1
|
Kamuda K, Ronzoni R, Majumdar A, Guan FHX, Irving JA, Lomas DA. A novel pathological mutant reveals the role of torsional flexibility in the serpin breach in adoption of an aggregation-prone intermediate. FEBS J 2024; 291:2937-2954. [PMID: 38523412 PMCID: PMC11753496 DOI: 10.1111/febs.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Mutants of alpha-1-antitrypsin cause the protein to self-associate and form ordered aggregates ('polymers') that are retained within hepatocytes, resulting in a predisposition to the development of liver disease. The associated reduction in secretion, and for some mutants, impairment of function, leads to a failure to protect lung tissue against proteases released during the inflammatory response and an increased risk of emphysema. We report here a novel deficiency mutation (Gly192Cys), that we name the Sydney variant, identified in a patient in heterozygosity with the Z allele (Glu342Lys). Cellular analysis revealed that the novel variant was mostly retained as insoluble polymers within the endoplasmic reticulum. The basis for this behaviour was investigated using biophysical and structural techniques. The variant showed a 40% reduction in inhibitory activity and a reduced stability as assessed by thermal unfolding experiments. Polymerisation involves adoption of an aggregation-prone intermediate and paradoxically the energy barrier for transition to this state was increased by 16% for the Gly192Cys variant with respect to the wild-type protein. However, with activation to the intermediate state, polymerisation occurred at a 3.8-fold faster rate overall. X-ray crystallography provided two crystal structures of the Gly192Cys variant, revealing perturbation within the 'breach' region with Cys192 in two different orientations: in one structure it faces towards the hydrophobic core while in the second it is solvent-exposed. This orientational heterogeneity was confirmed by PEGylation. These data show the critical role of the torsional freedom imparted by Gly192 in inhibitory activity and stability against polymerisation.
Collapse
Affiliation(s)
- Kamila Kamuda
- Division of Medicine, UCL Respiratory, Rayne InstituteUniversity College LondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity College LondonUK
| | - Riccardo Ronzoni
- Division of Medicine, UCL Respiratory, Rayne InstituteUniversity College LondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity College LondonUK
| | - Avik Majumdar
- AW Morrow Gastroenterology and Liver CentreRoyal Prince Alfred HospitalSydneyAustralia
- Victorian Liver Transplant UnitAustin HealthMelbourneAustralia
- The University of MelbourneMelbourneAustralia
| | - Fiona H. X. Guan
- AW Morrow Gastroenterology and Liver CentreRoyal Prince Alfred HospitalSydneyAustralia
| | - James A. Irving
- Division of Medicine, UCL Respiratory, Rayne InstituteUniversity College LondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity College LondonUK
| | - David A. Lomas
- Division of Medicine, UCL Respiratory, Rayne InstituteUniversity College LondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity College LondonUK
| |
Collapse
|
2
|
Guay KP, Ke H, Canniff NP, George GT, Eyles SJ, Mariappan M, Contessa JN, Gershenson A, Gierasch LM, Hebert DN. ER chaperones use a protein folding and quality control glyco-code. Mol Cell 2023; 83:4524-4537.e5. [PMID: 38052210 PMCID: PMC10790639 DOI: 10.1016/j.molcel.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
N-glycans act as quality control tags by recruiting lectin chaperones to assist protein maturation in the endoplasmic reticulum. The location and composition of N-glycans (glyco-code) are key to the chaperone-selection process. Serpins, a class of serine protease inhibitors, fold non-sequentially to achieve metastable active states. Here, the role of the glyco-code in assuring successful maturation and quality control of two human serpins, alpha-1 antitrypsin (AAT) and antithrombin III (ATIII), is described. We find that AAT, which has glycans near its N terminus, is assisted by early lectin chaperone binding. In contrast, ATIII, which has more C-terminal glycans, is initially helped by BiP and then later by lectin chaperones mediated by UGGT reglucosylation. UGGT action is increased for misfolding-prone disease variants, and these clients are preferentially glucosylated on their most C-terminal glycan. Our study illustrates how serpins utilize N-glycan presence, position, and composition to direct their proper folding, quality control, and trafficking.
Collapse
Affiliation(s)
- Kevin P Guay
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Haiping Ke
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nathan P Canniff
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Gracie T George
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Institute for Applied Life Sciences, Mass Spectrometry Center, University of Massachusetts Amherst, Amherst, MA, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Joseph N Contessa
- Departments of Therapeutic Radiology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Lila M Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
3
|
Cazacu N, Chilom CG. Modulation of the structural and functional properties of α1-antitrypsin by interaction with flavonoid luteolin. J Biomol Struct Dyn 2023; 41:7884-7891. [PMID: 36184736 DOI: 10.1080/07391102.2022.2127909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 10/07/2022]
Abstract
α1-antitrypsin (A1AT) is a circulating serine protease inhibitor and an acute phase reactant, the deficiency of which can lead to liver failure and chronic lung disease. Flavonoid treatment may induce changes in α1-antitrypsin production in some human cells. The purpose of this study is to investigate the properties of the A1AT protein that interacts with the flavonoid luteolin, which exhibits numerous properties, including antioxidant properties. For this purpose, multi-spectroscopic (UV-Vis spectroscopy, fluorescence and FRET) methods and molecular docking were used. The intrinsic fluorescence of A1AT was quenched by luteolin through a static mechanism. Luteolin binds to one site of the A1AT protein, with a moderate binding constant, and the binding process was driven by entropy and hydrophobic interactions. Hydrophobicity around Trp decreased as a result of luteolin binding to the A1AT site and FRET occurred at a distance of 3.11 nm. Under the action of temperature, the stability of A1AT structure was decreased by the presence of luteolin. Molecular docking confirmed that luteolin binds to one site, with a moderate affinity. The results would give a better understanding of the functional changes that occurred in the structure of A1AT induced by luteolin binding, which may have implications in the field of pharmaceutical research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Cazacu
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Claudia G Chilom
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| |
Collapse
|
4
|
Kaur U, Kihn KC, Ke H, Kuo W, Gierasch LM, Hebert DN, Wintrode PL, Deredge D, Gershenson A. The conformational landscape of a serpin N-terminal subdomain facilitates folding and in-cell quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537978. [PMID: 37163105 PMCID: PMC10168285 DOI: 10.1101/2023.04.24.537978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many multi-domain proteins including the serpin family of serine protease inhibitors contain non-sequential domains composed of regions that are far apart in sequence. Because proteins are translated vectorially from N- to C-terminus, such domains pose a particular challenge: how to balance the conformational lability necessary to form productive interactions between early and late translated regions while avoiding aggregation. This balance is mediated by the protein sequence properties and the interactions of the folding protein with the cellular quality control machinery. For serpins, particularly α 1 -antitrypsin (AAT), mutations often lead to polymer accumulation in cells and consequent disease suggesting that the lability/aggregation balance is especially precarious. Therefore, we investigated the properties of progressively longer AAT N-terminal fragments in solution and in cells. The N-terminal subdomain, residues 1-190 (AAT190), is monomeric in solution and efficiently degraded in cells. More β -rich fragments, 1-290 and 1-323, form small oligomers in solution, but are still efficiently degraded, and even the polymerization promoting Siiyama (S53F) mutation did not significantly affect fragment degradation. In vitro, the AAT190 region is among the last regions incorporated into the final structure. Hydrogen-deuterium exchange mass spectrometry and enhanced sampling molecular dynamics simulations show that AAT190 has a broad, dynamic conformational ensemble that helps protect one particularly aggregation prone β -strand from solvent. These AAT190 dynamics result in transient exposure of sequences that are buried in folded, full-length AAT, which may provide important recognition sites for the cellular quality control machinery and facilitate degradation and, under favorable conditions, reduce the likelihood of polymerization.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Kyle C. Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Haiping Ke
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Weiwei Kuo
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Daniel N. Hebert
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Patrick L. Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Anne Gershenson
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
5
|
Liu X, Kouassi KGW, Vanbever R, Dumoulin M. Impact of the PEG length and PEGylation site on the structural, thermodynamic, thermal, and proteolytic stability of mono-PEGylated alpha-1 antitrypsin. Protein Sci 2022; 31:e4392. [PMID: 36040264 PMCID: PMC9375436 DOI: 10.1002/pro.4392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Conjugation to polyethylene glycol (PEG) is a widely used approach to improve the therapeutic value of proteins essentially by prolonging their body residence time. PEGylation may however induce changes in the structure and/or the stability of proteins and thus on their function(s). The effects of PEGylation on the thermodynamic stability can either be positive (stabilization), negative (destabilization), or neutral (no effect). Moreover, various factors such as the PEG length and PEGylation site can influence the consequences of PEGylation on the structure and stability of proteins. In this study, the effects of PEGylation on the structure, stability, and polymerization of alpha1-antitrypsin (AAT) were investigated, using PEGs with different lengths, different structures (linear or 2-armed) and different linking chemistries (via amine or thiol) at two distinct positions of the sequence. The results show that whatever the size, position, and structure of PEG chains, PEGylation (a) does not induce significant changes in AAT structure (either at the secondary or tertiary level); (b) does not alter the stability of the native protein upon both chemical- and heat-induced denaturation; and (c) does not prevent AAT to fully refold and recover its activity following chemical denaturation. However, the propensity of AAT to aggregate upon heat treatment was significantly decreased by PEGylation, although PEGylation did not prevent the irreversible inactivation of the enzyme. Moreover, conjugation to PEG, especially 2-armed 40 kDa PEG, greatly improved the proteolytic resistance of AAT. PEGylation of AAT could be a promising strategy to prolong its half-life after infusion in AAT-deficient patients and thereby decrease the frequency of infusions.
Collapse
Affiliation(s)
- Xiao Liu
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Kobenan G. W. Kouassi
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Rita Vanbever
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Mireille Dumoulin
- Department of Life SciencesInBios, Center for Protein Engineering, Nanobodies to Explore Protein Structure and Functions, University of LiègeLiègeBelgium
| |
Collapse
|
6
|
Plessa E, Chu LP, Chan SHS, Thomas OL, Cassaignau AME, Waudby CA, Christodoulou J, Cabrita LD. Nascent chains can form co-translational folding intermediates that promote post-translational folding outcomes in a disease-causing protein. Nat Commun 2021; 12:6447. [PMID: 34750347 PMCID: PMC8576036 DOI: 10.1038/s41467-021-26531-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/01/2021] [Indexed: 01/16/2023] Open
Abstract
During biosynthesis, proteins can begin folding co-translationally to acquire their biologically-active structures. Folding, however, is an imperfect process and in many cases misfolding results in disease. Less is understood of how misfolding begins during biosynthesis. The human protein, alpha-1-antitrypsin (AAT) folds under kinetic control via a folding intermediate; its pathological variants readily form self-associated polymers at the site of synthesis, leading to alpha-1-antitrypsin deficiency. We observe that AAT nascent polypeptides stall during their biosynthesis, resulting in full-length nascent chains that remain bound to ribosome, forming a persistent ribosome-nascent chain complex (RNC) prior to release. We analyse the structure of these RNCs, which reveals compacted, partially-folded co-translational folding intermediates possessing molten-globule characteristics. We find that the highly-polymerogenic mutant, Z AAT, forms a distinct co-translational folding intermediate relative to wild-type. Its very modest structural differences suggests that the ribosome uniquely tempers the impact of deleterious mutations during nascent chain emergence. Following nascent chain release however, these co-translational folding intermediates guide post-translational folding outcomes thus suggesting that Z's misfolding is initiated from co-translational structure. Our findings demonstrate that co-translational folding intermediates drive how some proteins fold under kinetic control, and may thus also serve as tractable therapeutic targets for human disease.
Collapse
Affiliation(s)
- Elena Plessa
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lien P Chu
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Oliver L Thomas
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,School of Crystallography, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK.
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Wang F, Orioli S, Ianeselli A, Spagnolli G, A Beccara S, Gershenson A, Faccioli P, Wintrode PL. All-Atom Simulations Reveal How Single-Point Mutations Promote Serpin Misfolding. Biophys J 2019; 114:2083-2094. [PMID: 29742402 DOI: 10.1016/j.bpj.2018.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022] Open
Abstract
Protein misfolding is implicated in many diseases, including serpinopathies. For the canonical inhibitory serpin α1-antitrypsin, mutations can result in protein deficiencies leading to lung disease, and misfolded mutants can accumulate in hepatocytes, leading to liver disease. Using all-atom simulations based on the recently developed bias functional algorithm, we elucidate how wild-type α1-antitrypsin folds and how the disease-associated S (Glu264Val) and Z (Glu342Lys) mutations lead to misfolding. The deleterious Z mutation disrupts folding at an early stage, whereas the relatively benign S mutant shows late-stage minor misfolding. A number of suppressor mutations ameliorate the effects of the Z mutation, and simulations on these mutants help to elucidate the relative roles of steric clashes and electrostatic interactions in Z misfolding. These results demonstrate a striking correlation between atomistic events and disease severity and shine light on the mechanisms driving chains away from their correct folding routes.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Simone Orioli
- Dipartimento di Fisica, Università degli Studi di Trento, Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, Povo (Trento), Italy
| | - Alan Ianeselli
- Dipartimento di Fisica, Università degli Studi di Trento, Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, Povo (Trento), Italy
| | - Giovanni Spagnolli
- Dipartimento di Fisica, Università degli Studi di Trento, Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, Povo (Trento), Italy
| | - Silvio A Beccara
- Dipartimento di Fisica, Università degli Studi di Trento, Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, Povo (Trento), Italy
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Pietro Faccioli
- Dipartimento di Fisica, Università degli Studi di Trento, Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, Povo (Trento), Italy.
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland.
| |
Collapse
|
8
|
Abstract
Serine proteinase inhibitors (serpins), typically fold to a metastable native state and undergo a major conformational change in order to inhibit target proteases. However, conformational lability of the native serpin fold renders them susceptible to misfolding and aggregation, and underlies misfolding diseases such as α1-antitrypsin deficiency. Serpin specificity towards its protease target is dictated by its flexible and solvent exposed reactive centre loop (RCL), which forms the initial interaction with the target protease during inhibition. Previous studies have attempted to alter the specificity by mutating the RCL to that of a target serpin, but the rules governing specificity are not understood well enough yet to enable specificity to be engineered at will. In this paper, we use conserpin, a synthetic, thermostable serpin, as a model protein with which to investigate the determinants of serpin specificity by engineering its RCL. Replacing the RCL sequence with that from α1-antitrypsin fails to restore specificity against trypsin or human neutrophil elastase. Structural determination of the RCL-engineered conserpin and molecular dynamics simulations indicate that, although the RCL sequence may partially dictate specificity, local electrostatics and RCL dynamics may dictate the rate of insertion during protease inhibition, and thus whether it behaves as an inhibitor or a substrate. Engineering serpin specificity is therefore substantially more complex than solely manipulating the RCL sequence, and will require a more thorough understanding of how conformational dynamics achieves the delicate balance between stability, folding and function required by the exquisite serpin mechanism of action.
Collapse
|
9
|
Probing the folding pathway of a consensus serpin using single tryptophan mutants. Sci Rep 2018; 8:2121. [PMID: 29391487 PMCID: PMC5794792 DOI: 10.1038/s41598-018-19567-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 01/25/2023] Open
Abstract
Conserpin is an engineered protein that represents the consensus of a sequence alignment of eukaryotic serpins: protease inhibitors typified by a metastable native state and a structurally well-conserved scaffold. Previously, this protein has been found to adopt a native inhibitory conformation, possess an atypical reversible folding pathway and exhibit pronounced resistance to inactivation. Here we have designed a version of conserpin, cAT, with the inhibitory specificity of α1-antitrypsin, and generated single-tryptophan variants to probe its folding pathway in more detail. cAT exhibited similar thermal stability to the parental protein, an inactivation associated with oligomerisation rather a transition to the latent conformation, and a native state with pronounced kinetic stability. The tryptophan variants reveal the unfolding intermediate ensemble to consist of an intact helix H, a distorted helix F and ‘breach’ region structurally similar to that of a mesophilic serpin intermediate. A combination of intrinsic fluorescence, circular dichroism, and analytical gel filtration provide insight into a highly cooperative folding pathway with concerted changes in secondary and tertiary structure, which minimises the accumulation of two directly-observed aggregation-prone intermediate species. This functional conserpin variant represents a basis for further studies of the relationship between structure and stability in the serpin superfamily.
Collapse
|
10
|
Motamedi-Shad N, Jagger AM, Liedtke M, Faull SV, Nanda AS, Salvadori E, Wort JL, Kay CW, Heyer-Chauhan N, Miranda E, Perez J, Ordóñez A, Haq I, Irving JA, Lomas DA. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem J 2016; 473:3269-90. [PMID: 27407165 PMCID: PMC5264506 DOI: 10.1042/bcj20160159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
Abstract
Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.
Collapse
Affiliation(s)
- Neda Motamedi-Shad
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Alistair M. Jagger
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Maximilian Liedtke
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
| | - Sarah V. Faull
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Arjun Scott Nanda
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Joshua L. Wort
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Christopher W.M. Kay
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Narinder Heyer-Chauhan
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Rome 00185, Italy
| | - Juan Perez
- Departamento de Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Campus Teatinos, Universidad de Malaga, Malaga 29071, Spain
| | - Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Imran Haq
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - James A. Irving
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - David A. Lomas
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| |
Collapse
|
11
|
Porebski BT, Keleher S, Hollins JJ, Nickson AA, Marijanovic EM, Borg NA, Costa MGS, Pearce MA, Dai W, Zhu L, Irving JA, Hoke DE, Kass I, Whisstock JC, Bottomley SP, Webb GI, McGowan S, Buckle AM. Smoothing a rugged protein folding landscape by sequence-based redesign. Sci Rep 2016; 6:33958. [PMID: 27667094 PMCID: PMC5036219 DOI: 10.1038/srep33958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/01/2016] [Indexed: 11/09/2022] Open
Abstract
The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Shani Keleher
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey J Hollins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Adrian A Nickson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Emilia M Marijanovic
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Natalie A Borg
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Mauricio G S Costa
- Programa de Computação Científica, Fundação Oswaldo Cruz, 21949900 Rio de Janeiro, Brazil
| | - Mary A Pearce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Weiwen Dai
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Liguang Zhu
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - David E Hoke
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Itamar Kass
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Stephen P Bottomley
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Haq I, Irving JA, Saleh AD, Dron L, Regan-Mochrie GL, Motamedi-Shad N, Hurst JR, Gooptu B, Lomas DA. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization. Am J Respir Cell Mol Biol 2016; 54:71-80. [PMID: 26091018 DOI: 10.1165/rcmb.2015-0154oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate-and therefore polymerize-more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the "breach" region and "shutter" region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care.
Collapse
Affiliation(s)
- Imran Haq
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - James A Irving
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - Aarash D Saleh
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Louis Dron
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Gemma L Regan-Mochrie
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Neda Motamedi-Shad
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - John R Hurst
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Bibek Gooptu
- 2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom.,3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and.,4 Division of Asthma, Allergy and Lung Biology, King's College London, London, United Kingdom
| | - David A Lomas
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom.,3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| |
Collapse
|
13
|
Noto R, Santangelo MG, Levantino M, Cupane A, Mangione MR, Parisi D, Ricagno S, Bolognesi M, Manno M, Martorana V. Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and Molecular Dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1854:110-7. [PMID: 25450507 PMCID: PMC4332418 DOI: 10.1016/j.bbapap.2014.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/04/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022]
Abstract
Neuroserpin (NS) is a serine protease inhibitor (SERPIN) involved in different neurological pathologies, including the Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), related to the aberrant polymerization of NS mutants. Here we present an in vitro and in silico characterization of native neuroserpin and its dysfunctional conformation isoforms: the proteolytically cleaved conformer, the inactive latent conformer, and the polymeric species. Based on circular dichroism and fluorescence spectroscopy, we present an experimental validation of the latent model and highlight the main structural features of the different conformers. In particular, emission spectra of aromatic residues yield distinct conformational fingerprints, that provide a novel and simple spectroscopic tool for selecting serpin conformers in vitro. Based on the structural relationship between cleaved and latent serpins, we propose a structural model for latent NS, for which an experimental crystallographic structure is lacking. Molecular Dynamics simulations suggest that NS conformational stability and flexibility arise from a spatial distribution of intramolecular salt-bridges and hydrogen bonds.
Collapse
Affiliation(s)
- Rosina Noto
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | | | - Matteo Levantino
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - Antonio Cupane
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | | | - Daniele Parisi
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy; Department of Biosciences, Institute of Biophysics CNR, Italy and CIMAINA, University of Milano, Milan, Italy
| | - Stefano Ricagno
- Department of Biosciences, Institute of Biophysics CNR, Italy and CIMAINA, University of Milano, Milan, Italy
| | - Martino Bolognesi
- Department of Biosciences, Institute of Biophysics CNR, Italy and CIMAINA, University of Milano, Milan, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy.
| | - Vincenzo Martorana
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
14
|
Hughes VA, Meklemburg R, Bottomley SP, Wintrode PL. The Z mutation alters the global structural dynamics of α1-antitrypsin. PLoS One 2014; 9:e102617. [PMID: 25181470 PMCID: PMC4151987 DOI: 10.1371/journal.pone.0102617] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/12/2014] [Indexed: 11/25/2022] Open
Abstract
α1-Antitrypsin (α1AT) deficiency, the most common serpinopathy, results in both emphysema and liver disease. Over 90% of all clinical cases of α1AT deficiency are caused by the Z variant in which Glu342, located at the top of s5A, is replaced by a Lys which results in polymerization both in vivo and in vitro. The Glu342Lys mutation removes a salt bridge and a hydrogen bond but does not effect the thermodynamic stability of Z α1AT compared to the wild type protein, M α1AT, and so it is unclear why Z α1AT has an increased polymerization propensity. We speculated that the loss of these interactions would make the native state of Z α1AT more dynamic than M α1AT and that this change renders the protein more polymerization prone. We have used hydrogen/deuterium exchange combined with mass spectrometry (HXMS) to determine the structural and dynamic differences between native Z and M α1AT to reveal the molecular basis of Z α1AT polymerization. Our HXMS data shows that the Z mutation significantly perturbs the region around the site of mutation. Strikingly the Z mutation also alters the dynamics of regions distant to the mutation such as the B, D and I helices and specific regions of each β-sheet. These changes in global dynamics may lead to an increase in the likelihood of Z α1AT sampling a polymerogenic structure thereby causing disease.
Collapse
Affiliation(s)
- Victoria A. Hughes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Robert Meklemburg
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Stephen P. Bottomley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Patrick L. Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Therapeutic targeting of misfolding and conformational change in α1-antitrypsin deficiency. Future Med Chem 2014; 6:1047-65. [DOI: 10.4155/fmc.14.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Misfolding and conformational diseases are increasing in prominence and prevalence. Both misfolding and ‘postfolding’ conformational mechanisms can contribute to pathogenesis and can coexist. The different contexts of folding and native state behavior may have implications for the development of therapeutic strategies. α1-antitrypsin deficiency illustrates how these issues can be addressed with therapeutic approaches to rescue folding, ameliorate downstream consequences of aberrant polymerization and/or maintain physiological function. Small-molecule strategies have successfully targeted structural features of the native conformer. Recent developments include the capability to follow solution behavior of α1-antitrypsin in the context of disease mutations and interactions with drug-like compounds. Moreover, preclinical studies in cells and organisms support the potential of manipulating cellular response repertoires to process misfolded and polymer states.
Collapse
|
16
|
Liu L, Werner M, Gershenson A. Collapse of a long axis: single-molecule Förster resonance energy transfer and serpin equilibrium unfolding. Biochemistry 2014; 53:2903-14. [PMID: 24749911 PMCID: PMC4020580 DOI: 10.1021/bi401622n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/17/2014] [Indexed: 01/25/2023]
Abstract
The energy required for mechanical inhibition of target proteases is stored in the native structure of inhibitory serpins and accessed by serpin structural remodeling. The overall serpin fold is ellipsoidal with one long and two short axes. Most of the structural remodeling required for function occurs along the long axis, while expansion of the short axes is associated with misfolded, inactive forms. This suggests that ellipticity, as typified by the long axis, may be important for both function and folding. Placement of donor and acceptor fluorophores approximately along the long axis or one of the short axes allows single-pair Förster resonance energy transfer (spFRET) to report on both unfolding transitions and the time-averaged shape of different conformations. Equilibrium unfolding and refolding studies of the well-characterized inhibitory serpin α1-antitrypsin reveal that the long axis collapses in the folding intermediates while the monitored short axis expands. These energetically distinct intermediates are thus more spherical than the native state. Our spFRET studies agree with other equilibrium unfolding studies that found that the region around one of the β strands, s5A, which helps define the long axis and must move for functionally required loop insertion, unfolds at low denaturant concentrations. This supports a connection between functionally important structural lability and unfolding in the inhibitory serpins.
Collapse
Affiliation(s)
- Lu Liu
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael Werner
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Anne Gershenson
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
The roles of helix I and strand 5A in the folding, function and misfolding of α1-antitrypsin. PLoS One 2013; 8:e54766. [PMID: 23382962 PMCID: PMC3558512 DOI: 10.1371/journal.pone.0054766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
α1-Antitrypsin, the archetypal member of the serpin superfamily, is a metastable protein prone to polymerization when exposed to stressors such as elevated temperature, low denaturant concentrations or through the presence of deleterious mutations which, in a physiological context, are often associated with disease. Experimental evidence suggests that α1-Antitrypsin can polymerize via several alternative mechanisms in vitro. In these polymerization mechanisms different parts of the molecule are proposed to undergo conformational change. Both strand 5 and helix I are proposed to adopt different conformations when forming the various polymers, and possess a number of highly conserved residues however their role in the folding and misfolding of α1-Antitrypsin has never been examined. We have therefore created a range of α1Antitypsin variants in order to explore the role of these conserved residues in serpin folding, misfolding, stability and function. Our data suggest that key residues in helix I mediate efficient folding from the folding intermediate and residues in strand 5A ensure native state stability in order to prevent misfolding. Additionally, our data indicate that helix I is involved in the inhibitory process and that both structural elements undergo differing conformational rearrangements during unfolding and misfolding. These findings suggest that the ability of α1-Antitrypsin to adopt different types of polymers under different denaturing conditions may be due to subtle conformational differences in the transiently populated structures adopted prior to the I and M* states.
Collapse
|
18
|
Stocks BB, Sarkar A, Wintrode PL, Konermann L. Early hydrophobic collapse of α₁-antitrypsin facilitates formation of a metastable state: insights from oxidative labeling and mass spectrometry. J Mol Biol 2012; 423:789-99. [PMID: 22940366 DOI: 10.1016/j.jmb.2012.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 02/08/2023]
Abstract
The biologically active conformation of α₁-antitrypsin (α₁AT) and other serine protease inhibitors represents a metastable state, characterized by an exposed reactive center loop (RCL) that acts as bait for the target enzyme. The protein can also adopt an inactive "latent" conformation that has the RCL inserted as a central strand in β-sheet A. This latent form is thermodynamically more stable than the active conformation. Nonetheless, folding of α₁AT consistently yields the active state. The reasons that the metastable form is kinetically preferred remain controversial. The current work demonstrates that a carefully orchestrated folding mechanism prevents RCL insertion into sheet A. Temporal changes in solvent accessibility during folding are monitored using pulsed oxidative labeling and mass spectrometry. The data obtained in this way complement recent hydrogen/deuterium exchange results. Those hydrogen/deuterium exchange measurements revealed that securing of the RCL by hydrogen bonding of the first β-strand in sheet C is one factor that favors formation of the active conformation. The oxidative labeling data presented here reveal that this anchoring is preceded by the formation of hydrophobic contacts in a confined region of the protein. This partial collapse sequesters the RCL insertion site early on and is therefore instrumental in steering α₁AT towards its active conformation. RCL anchoring by hydrogen bonding starts to contribute at a later stage. Together, these two factors ensure that formation of the active conformation is kinetically favored. This work demonstrates how the use of complementary labeling techniques can provide insights into the mechanisms of protracted folding reactions.
Collapse
Affiliation(s)
- Bradley B Stocks
- Departments of Biochemistry and Chemistry, Western University, London, Ontario, Canada N6A 5B7
| | | | | | | |
Collapse
|
19
|
Carvalho FAO, Santiago PS, Tabak M. On the stability of the extracellular hemoglobin of Glossoscolex paulistus, in two iron oxidation states, in the presence of urea. Arch Biochem Biophys 2012; 519:46-58. [DOI: 10.1016/j.abb.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 01/04/2023]
|
20
|
Patschull AOM, Segu L, Nyon MP, Lomas DA, Nobeli I, Barrett TE, Gooptu B. Therapeutic target-site variability in α1-antitrypsin characterized at high resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1492-7. [PMID: 22139150 PMCID: PMC3232123 DOI: 10.1107/s1744309111040267] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/29/2011] [Indexed: 11/17/2022]
Abstract
The intrinsic propensity of α(1)-antitrypsin to undergo conformational transitions from its metastable native state to hyperstable forms provides a motive force for its antiprotease function. However, aberrant conformational change can also occur via an intermolecular linkage that results in polymerization. This has both loss-of-function and gain-of-function effects that lead to deficiency of the protein in human circulation, emphysema and hepatic cirrhosis. One of the most promising therapeutic strategies being developed to treat this disease targets small molecules to an allosteric site in the α(1)-antitrypsin molecule. Partial filling of this site impedes polymerization without abolishing function. Drug development can be improved by optimizing data on the structure and dynamics of this site. A new 1.8 Å resolution structure of α(1)-antitrypsin demonstrates structural variability within this site, with associated fluctuations in its upper and lower entrance grooves and ligand-binding characteristics around the innermost stable enclosed hydrophobic recess. These data will allow a broader selection of chemotypes and derivatives to be tested in silico and in vitro when screening and developing compounds to modulate conformational change to block the pathological mechanism while preserving function.
Collapse
Affiliation(s)
- Anathe O. M. Patschull
- Institute of Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - Lakshmi Segu
- Institute of Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - Mun Peak Nyon
- Institute of Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - David A. Lomas
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, England
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - Tracey E. Barrett
- Institute of Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - Bibek Gooptu
- Institute of Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
21
|
Knaupp AS, Bottomley SP. Structural change in β-sheet A of Z α(1)-antitrypsin is responsible for accelerated polymerization and disease. J Mol Biol 2011; 413:888-98. [PMID: 21945526 DOI: 10.1016/j.jmb.2011.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 11/26/2022]
Abstract
The presence of the Z mutation (Glu342Lys) is responsible for more than 95% of α(1)-antitrypsin (α(1)AT) deficiency cases. It leads to increased polymerization of the serpin α(1)AT during its synthesis and in circulation. It has been proposed that the Z mutation results in a conformational change within the folded state of antitrypsin that enhances its polymerization. In order to localize the conformational change, we have created two single tryptophan mutants of Z α(1)AT and analyzed their fluorescence properties. α(1)AT contains two tryptophan residues that are located in distinct regions of the molecule: Trp194 at the top of β-sheet A and Trp238 on β-sheet B. We have replaced each tryptophan residue individually with a phenylalanine in order to study the local environment of the remaining tryptophan residue in both M and Z α(1)AT. A detailed fluorescence spectroscopic analysis of each mutant was carried out, and we detected differences in the emission spectrum, the Stern-Volmer constant for potassium iodide quenching and the anisotropy of only Trp194 in Z α(1)AT compared to M α(1)AT. Our data reveal that the Z mutation results in a conformational change at the top of β-sheet A but does not affect the structural integrity of β-sheet B.
Collapse
Affiliation(s)
- Anja S Knaupp
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
22
|
Khan MS, Singh P, Azhar A, Naseem A, Rashid Q, Kabir MA, Jairajpuri MA. Serpin Inhibition Mechanism: A Delicate Balance between Native Metastable State and Polymerization. JOURNAL OF AMINO ACIDS 2011; 2011:606797. [PMID: 22312466 PMCID: PMC3268027 DOI: 10.4061/2011/606797] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/07/2011] [Indexed: 12/02/2022]
Abstract
The serpins (serine proteinase inhibitors) are structurally similar but functionally diverse proteins that fold into a conserved structure and employ a unique suicide substrate-like inhibitory mechanism. Serpins play absolutely critical role in the control of proteases involved in the inflammatory, complement, coagulation and fibrinolytic pathways and are associated with many conformational diseases. Serpin's native state is a metastable state which transforms to a more stable state during its inhibitory mechanism. Serpin in the native form is in the stressed (S) conformation that undergoes a transition to a relaxed (R) conformation for the protease inhibition. During this transition the region called as reactive center loop which interacts with target proteases, inserts itself into the center of β-sheet A to form an extra strand. Serpin is delicately balanced to perform its function with many critical residues involved in maintaining metastability. However due to its typical mechanism of inhibition, naturally occurring serpin variants produces conformational instability that allows insertion of RCL of one molecule into the β-sheet A of another to form a loop-sheet linkage leading to its polymerization and aggregation. Thus understanding the molecular basis and amino acid involved in serpin polymerization mechanism is critical to devising strategies for its cure.
Collapse
Affiliation(s)
- Mohammad Sazzad Khan
- Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi 110025, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Dynamic local unfolding in the serpin α-1 antitrypsin provides a mechanism for loop insertion and polymerization. Nat Struct Mol Biol 2011; 18:222-6. [PMID: 21258324 PMCID: PMC3074950 DOI: 10.1038/nsmb.1976] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/12/2010] [Indexed: 01/22/2023]
Abstract
The conformational plasticity of serine protease inhibitors (serpins) underlies both their activities as protease inhibitors and their susceptibility to pathogenic misfolding and aggregation. Here, we structurally characterize a sheet-opened state of the serpin α-1 antitrypsin (α₁AT) and show how local unfolding allows functionally essential strand insertion. Mutations in α₁AT that cause polymerization-induced serpinopathies map to the labile region, suggesting that the evolution of serpin function required sampling of high risk conformations on a dynamic energy landscape.
Collapse
|
24
|
|
25
|
Takehara S, Zhang J, Yang X, Takahashi N, Mikami B, Onda M. Refolding and polymerization pathways of neuroserpin. J Mol Biol 2010; 403:751-62. [PMID: 20691191 DOI: 10.1016/j.jmb.2010.07.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/21/2010] [Accepted: 07/25/2010] [Indexed: 11/29/2022]
Abstract
Neuroserpin is a member of the serpin superfamily, and its mutants are retained within the endoplasmic reticulum of neurons as ordered polymers in association with dementia. It has been proposed that neuroserpin polymers are formed by a conformational change in the folded protein. However, an alternative model whereby polymers are formed during protein folding rather than from the folded protein has recently been proposed. We investigated the refolding and polymerization pathways of wild-type neuroserpin (WT) and of the pathogenic mutants S49P and H338R. Upon refolding, denatured WT immediately formed an initial refolding intermediate I(IN) and then underwent further refolding to the native form through a late refolding intermediate, I(R). The late-onset mutant S49P was also able to refold to the native form through I(IN) and I(R), but the final refolding step proceeded at a slower rate and with a lower refolding yield as compared with WT. The early-onset mutant H338R formed I(R) through the same pathway as S49P, but the protein could not attain the native state and remained as I(R). The I(R)s of the mutants had a long lifespan at 4 °C and thus were purified and characterized. Strikingly, when incubated under physiological conditions, I(R) formed ordered polymers with essentially the same properties as the polymers formed from the native protein. The results show that the mutants have a greater tendency to form polymers during protein folding than to form polymers from the folded protein. Our finding provides insights into biochemical approaches to treating serpinopathies by targeting a polymerogenic folding intermediate.
Collapse
Affiliation(s)
- Sayaka Takehara
- Division of Applied Life Sciences, The Graduate School of Agriculture, Kyoto University, Uji, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Knaupp AS, Levina V, Robertson AL, Pearce MC, Bottomley SP. Kinetic Instability of the Serpin Z α1-Antitrypsin Promotes Aggregation. J Mol Biol 2010; 396:375-83. [PMID: 19944704 DOI: 10.1016/j.jmb.2009.11.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/28/2022]
Affiliation(s)
- Anja S Knaupp
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
27
|
Sengupta T, Tsutsui Y, Wintrode PL. Local and global effects of a cavity filling mutation in a metastable serpin. Biochemistry 2009; 48:8233-40. [PMID: 19624115 PMCID: PMC2746415 DOI: 10.1021/bi900342d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serpins are an unusual class of protease inhibitors which fold to a metastable form and subsequently undergo a massive conformational change to a stable form when they inhibit their target proteases. The driving force for this conformational change has been extensively investigated by site directed mutagenesis, and it has been found that mutations which stabilize the metastable form frequently result in activity deficiency. Here, we employ hydrogen/deuterium exchange to probe the effects of a cavity filling mutant of alpha(1)AT. The Gly117 --> Phe substitution fills a cavity between the F-helix and the face of beta-sheet A, stabilizes the metastable form of alpha(1)AT by approximately 4 kcal/mol and results in a 60% reduction in inhibitory activity against elastase. Globally, the G117F substitution alters the unfolding mechanism by eliminating the molten globule intermediate that is seen in wild type unfolding. Remarkably, this is accomplished primarily by destabilizing the molten globule rather than stabilizing the metastable native state. Locally, conformational flexibility in the native state is reduced in specific regions: the top of the F-helix, beta-strands 5A, 1C, and 4C, and helix D. Except for strand 4C, all of these regions mediate or propagate conformational changes. The F-helix and strand 5A must be displaced during protease inhibition, displacement of strand 1C is required for polymer formation, and helix D is a site (in antithrombin) of allosteric regulation. Our results indicate that these functionally important regions form a delocalized network of residues that are dynamically coupled and that both local and global stability mediate inhibitory activity.
Collapse
Affiliation(s)
- Tanusree Sengupta
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Yuko Tsutsui
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Patrick L. Wintrode
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
28
|
Knaupp AS, Bottomley SP. Serpin polymerization and its role in disease--the molecular basis of alpha1-antitrypsin deficiency. IUBMB Life 2009; 61:1-5. [PMID: 18785256 DOI: 10.1002/iub.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein aggregation is the cause of several human diseases. Understanding the molecular mechanisms involved in protein aggregation requires knowledge of the kinetics and structures populated during the reaction. Arguably, the best structurally characterized misfolding reaction is that of alpha(1)-antitrypsin. Alpha(1)-antitrypsin misfolding leads to both liver disease and emphysema and affect approximately 1 in 2000 of the population. This review will focus on the mechanism of alpha(1)-antitrypsin misfolding and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Anja S Knaupp
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Huntington JA, Sendall TJ, Yamasaki M. New insight into serpin polymerization and aggregation. Prion 2009; 3:12-4. [PMID: 19372754 DOI: 10.4161/pri.3.1.8441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently solved the crystallographic structure of a dimeric form of the serpin antithrombin which has fundamentally changed the way we think about serpin polymerization. Like for other diseases that have protein deposition as a hallmark, the serpinopathies are associated with discrete inter-protomer linkage followed by subsequent association into larger fibrils and aggregates. Polymerization of the serpins is an off-pathway event that occurs during folding in the endoplasmic reticulum. Our structure reveals the nature of the polymerogenic folding intermediate, the reason that the inter-protomer linkage is hyperstable, and suggests a mechanism of lateral association of polymers into soluble fibrils and insoluble aggregates. While the basis of cellular toxicity is still unclear, novel therapeutic approaches targeting the folding intermediate or the lateral association event are now conceivable.
Collapse
Affiliation(s)
- James A Huntington
- University of Cambridge, Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK.
| | | | | |
Collapse
|
30
|
Boudier C, Klymchenko AS, Mely Y, Follenius-Wund A. Local environment perturbations in alpha1-antitrypsin monitored by a ratiometric fluorescent label. Photochem Photobiol Sci 2009; 8:814-21. [DOI: 10.1039/b902309g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Yamasaki M, Li W, Johnson DJD, Huntington JA. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 2008; 455:1255-8. [DOI: 10.1038/nature07394] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/02/2008] [Indexed: 11/09/2022]
|
32
|
Pearce MC, Morton CJ, Feil SC, Hansen G, Adams JJ, Parker MW, Bottomley SP. Preventing serpin aggregation: the molecular mechanism of citrate action upon antitrypsin unfolding. Protein Sci 2008; 17:2127-33. [PMID: 18780818 DOI: 10.1110/ps.037234.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aggregation of antitrypsin into polymers is one of the causes of neonatal hepatitis, cirrhosis, and emphysema. A similar reaction resulting in disease can occur in other human serpins, and collectively they are known as the serpinopathies. One possible therapeutic strategy involves inhibiting the conformational changes involved in antitrypsin aggregation. The citrate ion has previously been shown to prevent antitrypsin aggregation and maintain the protein in an active conformation; its mechanism of action, however, is unknown. Here we demonstrate that the citrate ion prevents the initial misfolding of the native state to a polymerogenic intermediate in a concentration-dependent manner. Furthermore, we have solved the crystal structure of citrate bound to antitrypsin and show that a single citrate molecule binds in a pocket between the A and B beta-sheets, a region known to be important in maintaining antitrypsin stability.
Collapse
Affiliation(s)
- Mary C Pearce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Onda M, Nakatani K, Takehara S, Nishiyama M, Takahashi N, Hirose M. Cleaved serpin refolds into the relaxed state via a stressed conformer. J Biol Chem 2008; 283:17568-78. [PMID: 18390904 DOI: 10.1074/jbc.m709262200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitors (serpins) are believed to fold in vivo into a metastable "stressed" state with cleavage of their P1-P1' bond resulting in reactive center loop insertion and a thermostable "relaxed" state. To understand this unique folding mechanism, we investigated the refolding processes of the P1-P1'-cleaved forms of wild type ovalbumin (cl-OVA) and the R339T mutant (cl-R339T). In the native conditions, cl-OVA is trapped as the stressed conformer, whereas cl-R339T attains the relaxed structure. Under urea denaturing conditions, these cleaved proteins completely dissociated into the heavy (Gly(1)-Ala(352)) and light (Ser(353)-Pro(385)) chains. Upon refolding, the heavy chains of both proteins formed essentially the same initial burst refolding intermediates and then reassociated with the light chain counterparts. The reassociated intermediates both refolded into the native states with indistinguishable kinetics. The two refolded proteins, however, had a notable difference in thermostability. cl-OVA refolded into the stressed form with T(m) = 68.4 degrees C, whereas cl-R339T refolded into the relaxed form with T(m) = 85.5 degrees C. To determine whether cl-R339T refolds directly to the relaxed state or through the stressed state, conformational analyses by anion-exchange chromatography and fluorescence measurements were executed. The results showed that cl-R339T refolds first to the stressed conformation and then undergoes the loop insertion. This is the first demonstration that the P1-P1'-cleaved serpin peptide capable of loop insertion refolds to the stressed conformation. This highlights that the stressed conformation of serpins is an inevitable intermediate state on the folding pathway to the relaxed structure.
Collapse
Affiliation(s)
- Maki Onda
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Gakuencho 1-2, Nakaku, Sakai 599-8570, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Jenkins DC, Sylvester ID, Pinheiro TJT. The elusive intermediate on the folding pathway of the prion protein. FEBS J 2008; 275:1323-35. [DOI: 10.1111/j.1742-4658.2008.06293.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Tryptophan fluorescence reveals the presence of long-range interactions in the denatured state of ribonuclease Sa. Biophys J 2007; 94:2288-96. [PMID: 18065473 DOI: 10.1529/biophysj.107.116954] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Characterizing the denatured state ensemble is crucial to understanding protein stability and the mechanism of protein folding. The aim of this research was to see if fluorescence could be used to gain new information on the denatured state ensemble. Ribonuclease Sa (RNase Sa) contains no Trp residues. We made five variants of RNase Sa by adding Trp residues at locations where they are found in other members of the microbial ribonuclease family. To better understand the protein denatured state, we also studied the fluorescence properties of the following peptides: N-acetyl-Trp-amide (NATA), N-acetyl-Ala-Trp-Ala-amide (AWA), N-acetyl-Ala-Ala-Trp-Ala-Ala-amide (AAWAA), and the five pentapeptides with the same sequence as the Trp substitution sites in RNase Sa. The major conclusions are: 1), the wavelength of maximum fluorescence intensity, lambda(max), does not differ significantly for the peptides and the denatured proteins; 2), the fluorescence intensity at lambda(max), I(F), differs significantly for the five Trp containing variants of RNase Sa; 3), the I(F) differences for the denatured proteins are mirrored in the peptides, showing that the short-range effects giving rise to the I(F) differences in the peptides are also present in the proteins; 4) the I(F) values for the denatured proteins are more than 30% greater than for the peptides, showing the presence of long-range effects in the proteins; 5), fluorescence quenching of Trp by acrylamide and iodide is more than 50% greater in the peptides than in the denatured proteins, showing that long-range effects limit the accessibility of the quenchers to the Trp side chains in the proteins; and 6), these results show that nonlocal effects in the denatured states of proteins influence Trp fluorescence and accessibility significantly.
Collapse
|
36
|
Cabrita LD, Gilis D, Robertson AL, Dehouck Y, Rooman M, Bottomley SP. Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci 2007; 16:2360-7. [PMID: 17905838 PMCID: PMC2211701 DOI: 10.1110/ps.072822507] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The ability to rationally increase the stability and solubility of recombinant proteins has long been a goal of biotechnology and has significant implications for biomedical research. Poorly soluble enzymes, for example, result in the need for larger reaction volumes, longer incubation times, and more restricted reaction conditions, all of which increase the cost and have a negative impact on the feasibility of the process. Rational design is achieved here by means of the PoPMuSiC program, which performs in silico predictions of stability changes upon single-site mutations. We have used this program to increase the stability of the tobacco etch virus (TEV) protein. TEV is a 27-kDa nuclear inclusion protease with stringent specificity that is commonly used for the removal of solubility tags during protein purification protocols. However, while recombinant TEV can be produced in large quantities, a limitation is its relatively poor solubility (generally approximately 1 mg/mL), which means that large volumes and often long incubation times are required for efficient cleavage. Following PoPMuSiC analysis of TEV, five variants predicted to be more stable than the wild type were selected for experimental analysis of their stability, solubility, and activity. Of these, two were found to enhance the solubility of TEV without compromising its functional activity. In addition, a fully active double mutant was found to remain soluble at concentrations in excess of 40 mg/mL. This modified TEV appears thus as an interesting candidate to be used in recombinant protein technology.
Collapse
Affiliation(s)
- Lisa D Cabrita
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Tsutsui Y, Wintrode PL. Cooperative Unfolding of a Metastable Serpin to a Molten Globule Suggests a Link Between Functional and Folding Energy Landscapes. J Mol Biol 2007; 371:245-55. [PMID: 17568610 DOI: 10.1016/j.jmb.2007.05.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/02/2007] [Accepted: 05/11/2007] [Indexed: 10/23/2022]
Abstract
Alpha-1 antitrypsin (alpha(1)-AT) is a member of the serpin class of protease inhibitors, and folds to a metastable state rather than its thermodynamically most stable native state. Upon cleavage by a target protease, alpha(1)-AT undergoes a dramatic conformational change to a stable form, translocating the bound protease more than 70 A to form an inhibitory protease-serpin complex. Numerous mutagenesis studies on serpins have demonstrated the trade-off between the stability of the metastable state on the one hand and the inhibitory efficiency on the other. Studies of the equilibrium unfolding of serpins provide insight into this connection between structural plasticity and metastability. We studied equilibrium unfolding of wild-type alpha(1)-AT using hydrogen-deuterium/exchange mass spectrometry to characterize the structure and the stability of an equilibrium intermediate that was observed in low concentrations of denaturant in earlier studies. Our results show that the intermediate observed at low concentrations of denaturant has no protection from hydrogen-deuterium exchange, indicating a lack of stable structure. Further, differential scanning calorimetry of alpha(1)-AT at low concentrations of denaturant shows no heat capacity peak during thermal denaturation, indicating that the transition from the intermediate to the unfolded state is not a cooperative first-order-like phase transition.. Our results show that the unfolding of alpha(1)-AT involves a cooperative transition to a molten globule form, followed by a non-cooperative transition to a random-coil form as more guanidine is added. Thus, the entire alpha(1)-AT molecule consists of one cooperative structural unit rather than multiple structural domains with different stabilities. Furthermore, our results together with previous mutagenesis studies suggest a possible link between an equilibrium molten globule and a functional intermediate that may be populated during the protease inhibition.
Collapse
Affiliation(s)
- Yuko Tsutsui
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
38
|
Cabrita LD, Irving JA, Pearce MC, Whisstock JC, Bottomley SP. Aeropin from the extremophile Pyrobaculum aerophilum bypasses the serpin misfolding trap. J Biol Chem 2007; 282:26802-26809. [PMID: 17635906 DOI: 10.1074/jbc.m705020200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serpins are metastable proteinase inhibitors. Serpin metastability drives both a large conformational change that is utilized during proteinase inhibition and confers an inherent structural flexibility that renders serpins susceptible to aggregation under certain conditions. These include point mutations (the basis of a number of important human genetic diseases), small changes in pH, and an increase in temperature. Many studies of serpins from mesophilic organisms have highlighted an inverse relationship: mutations that confer a marked increase in serpin stability compromise inhibitory activity. Here we present the first biophysical characterization of a metastable serpin from a hyperthermophilic organism. Aeropin, from the archaeon Pyrobaculum aerophilum, is both highly stable and an efficient proteinase inhibitor. We also demonstrate that because of high kinetic barriers, aeropin does not readily form the partially unfolded precursor to serpin aggregation. We conclude that stability and activity are not mutually exclusive properties in the context of the serpin fold, and propose that the increased stability of aeropin is caused by an unfolding pathway that minimizes the formation of an aggregation-prone intermediate ensemble, thereby enabling aeropin to bypass the misfolding fate observed with other serpins.
Collapse
Affiliation(s)
- Lisa D Cabrita
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - James A Irving
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Mary C Pearce
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia; ARC Centre of Excellence for Structural and Function Microbial Genomics, Monash University, Clayton 3800, Australia.
| | - Stephen P Bottomley
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
39
|
Pearce MC, Cabrita LD, Ellisdon AM, Bottomley SP. The loss of tryptophan 194 in antichymotrypsin lowers the kinetic barrier to misfolding. FEBS J 2007; 274:3622-3632. [PMID: 17608807 DOI: 10.1111/j.1742-4658.2007.05897.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antichymotrypsin, a member of the serpin superfamily, has been shown to form inactive polymers in vivo, leading to chronic obstructive pulmonary disease. At present, however, the molecular determinants underlying the polymerization transition are unclear. Within a serpin, the breach position is implicated in conformational change, as it is the first point of contact for the reactive center loop and the body of the molecule. W194, situated within the breach, represents one of the most highly conserved residues within the serpin architecture. Using a range of equilibrium and kinetic experiments, the contribution of W194 to proteinase inhibition, stability and polymerization was studied for antichymotrypsin. Replacement of W194 with phenylalanine resulted in a fully active inhibitor that was destabilized relative to the wild-type protein. The aggregation kinetics were significantly altered; wild-type antichymotrypsin exhibits a lag phase followed by chain elongation. The loss of W194 almost entirely removed the lag phase and accelerated the elongation phase. On the basis of our data, we propose that one of the main roles of W194 in antichymotrypsin is in preventing polymerization.
Collapse
Affiliation(s)
- Mary C Pearce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Lisa D Cabrita
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Andrew M Ellisdon
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Stephen P Bottomley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
40
|
Whisstock JC, Bottomley SP. Molecular gymnastics: serpin structure, folding and misfolding. Curr Opin Struct Biol 2006; 16:761-8. [PMID: 17079131 DOI: 10.1016/j.sbi.2006.10.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/10/2006] [Accepted: 10/19/2006] [Indexed: 11/25/2022]
Abstract
The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding.
Collapse
Affiliation(s)
- James C Whisstock
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Clayton Campus, Melbourne 3800, Australia.
| | | |
Collapse
|
41
|
Bushell SR, Bottomley SP, Rossjohn J, Beddoe T. Tracking the Unfolding Pathway of a Multirepeat Protein via Tryptophan Scanning. J Biol Chem 2006; 281:24345-50. [PMID: 16803880 DOI: 10.1074/jbc.m602966200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tetratricopeptide repeat (TPR) is a degenerate 34-amino acid repeating motif that forms a repeating helix-turn-helix structure and is a well characterized mediator of protein-protein interactions. Recently, a biophysical investigation on one naturally occurring TPR protein, Tom70, found that the mitochondrial receptor displayed an unusual three-state unfolding pathway, distinct from the two-state model usually displayed by TPR proteins. To investigate this unusual behavior, we undertook a tryptophan-scanning analysis of Tom70, where both native and engineered tryptophan residues are used as fluorescent reporters to monitor the range of local and global unfolding events that comprise the unfolding pathway of Tom70. Specifically, seven Tom70 variants were constructed, each with a single tryptophan residue in each of the seven TPR repeats of Tom70. By combining equilibrium and kinetic fluorescent unfolding assays, with circular dichroism experiments, our study reveals that the unusual folding pathway of Tom70 is a consequence of the unfolding of two separate, autonomous TPR arrays, with the less stable region appearing to account for the low structural stability of Tom70.
Collapse
Affiliation(s)
- Simon R Bushell
- Protein Crystallography Unit, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
42
|
Pan N, Cai X, Tang K, Zou G. Unfolding Features of Bovine Testicular Hyaluronidase Studied by Fluorescence Spectroscopy and Fourier Transformed Infrared Spectroscopy. J Fluoresc 2005; 15:841-7. [PMID: 16292497 DOI: 10.1007/s10895-005-0011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Chemical unfolding of bovine testicular hyaluronidase (HAase) has been studied by fluorescence spectroscopy and Fourier transformed infrared spectroscopy (FTIR). Thermodynamic parameters were determined for unfolding HAase from changes in the intrinsic fluorescence emission intensity and the formations of several possible unfolding intermediates have been identified. This was further confirmed by representation of fluorescence data in terms of 'phase diagram'. The secondary structures of HAase have been assigned and semiquantitatively estimated from the FTIR. The occurrence of conformational change during chemical unfolding as judged by fluorescence and FTIR spectroscopy indicated that the unfolding of HAase may not follow the typical two-state model.
Collapse
Affiliation(s)
- Nina Pan
- State Key Laboratory of Virology, Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
43
|
Law RHP, Irving JA, Buckle AM, Ruzyla K, Buzza M, Bashtannyk-Puhalovich TA, Beddoe TC, Nguyen K, Worrall DM, Bottomley SP, Bird PI, Rossjohn J, Whisstock JC. The high resolution crystal structure of the human tumor suppressor maspin reveals a novel conformational switch in the G-helix. J Biol Chem 2005; 280:22356-64. [PMID: 15760906 DOI: 10.1074/jbc.m412043200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Maspin is a serpin that acts as a tumor suppressor in a range of human cancers, including tumors of the breast and lung. Maspin is crucial for development, because homozygous loss of the gene is lethal; however, the precise physiological role of the molecule is unclear. To gain insight into the function of human maspin, we have determined its crystal structure in two similar, but non-isomorphous crystal forms, to 2.1- and 2.8-A resolution, respectively. The structure reveals that maspin adopts the native serpin fold in which the reactive center loop is expelled fully from the A beta-sheet, makes minimal contacts with the core of the molecule, and exhibits a high degree of flexibility. A buried salt bridge unique to maspin orthologues causes an unusual bulge in the region around the D and E alpha-helices, an area of the molecule demonstrated in other serpins to be important for cofactor recognition. Strikingly, the structural data reveal that maspin is able to undergo conformational change in and around the G alpha-helix, switching between an open and a closed form. This change dictates the electrostatic character of a putative cofactor binding surface and highlights this region as a likely determinant of maspin function. The high resolution crystal structure of maspin provides a detailed molecular framework to elucidate the mechanism of function of this important tumor suppressor.
Collapse
Affiliation(s)
- Ruby H P Law
- The Protein Crystallography Unit, Monash Centre for Synchrotron Science and The Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pearce MC, Cabrita LD, Rubin H, Gore MG, Bottomley SP. Identification of residual structure within denatured antichymotrypsin: implications for serpin folding and misfolding. Biochem Biophys Res Commun 2004; 324:729-35. [PMID: 15474488 DOI: 10.1016/j.bbrc.2004.09.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Indexed: 10/26/2022]
Abstract
The native serpin fold is metastable and possesses the inherent ability to convert into more stable, but inactive, conformations. In order to understand why serpins attain the native fold instead of other more thermodynamically favourable folds we have investigated the presence of residual structure within denatured antichymotrypsin (ACT). Through mutagenesis we created a single tryptophan variant of ACT in which a Trp residue (276) is situated on the H-helix, located within a region known as the B/C barrel. The presence of residual structure around Trp 276 in 5 M guanidine hydrochloride (GdnHCl) was shown by fluorescence and circular dichroism spectroscopy and fluorescence lifetime experiments. The residual structure was disrupted in the presence of 5 M guanidine thiocyanate (GdnSCN). Protein refolding studies showed that significant refolding could be achieved from the GdnHCl denatured state but not the GdnSCN denatured form. The implications of these data on the folding and misfolding of the serpin superfamily are discussed.
Collapse
Affiliation(s)
- Mary C Pearce
- Department of Biochemistry and Molecular Biology, Monash University, Vic. 3800, Australia
| | | | | | | | | |
Collapse
|
45
|
Alston RW, Urbanikova L, Sevcik J, Lasagna M, Reinhart GD, Scholtz JM, Pace CN. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa. Biophys J 2004; 87:4036-47. [PMID: 15377518 PMCID: PMC1304912 DOI: 10.1529/biophysj.104.050377] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonuclease Sa (RNase Sa) contains no tryptophan (Trp) residues. We have added single Trp residues to RNase Sa at sites where Trp is found in four other microbial ribonucleases, yielding the following variants of RNase Sa: Y52W, Y55W, T76W, and Y81W. We have determined crystal structures of T76W and Y81W at 1.1 and 1.0 A resolution, respectively. We have studied the fluorescence properties and stabilities of the four variants and compared them to wild-type RNase Sa and the other ribonucleases on which they were based. Our results should help others in selecting sites for adding Trp residues to proteins. The most interesting findings are: 1), Y52W is 2.9 kcal/mol less stable than RNase Sa and the fluorescence intensity emission maximum is blue-shifted to 309 nm. Only a Trp in azurin is blue-shifted to a greater extent (308 nm). This blue shift is considerably greater than observed for Trp71 in barnase, the Trp on which Y52W is based. 2), Y55W is 2.1 kcal/mol less stable than RNase Sa and the tryptophan fluorescence is almost completely quenched. In contrast, Trp59 in RNase T1, on which Y55W is based, has a 10-fold greater fluorescence emission intensity. 3), T76W is 0.7 kcal/mol more stable than RNase Sa, indicating that the Trp side chain has more favorable interactions with the protein than the threonine side chain. The fluorescence properties of folded Y76W are similar to those of the unfolded protein, showing that the tryptophan side chain in the folded protein is largely exposed to solvent. This is confirmed by the crystal structure of the T76W which shows that the side chain of the Trp is only approximately 7% buried. 4), Y81W is 0.4 kcal/mol less stable than RNase Sa. Based on the crystal structure of Y81W, the side chain of the Trp is 87% buried. Although all of the Trp side chains in the variants contribute to the unusual positive circular dichroism band observed near 235 nm for RNase Sa, the contribution is greatest for Y81W.
Collapse
Affiliation(s)
- Roy W Alston
- Department of Medical Biochemistry and Genetics, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Lotte K, Plessow R, Brockhinke A. Static and time-resolved fluorescence investigations of tryptophan analogues--a solvent study. Photochem Photobiol Sci 2004; 3:348-59. [PMID: 15052363 DOI: 10.1039/b312436c] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The fluorescence properties of tryptophan, polytryptophan and seven of its analogues (7-azatryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 5-fluorotryptophan, 5-methyltryptophan, 5-bromotryptophan, and 6-fluorotryptophan) are studied using two novel fluorescence spectroscopic techniques for a wide range of solvent polarities. Two-dimensional mapping of all emission and all fluorescence spectra using excitation-emission spectroscopy (EES) has been used to determine quantum yields, positions of emission maxima, full widths at half maximum (FWHMs) as well as Stokes' shifts. Additionally, fluorescence lifetimes obtained from time-resolved experiments using a picosecond laser system are presented and compared with the data acquired from the static setup. This systematic study of the fluorescence characteristics is a prerequisite to assess the potential of these analogues to act as structure-conserving substitutes for tryptophan in protein fluorescence experiments. The potential of these analogues, to act as probes for the local environment, and allow estimation of the polarity in the vicinity of the fluorophore and its exposure to the solvent, is discussed.
Collapse
Affiliation(s)
- Kirsten Lotte
- Physikalische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|
47
|
Jung CH, Na YR, Im H. Retarded protein folding of deficient human alpha 1-antitrypsin D256V and L41P variants. Protein Sci 2004; 13:694-702. [PMID: 14767073 PMCID: PMC2286720 DOI: 10.1110/ps.03356604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
alpha(1)-Antitrypsin is the most abundant protease inhibitor in plasma and is the archetype of the serine protease inhibitor superfamily. Genetic variants of human alpha(1)-antitrypsin are associated with early-onset emphysema and liver cirrhosis. However, the detailed molecular mechanism for the pathogenicity of most variant alpha(1)-antitrypsin molecules is not known. Here we examined the structural basis of a dozen deficient alpha(1)-antitrypsin variants. Unlike most alpha(1)-antitrypsin variants, which were unstable, D256V and L41P variants exhibited extremely retarded protein folding as compared with the wild-type molecule. Once folded, however, the stability and inhibitory activity of these variant proteins were comparable to those of the wild-type molecule. Retarded protein folding may promote protein aggregation by allowing the accumulation of aggregation-prone folding intermediates. Repeated observations of retarded protein folding indicate that it is an important mechanism causing alpha(1)-antitrypsin deficiency by variant molecules, which have to fold into the metastable native form to be functional.
Collapse
Affiliation(s)
- Chan-Hun Jung
- Department of Molecular Biology, Sejong University, 98 Gunja-dong, Kwangjin-gu, Seoul 143-747, Korea
| | | | | |
Collapse
|
48
|
Chow MKM, Paulson HL, Bottomley SP. Destabilization of a Non-pathological Variant of Ataxin-3 Results in Fibrillogenesis via a Partially Folded Intermediate: A Model for Misfolding in Polyglutamine Disease. J Mol Biol 2004; 335:333-41. [PMID: 14659761 DOI: 10.1016/j.jmb.2003.08.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ataxin-3 is a member of the polyglutamine family of proteins, which are associated with at least nine different neurodegenerative diseases. In the disease state, expansion of the polyglutamine tract leads to dysfunction and death of neurons, as well as formation of proteinaceous aggregates known as nuclear inclusions. Intriguingly, both expanded and non-expanded forms of ataxin-3 are observed within these nuclear inclusions. Ataxin-3 is the smallest of the polyglutamine disease proteins and in its expanded form causes the neurodegenerative disorder Machado-Joseph disease. Using a non-pathological variant containing 28 residues in its polyglutamine tract, we have probed the folding and misfolding pathways of ataxin-3. We describe here the first equilibrium folding pathway delineated for any polyglutamine protein and show that ataxin-3 folds reversibly via a single intermediate species. We have also explored further the misfolding potential of the protein and found that partial destabilization of ataxin-3 by chemical denaturation leads to the formation of fibrillar aggregates by the non-pathological variant. These results provide an insight into the possible mechanisms by which polyglutamine expansion may affect the stability and conformation of the protein. The implications of this are considered in the wider context of the development and pathogenesis of polyglutamine diseases.
Collapse
Affiliation(s)
- Michelle K M Chow
- Department of Biochemistry and Molecular Biology, Structural Biology Group, Monash University, Clayton Campus, PO Box 13D, Wellington Rd., 3800, Clayton, Vic., Australia
| | | | | |
Collapse
|
49
|
Cabrita LD, Bottomley SP. How do proteins avoid becoming too stable? Biophysical studies into metastable proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2003; 33:83-8. [PMID: 14504841 DOI: 10.1007/s00249-003-0356-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 08/20/2003] [Indexed: 11/28/2022]
Abstract
The vast majority of theoretical and experimental folding studies have shown that as a protein folds, it attempts to adopt a conformation that occurs at its lowest free energy minimum. However, studies on a small number of proteins have now shown that this is a generality. In this review we discuss recent data on how two proteins, alpha-lytic protease and alpha1-antitrypsin, successfully fold to their metastable native states, whilst avoiding more stable but inactive conformations.
Collapse
Affiliation(s)
- Lisa D Cabrita
- Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Victoria, Australia
| | | |
Collapse
|
50
|
Chang HC, Chang GG. Involvement of single residue tryptophan 548 in the quaternary structural stability of pigeon cytosolic malic enzyme. J Biol Chem 2003; 278:23996-4002. [PMID: 12711612 DOI: 10.1074/jbc.m213242200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pigeon cytosolic malic enzyme has a double dimer quaternary structure with three tryptophanyl residues in each monomer distributed in different structural domains. The enzyme showed a three-state unfolding phenomenon upon increasing the urea concentration (Chang, H. C., Chou, W. Y., and Chang, G. G. (2002) J. Biol. Chem. 277, 4663-4671). At urea concentration of 4-4.5 m, where the intermediate form was detected, the enzyme existed as partially unfolded dimers, which were easily polymerized. Mn2+ provided full protection against the polymerization. To further characterize this phenomenon, three mutants of the enzyme (W129, W321, and W548), each with only one tryptophanyl residue left, were constructed. All these mutants were successfully overexpressed in Escherichia coli cells and purified to homogeneity. Changes in the circular dichroism spectra of all mutants revealed a three-state urea-unfolding process in the absence of Mn2+. In the presence of 4 mm Mn2+, W548 and wild type (WT) enzymes shifted to monophasic, while W129 and W321 were still biphasic. Similar results were obtained from the fluorescence spectral changes, except for W321, which showed monophasic denaturation curve with or without Mn2+. Analytical ultracentrifugation analysis indicated that the mutant enzymes were polymerized at 4.5 m urea, and Mn2+ provided protective effect on W548 and WT enzymes only. Other mutants with mutated Trp-548 polymerized at 4.5 m urea in the absence or presence of 4 mm Mn2+. The above results indicate that a single residue, Trp-548, in the subunit interface region, is responsible for the integrity of the quaternary structure of the pigeon cytosolic malic enzyme.
Collapse
Affiliation(s)
- Hui-Chuan Chang
- Faculty of Life Sciences and Institute of Biochemistry, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | |
Collapse
|