2020; 42:2319-2332. [PMID: 32601959 DOI: 10.1007/s10529-020-02949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/24/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To improve enzyme activity of Glucosamine-6-phosphate synthase (Glms) of Bacillus subtilis by site saturation mutagenesis at Leu593, Ala594, Lys595, Ser596 and Val597 based on computer-aided semi-rational design. RESULTS The results indicated that L593S had the greatest effect on the activity of BsGlms and the enzyme activity increased from 5 to 48 U/mL. The mutation of L593S increased the yield of glucosamine by 1.6 times that of the original strain. The binding energy of the mutant with substrate was reduced from - 743.864 to - 768.246 kcal/mol. Molecular dynamics simulation results showed that Ser593 enhanced the flexibility of the protein, which ultimately led to increased enzyme activity. CONCLUSION We successfully improved BsGlms activity through computer simulation and site saturation mutagenesis. This combination of methodologies may fit into an efficient workflow for improving Glms and other proteins activity.
Collapse
Affiliation(s)
- Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan, 250353, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Kang Li
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xu Li
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Fei Zhao
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan, 250353, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan, 250353, Shandong, People's Republic of China. .,Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun 2020; 11:687. [PMID: 32019926 PMCID: PMC7000685 DOI: 10.1038/s41467-020-14524-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5′-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies. Mutations in the hexosamine pathway key enzyme glutamine fructose-6-phosphate amidotransferase (GFAT-1) improve protein quality control and extend C. elegans lifespan. Here the authors present the crystal structures of full-length human GFAT-1 alone and with bound ligands and perform activity assays, which show that gain-of-function in the longevity-associated G451E variant is caused by a loss of feedback regulation.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.,University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany
| | - Moritz Horn
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Christian Pichlo
- University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany
| | - Kira Allmeroth
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Ulrich Baumann
- University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany.
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany. .,CECAD-Cluster of Excellence, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
11
|
Khan SA, Asiri AM, Al-Ghamdi NSM, Asad M, Zayed ME, Elroby SA, Aqlan FM, Wani MY, Sharma K. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising antibacterial agents: In vitro, in silico and DFT studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Tsitkov S, Pesenti T, Palacci H, Blanchet J, Hess H. Queueing Theory-Based Perspective of the Kinetics of “Channeled” Enzyme Cascade Reactions. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stanislav Tsitkov
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Theo Pesenti
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- École Supérieure de Physique et de Chimie Industrielles (ESPCI), Paris, 75231 Cedex 05, France
| | - Henri Palacci
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jose Blanchet
- Management Science and Engineering, Stanford University, Palo Alto, California 94305, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
McCluskey GD, Bearne SL. "Pinching" the ammonia tunnel of CTP synthase unveils coordinated catalytic and allosteric-dependent control of ammonia passage. Biochim Biophys Acta Gen Subj 2018; 1862:2714-2727. [PMID: 30251661 DOI: 10.1016/j.bbagen.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023]
Abstract
Molecular gates within enzymes often play important roles in synchronizing catalytic events. We explored the role of a gate in cytidine-5'-triphosphate synthase (CTPS) from Escherichia coli. This glutamine amidotransferase catalyzes the biosynthesis of CTP from UTP using either l-glutamine or exogenous NH3 as a substrate. Glutamine is hydrolyzed in the glutaminase domain, with GTP acting as a positive allosteric effector, and the nascent NH3 passes through a gate located at the end of a ~25-Å tunnel before entering the synthase domain where CTP is generated. Substitution of the gate residue Val 60 by Ala, Cys, Asp, Trp, or Phe using site-directed mutagenesis and subsequent kinetic analyses revealed that V60-substitution impacts glutaminase activity, nucleotide binding, salt-dependent inhibition, and inter-domain NH3 transport. Surprisingly, the increase in steric bulk present in V60F perturbed the local structure consistent with "pinching" the tunnel, thereby revealing processes that synchronize the transfer of NH3 from the glutaminase domain to the synthase domain. V60F had a slightly reduced coupling efficiency at maximal glutaminase activity that was ameliorated by slowing down the glutamine hydrolysis reaction, consistent with a "bottleneck" effect. The inability of V60F to use exogenous NH3 was overcome in the presence of GTP, and more so if CTPS was covalently modified by 6-diazo-5-oxo-l-norleucine. Use of NH2OH by V60F as an alternative bulkier substrate occurred most efficiently when it was concomitant with the glutaminase reaction. Thus, the glutaminase activity and GTP-dependent activation act in concert to open the NH3 gate of CTPS to mediate inter-domain NH3 transport.
Collapse
Affiliation(s)
- Gregory D McCluskey
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
14
|
Miszkiel A, Wojciechowski M. Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc. J Mol Graph Model 2017; 78:14-25. [PMID: 28968565 DOI: 10.1016/j.jmgm.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 11/19/2022]
Abstract
Glucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5' diphospho N-acetyl-d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes of it a potential target for anti-fungal, anti-bacterial and anti-diabetic therapy. The crystal structure of isomerase domain from human pathogenic fungus Candida albicans has been solved recently but it doesn't reveal the molecular mechanism details of inhibition taking place under UDP-GlcNAc influence, the unique feature of eukaryotic enzyme. The following study is a continuation of the previous research based on comparative molecular dynamics simulations of the structures with and without the enzyme's physiological inhibitor (UDP-GlcNAc) bound. The models used for this study included fructose-6-phosphate, one of the enzyme's substrates in its binding pocket. The simulation results studies demonstrated differences in mobility of the compared structures. Some amino acid residues were determined, for which flexibility is evidently different between the models. Importantly, it has been confirmed that the most fixed residues are related to the inhibitor binding process and to the catalysis reaction. The obtained results constitute an important step towards understanding of the inhibition that GlcN-6-P synthase is subjected by UDP-GlcNAc molecule.
Collapse
Affiliation(s)
- Aleksandra Miszkiel
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marek Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
15
|
Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Med Res Rev 2016; 37:1095-1139. [PMID: 27957758 DOI: 10.1002/med.21430] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Abstract
Many enzymes contain tunnels and gates that are essential to their function. Gates reversibly switch between open and closed conformations and thereby control the traffic of small molecules-substrates, products, ions, and solvent molecules-into and out of the enzyme's structure via molecular tunnels. Many transient tunnels and gates undoubtedly remain to be identified, and their functional roles and utility as potential drug targets have received comparatively little attention. Here, we describe a set of general concepts relating to the structural properties, function, and classification of these interesting structural features. In addition, we highlight the potential of enzyme tunnels and gates as targets for the binding of small molecules. The different types of binding that are possible and the potential pharmacological benefits of such targeting are discussed. Twelve examples of ligands bound to the tunnels and/or gates of clinically relevant enzymes are used to illustrate the different binding modes and to explain some new strategies for drug design. Such strategies could potentially help to overcome some of the problems facing medicinal chemists and lead to the discovery of more effective drugs.
Collapse
Affiliation(s)
- Sergio M Marques
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
16
|
Gull P, Dar OA, Malik MA, Hashmi AA. Design, synthesis, characterization and antimicrobial/antioxidant activities of 1, 4-dicarbonyl-phenyl-dihydrazide based macrocyclic ligand and its Cu(II), Co(II) and Ni(II) complexes. Microb Pathog 2016; 100:237-243. [DOI: 10.1016/j.micpath.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022]
|
17
|
Yang L, Zhang J, Che X, Gao YQ. Simulation Studies of Protein and Small Molecule Interactions and Reaction. Methods Enzymol 2016; 578:169-212. [PMID: 27497167 DOI: 10.1016/bs.mie.2016.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computational studies of protein and small molecule (protein-ligand/enzyme-substrate) interactions become more and more important in biological science and drug discovery. Computer modeling can provide molecular details of the processes such as conformational change, binding, and transportation of small molecules/proteins, which are not easily to be captured in experiments. In this chapter, we discussed simulation studies of both protein and small molecules from three aspects: conformation sampling, transportations of small molecules in enzymes, and enzymatic reactions involving small molecules. Both methodology developments and examples of simulation studies in this field were presented.
Collapse
Affiliation(s)
- L Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, PR China; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, PR China
| | - J Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, PR China; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, PR China
| | - X Che
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, PR China; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, PR China
| | - Y Q Gao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, PR China; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, PR China.
| |
Collapse
|
18
|
Van Schaftingen E, Veiga-da-Cunha M, Linster CL. Enzyme complexity in intermediary metabolism. J Inherit Metab Dis 2015; 38:721-7. [PMID: 25700988 DOI: 10.1007/s10545-015-9821-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
A good appraisal of the function of enzymes is essential for the understanding of inborn errors of metabolism. However, it is clear now that the 'one gene, one enzyme, one catalytic function' rule oversimplifies the actual situation. Genes often encode several related proteins, which may differ in their subcellular localisation, regulation or function. Furthermore, enzymes often show several catalytic activities. In some cases, this is because they are multifunctional, possessing two or more different active sites that catalyse different, physiologically related reactions. In enzymes with broad specificity or in multispecificity enzymes, a single type of catalytic site performs the same reaction on different physiological substrates at similar rates. Enzymes that act physiologically in only one reaction often show nonetheless substrate promiscuity: they act at low rates on compounds that resemble their physiological substrate(s), thus forming non-classical metabolites, which are in some cases eliminated by metabolite repair. In addition to their catalytic role, enzymes may have moonlighting functions, i.e. non-catalytic functions that are most often not related with their catalytic activity. Deficiency in such functions may participate in the phenotype of inborn errors of metabolism. Evolution has also made that some enzymes have lost their catalytic activity to become allosteric proteins.
Collapse
Affiliation(s)
- Emile Van Schaftingen
- Welbio and de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium,
| | | | | |
Collapse
|
19
|
Characterization and expression of glucosamine-6-phosphate synthase from Saccharomyces cerevisiae in Pichia pastoris. Biotechnol Lett 2014; 36:2023-8. [DOI: 10.1007/s10529-014-1561-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|
20
|
Oliver JC, Gudihal R, Burgner JW, Pedley AM, Zwierko AT, Davisson VJ, Linger RS. Conformational changes involving ammonia tunnel formation and allosteric control in GMP synthetase. Arch Biochem Biophys 2014; 545:22-32. [PMID: 24434004 DOI: 10.1016/j.abb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
GMP synthetase is the glutamine amidotransferase that catalyzes the final step in the guanylate branch of de novo purine biosynthesis. Conformational changes are required to efficiently couple distal active sites in the protein; however, the nature of these changes has remained elusive. Structural information derived from both limited proteolysis and sedimentation velocity experiments support the hypothesis of nucleotide-induced loop- and domain-closure in the protein. These results were combined with information from sequence conservation and precedents from other glutamine amidotransferases to develop the first structural model of GMPS in a closed, active state. In analyzing this Catalytic model, an interdomain salt bridge was identified residing in the same location as seen in other triad glutamine amidotransferases. Using mutagenesis and kinetic analysis, the salt bridge between H186 and E383 was shown to function as a connection between the two active sites. Mutations at these residues uncoupled the two half-reactions of the enzyme. The chemical events of nucleotide binding initiate a series of conformational changes that culminate in the establishment of a tunnel for ammonia as well as an activated glutaminase catalytic site. The results of this study provide a clearer understanding of the allostery of GMPS, where, for the first time, key substrate binding and interdomain contacts are modeled and analyzed.
Collapse
Affiliation(s)
- Justin C Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Ravidra Gudihal
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - John W Burgner
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, United States
| | - Anthony M Pedley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alexander T Zwierko
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Rebecca S Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States.
| |
Collapse
|
21
|
Affiliation(s)
- Artur Gora
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical
Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
22
|
Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR. Proc Natl Acad Sci U S A 2013; 110:E2829-37. [PMID: 23832782 DOI: 10.1073/pnas.1302859110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pathogenic and commensal bacteria that experience limited nutrient availability in their host have evolved sophisticated systems to catabolize the mucin sugar N-acetylneuraminic acid, thereby facilitating their survival and colonization. The correct function of the associated catabolic machinery is particularly crucial for the pathogenesis of enteropathogenic bacteria during infection, although the molecular mechanisms involved with the regulation of the catabolic machinery are unknown. This study reports the complex structure of NanR, a repressor of the N-acetylneuraminate (nan) genes responsible for N-acetylneuraminic acid catabolism, and its regulatory ligand, N-acetylmannosamine 6-phosphate (ManNAc-6P), in the human pathogenic bacterium Vibrio vulnificus. Structural studies combined with electron microscopic, biochemical, and in vivo analysis demonstrated that NanR forms a dimer in which the two monomers create an arched tunnel-like DNA-binding space, which contains positively charged residues that interact with the nan promoter. The interaction between the NanR dimer and DNA is alleviated by the ManNAc-6P-mediated relocation of residues in the ligand-binding domain of NanR, which subsequently relieves the repressive effect of NanR and induces the transcription of the nan genes. Survival studies in which mice were challenged with a ManNAc-6P-binding-defective mutant strain of V. vulnificus demonstrated that this relocation of NanR residues is critical for V. vulnificus pathogenesis. In summary, this study presents a model of the mechanism that regulates sialic acid catabolism via NanR in V. vulnificus.
Collapse
|
23
|
Czarnecka J, Kwiatkowska K, Gabriel I, Wojciechowski M, Milewski S. EngineeringCandida albicansglucosamine-6-phosphate synthase for efficient enzyme purification. J Mol Recognit 2012; 25:564-70. [DOI: 10.1002/jmr.2175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Justyna Czarnecka
- Department of Pharmaceutical Technology and Biochemistry; Gdańsk University of Technology; 11/12 Narutowicza St; 80-233; Gdańsk; Poland
| | - Karolina Kwiatkowska
- Department of Pharmaceutical Technology and Biochemistry; Gdańsk University of Technology; 11/12 Narutowicza St; 80-233; Gdańsk; Poland
| | - Iwona Gabriel
- Department of Pharmaceutical Technology and Biochemistry; Gdańsk University of Technology; 11/12 Narutowicza St; 80-233; Gdańsk; Poland
| | - Marek Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry; Gdańsk University of Technology; 11/12 Narutowicza St; 80-233; Gdańsk; Poland
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry; Gdańsk University of Technology; 11/12 Narutowicza St; 80-233; Gdańsk; Poland
| |
Collapse
|
24
|
CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 2012; 8:e1002708. [PMID: 23093919 PMCID: PMC3475669 DOI: 10.1371/journal.pcbi.1002708] [Citation(s) in RCA: 867] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022] Open
Abstract
Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.
Collapse
|
25
|
Mouilleron S, Badet-Denisot MA, Pecqueur L, Madiona K, Assrir N, Badet B, Golinelli-Pimpaneau B. Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer. J Biol Chem 2012; 287:34533-46. [PMID: 22851174 DOI: 10.1074/jbc.m112.380378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The amino-terminal cysteine of glucosamine-6-phosphate synthase (GlmS) acts as a nucleophile to release and transfer ammonia from glutamine to fructose 6-phosphate through a channel. The crystal structure of the C1A mutant of Escherichia coli GlmS, solved at 2.5 Å resolution, is organized as a hexamer, where the glutaminase domains adopt an inactive conformation. Although the wild-type enzyme is active as a dimer, size exclusion chromatography, dynamic and quasi-elastic light scattering, native polyacrylamide gel electrophoresis, and ultracentrifugation data show that the dimer is in equilibrium with a hexameric state, in vitro and in cellulo. The previously determined structures of the wild-type enzyme, alone or in complex with glucosamine 6-phosphate, are also consistent with a hexameric assembly that is catalytically inactive because the ammonia channel is not formed. The shift of the equilibrium toward the hexameric form in the presence of cyclic glucosamine 6-phosphate, together with the decrease of the specific activity with increasing enzyme concentration, strongly supports product inhibition through hexamer stabilization. Altogether, our data allow us to propose a morpheein model, in which the active dimer can rearrange into a transiently stable form, which has the propensity to form an inactive hexamer. This would account for a physiologically relevant allosteric regulation of E. coli GlmS. Finally, in addition to cyclic glucose 6-phosphate bound at the active site, the hexameric organization of E. coli GlmS enables the binding of another linear sugar molecule. Targeting this sugar-binding site to stabilize the inactive hexameric state is therefore suggested for the development of specific antibacterial inhibitors.
Collapse
Affiliation(s)
- Stéphane Mouilleron
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase. Biochem J 2012; 443:417-26. [PMID: 22280445 DOI: 10.1042/bj20112210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,β-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.
Collapse
|
27
|
McFerrin LG, Atchley WR. A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS One 2012; 7:e34803. [PMID: 22506051 PMCID: PMC3323566 DOI: 10.1371/journal.pone.0034803] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/08/2012] [Indexed: 01/13/2023] Open
Abstract
Glucose is a fundamental energy source for both prokaryotes and eukaryotes. The balance between glucose utilization and storage is integral for proper energy homeostasis, and defects are associated with several diseases, e.g. type II diabetes. In vertebrates, the transcription factor ChREBP is a major component in glucose metabolism, while its ortholog MondoA is involved in glucose uptake. Both MondoA and ChREBP contain five Mondo conserved regions (MCRI-V) that affect their cellular localization and transactivation ability. While phosphorylation has been shown to affect ChREBP function, the mechanisms controlling glucose response of both ChREBP and MondoA remain elusive. By incorporating sequence analysis techniques, structure predictions, and functional annotations, we synthesized data surrounding Mondo family proteins into a cohesive, accurate, and general model involving the MCRs and two additional domains that determine ChREBP and MondoA glucose response. Paramount, we identified a conserved motif within the transactivation region of Mondo family proteins and propose that this motif interacts with the phosphorylated form of glucose. In addition, we discovered a putative nuclear receptor box in non-vertebrate Mondo and vertebrate ChREBP sequences that reveals a potentially novel interaction with nuclear receptors. These interactions are likely involved in altering ChREBP and MondoA conformation to form an active complex and induce transcription of genes involved in glucose metabolism and lipogenesis.
Collapse
Affiliation(s)
- Lisa G McFerrin
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | |
Collapse
|
28
|
Kang J, Kuroyanagi S, Akisada T, Hagiwara Y, Tateno M. Unidirectional Mechanistic Valved Mechanisms for Ammonia Transport in GatCAB. J Chem Theory Comput 2012; 8:649-60. [PMID: 26596613 DOI: 10.1021/ct200387u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamine amidotransferase CAB (GatCAB), a crucial enzyme involved in translational fidelity, catalyzes three reactions: (i) the glutaminase reaction to yield ammonia (NH3 or NH4(+)) from glutamine, (ii) the phosphorylation of Glu-tRNA(Gln), and (iii) the transamidase reaction to convert the phosphorylated Glu-tRNA(Gln) to Gln-tRNA(Gln). In the crystal structure of GatCAB, the two catalytic centers are far apart, and the presence of a hydrophilic channel to transport the molecules produced by the reaction (i) was proposed. We investigated the transport mechanisms of GatCAB by molecular dynamics (MD) simulations and free energy (PMF) calculations. In the MD simulations (in total ∼1.1 μs), the entrance of the previously proposed channel is closed, as observed in the crystal structure. Instead, a novel hydrophobic channel has been identified in this study: Since the newly identified entrance opened and closed repeatedly in the MD simulations, it may act as a gate. The calculated free energy difference revealed the significant preference of the newly identified gate/channel for NH3 transport (∼10(4)-fold). In contrast, with respect to NH4(+), the free energy barriers are significantly increased for both channels due to tight hydrogen-bonding with hydrophilic residues, which hinders efficient transport. The opening of the newly identified gate is modulated by Phe206, which acts as a "valve". For the backward flow of NH3, our PMF calculation revealed that the opening of the gate is hindered by Ala207, which acts as a mechanistic "stopper" against the motion of the "valve" (Phe206). This is the first report to elucidate the detailed mechanisms of unidirectional mechanistic valved transport inside proteins.
Collapse
Affiliation(s)
- Jiyoung Kang
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8571, Japan
| | - Shigehide Kuroyanagi
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8571, Japan
| | - Tomohiro Akisada
- Graduate School of Life Science, University of Hyogo , 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yohsuke Hagiwara
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8571, Japan
| | - Masaru Tateno
- Graduate School of Life Science, University of Hyogo , 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
29
|
Zhao L, Dewage SW, Bell MJ, Chang KM, Fatma S, Joshi N, Silva G, Cisneros GA, Hendrickson TL. The kinase activity of the Helicobacter pylori Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase is sensitive to distal mutations in its putative ammonia tunnel. Biochemistry 2012; 51:273-85. [PMID: 22229412 DOI: 10.1021/bi201143x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Helicobacter pylori (Hp) Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (AdT) plays important roles in indirect aminoacylation and translational fidelity. AdT has two active sites, in two separate subunits. Kinetic studies have suggested that interdomain communication occurs between these subunits; however, this mechanism is not well understood. To explore domain-domain communication in AdT, we adapted an assay and optimized it to kinetically characterize the kinase activity of Hp AdT. This assay was applied to the analysis of a series of point mutations at conserved positions throughout the putative AdT ammonia tunnel that connects the two active sites. Several mutations that caused significant decreases in AdT's kinase activity (reduced by 55-75%) were identified. Mutations at Thr149 (37 Å distal to the GatB kinase active site) and Lys89 (located at the interface of GatA and GatB) were detrimental to AdT's kinase activity, suggesting that these mutations have disrupted interdomain communication between the two active sites. Models of wild-type AdT, a valine mutation at Thr149, and an arginine mutation at Lys89 were subjected to molecular dynamics simulations. A comparison of wild-type, T149V, and K89R AdT simulation results unmasks 59 common residues that are likely involved in connecting the two active sites.
Collapse
Affiliation(s)
- Liangjun Zhao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jędrzejczak R, Wojciechowski M, Andruszkiewicz R, Sowiński P, Kot-Wasik A, Milewski S. Inactivation of glucosamine-6-phosphate synthase by N3-oxoacyl derivatives of L-2,3-diaminopropanoic acid. Chembiochem 2012; 13:85-96. [PMID: 22125025 DOI: 10.1002/cbic.201100587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Indexed: 11/09/2022]
Abstract
N(3)-Oxoacyl derivatives of L-2,3-diaminopropanoic acid 1-4, containing either an epoxide group or a conjugated double bond system, inactivate Saccharomyces cerevisiae glucosamine-6-phosphate (GlcN-6-P) synthase in a time- and concentration dependent manner. The results of kinetics studies on inactivation suggested a biphasic course, with formation of the enzyme-ligand complex preceding irreversible modification of the enzyme. The examined compounds differed markedly in their affinity to the enzyme active site. Inhibitors containing a phenyl ketone moiety bound much more strongly than their methyl ketone counterparts. The molecular mechanism of enzyme inactivation by phenyl ketone compounds 1 and 3 was elucidated by using a stepwise approach with 2D NMR, MS and UV-visible spectroscopy. A substituted thiazine derivative was identified as the final product of a model reaction between an epoxide compound, 1, and L-cysteine ethyl ester (CEE); and the respective cyclic product, found as a result of reaction between 1 and CGIF tetrapeptide, was identical to the N-terminal fragment of GlcN-6-P synthase. On the other hand, the reaction of a double-bond-containing compound, 3, with CEE, CGIF and GlcN-6-P synthase led to the formation of a C-S bond, without any further conversion or rearrangement. Molecular mechanisms of the reactions studied are proposed.
Collapse
Affiliation(s)
- Robert Jędrzejczak
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Álvarez-Añorve LI, Alonzo DA, Mora-Lugo R, Lara-González S, Bustos-Jaimes I, Plumbridge J, Calcagno ML. Allosteric kinetics of the isoform 1 of human glucosamine-6-phosphate deaminase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1846-53. [DOI: 10.1016/j.bbapap.2011.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/09/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
32
|
Sacoman JL, Hollingsworth RI. Synthesis and evaluation of an N-acetylglucosamine biosynthesis inhibitor. Carbohydr Res 2011; 346:2294-9. [DOI: 10.1016/j.carres.2011.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 11/16/2022]
|
33
|
Carere J, Baker P, Seah SYK. Investigating the Molecular Determinants for Substrate Channeling in BphI–BphJ, an Aldolase–Dehydrogenase Complex from the Polychlorinated Biphenyls Degradation Pathway. Biochemistry 2011; 50:8407-16. [DOI: 10.1021/bi200960j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason Carere
- Department
of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Perrin Baker
- Department
of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Stephen Y. K. Seah
- Department
of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
34
|
Gao H, Dou Y, Yang J, Wang J. New methods to measure residues coevolution in proteins. BMC Bioinformatics 2011; 12:206. [PMID: 21612664 PMCID: PMC3123609 DOI: 10.1186/1471-2105-12-206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The covariation of two sites in a protein is often used as the degree of their coevolution. To quantify the covariation many methods have been developed and most of them are based on residues position-specific frequencies by using the mutual information (MI) model. RESULTS In the paper, we proposed several new measures to incorporate new biological constraints in quantifying the covariation. The first measure is the mutual information with the amino acid background distribution (MIB), which incorporates the amino acid background distribution into the marginal distribution of the MI model. The modification is made to remove the effect of amino acid evolutionary pressure in measuring covariation. The second measure is the mutual information of residues physicochemical properties (MIP), which is used to measure the covariation of physicochemical properties of two sites. The third measure called MIBP is proposed by applying residues physicochemical properties into the MIB model. Moreover, scores of our new measures are applied to a robust indicator conn(k) in finding the covariation signal of each site. CONCLUSIONS We find that incorporating amino acid background distribution is effective in removing the effect of evolutionary pressure of amino acids. Thus the MIB measure describes more biological background information for the coevolution of residues. Besides, our analysis also reveals that the covariation of physicochemical properties is a new aspect of coevolution information.
Collapse
Affiliation(s)
- Hongyun Gao
- School of Mathematical Sciences, Dalian University of Technology, Dalian, People’s Republic of China
| | | | | | | |
Collapse
|
35
|
Li QA, Mavrodi DV, Thomashow LS, Roessle M, Blankenfeldt W. Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE. J Biol Chem 2011; 286:18213-21. [PMID: 21454481 DOI: 10.1074/jbc.m110.183418] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. The PhzE monomer contains both a chorismate-converting menaquinone, siderophore, tryptophan biosynthesis (MST) and a type 1 glutamine amidotransferase (GATase1) domain connected by a 45-residue linker. We present here the crystal structure of PhzE from Burkholderia lata 383 in a ligand-free open and ligand-bound closed conformation at 2.9 and 2.1 Å resolution, respectively. PhzE arranges in an intertwined dimer such that the GATase1 domain of one chain provides NH(3) to the MST domain of the other. This quaternary structure was confirmed by small angle x-ray scattering. Binding of chorismic acid, which was found converted to benzoate and pyruvate in the MST active centers of the closed form, leads to structural rearrangements that establish an ammonia transport channel approximately 25 Å in length within each of the two MST/GATase1 functional units of the dimer. The assignment of PhzE as an ADIC synthase was confirmed by mass spectrometric analysis of the product, which was also visualized at 1.9 Å resolution by trapping in crystals of an inactive mutant of PhzD, an isochorismatase that catalyzes the subsequent step in phenazine biosynthesis. Unlike in some of the related anthranilate synthases, no allosteric inhibition was observed in PhzE. This can be attributed to a tryptophan residue of the protein blocking the potential regulatory site. Additional electron density in the GATase1 active center was identified as zinc, and it was demonstrated that Zn(2+), Mn(2+), and Ni(2+) reduce the activity of PhzE.
Collapse
Affiliation(s)
- Qi-Ang Li
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
36
|
Long range molecular dynamics study of regulation of eukaryotic glucosamine-6-phosphate synthase activity by UDP-GlcNAc. J Mol Model 2011; 17:3103-15. [PMID: 21360186 PMCID: PMC3224219 DOI: 10.1007/s00894-011-1003-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 01/28/2011] [Indexed: 11/08/2022]
Abstract
Glucosamine-6-phosphate (GlcN-6-P) synthase catalyses the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5’ diphospho N-acetyl-D-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes it a potential target for antifungal, antibacterial and antidiabetic therapy. The crystal structure of the isomerase domain of GlcN-6-P synthase from human pathogenic fungus Candida albicans, in complex with UDP-GlcNAc has been solved recently but it has not revealed the molecular mechanism of inhibition taking place under UDP-GlcNAc influence, the unique feature of the eukaryotic enzyme. UDP-GlcNAc is a physiological inhibitor of GlcN-6-P synthase, binding about 1 nm away from the active site of the enzyme. In the present work, comparative molecular dynamics simulations of the free and UDP-GlcNAc-bounded structures of GlcN-6-P synthase have been performed. The aim was to complete static X-ray structural data and detect possible changes in the dynamics of the two structures. Results of the simulation studies demonstrated higher mobility of the free structure when compared to the liganded one. Several amino acid residues were identified, flexibility of which is strongly affected upon UDP-GlcNAc binding. Importantly, the most fixed residues are those related to the inhibitor binding process and to the catalytic reaction. The obtained results constitute an important step toward understanding of mechanism of GlcN-6-P synthase inhibition by UDP-GlcNAc molecule.
Collapse
|
37
|
Chevreux G, Atmanene C, Lopez P, Ouazzani J, Van Dorsselaer A, Badet B, Badet-Denisot MA, Sanglier-Cianférani S. Monitoring the dynamics of monomer exchange using electrospray mass spectrometry: the case of the dimeric glucosamine-6-phosphate synthase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:431-439. [PMID: 21472562 DOI: 10.1007/s13361-010-0054-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/28/2010] [Accepted: 12/10/2010] [Indexed: 05/30/2023]
Abstract
Escherichia coli glucosamine-6-phosphate synthase (GlmS) is a dimeric enzyme from the glutamine-dependent amidotransferases family, which catalyses the conversion of D-fructose-6-phosphate (Fru6P) and glutamine (Gln) into D-glucosamine-6-phosphate (GlcN6P) and glutamate, respectively. Extensive X-ray crystallography investigations have been reported, highlighting the importance of the dimeric association to form the sugar active site as well as significant conformational changes of the protein upon substrate and product binding. In the present work, an approach based on time-resolved noncovalent mass spectrometry has been developed to study the dynamics of GlmS subunit exchange. Using (14)N versus (15)N labeled proteins, the kinetics of GlmS subunit exchange was monitored with the wild-type enzyme in the presence of different substrates and products as well as with the protein bearing a key amino acid mutation specially designed to weaken the dimer interface. Determination of rate constants of subunit exchange revealed important modifications of the protein dynamics: while glutamine, glutamate, and K603A mutation accelerates subunit exchange, Fru6P and GlcN6P totally prevent it. These results are described in light of the available structural information, providing additional useful data for both the characterization of GlmS catalytic process and the design of new GlmS inhibitors. Finally, time-resolved noncovalent MS can be proposed as an additional biophysical technique for real-time monitoring of protein dynamics.
Collapse
Affiliation(s)
- Guillaume Chevreux
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gautam A, Vyas R, Tewari R. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit Rev Biotechnol 2010; 31:295-336. [PMID: 21091161 DOI: 10.3109/07388551.2010.525498] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.
Collapse
Affiliation(s)
- Ankur Gautam
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
39
|
González-Ibarra J, Milewski S, Villagómez-Castro JC, Cano-Canchola C, López-Romero E. Sporothrix schenckii: purification and partial biochemical characterization of glucosamine-6-phosphate synthase, a potential antifungal target. Med Mycol 2010; 48:110-21. [PMID: 19353425 DOI: 10.3109/13693780902856030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The first committed step of the biosynthetic pathway leading to uridine-5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is catalyzed by glucosamine-6-phosphate synthase (GlcN-6-P synthase), an enzyme proposed as a potential antifungal chemotherapy target. Here, we describe the purification and biochemical characterization of the native enzyme from the dimorphic pathogenic fungus Sporothrix schenckii. The availability of the pure protein facilitated its biochemical characterization. The enzyme exhibited subunit and native molecular masses of 79 and 350+/-5 kDa, respectively, suggesting a homotetrameric structure. Isoelectric point was 6.26 and K(m) values for fructose-6-phosphate and L-glutamine were 1.12+/-0.3 and 2.2+/-0.7 mM, respectively. Inhibition of activity by UDP-GlcNAc was enhanced by Glc-6-P and phosphorylation stimulated GlcN-6-P synthase activity without affecting the enzyme sensitivity to the aminosugar. A glutamine analogue, FMDP [N(3)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid] was a more potent inhibitor of activity than ADMP (2-Amino-2-deoxy-D-mannitol-6-phosphate) but the latter was a stronger inhibitor of growth in two culture media. To our knowledge, this is the first report on the purification and biochemical characterization of a non-recombinant GlcN-6-P synthase from a true dimorphic fungus. Inhibition of enzyme activity and fungal growth by specific inhibitors of GlcN-6-P synthase strongly reinforces the role of this enzyme as a potential target for antifungal chemotherapy.
Collapse
Affiliation(s)
- Joaquín González-Ibarra
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | | | | | | | | |
Collapse
|
40
|
Mouilleron S, Badet-Denisot MA, Badet B, Golinelli-Pimpaneau B. Dynamics of glucosamine-6-phosphate synthase catalysis. Arch Biochem Biophys 2010; 505:1-12. [PMID: 20709015 DOI: 10.1016/j.abb.2010.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/06/2010] [Accepted: 08/08/2010] [Indexed: 11/19/2022]
Abstract
Glucosamine-6P synthase, which catalyzes glucosamine-6P synthesis from fructose-6P and glutamine, channels ammonia over 18Å between its glutaminase and synthase active sites. The crystal structures of the full-length Escherichia coli enzyme have been determined alone, in complex with the first bound substrate, fructose-6P, in the presence of fructose-6P and a glutamine analog, and in the presence of the glucosamine-6P product. These structures represent snapshots of reaction intermediates, and their comparison sheds light on the dynamics of catalysis. Upon fructose-6P binding, the C-terminal loop and the glutaminase domains get ordered, leading to the closure of the synthase site, the opening of the sugar ring and the formation of a "closed" ammonia channel. Then, glutamine binding leads to the closure of the Q-loop to protect the glutaminase site, the activation of the catalytic residues involved in glutamine hydrolysis, the swing of the side chain of Trp74, which allows the communication between the two active sites through an "open" channel, and the rotation of the glutaminase domains relative to the synthase domains dimer. Therefore, binding of the substrates at the appropriate reaction time is responsible for the formation and opening of the ammonia channel and for the activation of the enzyme glutaminase function.
Collapse
Affiliation(s)
- Stéphane Mouilleron
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
41
|
Lund L, Fan Y, Shao Q, Gao YQ, Raushel FM. Carbamate transport in carbamoyl phosphate synthetase: a theoretical and experimental investigation. J Am Chem Soc 2010; 132:3870-8. [PMID: 20187643 DOI: 10.1021/ja910441v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transport of carbamate through the large subunit of carbamoyl phosphate synthetase (CPS) from Escherichia coli was investigated by molecular dynamics and site-directed mutagenesis. Carbamate, the product of the reaction involving ATP, bicarbonate, and ammonia, must be delivered from the site of formation to the site of utilization by traveling nearly 40 A within the enzyme. Potentials of mean force (PMF) calculations along the entire tunnel for the translocation of carbamate indicate that the tunnel is composed of three continuous water pockets and two narrow connecting parts, near Ala-23 and Gly-575. The two narrow parts render two free energy barriers of 6.7 and 8.4 kcal/mol, respectively. Three water pockets were filled with about 21, 9, and 9 waters, respectively, and the corresponding relative free energies of carbamate residing in these free energy minima are 5.8, 0, and 1.6 kcal/mol, respectively. The release of phosphate into solution at the site for the formation of carbamate allows the side chain of Arg-306 to rotate toward Glu-25, Glu-383, and Glu-604. This rotation is virtually prohibited by a barrier of at least 23 kcal/mol when phosphate remains bound. This conformational change not only opens the entrance of the tunnel but also shields the charge-charge repulsion from the three glutamate residues when carbamate passes through the tunnel. Two mutants, A23F and G575F, were designed to block the migration of carbamate through the narrowest parts of the carbamate tunnel. The mutants retained only 1.7% and 3.8% of the catalytic activity for the synthesis of carbamoyl phosphate relative to the wild type CPS, respectively.
Collapse
Affiliation(s)
- Liliya Lund
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA
| | | | | | | | | |
Collapse
|
42
|
Valerio-Lepiniec M, Aumont-Nicaise M, Roux C, Raynal B, England P, Badet B, Badet-Denisot MA, Desmadril M. Analysis of the Escherichia coli glucosamine-6-phosphate synthase activity by isothermal titration calorimetry and differential scanning calorimetry. Arch Biochem Biophys 2010; 498:95-104. [PMID: 20416269 DOI: 10.1016/j.abb.2010.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/25/2022]
Abstract
Glucosamine-6-phosphate synthase (GlmS) is responsible for the first and rate-limiting step in the hexosamine biosynthetic pathway. It catalyzes the conversion of D-fructose-6P (F6P) into D-glucosamine-6P (GlcN6P) using L-glutamine (Gln) as nitrogen donor (synthase activity) according to an ordered bi-bi process where F6P binds first. In the absence of F6P, the enzyme exhibits a weak hydrolyzing activity of Gln into Glu and ammonia (glutaminase activity), whereas the presence of F6P strongly stimulates it (hemi-synthase activity). Until now, these different activities were indirectly measured using either coupled enzyme or colorimetric methods. In this work, we have developed a direct assay monitoring the heat released by the reaction. Isothermal titration calorimetry and differential scanning calorimetry were used to determine kinetic and thermodynamic parameters of GlmS. The direct determination at 37 degrees C of kinetic parameters and affinity constants for both F6P and Gln demonstrated that part of the ammonia produced by Gln hydrolysis in the presence of both substrates is not used for the formation of the GlcN6P. The full characterization of this phenomenon allowed to identify experimental conditions where this leak of ammonia is negligible. Enthalpy measurements at 25 degrees C in buffers of various heats of protonation demonstrated that no proton exchange with the medium occurred during the enzyme-catalyzed glutaminase or synthase reaction suggesting for the first time that both products are released as a globally neutral pair composed by the Glu carboxylic side chain and the GlcN6P amine function. Finally we showed that the oligomerization state of GlmS is concentration-dependent.
Collapse
Affiliation(s)
- Marie Valerio-Lepiniec
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, Université de Paris-Sud 11, Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fan Y, Lund L, Shao Q, Gao YQ, Raushel FM. A combined theoretical and experimental study of the ammonia tunnel in carbamoyl phosphate synthetase. J Am Chem Soc 2009; 131:10211-9. [PMID: 19569682 DOI: 10.1021/ja902557r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transfer of ammonia in carbamoyl phosphate synthetase (CPS) was investigated by molecular dynamics simulations and experimental characterization of mutations within the ammonia tunnel. In CPS, ammonia is derived from the hydrolysis of glutamine and this intermediate must travel approximately 45 A from the site of formation in the small subunit to the site of utilization in the large subunit. In this investigation, the migration of ammonia was analyzed from the exit of the small subunit through the large subunit where it ultimately reacts with the carboxy phosphate intermediate. Potential of mean force calculations along the transfer pathway for ammonia indicate a relatively low free-energy barrier for the translocation of ammonia. The highest barrier of 7.2 kcal/mol is found at a narrow turning gate surrounded by the side chains of Cys-232, Ala-251, and Ala-314 in the large subunit. The environment of the ammonia tunnel from the exit of the small subunit to the turning gate in the tunnel is filled with clusters of water molecules and the ammonia is able to travel through this area easily. After ammonia passes through the turning gate, it enters a hydrophobic passage. A hydrogen bond then forms between the ammonia and Thr-249, which facilitates the delivery to a more hydrophilic environment near the active site for the reaction with the carboxy phosphate intermediate. The transport process from the turning gate to the end of the tunnel is favored by an overall downhill free-energy potential and no free-energy barrier higher than 3 kcal/mol. A conformational change of the turning gate, caused by formation of the carboxy phosphate intermediate, is consistent with a mechanism in which the reaction between ATP and bicarbonate triggers the transport of ammonia and consequently accelerates the rate of glutamine hydrolysis in the small subunit. A blockage in the turning gate passageway was introduced by the triple mutant C232V/A251V/A314V. This mutant is unable to synthesize carbamoyl phosphate using glutamine as a nitrogen source.
Collapse
Affiliation(s)
- Yubo Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
44
|
Transcriptional regulation of the Escherichia coli gene rraB, encoding a protein inhibitor of RNase E. J Bacteriol 2009; 191:6665-74. [PMID: 19717586 DOI: 10.1128/jb.00344-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli RNA degradosome is a protein complex that plays a critical role in the turnover of numerous RNAs. The key component of the degradosome complex is the endoribonuclease RNase E, a multidomain protein composed of an N-terminal catalytic region and a C-terminal region that organizes the other protein components of the degradosome. Previously, the RNase E inhibitors RraA and RraB were identified genetically and shown to bind to the C-terminal region of RNase E, thus affecting both the protein composition of the degradosome and the endonucleolytic activity of RNase E. In the present work, we investigated the transcriptional regulation of rraB. rraB was shown to be transcribed constitutively from its own promoter, PrraB. Transposon mutagenesis and screening for increased beta-galactosidase activity from a chromosomal PrraB-lacZ transcriptional fusion resulted in the isolation of a transposon insertion in glmS, encoding the essential enzyme glucosamine-6-phosphate synthase that catalyzes the first committed step of the uridine 5'-diphospho-N-acetyl-glucosamine (UDP-GlcNAc) pathway, which provides intermediates for peptidoglycan biogenesis. The glmS852::Tn5 allele resulted in an approximately 50% lower intracellular concentration of UDP-GlcNAc and conferred a fivefold increase in the level of rraB mRNA. This allele also mediated a twofold increase in beta-galactosidase activity from a chromosomal fusion of the 5' untranslated region of the rne gene to lacZ, suggesting that a reduction in cellular concentration of UDP-GlcNAc and the resulting increased expression of RraB might modulate the action of RNase E.
Collapse
|
45
|
Lakomek K, Dickmanns A, Kettwig M, Urlaub H, Ficner R, Lübke T. Initial insight into the function of the lysosomal 66.3 kDa protein from mouse by means of X-ray crystallography. BMC STRUCTURAL BIOLOGY 2009; 9:56. [PMID: 19706171 PMCID: PMC2739207 DOI: 10.1186/1472-6807-9-56] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/25/2009] [Indexed: 08/30/2023]
Abstract
Background The lysosomal 66.3 kDa protein from mouse is a soluble, mannose 6-phosphate containing protein of so far unknown function. It is synthesized as a glycosylated 75 kDa precursor that undergoes limited proteolysis leading to a 28 kDa N- and a 40 kDa C-terminal fragment. Results In order to gain insight into the function and the post-translational maturation process of the glycosylated 66.3 kDa protein, three crystal structures were determined that represent different maturation states. These structures demonstrate that the 28 kDa and 40 kDa fragment which have been derived by a proteolytic cleavage remain associated. Mass spectrometric analysis confirmed the subsequent trimming of the C-terminus of the 28 kDa fragment making a large pocket accessible, at the bottom of which the putative active site is located. The crystal structures reveal a significant similarity of the 66.3 kDa protein to several bacterial hydrolases. The core αββα sandwich fold and a cysteine residue at the N-terminus of the 40 kDa fragment (C249) classify the 66.3 kDa protein as a member of the structurally defined N-terminal nucleophile (Ntn) hydrolase superfamily. Conclusion Due to the close resemblance of the 66.3 kDa protein to members of the Ntn hydrolase superfamily a hydrolytic activity on substrates containing a non-peptide amide bond seems reasonable. The structural homology which comprises both the overall fold and essential active site residues also implies an autocatalytic maturation process of the lysosomal 66.3 kDa protein. Upon the proteolytic cleavage between S248 and C249, a deep pocket becomes solvent accessible, which harbors the putative active site of the 66.3 kDa protein.
Collapse
Affiliation(s)
- Kristina Lakomek
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August University Goettingen, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009; 296:H13-28. [PMID: 19028792 PMCID: PMC2637779 DOI: 10.1152/ajpheart.01056.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.
Collapse
Affiliation(s)
- Boglarka Laczy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakaishi Y, Bando M, Shimizu H, Watanabe K, Goto F, Tsuge H, Kondo K, Komatsu M. Structural analysis of human glutamine:fructose-6-phosphate amidotransferase, a key regulator in type 2 diabetes. FEBS Lett 2008; 583:163-7. [PMID: 19059404 DOI: 10.1016/j.febslet.2008.11.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 01/17/2023]
Abstract
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is a rate-limiting enzyme in the hexoamine biosynthetic pathway and plays an important role in type 2 diabetes. We now report the first structures of the isomerase domain of the human GFAT in the presence of cyclic glucose-6-phosphate and linear glucosamine-6-phosphate. The C-terminal tail including the active site displays a rigid conformation, similar to the corresponding Escherichia coli enzyme. The diversity of the CF helix near the active site suggests the helix is a major target for drug design. Our study provides insights into the development of therapeutic drugs for type 2 diabetes.
Collapse
Affiliation(s)
- Yuichiro Nakaishi
- Medicinal Chemistry Research Institute, Otsuka Pharmaceutical Co. Ltd., Kawauchi-cho, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Floquet N, Durand P, Maigret B, Badet B, Badet-Denisot MA, Perahia D. Collective motions in glucosamine-6-phosphate synthase: influence of ligand binding and role in ammonia channelling and opening of the fructose-6-phosphate binding site. J Mol Biol 2008; 385:653-64. [PMID: 18976669 DOI: 10.1016/j.jmb.2008.10.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 09/24/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
Abstract
The large protein motions of the bacterial enzyme glucosamine-6-phosphate synthase have been addressed using full atom normal modes analysis for the empty, the glucose-6-phosphate and the glucose-6-phosphate+glutamate bound proteins. The approach that was used involving energy minimizations along the normal modes coordinates identified functional motions of the protein, some of which were characterized earlier by X-ray diffraction studies. This method made it possible for the first time to highlight significant energy differences according to whether none, only one or both of the active sites of the protein were occupied. Our data favoured a specific motion of the glutamine binding domain following the fixation of fructose-6-phosphate and suggested a rigidified structure with both sites occupied. Here, we show that most of the collective large amplitude motions of glucosamine-6-phosphate synthase that are modulated by ligand binding are crucial for the enzyme catalytic cycle, as they strongly modify the geometry of both the ammonia channel and the C-tail, demonstrating their role in ammonia transfer and ligand binding.
Collapse
Affiliation(s)
- Nicolas Floquet
- Institut de Chimie des Substances Naturelles-CNRS, 1 Avenue de la Terrasse-91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
49
|
Mouilleron S, Badet-Denisot MA, Golinelli-Pimpaneau B. Ordering of C-terminal Loop and Glutaminase Domains of Glucosamine-6-Phosphate Synthase Promotes Sugar Ring Opening and Formation of the Ammonia Channel. J Mol Biol 2008; 377:1174-85. [DOI: 10.1016/j.jmb.2008.01.077] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
|
50
|
Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:168-207. [PMID: 18266853 DOI: 10.1111/j.1574-6976.2008.00104.x] [Citation(s) in RCA: 482] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.
Collapse
Affiliation(s)
- Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|