1
|
Zhou R, Barnes K, Gibson S, Fillmore N. Dual-edged role of SIRT1 in energy metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2024; 327:H1162-H1173. [PMID: 39269450 DOI: 10.1152/ajpheart.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Regulation of energy metabolism is pivotal in the development of cardiovascular diseases. Dysregulation in mitochondrial fatty acid oxidation has been linked to cardiac lipid accumulation and diabetic cardiomyopathy. Sirtuin 1 (SIRT1) is a deacetylase that regulates the acetylation of various proteins involved in mitochondrial energy metabolism. SIRT1 mediates energy metabolism by directly and indirectly affecting multiple aspects of mitochondrial processes, such as mitochondrial biogenesis. SIRT1 interacts with essential mitochondrial energy regulators such as peroxisome proliferator-activated receptor-α (PPARα), PPARγ coactivator-1α, estrogen-related receptor-α, and their downstream targets. Apart from that, SIRT1 regulates additional proteins, including forkhead box protein O1 and AMP-activated protein kinase in cardiac disease. Interestingly, studies have also shown that the expression of SIRT1 plays a dual-edged role in energy metabolism. Depending on the physiological state, SIRT1 expression can be detrimental or protective. This review focuses on the molecular pathways through which SIRT1 regulates energy metabolism in cardiovascular diseases. We will review SIRT1 and discuss its role in cardiac energy metabolism and its benefits and detrimental effects in heart disease.
Collapse
Affiliation(s)
- Redemptor Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Kaleb Barnes
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Savannah Gibson
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Natasha Fillmore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
2
|
Zervou S, McAndrew DJ, Lake HA, Kuznecova E, Preece C, Davies B, Neubauer S, Lygate CA. Cardiac function and energetics in mice with combined genetic augmentation of creatine and creatine kinase activity. J Mol Cell Cardiol 2024; 196:105-114. [PMID: 39276853 DOI: 10.1016/j.yjmcc.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Improving energy provision in the failing heart by augmenting the creatine kinase (CK) system is a desirable therapeutic target. However, over-expression of the creatine transporter (CrT-OE) has shown that very high creatine levels result in cardiac hypertrophy and dysfunction. We hypothesise this is due to insufficient endogenous CK activity to maintain thermodynamically favourable metabolite ratios. If correct, then double transgenic mice (dTg) overexpressing both CrT and the muscle isoform of CK (CKM-OE) would rescue the adverse phenotype. In Study 1, overexpressing lines were crossed and cardiac function assessed by invasive haemodynamics and echocardiography. This demonstrated that CKM-OE was safe, but too few hearts had creatine in the toxic range. In Study 2, a novel CrT-OE line was generated with higher, homogeneous, creatine levels and phenotyped as before. Myocardial creatine was 4-fold higher in CrT-OE and dTg hearts compared to wildtype and was associated with hypertrophy and contractile dysfunction. The inability of dTg hearts to rescue this phenotype was attributed to downregulation of CK activity, as occurs in the failing heart. Nevertheless, combining both studies in a linear regression analysis suggests a modest positive effect of CKM over a range of creatine concentrations. In conclusion, we confirm that moderate elevation of creatine is well tolerated, but very high levels are detrimental. Correlation analysis lends support to the theory that this may be a consequence of limited CK activity. Future studies should focus on preventing CKM downregulation to unlock the potential synergy of augmenting both creatine and CK in the heart.
Collapse
Affiliation(s)
- Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elina Kuznecova
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, UK; Centre for Human Genetics, University of Oxford, Oxford, UK; School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Yurista SR, Chen S, Welsh A, Tang WHW, Nguyen CT. Targeting Myocardial Substrate Metabolism in the Failing Heart: Ready for Prime Time? Curr Heart Fail Rep 2022; 19:180-190. [PMID: 35567658 PMCID: PMC10950325 DOI: 10.1007/s11897-022-00554-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review the clinical benefits of altering myocardial substrate metabolism in heart failure. RECENT FINDINGS Modulation of cardiac substrates (fatty acid, glucose, or ketone metabolism) offers a wide range of therapeutic possibilities which may be applicable to heart failure. Augmenting ketone oxidation seems to offer great promise as a new therapeutic modality in heart failure. The heart has long been recognized as metabolic omnivore, meaning it can utilize a variety of energy substrates to maintain adequate ATP production. The adult heart uses fatty acid as a major fuel source, but it can also derive energy from other substrates including glucose and ketone, and to some extent pyruvate, lactate, and amino acids. However, cardiomyocytes of the failing heart endure remarkable metabolic remodeling including a shift in substrate utilization and reduced ATP production, which account for cardiac remodeling and dysfunction. Research to understand the implication of myocardial metabolic perturbation in heart failure has grown in recent years, and this has raised interest in targeting myocardial substrate metabolism for heart failure therapy. Due to the interdependency between different pathways, the main therapeutic metabolic approaches include inhibiting fatty acid uptake/fatty acid oxidation, reducing circulating fatty acid levels, increasing glucose oxidation, and augmenting ketone oxidation.
Collapse
Affiliation(s)
- Salva R Yurista
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Shi Chen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aidan Welsh
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - W H Wilson Tang
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular Innovation Research Center, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Innovation Research Center, Cleveland Clinic, Cleveland, OH, USA
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Walker MA, Chavez J, Villet O, Tang X, Keller A, Bruce JE, Tian R. Acetylation of muscle creatine kinase negatively impacts high-energy phosphotransfer in heart failure. JCI Insight 2021; 6:144301. [PMID: 33554956 PMCID: PMC7934860 DOI: 10.1172/jci.insight.144301] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 01/10/2023] Open
Abstract
A hallmark of impaired myocardial energetics in failing hearts is the downregulation of the creatine kinase (CK) system. In heart failure patients and animal models, myocardial phosphocreatine content and the flux of the CK reaction are negatively correlated with the outcome of heart failure. While decreased CK activity is highly reproducible in failing hearts, the underlying mechanisms remains elusive. Here, we report an inverse relationship between the activity and acetylation of CK muscle form (CKM) in human and mouse failing hearts. Hyperacetylation of recombinant CKM disrupted MM homodimer formation and reduced enzymatic activity, which could be reversed by sirtuin 2 treatment. Mass spectrometry analysis identified multiple lysine residues on the MM dimer interface, which were hyperacetylated in the failing hearts. Molecular modeling of CK MM homodimer suggested that hyperacetylation prevented dimer formation through interfering salt bridges within and between the 2 monomers. Deacetylation by sirtuin 2 reduced acetylation of the critical lysine residues, improved dimer formation, and restored CKM activity from failing heart tissue. These findings reveal a potentially novel mechanism in the regulation of CK activity and provide a potential target for improving high-energy phosphoryl transfer in heart failure.
Collapse
Affiliation(s)
- Matthew A Walker
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, and
| | - Juan Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, and
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, and
| |
Collapse
|
6
|
Peterzan MA, Lewis AJM, Neubauer S, Rider OJ. Non-invasive investigation of myocardial energetics in cardiac disease using 31P magnetic resonance spectroscopy. Cardiovasc Diagn Ther 2020; 10:625-635. [PMID: 32695642 DOI: 10.21037/cdt-20-275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiac metabolism and function are intrinsically linked. High-energy phosphates occupy a central and obligate position in cardiac metabolism, coupling oxygen and substrate fuel delivery to the myocardium with external work. This insight underlies the widespread clinical use of ischaemia testing. However, other deficits in high-energy phosphate metabolism (not secondary to supply-demand mismatch of oxygen and substrate fuels) may also be documented, and are of particular interest when found in the context of structural heart disease. This review introduces the scope of deficits in high-energy phosphate metabolism that may be observed in the myocardium, how to assess for them, and how they might be interpreted.
Collapse
Affiliation(s)
- Mark A Peterzan
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J M Lewis
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Peterzan MA, Clarke WT, Lygate CA, Lake HA, Lau JYC, Miller JJ, Johnson E, Rayner JJ, Hundertmark MJ, Sayeed R, Petrou M, Krasopoulos G, Srivastava V, Neubauer S, Rodgers CT, Rider OJ. Cardiac Energetics in Patients With Aortic Stenosis and Preserved Versus Reduced Ejection Fraction. Circulation 2020; 141:1971-1985. [PMID: 32438845 PMCID: PMC7294745 DOI: 10.1161/circulationaha.119.043450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Supplemental Digital Content is available in the text. Why some but not all patients with severe aortic stenosis (SevAS) develop otherwise unexplained reduced systolic function is unclear. We investigate the hypothesis that reduced creatine kinase (CK) capacity and flux is associated with this transition.
Collapse
Affiliation(s)
- Mark A Peterzan
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences (W.T.C.), University of Oxford, United Kingdom
| | | | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (H.A.L.), University of Oxford, United Kingdom
| | - Justin Y C Lau
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - Jack J Miller
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - Errin Johnson
- Dunn School of Pathology (E.J.), University of Oxford, United Kingdom
| | - Jennifer J Rayner
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - Moritz J Hundertmark
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - Rana Sayeed
- Department of Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (R.S., G.K., V.S.)
| | - Mario Petrou
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (M.P.)
| | - George Krasopoulos
- Department of Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (R.S., G.K., V.S.)
| | - Vivek Srivastava
- Department of Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (R.S., G.K., V.S.)
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | | | - Oliver J Rider
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| |
Collapse
|
8
|
Bashir A, Zhang J, Denney TS. Creatine kinase rate constant in the human heart at 7T with 1D-ISIS/2D CSI localization. PLoS One 2020; 15:e0229933. [PMID: 32191723 PMCID: PMC7081998 DOI: 10.1371/journal.pone.0229933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Creatine Kinase (CK) reaction plays an important role in energy metabolism and estimate of its reaction rate constant in heart provides important insight into cardiac energetics. Fast saturation transfer method ([Formula: see text] nominal) to measure CK reaction rate constant (kf) was previously demonstrated in open chest swine hearts. The goal of this work is to further develop this method for measuring the kf in human myocardium at 7T. [Formula: see text] approach is combined with 1D-ISIS/2D-CSI for in vivo spatial localization and myocardial CK forward rate constant was then measured in 7 volunteers at 7T. METHODS [Formula: see text] method uses two partially relaxed saturation transfer (ST) spectra and correction factor to determine CK rate constant. Correction factor is determined by numerical simulation of Bloch McConnell equations using known spin and experimental parameters. Optimal parameters and error estimate in calculation of CK reaction rate constant were determined by simulations. The technique was validated in calf muscles by direct comparison with saturation transfer measurements. [Formula: see text] pulse sequence was incorporated with 1D-image selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging (1D-ISIS/2D-CSI) for studies in heart. The myocardial CK reaction rate constant was then measured in 7 volunteers. RESULTS Skeletal muscle kf determined by conventional approach and [Formula: see text] approach were the same 0.31 ± 0.02 s-1 and 0.30 ± 0.04 s-1 demonstrating the validity of the technique. Results are reported as mean ± SD. Myocardial CK reaction rate constant was 0.29 ± 0.05 s-1, consistent with previously reported studies. CONCLUSION [Formula: see text] method enables acquisition of 31P saturation transfer MRS under partially relaxed conditions and enables 2D-CSI of kf in myocardium. This work enables applications for in vivo CSI imaging of energetics in heart and other organs in clinically relevant acquisition time.
Collapse
Affiliation(s)
- Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, United States of America
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thomas S. Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
9
|
Rayner JJ, Peterzan MA, Watson WD, Clarke WT, Neubauer S, Rodgers CT, Rider OJ. Myocardial Energetics in Obesity: Enhanced ATP Delivery Through Creatine Kinase With Blunted Stress Response. Circulation 2020; 141:1152-1163. [PMID: 32138541 PMCID: PMC7144750 DOI: 10.1161/circulationaha.119.042770] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Obesity is strongly associated with exercise intolerance and the development of heart failure. Whereas myocardial energetics and diastolic function are impaired in obesity, systolic function is usually preserved. This suggests that the rate of ATP delivery is maintained, but this has never been explored in human obesity. We hypothesized that ATP transfer rate through creatine kinase (CK) (kfCKrest) would be increased, compensating for depleted energy stores (phosphocreatine/ATP), but potentially limiting greater ATP delivery during increased workload. We hypothesized that these changes would normalize with weight loss. METHODS We recruited 80 volunteers (35 controls [body mass index 24±3 kg/m2], 45 obese [body mass index 35±5 kg/m2]) without coexisting cardiovascular disease. Participants underwent body composition analysis, magnetic resonance imaging of abdominal, liver, and myocardial fat content, left ventricular function, and 31P magnetic resonance spectroscopy to assess phosphocreatine/ATP and CK kinetics, at rest and during dobutamine stress. Obese volunteers were assigned to a dietary weight loss intervention, before reexamination. RESULTS At rest, although myocardial phosphocreatine/ATP was 14% lower in obesity (1.9±0.3 versus 2.2±0.2, P<0.001), kfCkrest was 33% higher (0.23±0.07 s-1 versus 0.16±0.08 s-1, P=0.002), yielding no difference in overall resting ATP delivery (obese 2.5±0.9 µmol·g-1·s-1 versus control 2.2±1.1 µmol·g-1·s-1, P=0.232). In controls, increasing cardiac workload led to an increase in both kfCK (+86%, P<0.001) and ATP delivery (+80%, P<0.001). However, in obesity, similar stress led to no significant increase in either kfCK (P=0.117) or ATP delivery (P=0.608). This was accompanied by reduced systolic augmentation (absolute increase in left ventricular ejection fraction, obese +16±7% versus control +21±4%, P=0.031). Successful weight loss (-11±5% body weight) was associated with improvement of these energetic changes such that there was no significant difference in comparison with controls. CONCLUSIONS In the obese resting heart, the myocardial CK reaction rate is increased, maintaining ATP delivery despite reduced phosphocreatine/ATP. During increased workload, although the nonobese heart increases ATP delivery through CK, the obese heart does not; this is associated with reduced systolic augmentation and exercise tolerance. Weight loss reverses these energetic changes. This highlights myocardial energy delivery through CK as a potential therapeutic target to improve symptoms in obesity-related heart disease, and a fascinating modifiable pathway involved in the progression to heart failure, as well.
Collapse
Affiliation(s)
- Jennifer J Rayner
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.J.R, M.A.P., W.D.W., S.N., O.J.R.), University of Oxford, John Radcliffe Hospital, United Kingdom
| | - Mark A Peterzan
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.J.R, M.A.P., W.D.W., S.N., O.J.R.), University of Oxford, John Radcliffe Hospital, United Kingdom
| | - William D Watson
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.J.R, M.A.P., W.D.W., S.N., O.J.R.), University of Oxford, John Radcliffe Hospital, United Kingdom
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (W.T.C.), University of Oxford, John Radcliffe Hospital, United Kingdom
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.J.R, M.A.P., W.D.W., S.N., O.J.R.), University of Oxford, John Radcliffe Hospital, United Kingdom
| | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, United Kingdom (C.T.R.)
| | - Oliver J Rider
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.J.R, M.A.P., W.D.W., S.N., O.J.R.), University of Oxford, John Radcliffe Hospital, United Kingdom
| |
Collapse
|
10
|
Overexpression of mitochondrial creatine kinase preserves cardiac energetics without ameliorating murine chronic heart failure. Basic Res Cardiol 2020; 115:12. [PMID: 31925563 PMCID: PMC6954138 DOI: 10.1007/s00395-020-0777-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/02/2020] [Indexed: 01/24/2023]
Abstract
Mitochondrial creatine kinase (Mt-CK) is a major determinant of cardiac energetic status and is down-regulated in chronic heart failure, which may contribute to disease progression. We hypothesised that cardiomyocyte-specific overexpression of Mt-CK would mitigate against these changes and thereby preserve cardiac function. Male Mt-CK overexpressing mice (OE) and WT littermates were subjected to transverse aortic constriction (TAC) or sham surgery and assessed by echocardiography at 0, 3 and 6 weeks alongside a final LV haemodynamic assessment. Regardless of genotype, TAC mice developed progressive LV hypertrophy, dilatation and contractile dysfunction commensurate with pressure overload-induced chronic heart failure. There was a trend for improved survival in OE-TAC mice (90% vs 73%, P = 0.08), however, OE-TAC mice exhibited greater LV dilatation compared to WT and no functional parameters were significantly different under baseline conditions or during dobutamine stress test. CK activity was 37% higher in OE-sham versus WT-sham hearts and reduced in both TAC groups, but was maintained above normal values in the OE-TAC hearts. A separate cohort of mice received in vivo cardiac 31P-MRS to measure high-energy phosphates. There was no difference in the ratio of phosphocreatine-to-ATP in the sham mice, however, PCr/ATP was reduced in WT-TAC but preserved in OE-TAC (1.04 ± 0.10 vs 2.04 ± 0.22; P = 0.007). In conclusion, overexpression of Mt-CK activity prevented the changes in cardiac energetics that are considered hallmarks of a failing heart. This had a positive effect on early survival but was not associated with improved LV remodelling or function during the development of chronic heart failure.
Collapse
|
11
|
Torres MJ, McLaughlin KL, Renegar RH, Valsaraj S, Whitehurst KS, Sharaf OM, Sharma UM, Horton JL, Sarathy B, Parks JC, Brault JJ, Fisher-Wellman KH, Neufer PD, Virag JAI. Intracardiac administration of ephrinA1-Fc preserves mitochondrial bioenergetics during acute ischemia/reperfusion injury. Life Sci 2019; 239:117053. [PMID: 31733316 DOI: 10.1016/j.lfs.2019.117053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
AIMS Intracardiac injection of recombinant EphrinA1-Fc immediately following coronary artery ligation in mice reduces infarct size in both reperfused and non-reperfused myocardium, but the cellular alterations behind this phenomenon remain unknown. MAIN METHODS Herein, 10 wk-old B6129SF2/J male mice were exposed to acute ischemia/reperfusion (30minI/24hrsR) injury immediately followed by intracardiac injection of either EphrinA1-Fc or IgG-Fc. After 24 h of reperfusion, sections of the infarct margin in the left ventricle were imaged via transmission electron microscopy, and mitochondrial function was assessed in both permeabilized fibers and isolated mitochondria, to examine mitochondrial structure, function, and energetics in the early stages of repair. KEY FINDINGS At a structural level, EphrinA1-Fc administration prevented the I/R-induced loss of sarcomere alignment and mitochondrial organization along the Z disks, as well as disorganization of the cristae and loss of inter-mitochondrial junctions. With respect to bioenergetics, loss of respiratory function induced by I/R was prevented by EphrinA1-Fc. Preservation of cardiac bioenergetics was not due to changes in mitochondrial JH2O2 emitting potential, membrane potential, ADP affinity, efficiency of ATP production, or activity of the main dehydrogenase enzymes, suggesting that EphrinA1-Fc indirectly maintains respiratory function via preservation of the mitochondrial network. Moreover, these protective effects were lost in isolated mitochondria, further emphasizing the importance of the intact cardiomyocyte ultrastructure in mitochondrial energetics. SIGNIFICANCE Collectively, these data suggest that intracardiac injection of EphrinA1-Fc protects cardiac function by preserving cardiomyocyte structure and mitochondrial bioenergetics, thus emerging as a potential therapeutic strategy in I/R injury.
Collapse
Affiliation(s)
- Maria J Torres
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Kelsey L McLaughlin
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA; Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Randall H Renegar
- Dept of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Smrithi Valsaraj
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - K'Shylah S Whitehurst
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Omar M Sharaf
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Uma M Sharma
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Julie L Horton
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA; Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Brinda Sarathy
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Justin C Parks
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jeffrey J Brault
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Dept of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, 27834, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA; Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA; Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jitka A I Virag
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
12
|
Clarke WT, Peterzan MA, Rayner JJ, Sayeed RA, Petrou M, Krasopoulos G, Lake HA, Raman B, Watson WD, Cox P, Hundertmark MJ, Apps AP, Lygate CA, Neubauer S, Rider OJ, Rodgers CT. Localized rest and stress human cardiac creatine kinase reaction kinetics at 3 T. NMR IN BIOMEDICINE 2019; 32:e4085. [PMID: 30920054 PMCID: PMC6542687 DOI: 10.1002/nbm.4085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 05/11/2023]
Abstract
Changes in the kinetics of the creatine kinase (CK) shuttle are sensitive markers of cardiac energetics but are typically measured at rest and in the prone position. This study aims to measure CK kinetics during pharmacological stress at 3 T, with measurement in the supine position. A shorter "stressed saturation transfer" (StreST) extension to the triple repetition time saturation transfer (TRiST) method is proposed. We assess scanning in a supine position and validate the MR measurement against biopsy assay of CK activity. We report normal ranges of stress CK forward rate (kfCK ) for healthy volunteers and obese patients. TRiST measures kfCK in 40 min at 3 T. StreST extends the previously developed TRiST to also make a further kfCK measurement during <20 min of dobutamine stress. We test our TRiST implementation in skeletal muscle and myocardium in both prone and supine positions. We evaluate StreST in the myocardium of six healthy volunteers and 34 obese subjects. We validated MR-measured kfCK against biopsy assays of CK activity. TRiST kfCK values matched literature values in skeletal muscle (kfCK = 0.25 ± 0.03 s-1 vs 0.27 ± 0.03 s-1 ) and myocardium when measured in the prone position (0.32 ± 0.15 s-1 ), but a significant difference was found for TRiST kfCK measured supine (0.24 ± 0.12 s-1 ). This difference was because of different respiratory- and cardiac-motion-induced B0 changes in the two positions. Using supine TRiST, cardiac kfCK values for normal-weight subjects were 0.15 ± 0.09 s-1 at rest and 0.17 ± 0.15 s-1 during stress. For obese subjects, kfCK was 0.16 ± 0.07 s-1 at rest and 0.17 ± 0.10 s-1 during stress. Rest myocardial kfCK and CK activity from LV biopsies of the same subjects correlated (R = 0.43, p = 0.03). We present an independent implementation of TRiST on the Siemens platform using a commercially available coil. Our extended StreST protocol enables cardiac kfCK to be measured during dobutamine-induced stress in the supine position.
Collapse
Affiliation(s)
- William T. Clarke
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
- Wellcome Centre for Integrative Neuroimaging, FMRIBUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Mark A. Peterzan
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Jennifer J. Rayner
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Rana A. Sayeed
- Department of Cardiothoracic Surgery, John Radcliffe HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Mario Petrou
- Department of Cardiothoracic Surgery, John Radcliffe HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - George Krasopoulos
- Department of Cardiothoracic Surgery, John Radcliffe HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Hannah A. Lake
- Department of Cardiovascular MedicineUniversity of Oxford, Wellcome Trust Centre for Human GeneticsRoosevelt DriveOxfordUK
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - William D. Watson
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Pete Cox
- Department of Physiology AnatomyUniversity of OxfordParks Road, Sherrington BuildingOxfordUK
| | - Moritz J. Hundertmark
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Andrew P. Apps
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Craig A. Lygate
- Department of Cardiovascular MedicineUniversity of Oxford, Wellcome Trust Centre for Human GeneticsRoosevelt DriveOxfordUK
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Oliver J. Rider
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Christopher T. Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine RDMUniversity of Oxford, John Radcliffe HospitalOxfordUK
- Wolfson Brain Imaging CentreUniversity of CambridgeBox 65, Cambridge Biomedical CampusCambridgeUK
| |
Collapse
|
13
|
Nasci VL, Chuppa S, Griswold L, Goodreau KA, Dash RK, Kriegel AJ. miR-21-5p regulates mitochondrial respiration and lipid content in H9C2 cells. Am J Physiol Heart Circ Physiol 2019; 316:H710-H721. [PMID: 30657727 DOI: 10.1152/ajpheart.00538.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cardiovascular-related pathologies are the single leading cause of death in patients with chronic kidney disease (CKD). Previously, we found that a 5/6th nephrectomy model of CKD leads to an upregulation of miR-21-5p in the left ventricle, targeting peroxisome proliferator-activated receptor-α and altering the expression of numerous transcripts involved with fatty acid oxidation and glycolysis. In the present study, we evaluated the potential for knockdown or overexpression of miR-21-5p to regulate lipid content, lipid peroxidation, and mitochondrial respiration in H9C2 cells. Cells were transfected with anti-miR-21-5p (40 nM), pre-miR-21-5p (20 nM), or the appropriate scrambled oligonucleotide controls before lipid treatment in culture or as part of the Agilent Seahorse XF fatty acid oxidation assay. Overexpression of miR-21-5p attenuated the lipid-induced increase in cellular lipid content, whereas suppression of miR-21-5p augmented it. The abundance of malondialdehyde, a product of lipid peroxidation, was significantly increased with lipid treatment in control cells but attenuated in pre-miR-21-5p-transfected cells. This suggests that miR-21-5p reduces oxidative stress. The cellular oxygen consumption rate (OCR) was increased in both pre-miR-21-5p- and anti-miR-21-5p-transfected cells. Levels of intracellular ATP were significantly higher in anti-mR-21-5p-transfected cells. Pre-miR-21-5p blocked additional increases in OCR in response to etomoxir and palmitic acid. Conversely, anti-miR-21-5p-transfected cells exhibited reduced OCR with both etomoxir and palmitic acid, and the glycolytic capacity was concomitantly reduced. Together, these results indicate that overexpression of miR-21-5p attenuates both lipid content and lipid peroxidation in H9C2 cells. This likely occurs by reducing cellular lipid uptake and utilization, shifting cellular metabolism toward reliance on the glycolytic pathway. NEW & NOTEWORTHY Both overexpression and suppression of miR-21-5p augment basal and maximal mitochondrial respiration. Our data suggest that reliance on glycolytic and fatty acid oxidation pathways can be modulated by the abundance of miR-21-5p within the cell. miR-21-5p regulation of mitochondrial respiration can be modulated by extracellular lipids.
Collapse
Affiliation(s)
- Victoria L Nasci
- Physiology Department, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Sandra Chuppa
- Physiology Department, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Lindsey Griswold
- Physiology Department, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kathryn A Goodreau
- Physiology Department, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Ranjan K Dash
- Physiology Department, Medical College of Wisconsin , Milwaukee, Wisconsin.,Biomedical Engineering, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Alison J Kriegel
- Physiology Department, Medical College of Wisconsin , Milwaukee, Wisconsin.,Center of Systems Molecular Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
14
|
Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, Lopaschuk GD. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med 2018; 24:3. [PMID: 30134787 PMCID: PMC6016884 DOI: 10.1186/s10020-018-0005-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Alterations in cardiac energy metabolism contribute to the development and severity of heart failure (HF). In severe HF, overall mitochondrial oxidative metabolism is significantly decreased resulting in a reduced energy reserve. However, despite the high prevalence of HF with preserved ejection fraction (HFpEF) in our society, it is not clear what changes in cardiac energy metabolism occur in HFpEF, and whether alterations in energy metabolism contribute to the development of contractile dysfunction. METHODS We directly assessed overall energy metabolism during the development of HFpEF in Dahl salt-sensitive rats fed a high salt diet (HSD) for 3, 6 and 9 weeks. RESULTS Over the course of 9 weeks, the HSD caused a progressive decrease in diastolic function (assessed by echocardiography assessment of E'/A'). This was accompanied by a progressive increase in cardiac glycolysis rates (assessed in isolated working hearts obtained at 3, 6, and 9 weeks of HSD). In contrast, the subsequent oxidation of pyruvate from glycolysis (glucose oxidation) was not altered, resulting in an uncoupling of glucose metabolism and a significant increase in proton production. Increased glucose transporter (GLUT)1 expression accompanied this elevation in glycolysis. Decreases in cardiac fatty acid oxidation and overall adenosine triphosphate (ATP) production rates were not observed in early HF, but both significantly decreased as HF progressed to HF with reduced EF (i.e. 9 weeks of HSD). CONCLUSIONS Overall, we show that increased glycolysis is the earliest energy metabolic change that occurs during HFpEF development. The resultant increased proton production from uncoupling of glycolysis and glucose oxidation may contribute to the development of HFpEF.
Collapse
Affiliation(s)
- Natasha Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Jody L Levasseur
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Arata Fukushima
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Wei Wang
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada.
| |
Collapse
|
15
|
Abstract
The heart failure accounts for the highest mortality rate all over the world. The development of preventive therapeutic approaches is still in their infancy. Owing to the extremely high energy demand of the heart, the bioenergetics pathways need to respond efficiently based on substrate availability. The metabolic regulation of such heart bioenergetics is mediated by various rate limiting enzymes involved in energy metabolism. Although all the pertinent mechanisms are not clearly understood, the progressive decline in the activity of metabolic enzymes leading to diminished ATP production is known to cause progression of the heart failure. Therefore, metabolic therapy that can maintain the appropriate activities of metabolic enzymes can be a promising approach for the prevention and treatment of the heart failure. The flavonoids that constitute various human dietary ingredients also effectively offer a variety of health benefits. The flavonoids target a variety of metabolic enzymes and facilitate effective management of the equilibrium between production and utilization of energy in the heart. This review discusses the broad impact of metabolic enzymes in the heart functions and explains how the dysregulated enzyme activity causes the heart failure. In addition, the prospects of targeting dysregulated metabolic enzymes by developing flavonoid-based metabolic approaches are discussed.
Collapse
|
16
|
Ribeiro Junior RF, Dabkowski ER, Shekar KC, O Connell KA, Hecker PA, Murphy MP. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. Free Radic Biol Med 2018; 117:18-29. [PMID: 29421236 PMCID: PMC5866124 DOI: 10.1016/j.freeradbiomed.2018.01.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Heart failure remains a major public-health problem with an increase in the number of patients worsening from this disease. Despite current medical therapy, the condition still has a poor prognosis. Heart failure is complex but mitochondrial dysfunction seems to be an important target to improve cardiac function directly. Our goal was to analyze the effects of MitoQ (100 µM in drinking water) on the development and progression of heart failure induced by pressure overload after 14 weeks. The main findings are that pressure overload-induced heart failure in rats decreased cardiac function in vivo that was not altered by MitoQ. However, we observed a reduction in right ventricular hypertrophy and lung congestion in heart failure animals treated with MitoQ. Heart failure also decreased total mitochondrial protein content, mitochondrial membrane potential in the intermyofibrillar mitochondria. MitoQ restored membrane potential in IFM but did not restore mitochondrial protein content. These alterations are associated with the impairment of basal and stimulated mitochondrial respiration in IFM and SSM induced by heart failure. Moreover, MitoQ restored mitochondrial respiration in heart failure induced by pressure overload. We also detected higher levels of hydrogen peroxide production in heart failure and MitoQ restored the increase in ROS production. MitoQ was also able to improve mitochondrial calcium retention capacity, mainly in the SSM whereas in the IFM we observed a small alteration. In summary, MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload, by decreasing hydrogen peroxide formation, improving mitochondrial respiration and improving mPTP opening.
Collapse
Affiliation(s)
- Rogério Faustino Ribeiro Junior
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA; Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | - Erinne Rose Dabkowski
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Kelly A O Connell
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Peter A Hecker
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, Cambridge BioMedical Campus, Cambridge, UK
| |
Collapse
|
17
|
Peterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646030 DOI: 10.1152/ajpheart.00731.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including "pathological" hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts.
Collapse
Affiliation(s)
- Mark A Peterzan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
18
|
Horton JL, Martin OJ, Lai L, Riley NM, Richards AL, Vega RB, Leone TC, Pagliarini DJ, Muoio DM, Bedi KC, Margulies KB, Coon JJ, Kelly DP. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight 2016; 2. [PMID: 26998524 DOI: 10.1172/jci.insight.84897] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Myocardial fuel and energy metabolic derangements contribute to the pathogenesis of heart failure. Recent evidence implicates posttranslational mechanisms in the energy metabolic disturbances that contribute to the pathogenesis of heart failure. We hypothesized that accumulation of metabolite intermediates of fuel oxidation pathways drives posttranslational modifications of mitochondrial proteins during the development of heart failure. Myocardial acetylproteomics demonstrated extensive mitochondrial protein lysine hyperacetylation in the early stages of heart failure in well-defined mouse models and the in end-stage failing human heart. To determine the functional impact of increased mitochondrial protein acetylation, we focused on succinate dehydrogenase A (SDHA), a critical component of both the tricarboxylic acid (TCA) cycle and respiratory complex II. An acetyl-mimetic mutation targeting an SDHA lysine residue shown to be hyperacetylated in the failing human heart reduced catalytic function and reduced complex II-driven respiration. These results identify alterations in mitochondrial acetyl-CoA homeostasis as a potential driver of the development of energy metabolic derangements that contribute to heart failure.
Collapse
Affiliation(s)
- Julie L Horton
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Ola J Martin
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Ling Lai
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA; Genome Center of Wisconsin, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Alicia L Richards
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA; Genome Center of Wisconsin, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Rick B Vega
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Teresa C Leone
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Deborah M Muoio
- Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Kenneth C Bedi
- Cardiovascular Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth B Margulies
- Cardiovascular Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA; Genome Center of Wisconsin, University of Wisconsin - Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Daniel P Kelly
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| |
Collapse
|
19
|
Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, Lewandowski ED, Crawford PA, Muoio DM, Kelly DP. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation 2016; 133:698-705. [PMID: 26819376 PMCID: PMC4766035 DOI: 10.1161/circulationaha.115.017355] [Citation(s) in RCA: 549] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. METHODS AND RESULTS Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. CONCLUSIONS These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Gregory Aubert
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Ola J Martin
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Julie L Horton
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Ling Lai
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Rick B Vega
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Teresa C Leone
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Timothy Koves
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Stephen J Gardell
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Marcus Krüger
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Charles L Hoppel
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - E Douglas Lewandowski
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Peter A Crawford
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Deborah M Muoio
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Daniel P Kelly
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.).
| |
Collapse
|
20
|
Sankaralingam S, Lopaschuk GD. Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure (2013 Grover Conference Series). Pulm Circ 2015; 5:15-28. [PMID: 25992268 DOI: 10.1086/679608] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/29/2014] [Indexed: 01/07/2023] Open
Abstract
Pressure overload of the heart, such as seen with pulmonary hypertension and/or systemic hypertension, can result in cardiac hypertrophy and the eventual development of heart failure. The development of hypertrophy and heart failure is accompanied by numerous molecular changes in the heart, including alterations in cardiac energy metabolism. Under normal conditions, the high energy (adenosine triphosphate [ATP]) demands of the heart are primarily provided by the mitochondrial oxidation of fatty acids, carbohydrates (glucose and lactate), and ketones. In contrast, the hypertrophied failing heart is energy deficient because of its inability to produce adequate amounts of ATP. This can be attributed to a reduction in mitochondrial oxidative metabolism, with the heart becoming more reliant on glycolysis as a source of ATP production. If glycolysis is uncoupled from glucose oxidation, a decrease in cardiac efficiency can occur, which can contribute to the severity of heart failure due to pressure-overload hypertrophy. These metabolic changes are accompanied by alterations in the enzymes that are involved in the regulation of fatty acid and carbohydrate metabolism. It is now becoming clear that optimizing both energy production and the source of energy production are potential targets for pharmacological intervention aimed at improving cardiac function in the hypertrophied failing heart. In this review, we will focus on what alterations in energy metabolism occur in pressure overload induced left and right heart failure. We will also discuss potential targets and pharmacological approaches that can be used to treat heart failure occurring secondary to pulmonary hypertension and/or systemic hypertension.
Collapse
Affiliation(s)
| | - Gary D Lopaschuk
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
21
|
Oxidative stress: dual pathway induction in cardiorenal syndrome type 1 pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:391790. [PMID: 25821554 PMCID: PMC4364374 DOI: 10.1155/2015/391790] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023]
Abstract
Cardiorenal Syndrome Type 1 (Type 1) is a specific condition which is characterized by a rapid worsening of cardiac function leading to acute kidney injury (AKI). Even though its pathophysiology is complex and not still completely understood, oxidative stress seems to play a pivotal role. In this study, we examined the putative role of oxidative stress in the pathogenesis of CRS Type 1. Twenty-three patients with acute heart failure (AHF) were included in the study. Subsequently, 11 patients who developed AKI due to AHF were classified as CRS Type 1. Quantitative determinations for IL-6, myeloperoxidase (MPO), nitric oxide (NO), copper/zinc superoxide dismutase (Cu/ZnSOD), and endogenous peroxidase activity (EPA) were performed. CRS Type 1 patients displayed significant augmentation in circulating ROS and RNS, as well as expression of IL-6. Quantitative analysis of all oxidative stress markers showed significantly lower oxidative stress levels in controls and AHF compared to CRS Type 1 patients (P < 0.05). This pilot study demonstrates the significantly heightened presence of dual oxidative stress pathway induction in CRS Type 1 compared to AHF patients. Our findings indicate that oxidative stress is a potential therapeutic target, as it promotes inflammation by ROS/RNS-linked pathogenesis.
Collapse
|
22
|
Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 2014; 171:2080-90. [PMID: 24147975 DOI: 10.1111/bph.12475] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023] Open
Abstract
Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease.
Collapse
Affiliation(s)
- N Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
23
|
Lai L, Leone TC, Keller MP, Martin OJ, Broman AT, Nigro J, Kapoor K, Koves TR, Stevens R, Ilkayeva OR, Vega RB, Attie AD, Muoio DM, Kelly DP. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail 2014; 7:1022-31. [PMID: 25236884 DOI: 10.1161/circheartfailure.114.001469] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND An unbiased systems approach was used to define energy metabolic events that occur during the pathological cardiac remodeling en route to heart failure (HF). METHODS AND RESULTS Combined myocardial transcriptomic and metabolomic profiling were conducted in a well-defined mouse model of HF that allows comparative assessment of compensated and decompensated (HF) forms of cardiac hypertrophy because of pressure overload. The pressure overload data sets were also compared with the myocardial transcriptome and metabolome for an adaptive (physiological) form of cardiac hypertrophy because of endurance exercise training. Comparative analysis of the data sets led to the following conclusions: (1) expression of most genes involved in mitochondrial energy transduction were not significantly changed in the hypertrophied or failing heart, with the notable exception of a progressive downregulation of transcripts encoding proteins and enzymes involved in myocyte fatty acid transport and oxidation during the development of HF; (2) tissue metabolite profiles were more broadly regulated than corresponding metabolic gene regulatory changes, suggesting significant regulation at the post-transcriptional level; (3) metabolomic signatures distinguished pathological and physiological forms of cardiac hypertrophy and served as robust markers for the onset of HF; and (4) the pattern of metabolite derangements in the failing heart suggests bottlenecks of carbon substrate flux into the Krebs cycle. CONCLUSIONS Mitochondrial energy metabolic derangements that occur during the early development of pressure overload-induced HF involve both transcriptional and post-transcriptional events. A subset of the myocardial metabolomic profile robustly distinguished pathological and physiological cardiac remodeling.
Collapse
Affiliation(s)
- Ling Lai
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Teresa C Leone
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Mark P Keller
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Ola J Martin
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Aimee T Broman
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Jessica Nigro
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Kapil Kapoor
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Timothy R Koves
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Robert Stevens
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Olga R Ilkayeva
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Rick B Vega
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Alan D Attie
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Deborah M Muoio
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.)
| | - Daniel P Kelly
- From the Diabetes and Obesity Research Center (J.N., K.K.), Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (L.L., T.C.L., O.J.M., R.B.V., D.P.K.); Department of Biochemistry (M.P.K., A.D.A.), and Department of Biostatistics and Medical Informatics (A.T.B.), University of Wisconsin-Madison, Madison, WI; and Duke Molecular Physiology Institute (T.R.K., R.S., O.R.I., D.M.M.), Departments of Medicine (T.R.K., D.M.M.), Pharmacology and Cancer Biology (D.M.M.), Duke University, Durham, NC (T.R.K., R.S., O.R.I., D.M.M.).
| |
Collapse
|
24
|
Bashir A, Gropler R. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study. NMR IN BIOMEDICINE 2014; 27:663-71. [PMID: 24706347 PMCID: PMC4106821 DOI: 10.1002/nbm.3103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 05/25/2023]
Abstract
Creatine kinase (CK) is essential for the buffering and rapid regeneration of adenosine triphosphate (ATP) in heart tissue. Herein, we demonstrate a (31) P MRS protocol to quantify CK reaction kinetics in human myocardium at 3 T. Furthermore, we sought to quantify the test-retest reliability of the measured metabolic parameters. The method localizes the (31) P signal from the heart using modified one-dimensional image-selected in vivo spectroscopy (ISIS), and a time-dependent saturation transfer (TDST) approach was used to measure CK reaction parameters. Fifteen healthy volunteers (22 measurements in total) were tested. The CK reaction rate constant (kf ) was 0.32 ± 0.05 s(-1) and the coefficient of variation (CV) was 15.62%. The intrinsic T1 for phosphocreatine (PCr) was 7.36 ± 1.79 s with CV = 24.32%. These values are consistent with those reported previously. The PCr/ATP ratio was equal to 1.94 ± 0.15 with CV = 7.73%, which is within the range of healthy subjects. The reproducibility of the technique was tested in seven subjects and inferred parameters, such as kf and T1 , exhibited good reliability [intraclass correlation coefficient (ICC) of 0.90 and 0.79 for kf and T1 , respectively). The reproducibility data provided in this study will enable the calculation of the power and sample sizes required for clinical and research studies. The technique will allow for the examination of cardiac energy metabolism in clinical and research studies, providing insight into the relationship between energy deficit and functional deficiency in the heart.
Collapse
Affiliation(s)
- Adil Bashir
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
25
|
Fillmore N, Lopaschuk GD. Malonyl CoA: A promising target for the treatment of cardiac disease. IUBMB Life 2014; 66:139-146. [DOI: 10.1002/iub.1253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/14/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Natasha Fillmore
- Cardiovascular Research Centre; Mazankowski Alberta Heart Institute; University of Alberta; Edmonton AB Canada
| | - Gary D. Lopaschuk
- Cardiovascular Research Centre; Mazankowski Alberta Heart Institute; University of Alberta; Edmonton AB Canada
| |
Collapse
|
26
|
Pathogenesis of chronic cardiorenal syndrome: is there a role for oxidative stress? Int J Mol Sci 2013; 14:23011-32. [PMID: 24264044 PMCID: PMC3856103 DOI: 10.3390/ijms141123011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 02/07/2023] Open
Abstract
Cardiorenal syndrome is a frequently encountered clinical condition when the dysfunction of either the heart or kidneys amplifies the failure progression of the other organ. Complex biochemical, hormonal and hemodynamic mechanisms underlie the development of cardiorenal syndrome. Both in vitro and experimental studies have identified several dysregulated pathways in heart failure and in chronic kidney disease that lead to increased oxidative stress. A decrease in mitochondrial oxidative metabolism has been reported in cardiomyocytes during heart failure. This is balanced by a compensatory increase in glucose uptake and glycolysis with consequent decrease in myocardial ATP content. In the kidneys, both NADPH oxidase and mitochondrial metabolism are important sources of TGF-β1-induced cellular ROS. NOX-dependent oxidative activation of transcription factors such as NF-kB and c-jun leads to increased expression of renal target genes (phospholipaseA2, MCP-1 and CSF-1, COX-2), thus contributing to renal interstitial fibrosis and inflammation. In the present article, we postulate that, besides contributing to both cardiac and renal dysfunction, increased oxidative stress may also play a crucial role in cardiorenal syndrome development and progression. In particular, an imbalance between the renin-angiotensin-aldosterone system, the sympathetic nervous system, and inflammation may favour cardiorenal syndrome through an excessive oxidative stress production. This article also discusses novel therapeutic strategies for their potential use in the treatment of patients affected by cardiorenal syndrome.
Collapse
|
27
|
Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 2013; 18:239-250. [PMID: 23931755 PMCID: PMC3779647 DOI: 10.1016/j.cmet.2013.07.002] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/22/2013] [Accepted: 07/02/2013] [Indexed: 01/04/2023]
Abstract
Mitochondrial respiratory dysfunction is linked to the pathogenesis of multiple diseases, including heart failure, but the specific mechanisms for this link remain largely elusive. We modeled the impairment of mitochondrial respiration by the inactivation of the Ndufs4 gene, a protein critical for complex I assembly, in the mouse heart (cKO). Although complex I-supported respiration decreased by >40%, the cKO mice maintained normal cardiac function in vivo and high-energy phosphate content in isolated perfused hearts. However, the cKO mice developed accelerated heart failure after pressure overload or repeated pregnancy. Decreased NAD(+)/NADH ratio by complex I deficiency inhibited Sirt3 activity, leading to an increase in protein acetylation and sensitization of the permeability transition in mitochondria (mPTP). NAD(+) precursor supplementation to cKO mice partially normalized the NAD(+)/NADH ratio, protein acetylation, and mPTP sensitivity. These findings describe a mechanism connecting mitochondrial dysfunction to the susceptibility to diseases and propose a potential therapeutic target.
Collapse
Affiliation(s)
- Georgios Karamanlidis
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | - Chi Fung Lee
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | - Lorena Garcia-Menendez
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | - Stephen C. Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | | | - Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | | | | | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
28
|
Myocardial energetics in heart failure. Basic Res Cardiol 2013; 108:358. [PMID: 23740216 DOI: 10.1007/s00395-013-0358-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
It has become common sense that the failing heart is an "engine out of fuel". However, undisputable evidence that, indeed, the failing heart is limited by insufficient ATP supply is currently lacking. Over the last couple of years, an increasingly complex picture of mechanisms evolved that suggests that potentially metabolic intermediates and redox state could play the more dominant roles for signaling that eventually results in left ventricular remodeling and contractile dysfunction. In the pathophysiology of heart failure, mitochondria emerge in the crossfire of defective excitation-contraction coupling and increased energetic demand, which may provoke oxidative stress as an important upstream mediator of cardiac remodeling and cell death. Thus, future therapies may be guided towards restoring defective ion homeostasis and mitochondrial redox shifts rather than aiming solely at improving the generation of ATP.
Collapse
|
29
|
Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:857-65. [DOI: 10.1016/j.bbamcr.2012.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 01/24/2023]
|
30
|
Abstract
The energetic requirements of the heart are, weight for weight, higher than for any other organ. The heart provides non-stop function for a lifetime, while maintaining energy in reserve in order to respond to increased demand. This demand is met by continuously recycling a relatively small pool of ATP, with the creatine kinase (CK) system acting as a spatial and temporal buffer. In the failing heart, key components of this system are downregulated, but whether these energetic changes are biomarkers or drivers of dysfunction and whether they represent therapeutic targets are the subjects of ongoing research. Key methodologies are now becoming available in vivo to help address these questions in mouse models, such as (31)P magnetic resonance spectroscopy to detect high-energy phosphates and (1)H magnetic resonance spectroscopy to detect total creatine. This report briefly discusses the challenges involved in using these technologies, the application and pitfalls of murine surgical models of heart failure, and how this has contributed to our understanding of pathophysiology in recent years.
Collapse
Affiliation(s)
- Craig A Lygate
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | | | |
Collapse
|
31
|
Leone TC, Kelly DP. Transcriptional control of cardiac fuel metabolism and mitochondrial function. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:175-82. [PMID: 22096028 DOI: 10.1101/sqb.2011.76.011965] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a persistent pump, the mammalian heart demands a high-capacity mitochondrial system. Significant progress has been made in delineating the gene regulatory networks that control mitochondrial biogenesis and function in striated muscle. The PPARγ coactivator-1 (PGC-1) coactivators serve as inducible boosters of downstream transcription factors that control the expression of genes involved in mitochondrial energy transduction, ATP synthesis, and biogenesis. PGC-1 gain-of-function and loss-of-function studies targeting two PGC-1 family members, PGC-1α and PGC-1β, have provided solid evidence that these factors are both necessary and sufficient for perinatal mitochondrial biogenesis and maintenance of high-capacity mitochondrial function in postnatal heart. In humans, during the development of heart failure owing to hypertension or obesity-related diabetes, the activity of the PGC-1 coactivators, and several downstream target transcription factors, is altered. Gene targeting studies in mice have demonstrated that loss of PGC-1α and PGC-1β in heart leads to heart failure. Interestingly, the pattern of dysregulation within the PGC-1 transcriptional regulatory circuit distinguishes the heart disease caused by hypertension from that caused by diabetes. This transcriptional regulatory cascade and downstream metabolic pathways should be considered as targets for novel etiology-specific therapeutics aimed at the early stages of heart failure.
Collapse
Affiliation(s)
- T C Leone
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827, USA
| | | |
Collapse
|
32
|
Abstract
Isolated adult mouse cardiomyocytes are an important tool in cardiovascular research, but are challenging to prepare. Because the energy supply determines cell function and viability, we compared total creatine ([Cr]) and [ATP] in isolated cardiomyocytes with the intact mouse heart. Isolated myocytes suffered severe losses of Cr (-70%) and ATP (-53%). Myocytes were not able to replete [Cr] during a 5 h incubation period in medium supplemented with 1 mM Cr. In contrast, adding 20 mM Cr to the digestion buffers was sufficient to maintain normal [Cr]. Supplementing buffers with 5 mM of inosine (Ino) and adenosine (Ado) to prevent loss of cellular nucleosides partially protected against loss of ATP. To test whether maintaining [ATP] and [Cr] improves contractile function, myocytes were challenged by varying pacing rate from 0.5 to 10 Hz and by adding isoproterenol (Iso) at 5 and 10 Hz. All groups performed well up to 5 Hz, showing a positive cell shortening-frequency relationship; however, only 16% of myocytes isolated under standard conditions were able to sustain pacing with Iso challenge at 10 Hz. In contrast, 30-50% of the myocytes with normal Cr levels were able to contract and maintain low diastolic [Ca(2+)]. Cell yield also improved in Cr and the Cr/Ino/Ado-treated groups (85-90% vs. 70-75% rod shaped in untreated myocytes). These data suggest that viability and performance of isolated myocytes are improved when they are protected from the severe loss of Cr and ATP during the isolation, making them an even better research tool.
Collapse
Affiliation(s)
- Ilka Pinz
- NMR Laboratory for Physiological Chemistry, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
33
|
Teixeira PC, Santos RHB, Fiorelli AI, Bilate AMB, Benvenuti LA, Stolf NA, Kalil J, Cunha-Neto E. Selective decrease of components of the creatine kinase system and ATP synthase complex in chronic Chagas disease cardiomyopathy. PLoS Negl Trop Dis 2011; 5:e1205. [PMID: 21738806 PMCID: PMC3125151 DOI: 10.1371/journal.pntd.0001205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 05/01/2011] [Indexed: 01/25/2023] Open
Abstract
Background Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies. Chronic Chagas disease cardiomyopathy (CCC) affects millions in endemic areas and is presenting in growing numbers in the USA and European countries due to migration currents. Clinical progression, length of survival and overall prognosis are significantly worse in CCC patients when compared to patients with dilated cardiomyopathy of non-inflammatory etiology. Impairment of energy metabolism seems to play a role in heart failure due to cardiomyopathies. Herein, we have analyzed energy metabolism enzymes in myocardium samples of CCC patients comparing to other non-inflammatory cardiomyopathies. We found that myocardial tissue from CCC patients displays a significant reduction of both myocardial protein levels of ATP synthase alpha and creatine kinase enzyme activity, in comparison to control heart samples, as well as idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. Our results suggest that CCC myocardium displays a selective energetic deficit, which may play a role in the reduced heart function observed in such patients.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | | | - Alfredo Inácio Fiorelli
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Luiz Alberto Benvenuti
- Division of Pathology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Noedir Antonio Stolf
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
34
|
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1333-50. [PMID: 21256164 DOI: 10.1016/j.bbamcr.2011.01.015] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Mazankowski Alberta Heart Institute, Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
35
|
Aksentijević D, Lygate CA, Makinen K, Zervou S, Sebag-Montefiore L, Medway D, Barnes H, Schneider JE, Neubauer S. High-energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes. Eur J Heart Fail 2010; 12:1282-9. [PMID: 20940173 PMCID: PMC2990411 DOI: 10.1093/eurjhf/hfq174] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/14/2010] [Accepted: 07/30/2010] [Indexed: 11/13/2022] Open
Abstract
AIMS To measure the activity of the key phosphotransfer enzymes creatine kinase (CK), adenylate kinase (AK), and glycolytic enzymes in two common mouse models of chronic heart failure. METHODS AND RESULTS C57BL/6 mice were subjected to transverse aortic constriction (TAC), myocardial infarction induced by coronary artery ligation (CAL), or sham operation. Activities of phosphotransfer enzymes CK, AK, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK), and pyruvate kinase were assessed spectrophotometrically. Mice were characterized by echocardiography or magnetic resonance imaging 5- to 8-week post-surgery and selected for the presence of congestive heart failure. All mice had severe left ventricular hypertrophy, impaired systolic function and pulmonary congestion compared with sham controls. A significant decrease in myocardial CK and maximal CK reaction velocity was observed in both experimental models of heart failure. However, the activity of AK and its isoforms remained unchanged, despite a reduction in its protein expression. In contrast, the activities of glycolytic phosphotransfer mediators GAPDH and PGK were 19 and 12% higher in TAC, and 31 and 23% higher in CAL models, respectively. CONCLUSION Chronic heart failure in the mouse is characterized by impaired CK function, unaltered AK, and increased activity of glycolytic phosphotransfer enzymes. This pattern of altered phosphotransfer activity was observed independent of the heart failure aetiology.
Collapse
Affiliation(s)
- Dunja Aksentijević
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Craig A. Lygate
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kimmo Makinen
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sevasti Zervou
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Liam Sebag-Montefiore
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Debra Medway
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Hannah Barnes
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- British Heart Foundation Experimental Magnetic Resonance Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jurgen E. Schneider
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- British Heart Foundation Experimental Magnetic Resonance Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Stefan Neubauer
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
36
|
Jaswal JS, Lund CR, Keung W, Beker DL, Rebeyka IM, Lopaschuk GD. Isoproterenol stimulates 5'-AMP-activated protein kinase and fatty acid oxidation in neonatal hearts. Am J Physiol Heart Circ Physiol 2010; 299:H1135-45. [PMID: 20656883 DOI: 10.1152/ajpheart.00186.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoproterenol increases phosphorylation of LKB, 5'-AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC), enzymes involved in regulating fatty acid oxidation. However, inotropic stimulation selectively increases glucose oxidation in adult hearts. In the neonatal heart, fatty acid oxidation becomes a major energy source, while glucose oxidation remains low. This study tested the hypothesis that increased energy demand imposed by isoproterenol originates from fatty acid oxidation, secondary to increased LKB, AMPK, and ACC phosphorylation. Isolated working hearts from 7-day-old rabbits were perfused with Krebs solution (0.4 mM palmitate, 11 mM glucose, 0.5 mM lactate, and 100 mU/l insulin) with or without isoproterenol (300 nM). Isoproterenol increased myocardial O(2) consumption (in J·g dry wt(-1)·min(-1); 11.0 ± 1.4, n = 8 vs. 7.5 ± 0.8, n = 6, P < 0.05), and the phosphorylation of LKB (in arbitrary density units; 0.87 ± 0.09, n = 6 vs. 0.59 ± 0.08, n = 6, P < 0.05), AMPK (0.82 ± 0.08, n = 6 vs. 0.51 ± 0.06, n = 6, P < 0.05), and ACC-β (1.47 ± 0.14, n = 6 vs. 0.97 ± 0.07, n = 6, P < 0.05), with a concomitant decrease in malonyl-CoA levels (in nmol/g dry wt; 0.9 ± 0.9, n = 8 vs. 7.5 ± 1.3, n = 8, P < 0.05) and increase in palmitate oxidation (in nmol·g dry wt(-1)·min(-1); 272 ± 45, n = 8 vs. 114 ± 9, n = 6, P < 0.05). Glucose and lactate oxidation were increased (in nmol·g dry wt(-1)·min(-1); 253 ± 75, n = 8 vs. 63 ± 15, n = 9, P < 0.05 and 246 ± 43, n = 8 vs. 82 ± 11, n = 6, P < 0.05, respectively), independent of alterations in pyruvate dehydrogenase phosphorylation, but occurred secondary to a decrease in acetyl-CoA content and acetyl-CoA-to-free CoA ratio. As acetyl-CoA levels decrease in response to isoproterenol, despite an acceleration of the rates of palmitate and carbohydrate oxidation, these data suggest net rates of acetyl-CoA utilization exceed the net rates of acetyl-CoA generation.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Sihag S, Li AY, Cresci S, Sucharov CC, Lehman JJ. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 2009; 46:201-12. [PMID: 19061896 PMCID: PMC2681265 DOI: 10.1016/j.yjmcc.2008.10.025] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 12/25/2022]
Abstract
Heart failure is a cause of significant morbidity and mortality in developed nations, and results from a complex interplay between genetic and environmental factors. To discover gene regulatory networks underlying heart failure, we analyzed DNA microarray data based on left ventricular free-wall myocardium from 59 failing (32 ischemic cardiomyopathy, 27 idiopathic dilated cardiomyopathy) and 33 non-failing explanted human hearts from the Cardiogenomics Consortium. In particular, we sought to investigate cardiac gene expression changes at the level of individual genes, as well as biological pathways which contain groups of functionally related genes. Utilizing a combination of computational techniques, including Comparative Marker Selection and Gene Set Enrichment Analysis, we identified a subset of downstream gene targets of the master mitochondrial transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), whose expression is collectively decreased in failing human hearts. We also observed decreased expression of the key PGC-1alpha regulatory partner, estrogen-related receptor alpha (ERRalpha), as well as ERRalpha target genes which may participate in the downregulation of mitochondrial metabolic capacity. Gene expression of the antiapoptotic Raf-1/extracellular signal-regulated kinase (ERK) pathway was decreased in failing hearts. Alterations in PGC-1alpha and ERRalpha target gene sets were significantly correlated with an important clinical parameter of disease severity - left ventricular ejection fraction, and were predictive of failing vs. non-failing phenotypes. Overall, our results implicate PGC-1alpha and ERRalpha in the pathophysiology of human heart failure, and define dynamic target gene sets sharing known interrelated regulatory mechanisms capable of contributing to the mitochondrial dysfunction characteristic of this disease process.
Collapse
Affiliation(s)
- Smita Sihag
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Allie Y. Li
- Center for Cardiovascular Research, Department of Medicine, Genetics, Molecular Biology & Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sharon Cresci
- Center for Cardiovascular Research, Department of Medicine, Genetics, Molecular Biology & Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Carmen C. Sucharov
- Division of Cardiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | - John J. Lehman
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
38
|
Abstract
Myocytes of the failing heart undergo impressive metabolic remodelling. The time line for changes in the pathways for ATP synthesis in compensated hypertrophy is: flux through the creatine kinase (CK) reaction falls as both creatine concentration ([Cr]) and CK activity fall; increases in [ADP] and [AMP] lead to increases in glucose uptake and utilization; fatty acid oxidation either remains the same or decreases. In uncompensated hypertrophy and in other forms of heart failure, CK flux and fatty acid oxidation are both lower; any increases in glucose uptake and utilization are not sufficient to compensate for overall decreases in the capacity for ATP supply and [ATP] falls. Metabolic remodelling is under transcriptional and post-transcriptional control. The lower metabolic reserve of the failing heart contributes to impaired contractile reserve.
Collapse
Affiliation(s)
- Joanne S Ingwall
- NMR Laboratory for Physiological Chemistry, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Room 247, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Ren J, Davidoff AJ, Ingwall JS. Creatine kinase inhibitor iodoacetamide antagonizes calcium-stimulated inotropy in cardiomyocytes. Clin Exp Pharmacol Physiol 2008; 36:141-5. [PMID: 18761665 DOI: 10.1111/j.1440-1681.2008.05034.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Inhibition of creatine kinase is known to suppress cardiac contractile reserve in intact hearts, although the underlying mechanism has not been elucidated. 2. The present study was designed to examine whether cardiac depression induced by creatine kinase inhibition was due to action at the level of the essential contractile element, namely cardiomyocytes. Adult rat cardiomyocytes were perfused with the creatine kinase inhibitor iodoacetamide (90 micromol/L) for 90 min. Mechanical and intracellular Ca(2+) properties were evaluated using edge-detection and fluorescence microscopy, respectively. Myocytes were superfused with normal (1.3 mmol/L) or high (3.3 mmol/L) extracellular Ca(2+) contractile buffer. Mechanical function was examined, including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time to 90% PS (TPS(90)), time to 90% relengthening (TR(90)) and integration of shortening/relengthening (normalized to PS). Intracellular Ca(2+) transients were evaluated using the following indices: resting and rise of fura-2 fluorescence intensity (Delta FFI) and intracellular Ca(2+) decay time constant. 3. The results indicate that elevated extracellular Ca(2+) stimulated cardiomyocyte positive inotrope, manifested as increased PS, +/-dL/dt, area of shortening, resting FFI and Delta FFI associated with a shortened TR(90) and intracellular Ca(2+) decay time constant. High extracellular Ca(2+) did not affect TPS(90) and area of relengthening. Iodoacetamide ablated high Ca(2+)-induced increases in PS, +/-dL/dt, area of shortening, resting FFI, Delta FFI and shortened TR(90) and intracellular Ca(2+) decay time constant. Iodoacetamide itself significantly enhanced the area of relengthening and TR(90) without affecting other indices. 4. Collectively, these data demonstrate that inhibition of creatine kinase blunts high extracellular Ca(2+)-induced increases in cardiomyocyte contractile response (i.e. cardiac contractile reserve).
Collapse
Affiliation(s)
- Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | | | |
Collapse
|
40
|
Haddad GE, Saunders LJ, Crosby SD, Carles M, del Monte F, King K, Bristow MR, Spinale FG, Macgillivray TE, Semigran MJ, Dec GW, Williams SA, Hajjar RJ, Gwathmey JK. Human cardiac-specific cDNA array for idiopathic dilated cardiomyopathy: sex-related differences. Physiol Genomics 2008; 33:267-77. [DOI: 10.1152/physiolgenomics.00265.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Idiopathic dilated cardiomyopathy (IDCM) constitutes a large portion of patients with heart failure of unknown etiology. Up to 50% of all transplant recipients carry this clinical diagnosis. Female-specific gene expression in IDCM has not been explored. We report sex-related differences in the gene expression profile of ventricular myocardium from patients undergoing cardiac transplantation. We produced and sequenced subtractive cDNA libraries, using human left ventricular myocardium obtained from male transplant recipients with IDCM and nonfailing human heart donors. With the resulting sequence data, we generated a custom human heart failure microarray for IDCM containing 1,145 cardiac-specific oligonucleotide probes. This array was used to characterize RNA samples from female IDCM transplant recipients. We identified a female gene expression pattern that consists of 37 upregulated genes and 18 downregulated genes associated with IDCM. Upon functional analysis of the gene expression pattern, deregulated genes unique to female IDCM were those that are involved in energy metabolism and regulation of transcription and translation. For male patients we found deregulation of genes related to muscular contraction. These data suggest that 1) the gene expression pattern we have detected for IDCM may be specific for this disease and 2) there is a sex-specific profile to IDCM. Our observations further suggest for the first time ever novel targets for treatment of IDCM in women and men.
Collapse
Affiliation(s)
- Georges E. Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia
| | | | - Seth D. Crosby
- Microarray Core Facility, Washington University Medical School, St. Louis, Missouri
| | - Maria Carles
- Gwathmey, Incorporated, Cambridge, Massachusetts
| | - Federica del Monte
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Kindra King
- Gwathmey, Incorporated, Cambridge, Massachusetts
| | - Michael R. Bristow
- Division of Cardiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado
| | - Francis G. Spinale
- Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Marc J. Semigran
- Cardiology Division, Gray/Bigelow, Massachusetts General Hospital, Boston
| | - G. William Dec
- Cardiology Division, Gray/Bigelow, Massachusetts General Hospital, Boston
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Roger J. Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Judith K. Gwathmey
- Gwathmey, Incorporated, Cambridge, Massachusetts
- Boston University School of Medicine, Cambridge, Massachusetts
| |
Collapse
|
41
|
Pinz I, Ostroy SE, Hoyer K, Osinska H, Robbins J, Molkentin JD, Ingwall JS. Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. Am J Physiol Heart Circ Physiol 2008; 294:H1459-66. [PMID: 18192216 DOI: 10.1152/ajpheart.00911.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression of calcineurin (CLN) in the mouse heart induces severe hypertrophy that progresses to heart failure, providing an opportunity to define the relationship between energetics and contractile performance in the severely failing mouse heart. Contractile performance was studied in isolated hearts at different pacing frequencies and during dobutamine challenge. Energetics were assessed by 31P-NMR spectroscopy as ATP and phosphocreatine concentrations ([ATP] and [PCr]) and free energy of ATP hydrolysis (|Delta G( approximately ATP)|). Mitochondrial and glycolytic enzyme activities, myocardial O2 consumption, and myocyte ultrastructure were determined. In transgenic (TG) hearts at all levels of work, indexes of systolic performance were reduced and [ATP] and capacity for ATP synthesis were lower than in non-TG hearts. This is the first report showing that myocardial [ATP] is lower in a TG mouse model of heart failure. [PCr] was also lower, despite an unexpected increase in the total creatine pool. Because Pi concentration remained low, despite lower [ATP] and [PCr], |Delta G( approximately ATP)| was normal; however, chemical energy did not translate to systolic performance. This was most apparent with beta-adrenergic stimulation of TG hearts, during which, for similar changes in |Delta G( approximately ATP)|, systolic pressure decreased, rather than increased. Structural abnormalities observed for sarcomeres and mitochondria likely contribute to decreased contractile performance. On the basis of the increases in enzyme activities of proteins important for ATP supply observed after treatment with the CLN inhibitor cyclosporin A, we also conclude that CLN directed inhibition of ATP-producing pathways in non-TG and TG hearts.
Collapse
Affiliation(s)
- Ilka Pinz
- NMR Laboratory for Physiological Chemistry, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Maack C, O'Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 2007; 102:369-92. [PMID: 17657400 PMCID: PMC2785083 DOI: 10.1007/s00395-007-0666-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 12/20/2022]
Abstract
Cardiac excitation-contraction (EC) coupling consumes vast amounts of cellular energy, most of which is produced in mitochondria by oxidative phosphorylation. In order to adapt the constantly varying workload of the heart to energy supply, tight coupling mechanisms are essential to maintain cellular pools of ATP, phosphocreatine and NADH. To our current knowledge, the most important regulators of oxidative phosphorylation are ADP, Pi, and Ca2+. However, the kinetics of mitochondrial Ca2+-uptake during EC coupling are currently a matter of intense debate. Recent experimental findings suggest the existence of a mitochondrial Ca2+ microdomain in cardiac myocytes, justified by the close proximity of mitochondria to the sites of cellular Ca2+ release, i. e., the ryanodine receptors of the sarcoplasmic reticulum. Such a Ca2+ microdomain could explain seemingly controversial results on mitochondrial Ca2+ uptake kinetics in isolated mitochondria versus whole cardiac myocytes. Another important consideration is that rapid mitochondrial Ca2+ uptake facilitated by microdomains may shape cytosolic Ca2+ signals in cardiac myocytes and have an impact on energy supply and demand matching. Defects in EC coupling in chronic heart failure may adversely affect mitochondrial Ca2+ uptake and energetics, initiating a vicious cycle of contractile dysfunction and energy depletion. Future therapeutic approaches in the treatment of heart failure could be aimed at interrupting this vicious cycle.
Collapse
Affiliation(s)
- Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Germany.
| | | |
Collapse
|
43
|
Huss JM, Imahashi KI, Dufour CR, Weinheimer CJ, Courtois M, Kovacs A, Giguère V, Murphy E, Kelly DP. The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 2007; 6:25-37. [PMID: 17618854 DOI: 10.1016/j.cmet.2007.06.005] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/02/2007] [Accepted: 06/18/2007] [Indexed: 12/28/2022]
Abstract
Downregulation and functional deactivation of the transcriptional coactivator PGC-1alpha has been implicated in heart failure pathogenesis. We hypothesized that the estrogen-related receptor alpha (ERRalpha), which recruits PGC-1alpha to metabolic target genes in heart, exerts protective effects in the context of stressors known to cause heart failure. ERRalpha(-/-) mice subjected to left ventricular (LV) pressure overload developed signatures of heart failure including chamber dilatation and reduced LV fractional shortening. (31)P-NMR studies revealed abnormal phosphocreatine depletion in ERRalpha(-/-) hearts subjected to hemodynamic stress, indicative of a defect in ATP reserve. Mitochondrial respiration studies demonstrated reduced maximal ATP synthesis rates in ERRalpha(-/-) hearts. Cardiac ERRalpha target genes involved in energy substrate oxidation, ATP synthesis, and phosphate transfer were downregulated in ERRalpha(-/-) mice at baseline or with pressure overload. These results demonstrate that the nuclear receptor ERRalpha is required for the adaptive bioenergetic response to hemodynamic stressors known to cause heart failure.
Collapse
MESH Headings
- Adaptation, Physiological
- Adenosine Triphosphate/metabolism
- Animals
- Animals, Newborn
- Biomarkers/metabolism
- Blood Pressure
- Cardiac Output, Low
- Cardiomegaly/physiopathology
- Energy Metabolism
- Female
- Gene Expression Profiling
- Heart/embryology
- Heart/physiopathology
- Magnetic Resonance Spectroscopy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Contraction/physiology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/physiology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Estrogen/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ventricular Pressure/physiology
- Ventricular Remodeling/physiology
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Magnetic resonance spectroscopy (MRS) allows for the non-invasive detection of a wide variety of metabolites in the heart. To study the metabolic changes that occur in heart failure, (31)P- and (1)H-MRS have been applied in both patients and experimental animal studies. (31)P-MRS allows for the detection of phosphocreatine (PCr), ATP, inorganic phosphate (Pi) and intracellular pH, while (1)H-MRS allows for the detection of total creatine. All these compounds are involved in the regulation of the available energy from ATP hydrolysis via the creatine kinase (CK) reaction. Using cardiac MRS, it has been found that the PCr/CK system is impaired in the failing heart. In both, patients and experimental models, PCr levels as well as total creatine levels are reduced, and in severe heart failure ATP is also reduced. PCr/ATP ratios correlate with the clinical severity of heart failure and, importantly, are a prognostic indicator of mortality in patients. In addition, the chemical flux through the CK reaction, measured with (31)P saturation transfer MRS, is reduced more than the steady-state levels of high-energy phosphates in failing myocardium in both experimental models and in patients. Experimental studies suggest that these changes can result in increased free ADP levels when the failing heart is stressed. Increased free ADP levels, in turn, result in a reduction in the available free energy of ATP hydrolysis, which may directly contribute to contractile dysfunction. Data from transgenic mouse models also suggest that an intact creatine/CK system is critical for situations of cardiac stress.
Collapse
Affiliation(s)
- Michiel Ten Hove
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | | |
Collapse
|
45
|
Lygate CA, Fischer A, Sebag-Montefiore L, Wallis J, ten Hove M, Neubauer S. The creatine kinase energy transport system in the failing mouse heart. J Mol Cell Cardiol 2007; 42:1129-36. [PMID: 17481652 DOI: 10.1016/j.yjmcc.2007.03.899] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/18/2007] [Accepted: 03/16/2007] [Indexed: 11/29/2022]
Abstract
Characteristic alterations of the creatine kinase (CK) system occur in heart failure and may contribute to contractile dysfunction. We examined two mouse models of chronic cardiac stress, transverse aortic constriction (TAC) and coronary artery ligation (CAL), and examined the relationship of CK system changes with hypertrophy and heart failure development. C57Bl/6 mice were subjected to TAC or sham surgery and sacrificed after 2-10 weeks according to echocardiographic criteria of myocardial hypertrophy and function to create four groups representing progressive dysfunction from normal, through compensated hypertrophy, to heart failure. Only mice with congestive heart failure had LV total creatine concentration and total CK activity significantly lower than sham values (11% and 30% lower, respectively). However for all aortic banded mice, a linear relationship was observed between ejection fraction and estimated maximal CK reaction velocity. Mice with heart failure also had corresponding decreases in the activities of the Mito-, MM-, and MB-CK isoenzymes, while the BB isoform remained unchanged. To determine whether these changes were model specific, mice were subjected to CAL or sham operation and followed for 7 weeks. Quantitative changes in total creatine, total CK activity, Mito-CK and MM-CK activities were similar for CAL and TAC mice. We conclude that alterations in the creatine kinase system occur during heart failure in mice qualitatively similar to those occurring in larger animals and humans, suggesting that mice are a suitable model for studying the role of such changes in the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Craig A Lygate
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Ingwall JS. On the hypothesis that the failing heart is energy starved: lessons learned from the metabolism of ATP and creatine. Curr Hypertens Rep 2007; 8:457-64. [PMID: 17087856 DOI: 10.1007/s11906-006-0023-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenosine triphosphate (ATP) and phosphocreatine fall in the failing heart. New insights into the control of ATP synthesis, supply, and utilization, and how this changes in the failing heart, have emerged. In this article, we address four questions: What are the mechanisms explaining loss of ATP and creatine from the failing heart? What are the consequences of these changes? Can metabolism be manipulated to restore a normal ATP supply? Does increasing energy supply have physiologic consequences (ie, does it lead to improved contractile performance)? In part 1 we focus on ATP, in part 2 on creatine, and in part 3 on the relationship between creatine and purine metabolism and purine nucleotide signaling.
Collapse
Affiliation(s)
- Joanne S Ingwall
- NMR Laboratory for Physiological Chemistry, Brigham and Women's Hospital, 221 Longwood Avenue, Room 247, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Wallis J, Lygate CA, Fischer A, ten Hove M, Schneider JE, Sebag-Montefiore L, Dawson D, Hulbert K, Zhang W, Zhang MH, Watkins H, Clarke K, Neubauer S. Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation 2005; 112:3131-9. [PMID: 16286605 DOI: 10.1161/circulationaha.105.572990] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is associated with deranged cardiac energy metabolism, including reductions of creatine and phosphocreatine. Interventions that increase myocardial high-energy phosphate stores have been proposed as a strategy for treatment of heart failure. Previously, it has not been possible to increase myocardial creatine and phosphocreatine concentrations to supranormal levels because they are subject to tight regulation by the sarcolemmal creatine transporter (CrT). METHODS AND RESULTS We therefore created 2 transgenic mouse lines overexpressing the myocardial creatine transporter (CrT-OE). Compared with wild-type (WT) littermate controls, total creatine (by high-performance liquid chromatography) was increased in CrT-OE hearts (66+/-6 nmol/mg protein in WT versus 133+/-52 nmol/mg protein in CrT-OE). Phosphocreatine levels (by 31P magnetic resonance spectroscopy) were also increased but to a lesser extent. Surprisingly, CrT-OE mice developed left ventricular (LV) dilatation (LV end-diastolic volume: 21.5+/-4.3 microL in WT versus 33.1+/-9.6 microL in CrT-OE; P=0.002), substantial LV dysfunction (ejection fraction: 64+/-9% in WT versus 49+/-13% in CrT-OE; range, 22% to 70%; P=0.003), and LV hypertrophy (by 3-dimensional echocardiography and magnetic resonance imaging). Myocardial creatine content correlated closely with LV end-diastolic volume (r=0.51, P=0.02), ejection fraction (r=-0.74, P=0.0002), LV weight (r=0.59, P=0.006), LV end-diastolic pressure (r=0.52, P=0.02), and dP/dt(max) (r=-0.69, P=0.0008). Despite increased creatine and phosphocreatine levels, CrT-OE hearts showed energetic impairment, with increased free ADP concentrations and reduced free-energy change levels. CONCLUSIONS Overexpression of the CrT leads to supranormal levels of myocardial creatine and phosphocreatine, but the heart is incapable of keeping the augmented creatine pool adequately phosphorylated, resulting in increased free ADP levels, LV hypertrophy, and dysfunction. Our data demonstrate that a disturbance of the CrT-mediated tight regulation of cardiac energy metabolism has deleterious functional consequences. These findings caution against the uncritical use of creatine as a therapeutic agent in heart disease.
Collapse
Affiliation(s)
- Julie Wallis
- Department of Cardiovascular Medicine, University of Oxford, Oxford, England
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85:1093-129. [PMID: 15987803 DOI: 10.1152/physrev.00006.2004] [Citation(s) in RCA: 1476] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The alterations in myocardial energy substrate metabolism that occur in heart failure, and the causes and consequences of these abnormalities, are poorly understood. There is evidence to suggest that impaired substrate metabolism contributes to contractile dysfunction and to the progressive left ventricular remodeling that are characteristic of the heart failure state. The general concept that has recently emerged is that myocardial substrate selection is relatively normal during the early stages of heart failure; however, in the advanced stages there is a downregulation in fatty acid oxidation, increased glycolysis and glucose oxidation, reduced respiratory chain activity, and an impaired reserve for mitochondrial oxidative flux. This review discusses 1) the metabolic changes that occur in chronic heart failure, with emphasis on the mechanisms that regulate the changes in the expression of metabolic genes and the function of metabolic pathways; 2) the consequences of these metabolic changes on cardiac function; 3) the role of changes in myocardial substrate metabolism on ventricular remodeling and disease progression; and 4) the therapeutic potential of acute and long-term manipulation of cardiac substrate metabolism in heart failure.
Collapse
Affiliation(s)
- William C Stanley
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4970, USA.
| | | | | |
Collapse
|
49
|
Abstract
The requirement of chemical energy in the form of ATP to support systolic and diastolic work of the heart is absolute. Because of its central role in cardiac metabolism and performance, the subject of this review on energetics in the failing heart is ATP. We briefly review the basics of myocardial ATP metabolism and describe how this changes in the failing heart. We present an analysis of what is now known about the causes and consequences of these energetic changes and conclude by commenting on unsolved problems and opportunities for future basic and clinical research.
Collapse
Affiliation(s)
- Joanne S Ingwall
- Brigham and Women's Hospital, Harvard Medical School, Boston, Mass, USA
| | | |
Collapse
|
50
|
Blunt BC, Chen Y, Potter JD, Hofmann PA. Modest actomyosin energy conservation increases myocardial postischemic function. Am J Physiol Heart Circ Physiol 2004; 288:H1088-96. [PMID: 15498825 DOI: 10.1152/ajpheart.00746.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have proposed that pharmacological preconditioning, leading to PKC-epsilon activation, in hearts improves postischemic functional recovery through a decrease in actomyosin ATPase activity and subsequent ATP conservation. The purpose of the present study was to determine whether moderate PKC-independent decreases in actomyosin ATPase are sufficient to improve myocardial postischemic function. Rats were given propylthiouracil (PTU) for 8 days to induce a 25% increase in beta-myosin heavy chain with a 28% reduction in actomyosin ATPase activity. Recovery of postischemic left ventricular developed pressure (LVDP) was significantly higher in PTU-treated rat hearts subjected to 30 min of global ischemia than in control hearts: 57.9 +/- 6.2 vs. 32.6 +/- 5.1% of preischemic values. In addition, PTU-treated hearts exhibited a delayed onset of rigor contracture during ischemia and a higher global ATP content after ischemia. In the second part of our study, we demonstrated a lower maximal actomyosin ATPase and a higher global ATP content after ischemia in human troponin T (TnT) transgenic mouse hearts. In mouse hearts with and without a point mutation at F110I of human TnT, recovery of postischemic LVDP was 55.4 +/- 5.5 and 62.5 +/- 14.5% compared with 20.0 +/- 2.9% in nontransgenic mouse hearts after 35 min of global ischemia. These results are consistent with the hypothesis that moderate decreases in actomyosin ATPase activity result in net ATP conservation that is sufficient to improve postischemic contractile function.
Collapse
Affiliation(s)
- Bradford C Blunt
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida, USA
| | | | | | | |
Collapse
|