1
|
Kweon B, Kim DU, Oh JY, Bae GS, Park SJ. Guggulsterone protects against lipopolysaccharide-induced inflammation and lethal endotoxemia via heme oxygenase-1. Int Immunopharmacol 2023; 124:111073. [PMID: 37844468 DOI: 10.1016/j.intimp.2023.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Guggulsterone (GS) is a phytosterol used to treat inflammatory diseases. Although many studies have examined the anti-inflammatory activities of GS, the detailed mechanisms of GS in lipopolysaccharide (LPS)-induced inflammation and endotoxemia have not yet been examined. Therefore, we investigated the anti-inflammatory effects of GS on LPS-induced inflammation. In murine peritoneal macrophages, the anti-inflammatory activity of GS was primarily mediated by heme oxygenase-1 (HO-1) induction. HO-1 induction by GS was mediated by GSH depletion and reactive oxygen species (ROS) production. The ROS generated by GS caused the phosphorylation of GSK3β (ser9/21) and p38, leading to the translocation of nuclear factor erythroid-related factor 2 (Nrf2), which ultimately induced HO-1. In addition, GS pretreatment significantly inhibited inducible nitric oxide synthase (iNOS), iNOS-derived NO, and COX-2 protein and mRNA expression, and production of COX-derived prostaglandin PGE2, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). In a mouse model of endotoxemia, GS treatment prolonged survival and inhibited the expression of inflammatory mediators, including IL-1β, IL-6, and TNF-α. GS treatment also inhibited LPS-induced liver injury. These results suggest that GS-induced HO-1 could exert anti-inflammatory effects via ROS-dependent GSK (ser21/9)-p38 phosphorylation and nuclear translocation of Nrf2.
Collapse
Affiliation(s)
- Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Jin-Young Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea.
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea.
| |
Collapse
|
2
|
Naryzhnaya NV, Ma HJ, Maslov LN. The involvement of protein kinases in the cardioprotective effect of chronic hypoxia. Physiol Res 2020; 69:933-945. [PMID: 33129243 DOI: 10.33549/physiolres.934439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this review is to analyze the involvement of protein kinases in the cardioprotective mechanism induced by chronic hypoxia. It has been reported that chronic intermittent hypoxia contributes to increased expression of the following kinases in the myocardium: PKCdelta, PKCalpha, p-PKCepsilon, p-PKCalpha, AMPK, p-AMPK, CaMKII, p-ERK1/2, p-Akt, PI3-kinase, p-p38, HK-1, and HK-2; whereas, chronic normobaric hypoxia promotes increased expression of the following kinases in the myocardium: PKCepsilon, PKCbetaII, PKCeta, CaMKII, p-ERK1/2, p-Akt, p-p38, HK-1, and HK-2. However, CNH does not promote enhanced expression of the AMPK and JNK kinases. Adaptation to hypoxia enhances HK-2 association with mitochondria and causes translocation of PKCdelta, PKCbetaII, and PKCeta to the mitochondria. It has been shown that PKCdelta, PKCepsilon, ERK1/2, and MEK1/2 are involved in the cardioprotective effect of chronic hypoxia. The role of other kinases in the cardioprotective effect of adaptation to hypoxia requires further research.
Collapse
Affiliation(s)
- N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | | | | |
Collapse
|
3
|
Immohr MB, Pinto A, Jenke A, Boeken U, Lichtenberg A, Akhyari P. Prävention von Ischämie‑/Reperfusionsschäden. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2020. [DOI: 10.1007/s00398-020-00394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Altamish M, Samuel VP, Dahiya R, Singh Y, Deb PK, Bakshi HA, Tambuwala MM, Chellappan DK, Collet T, Dua K, Gupta G. Molecular signaling of G-protein-coupled receptor in chronic heart failure and associated complications. Drug Dev Res 2019; 81:23-31. [PMID: 31785110 DOI: 10.1002/ddr.21627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 01/14/2023]
Abstract
The well-known condition of heart failure is a clinical syndrome that results when the myocardium's ability to pump enough blood to meet the body's metabolic needs is impaired. Most of the cardiac activity is maintained by adrenoceptors, are categorized into two main α and β and three distinct subtypes of β receptor: β1-, β2-, and β3-adrenoceptors. The β adrenoreceptor is the main regulatory macro proteins, predominantly available on heart and responsible for down regulatory cardiac signaling. Moreover, the pathological involvement of Angiotensin-converting enzyme 1 (ACE1)/angiotensin II (Ang II)/angiotensin II type 1 (AT1) axis and beneficial ACE2/Ang (1-7)/Mas receptor axis also shows protective role via Gi βγ, during heart failure these receptors get desensitized or internalized due to increase in the activity of G-protein-coupled receptor kinase 2 (GRK2) and GRK5, responsible for phosphorylation of G-protein-mediated down regulatory signaling. Here, we investigate the various clinical and preclinical data that exhibit the molecular mechanism of upset level of GRK change the cardiac activity during failing heart.
Collapse
Affiliation(s)
- Mohammad Altamish
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Yogendra Singh
- Department of Pharmaceutical Sciences, Mahatma Gandhi College of Pharmaceutical Sciences, Jaipur, Rajasthan, India
| | | | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Bajhol, Sultanpur, Solan, Himachal Pradesh, 173 229, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| |
Collapse
|
5
|
Kongpol K, Nernpermpisooth N, Prompunt E, Kumphune S. Endothelial-Cell-Derived Human Secretory Leukocyte Protease Inhibitor (SLPI) Protects Cardiomyocytes against Ischemia/Reperfusion Injury. Biomolecules 2019; 9:biom9110678. [PMID: 31683729 PMCID: PMC6920779 DOI: 10.3390/biom9110678] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial cell (EC)-derived factors play an important role in endothelial-cardiomyocyte crosstalk and could save cardiomyocytes (CMs) from injury. The manipulation of endothelial cells to secrete protective factors could enhance cardioprotection. Secretory leukocyte protease inhibitor (SLPI) has been known to protect the heart. The goal of this study was to evaluate the in vitro paracrine protective effect and mechanisms of EC-derived human SLPI on cardiomyocytes subjected to hypoxia/reoxygenation (H/R) injury. Stable endothelial cells overexpressing human SLPI were generated from an endothelial cell line (EA.hy926). The cytoprotective effect was determined by cell survival assay. The results showed that endothelial-derived recombinant human SLPI (rhSLPI) reduced simulated ischemia/reperfusion (I/R)-(81.75% ± 1.42% vs. 60.27% ± 2.52%, p < 0.05) and hypoxia/reoxygenation (H/R)-induced EC injury (83.57% ± 1.78% vs. 63.07% ± 1.93%, p < 0.05). Moreover, co-culture of ECs overexpressing rhSLPI with CMs at ratios 1:1 and 1:3 or treatment with conditioned medium enhanced cell viability by 10.51-16.7% (co-culture) and 15.25-20.45% (conditioned medium) by reducing intracellular reactive oxygen species (ROS) production, the Bax/Bcl-2 expression ratio, caspase-3, and caspase-8, and in preconditioned CMs by activation of p38 MAPK and Akt survival kinase. In conclusion, this study showed for the first time that EC-derived rhSLPI provided cardio-vasculoprotective effects against I/R injury as a possible alternative therapeutic strategy for cardioprotection.
Collapse
Affiliation(s)
- Kantapich Kongpol
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Nitirut Nernpermpisooth
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Eakkapote Prompunt
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Sarawut Kumphune
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
6
|
Gong XY, Zhang Y. Protective effect of miR-20a against hypoxia/reoxygenation treatment on cardiomyocytes cell viability and cell apoptosis by targeting TLR4 and inhibiting p38 MAPK/JNK signaling. In Vitro Cell Dev Biol Anim 2019; 55:793-800. [PMID: 31444671 DOI: 10.1007/s11626-019-00399-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are recognized to hold essential parts in the course of pathophysiology participating in myocardial ischemia/reperfusion (I/R) injury. The current study was intended to appraise the functional implication and underlying regulatory mechanism action of miR-20a in myocardial I/R injury. In cardiomyocyte hypoxia/reoxygenation (H/R) model simulating I/R, we observed that miR-20a was diminished in H9c2 cells subjected to H/R. The miR-20a mimics promoted cardiomyocyte viability and reduced H/R-triggered cell apoptosis, while the miR-20a inhibitors induced the inverse response in H9c2 cells subjected to H/R injury. Moreover, we ascertained that TLR4 was one downstream target gene of miR-20a and revealed that miR-20a might hold its protective action on cardiomyocytes subjected to H/R by inactivating p38 MAPK/JNK signaling. In summary, this study highlighted the relieved potential of miR-20a against cardiomyocyte H/R injury and suggested its favorable therapeutic role for myocardial I/R injury.
Collapse
Affiliation(s)
- Xin-Yu Gong
- International Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Yun Zhang
- International Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
7
|
Abstract
G protein-coupled receptors (GPCRs) are critical cellular sensors that mediate numerous physiological processes. In the heart, multiple GPCRs are expressed on various cell types, where they coordinate to regulate cardiac function by modulating critical processes such as contractility and blood flow. Under pathological settings, these receptors undergo aberrant changes in expression levels, localization and capacity to couple to downstream signalling pathways. Conventional therapies for heart failure work by targeting GPCRs, such as β-adrenergic receptor and angiotensin II receptor antagonists. Although these treatments have improved patient survival, heart failure remains one of the leading causes of mortality worldwide. GPCR kinases (GRKs) are responsible for GPCR phosphorylation and, therefore, desensitization and downregulation of GPCRs. In this Review, we discuss the GPCR signalling pathways and the GRKs involved in the pathophysiology of heart disease. Given that increased expression and activity of GRK2 and GRK5 contribute to the loss of contractile reserve in the stressed and failing heart, inhibition of overactive GRKs has been proposed as a novel therapeutic approach to treat heart failure.
Collapse
|
8
|
Zhang G, Yang Y, Huang Y, Zhang L, Ling Z, Zhu Y, Wang F, Zou X, Chen M. Hypoxia-induced extracellular vesicles mediate protection of remote ischemic preconditioning for renal ischemia-reperfusion injury. Biomed Pharmacother 2017; 90:473-478. [DOI: 10.1016/j.biopha.2017.03.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
|
9
|
Shafi S, Codrington R, Gidden LM, Ferns GAA. Increased expression of phosphorylated forms of heat-shock protein-27 and p38MAPK in macrophage-rich regions of fibro-fatty atherosclerotic lesions in the rabbit. Int J Exp Pathol 2016; 97:56-65. [PMID: 26853073 DOI: 10.1111/iep.12167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/15/2015] [Indexed: 11/30/2022] Open
Abstract
We aimed to assess the expression and distribution of Hsp27, pHsp27 (Ser82), p38MAPK and p-p38MAPK in fibro-fatty atherosclerotic lesions and the myocardium of hypercholesterolaemic rabbits. Male New Zealand white rabbits were fed a high-cholesterol diet for 18 weeks, maintaining serum cholesterol at approximately 20 mmol/l over this period. Aortic arch and myocardial tissues were analysed by Western blot, immunohistochemistry and double immunofluorescence. Plasma Hsp27 levels were measured by ELISA. There was a significant increase in the expression of monomeric and dimeric forms of Hsp27, together with pHsp27 (Ser82), p38MAPK and p-p38MAPK in the fibro-fatty atherosclerotic lesions (P < 0.01; P < 0.05; P < 0.001; and P < 0.001, respectively) and the myocardial tissues (P < 0.001) from the cholesterol-fed rabbits compared with equivalent tissues from controls when the plasma concentration was low. Immunohistochemical analysis of the fibro-fatty lesions showed marked increases in Hsp27 and pHsp27 (Ser82) immunoreactivity. Double immunostaining showed intense expression of pHsp27 and p-p38MAPK in regions that were rich in macrophages, suggesting a close association with these inflammatory cells, whereas, in regions rich in smooth muscle cells, only p-p38MAPK was found to be strongly expressed. An increased expression of pHsp27 (Ser82) was spatially associated with increased p-p38MAPK within fibro-fatty atherosclerotic lesions and was colocalized to regions rich in macrophages. The initial increase in plasma Hsp27 levels may reflect the increase in systemic inflammation and oxidative stress in the early phases of disease. The falling concentrations subsequently may be coincident with the development of the advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- Shahida Shafi
- Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, University of Surrey, Guildford, Surrey, UK
| | | | - Lewis Michael Gidden
- Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, University of Surrey, Guildford, Surrey, UK
| | | |
Collapse
|
10
|
Pernow J, Kiss A, Tratsiakovich Y, Climent B. Tissue-specific up-regulation of arginase I and II induced by p38 MAPK mediates endothelial dysfunction in type 1 diabetes mellitus. Br J Pharmacol 2015; 172:4684-98. [PMID: 26140333 PMCID: PMC4594272 DOI: 10.1111/bph.13242] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Emerging evidence suggests a selective up-regulation of arginase I in diabetes causing coronary artery disease; however, the mechanisms behind this up-regulation are still unknown. Activated p38 MAPK has been reported to increase arginase II in various cardiovascular diseases. We therefore tested the role of p38 MAPK in the regulation of arginase I and II expression and its effect on endothelial dysfunction in diabetes mellitus. EXPERIMENTAL APPROACH Endothelial function was determined in septal coronary (SCA), left anterior descending coronary (LAD) and mesenteric (MA) arteries from healthy and streptozotocin-induced diabetic Wistar rats by wire myographs. Arginase activity and protein levels of arginase I, II, phospho-p38 MAPK and phospho-endothelial NOS (eNOS) (Ser(1177) ) were determined in these arteries from diabetic and healthy rats treated with a p38 MAPK inhibitor in vivo. KEY RESULTS Diabetic SCA and MA displayed impaired endothelium-dependent relaxation, which was prevented by arginase and p38 MAPK inhibition while LAD relaxation was not affected. Arginase I, phospho-p38 MAPK and eNOS protein expression was increased in diabetic coronary arteries. In diabetic MA, however, increased expression of arginase II and phospho-p38 MAPK, increased arginase activity and decreased expression of eNOS were observed. All these effects were reversed by p38 MAPK inhibition. CONCLUSIONS AND IMPLICATIONS Diabetes-induced activation of p38 MAPK causes endothelial dysfunction via selective up-regulation of arginase I expression in coronary arteries and arginase II expression in MA. Therefore, regional differences appear to exist in the arginase isoforms contributing to endothelial dysfunction in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- J Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Kiss
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Y Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - B Climent
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
11
|
Martin ED, Bassi R, Marber MS. p38 MAPK in cardioprotection - are we there yet? Br J Pharmacol 2015; 172:2101-13. [PMID: 25204838 PMCID: PMC4386984 DOI: 10.1111/bph.12901] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 12/14/2022] Open
Abstract
PKs transfer a phosphate from ATP to the side-chain hydroxyl group of a serine, threonine or tyrosine residue of a substrate protein. This in turn can alter that protein's function; modulating fundamental cellular processes including, metabolism, transcription, growth, division, differentiation, motility and survival. PKs are subdivided into families based on homology. One such group are the stress-activated kinases, which as the name suggests, are activated in response to cellular stresses such as toxins, cytokines, mechanical deformation and osmotic stress. Members include the p38 MAPK family, which is composed of α, β, γ and δ, isoforms which are encoded by separate genes. These kinases transduce extracellular signals and coordinate the cellular responses needed for adaptation and survival. However, in cardiovascular and other disease states, these same systems can trigger maladaptive responses that aggravate, rather than alleviate, the disease. This situation is analogous to adrenergic, angiotensin and aldosterone signalling in heart failure, where inhibition is beneficial despite the importance of these hormones to homeostasis. The question is whether similar benefits could accrue from p38 inhibition? In this review, we will discuss the structure and function of p38, the history of p38 inhibitors and their use in preclinical studies. Finally, we will summarize the results of recent cardiovascular clinical trials with p38 inhibitors.
Collapse
Affiliation(s)
- E D Martin
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| | - R Bassi
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| | - M S Marber
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, The Rayne Institute, St Thomas' HospitalLondon, UK
| |
Collapse
|
12
|
Wang J, Cai Z, Liu J. Microarray analysis for differentially expressed genes of patients undergoing total knee arthroplasty with ischemia preconditioning. J Orthop Surg Res 2014; 9:133. [PMID: 25496472 PMCID: PMC4298116 DOI: 10.1186/s13018-014-0133-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ischemia preconditioning (IPC) has been proved as a powerful method of protecting tissues against ischemia reperfusion insults. We aimed to elucidate the mechanism of IPC in ischemia reperfused tissues. METHODS GSE21164 containing 16 muscle biopsies taken from the operative knee of four IPC-treated patients and four control at the onset of surgery (T¿=¿0) and 1 h into surgery (T¿=¿1) undergoing primary total knee arthroplasty was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between IPC group and control were screened with Limma package in R language. KEGG pathway enrichment analysis was performed by the DAVID online tool. Meanwhile, potential regulatory microRNAs (miRNAs) for downregulated DEGs and targets of transcription factors for upregulated DEGs were screened out. Based on the above DEGs, protein-protein interaction (PPI) networks were constructed by the STRING software. RESULTS Significantly upregulated DEGs at T1 were mainly enriched in asthma and p53 signaling pathway. Meanwhile, significantly enriched transcriptional factor NOTCH1 at T1 and GABP at T0 were obtained. Moreover, miRNA analysis showed that targets of miR141/200a were enriched in downregulated DEGs both at T0 and T1. Mostly, RPA1 and JAK2 in PPI network at T1 were with higher degree. CONCLUSIONS In our study, obtained DEGs, regulatory transcriptional factors, and miRNA might play a vital role in the protection of ischemia reperfusion injury. This finding will provide a deeper understanding to the mechanism of IPC.
Collapse
|
13
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
14
|
Guan J, Li H, Lv T, Chen D, Yuan Y, Qu S. Bone Morphogenic Protein-7 Contributes to Cerebral Ischemic Preconditioning Induced-Ischemic Tolerance by Activating p38 Mitogen-Activated Protein Kinase Signaling Pathway. Inflammation 2014; 37:1289-96. [DOI: 10.1007/s10753-014-9856-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Chen F, Cao YG, Qi HP, Li L, Huang W, Wang Y, Sun HL. Involvement of cardiomyocyte apoptosis in myocardial injury of hereditary epileptic rats. Can J Physiol Pharmacol 2013; 91:804-11. [PMID: 24144051 DOI: 10.1139/cjpp-2013-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many clinical cases have been reported where epilepsy profoundly influenced the pathophysiological function of the heart; however, the underlying mechanisms were not elucidated. We use the tremor (TRM) rat as an animal model of epilepsy to investigate the potential mechanisms of myocardial injury. Cardiac functions were assessed by arrhythmia score, heart rate, heart:body mass ratio, and hemodynamic parameters including left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and maximum rate of left ventricular pressure rise and fall (+dp/dtmax and -dp/dtmax). Catecholamine level was detected by HPLC. Apoptotic index was estimated by TUNEL assay. The expressions of Bcl-2, Bax, caspase-3, extracellular signal-regulated protein kinase (ERK), c-Jun NH2-terminal protein kinases (JNK), and p38 were evaluated by Western blot. The results indicated that there existed cardiac dysfunction and cardiomyocyte apoptosis, accompanied by increasing catecholamine levels in TRM rats. Further investigation revealed that apoptosis was mediated by reducing Bcl-2, upregulating Bax, and activating caspase-3. Additional experiments demonstrated that P-ERK1/2 was decreased, whereas P-JNK and P-p38 were up-regulated. Our results suggest that the sympathetic nervous system activation and cardiomyocyte apoptosis are involved in the myocardial injury of TRM rats. The mechanisms of apoptosis might be associated with the activation of the mitochondria-initiated and the mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Fan Chen
- a Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang 163319, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Lu YY, Chen YC, Kao YH, Chen SA, Chen YJ. Extracellular matrix of collagen modulates arrhythmogenic activity of pulmonary veins through p38 MAPK activation. J Mol Cell Cardiol 2013; 59:159-66. [PMID: 23524328 DOI: 10.1016/j.yjmcc.2013.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, p<0.005) and a larger amplitude of delayed afterdepolarization (16±2 vs. 10±1mV, p<0.01). Moreover, collagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Denise Martin E, De Nicola GF, Marber MS. New therapeutic targets in cardiology: p38 alpha mitogen-activated protein kinase for ischemic heart disease. Circulation 2012; 126:357-68. [PMID: 22801653 DOI: 10.1161/circulationaha.111.071886] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Eva Denise Martin
- King's College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital Campus, United Kingdom
| | | | | |
Collapse
|
19
|
Zhao TC, Zhang L, Liu JT, Guo TL. Disruption of Nox2 and TNFRp55/p75 eliminates cardioprotection induced by anisomycin. Am J Physiol Heart Circ Physiol 2012; 303:H1263-72. [PMID: 22982779 DOI: 10.1152/ajpheart.00306.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient activation of p38 through anisomycin is demonstrated to precondition the heart against myocardial injury. However, it remains unknown whether specific TNF-α receptor (TNFR) p55/p75 and Nox2, a subunit of NADPH oxidase, are involved in this event. We sought to investigate whether the genetic disruption of TNFRp55/p75 and Nox2 eliminated cardioprotection elicited by anisomycin and whether p38-dependent activation of Nox2 stimulated TNFR to ultimately achieve protective effects. Adult wild-type and TNFR p55/p75(-/-) and Nox2(-/-) mice received intraperitoneal injections of anisomycin (0.1 mg/kg), a potent activator of p38. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after 24 h. Left ventricular function was measured, and infarct size was determined. Myocardial TNF-α protein, Nox2, and superoxides releases were detected. Gel kinase assay was employed to detect the effect of p38 on Nox2 phosphorylation. Activation of p38 through anisomycin produces marked improvements in left ventricular functional recovery, and the reduction of myocardial infarction, which were abrogated by disruption of Nox2 and TNFR p55/p75. Disruption of Nox2 and TNFR p55/p75 abolished the effect of anisomycin-induced reduction of infarct size. Anisomycin induced the production of TNF-α, which was abrogated in Nox2(-/-) mice and by treatment with SB203580, but not by disruption of p55/p75. Anisomycin treatment resulted in an increase in Nox2 protein and the phosphorylation of Nox2, which was blocked by inhibition of p38. Taken together, these results indicate that stimulation of the Nox2 and TNFR p55/p75 pathway is a novel approach to anisomycin-induced cardioprotection.
Collapse
Affiliation(s)
- Ting C Zhao
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | | | | | | |
Collapse
|
20
|
Taguchi K, Morishige A, Matsumoto T, Kamata K, Kobayashi T. Enhanced estradiol-induced vasorelaxation in aortas from type 2 diabetic mice may reflect a compensatory role of p38 MAPK-mediated eNOS activation. Pflugers Arch 2012; 464:205-15. [PMID: 22729753 DOI: 10.1007/s00424-012-1131-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 12/23/2022]
Abstract
Cardiovascular problems are a major cause of morbidity and mortality, mainly due to coronary artery disease and atherosclerosis, in type 2 diabetes mellitus. However, female gender is a protective factor in the development of, for example, atherosclerosis and hypertension. One of the female hormones, 17β-estradiol (E2), is known to protect against the cardiovascular injury resulting from endothelial dysfunction, but the mechanism by which it does so remains unknown. Our hypothesis was that E2-mediated activation of Akt and mitogen-activated protein kinase (MAPK), and the subsequent endothelial NO synthase (eNOS) phosphorylation, might protect the aorta in diabetic mellitus. The experimental type 2 diabetic model we employed to test that hypothesis (female mice given streptozotocin and nicotinamide) is here termed fDM. In fDM aortas, we examined the E2-induced relaxation response and the associated protein activities. In control (age-matched, nondiabetic) aortas, E2 induced a vascular relaxation response that was mediated via Akt/eNOS and mitogen-activated/ERK-activating kinase (MEK)/eNOS pathways. In fDM aortas (vs. control aortas), (a) the E2-induced relaxation was enhanced, (b) the mediation of the response was different (via Akt/eNOS and p38 MAPK/eNOS pathways), and (c) E2 stimulation increased p38 MAPK and eNOS phosphorylations, decreased MEK phosphorylation, but did not alter estrogen receptor activity. We infer that at least in fDM aortas, E2 has beneficial effects (enhanced vascular relaxation and protection) that are mediated through Akt activation and (compensating for reduced MEK activation) p38 MAPK activation, leading to enhanced eNOS phosphorylation.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | | | | | | | | |
Collapse
|
21
|
Kim SJ, Jeong CW, Bae HB, Kwak SH, Son JK, Seo CS, Lee HJ, Lee J, Yoo KY. Protective effect of sauchinone against regional myocardial ischemia/reperfusion injury: inhibition of p38 MAPK and JNK death signaling pathways. J Korean Med Sci 2012; 27:572-5. [PMID: 22563228 PMCID: PMC3342554 DOI: 10.3346/jkms.2012.27.5.572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/01/2011] [Indexed: 11/20/2022] Open
Abstract
Sauchinone has been known to have anti-inflammatory and antioxidant effects. We determined whether sauchinone is beneficial in regional myocardial ischemia/reperfusion (I/R) injury. Rats were subjected to 20 min occlusion of the left anterior descending coronary artery, followed by 2 hr reperfusion. Sauchinone (10 mg/kg) was administered intraperitoneally 30 min before the onset of ischemia. The infarct size was measured 2 hr after resuming the perfusion. The expression of cell death kinases (p38 and JNK) and reperfusion injury salvage kinases (phosphatidylinositol-3-OH kinases-Akt, extra-cellular signal-regulated kinases [ERK1/2])/glycogen synthase kinase (GSK)-3β was determined 5 min after resuming the perfusion. Sauchinone significantly reduced the infarct size (29.0% ± 5.3% in the sauchinone group vs 44.4% ± 6.1% in the control, P < 0.05). Accordingly, the phosphorylation of JNK and p38 was significantly attenuated, while that of ERK1/2, Akt and GSK-3β was not affected. It is suggested that sauchinone protects against regional myocardial I/R injury through inhibition of phosphorylation of p38 and JNK death signaling pathways.
Collapse
Affiliation(s)
- Seok Jai Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Cheol Won Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Hong Beom Bae
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sang Hyun Kwak
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Keun Son
- College of Pharmacy, Yeungnam University, Gyongsan, Korea
| | - Chang-Seob Seo
- College of Pharmacy, Yeungnam University, Gyongsan, Korea
- Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Hyun-Jung Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Kyung Yeon Yoo
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
22
|
Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation. J Transplant 2012; 2012:928954. [PMID: 22530110 PMCID: PMC3316985 DOI: 10.1155/2012/928954] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022] Open
Abstract
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
Collapse
|
23
|
Multiple Roles of STAT3 in Cardiovascular Inflammatory Responses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:63-73. [DOI: 10.1016/b978-0-12-396456-4.00010-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Kumphune S, Chattipakorn S, Chattipakorn N. Role of p38 inhibition in cardiac ischemia/reperfusion injury. Eur J Clin Pharmacol 2011; 68:513-24. [PMID: 22205273 DOI: 10.1007/s00228-011-1193-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
The p38 mitogen-activated protein kinases (p38s) are Ser/Thr kinases that are activated as a result of cellular stresses and various pathological conditions, including myocardial ischemia/reperfusion. p38 activation has been shown to accentuate myocardial injury and impair cardiac function. Inhibition of p38 activation and its activity has been proposed to be cardioprotective by slowing the rate of myocardial damage and improving cardiac function. The growing body of evidence on the use of p38 inhibitors as therapeutic means for responding to heart problems is controversial, since both beneficial as well as a lack of protective effects on the heart have been reported. In this review, the outcomes from studies investigating the effect of p38 inhibitors on the heart in a wide range of study models, including in vitro, ex vivo, and in vivo models, are discussed. The correlations of experimental models with practical clinical usefulness, as well as the need for future studies regarding the use of p38 inhibitors, are also addressed.
Collapse
Affiliation(s)
- Sarawut Kumphune
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | | | | |
Collapse
|
25
|
Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 2011; 301:H1723-41. [PMID: 21856909 DOI: 10.1152/ajpheart.00553.2011] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart diseases due to myocardial ischemia, such as myocardial infarction or ischemic heart failure, are major causes of death in developed countries, and their number is unfortunately still growing. Preliminary exploration into the pathophysiology of ischemia-reperfusion injury, together with the accumulation of clinical evidence, led to the discovery of ischemic preconditioning, which has been the main hypothesis for over three decades for how ischemia-reperfusion injury can be attenuated. The subcellular pathophysiological mechanism of ischemia-reperfusion injury and preconditioning-induced cardioprotection is not well understood, but extensive research into components, including autacoids, ion channels, receptors, subcellular signaling cascades, and mitochondrial modulators, as well as strategies for modulating these components, has made evolutional progress. Owing to the accumulation of both basic and clinical evidence, the idea of ischemic postconditioning with a cardioprotective potential has been discovered and established, making it possible to apply this knowledge in the clinical setting after ischemia-reperfusion insult. Another a great outcome has been the launch of translational studies that apply basic findings for manipulating ischemia-reperfusion injury into practical clinical treatments against ischemic heart diseases. In this review, we discuss the current findings regarding the fundamental pathophysiological mechanisms of ischemia-reperfusion injury, the associated protective mechanisms of ischemic pre- and postconditioning, and the potential seeds for molecular, pharmacological, or mechanical treatments against ischemia-reperfusion injury, as well as subsequent adverse outcomes by modulation of subcellular signaling mechanisms (especially mitochondrial function). We also review emerging translational clinical trials and the subsistent clinical comorbidities that need to be overcome to make these trials applicable in clinical medicine.
Collapse
Affiliation(s)
- Shoji Sanada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | |
Collapse
|
26
|
Markou T, Makridou Z, Galatou E, Lazou A. Multiple signalling pathways underlie the protective effect of levosimendan in cardiac myocytes. Eur J Pharmacol 2011; 667:298-305. [PMID: 21664904 DOI: 10.1016/j.ejphar.2011.05.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/18/2011] [Accepted: 05/23/2011] [Indexed: 11/26/2022]
Abstract
Levosimendan is a cardiovascular drug for the treatment of acute and decompensated heart failure. The current weight of evidence on the cardioprotective effects of levosimendan originates from whole heart models and there is no information on the mechanism whereby signalling pathways are activated. In the present study, we investigated the effect of levosimendan on ischaemia/reperfusion injury and the underlying mechanism in cardiac myocytes. Pretreatment with levosimendan reversed the effects of ischaemia and ischaemia/reperfusion on cell viability and enhanced phosphorylation of Akt, p38-mitogen activated protein kinase (MAPK) and extracellular signal-regulated kinases 1/2 (ERK1/2). Inhibitors of these kinases and the blocker of the mitochondrial K(ATP) channels, 5-hydroxydecanoate, completely abolished the protection afforded by levosimendan. Levosimendan stimulated the phosphorylation of Akt, ERK1/2 and p38-MAPK with different kinetics and the activation of these pathways was dependent on the opening of the mitochondrial K(ATP) channels and the production of oxygen free radicals. The levosimendan-induced phosphorylation of ERK1/2 and Akt was reduced by inhibitors of epidermal growth factor receptor and Src. On the other hand, inhibition of the protein kinase A (PKA) pathway reduced phosphorylation of p38-MAPK. Furthermore, p38-MAPK was activated when a phosphodiesterase inhibitor or a selective PKA activator was used. Overall, our results suggest that levosimendan regulates the wiring of the natural salvaging pathways to execute the prosurvival signals. This network includes Akt, ERK1/2 and p38-MAPK. Opening of mitochondrial K(ATP) channels and the subsequent production of oxygen free radicals, the epidermal growth factor receptor/Src, and the cAMP/PKA pathways seem to mediate this response.
Collapse
Affiliation(s)
- Thomais Markou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|
27
|
Sakamoto K, Nakahara T, Ishii K. Rho-Rho kinase pathway is involved in the protective effect of early ischemic preconditioning in the rat heart. Biol Pharm Bull 2011; 34:156-9. [PMID: 21212536 DOI: 10.1248/bpb.34.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown that p38 mitogen-activated protein (MAP) kinase is absolutely necessary for the cardioprotection of early ischemic preconditioning in the heart. Reorganization of actin cytoskeleton after translocation of HSP27, which is mediated by p38 MAP kinase, was reported to be necessary for the cardioprotective effect of early ischemic preconditioning. Although Rho and Rho kinase are reported to regulate reorganization of actin filaments, it is unknown whether Rho-Rho kinase pathway is involved in the cardioprotective effect of early ischemic preconditioning. The aim of the present study is to determine the involvement of Rho-Rho kinase pathway in the protective effect of early ischemic preconditioning in the rat hearts. Dominant-negative Rho significantly reduced the hypoxia-reoxygenation-induced activation of p38 MAP kinase, and constitutive active Rho activated p38 MAP kinase in rat myoblast H9c2 cells. Y-27632, a specific Rho kinase inhibitor, concentration-dependently attenuated the post-ischemic recovery of left ventricular developed pressure by early ischemic preconditioning. Thus, Rho-Rho kinase pathway is, at least in part, involved in the mechanism of early ischemic preconditioning.
Collapse
Affiliation(s)
- Kenji Sakamoto
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108–8641, Japan.
| | | | | |
Collapse
|
28
|
Wergeland A, Bester DJ, Sishi BJN, Engelbrecht AM, Jonassen AK, Van Rooyen J. Dietary red palm oil protects the heart against the cytotoxic effects of anthracycline. Cell Biochem Funct 2011; 29:356-64. [DOI: 10.1002/cbf.1756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 02/07/2011] [Accepted: 03/05/2011] [Indexed: 12/20/2022]
Affiliation(s)
- A. Wergeland
- Institute of Biomedicine; University of Bergen; Bergen; Norway
| | - D. J. Bester
- Department of Biomedical Sciences; Cape Peninsula University of Technology; Cape Town; South Africa
| | - B. J. N. Sishi
- Department of Physiological Sciences; Stellenbosch University; Stellenbosch; South Africa
| | - A. M. Engelbrecht
- Department of Physiological Sciences; Stellenbosch University; Stellenbosch; South Africa
| | - A. K. Jonassen
- Institute of Biomedicine; University of Bergen; Bergen; Norway
| | - J. Van Rooyen
- Department of Biomedical Sciences; Cape Peninsula University of Technology; Cape Town; South Africa
| |
Collapse
|
29
|
|
30
|
Cardioprotective Effects of 2-octynyladenosine (YT-146) in Ischemic/Reperfused Rat Hearts. J Cardiovasc Pharmacol 2011; 57:166-73. [DOI: 10.1097/fjc.0b013e318201c264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Rao J, Zhang C, Wang P, Lu L, Zhang F. All-trans retinoic acid alleviates hepatic ischemia/reperfusion injury by enhancing manganese superoxide dismutase in rats. Biol Pharm Bull 2010; 33:869-75. [PMID: 20460768 DOI: 10.1248/bpb.33.869] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All-trans retinoic acid (atRA) is an active metabolite of vitamin A with antioxidant effects. There have been few reports on the effects of atRA on liver ischemia/reperfusion (I/R) injury. Here we have used a rat liver ischemia/ reperfusion model to analyze the protective effect of atRA. Rats were administered with different does (5-15 mg/kg/d) of atRA intraperitoneally (i.p.) for 14 d before I/R. Partial (70%) hepatic ischemia was induced by clamping the hepatic artery, portal vein, and bile duct to the left and median lobes of the liver using a vascular clamp for 60 min, followed by 24 h of reperfusion. The serum aminotransferase (ALT and AST) and hepatic pathology were used to evaluate I/R injury. The results demonstrate that atRA pretreatment attenuates liver I/R injury by inhibiting the release of malondialdehyde (MDA) and by enhancing the activity of superoxide dismutase (SOD). To gain insight into the mechanism of the SOD up-regulation by atRA, the activity of p38 mitogenactivated protein kinase (p38MAKP) and Akt was measured. The results showed that the phosphorylation of p38MAPK and Akt paralleled the expression of manganese superoxide dismutase (MnSOD). That these activities are related was demonstrated by the addition of a p38 inhibitor which markedly decreased MnSOD levels. Taken together, our data reveal that atRA can protect liver from I/R injury by increaseing MnSOD, which is associated with an increased activity of p38MAPK and Akt.
Collapse
Affiliation(s)
- Jianhua Rao
- Division of Liver Transplantation, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
32
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 554] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
33
|
Leshem-Lev D, Hochhauser E, Chanyshev B, Isak A, Shainberg A. Adenosine A1 and A3 receptor agonists reduce hypoxic injury through the involvement of P38 MAPK. Mol Cell Biochem 2010; 345:153-60. [DOI: 10.1007/s11010-010-0568-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 07/29/2010] [Indexed: 01/09/2023]
|
34
|
Dhalla NS, Müller AL. Protein Kinases as Drug Development Targets for Heart Disease Therapy. Pharmaceuticals (Basel) 2010; 3:2111-2145. [PMID: 27713345 PMCID: PMC4036665 DOI: 10.3390/ph3072111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are intimately integrated in different signal transduction pathways for the regulation of cardiac function in both health and disease. Protein kinase A (PKA), Ca²⁺-calmodulin-dependent protein kinase (CaMK), protein kinase C (PKC), phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are not only involved in the control of subcellular activities for maintaining cardiac function, but also participate in the development of cardiac dysfunction in cardiac hypertrophy, diabetic cardiomyopathy, myocardial infarction, and heart failure. Although all these kinases serve as signal transducing proteins by phosphorylating different sites in cardiomyocytes, some of their effects are cardioprotective whereas others are detrimental. Such opposing effects of each signal transduction pathway seem to depend upon the duration and intensity of stimulus as well as the type of kinase isoform for each kinase. In view of the fact that most of these kinases are activated in heart disease and their inhibition has been shown to improve cardiac function, it is suggested that these kinases form excellent targets for drug development for therapy of heart disease.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| | - Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
35
|
|
36
|
Cross HR, Li M, Petrich BG, Murphy E, Wang Y, Steenbergen C. Effect of p38 MAP kinases on contractility and ischemic injury in intact heart. ACTA PHYSIOLOGICA HUNGARICA 2009; 96:307-23. [PMID: 19706373 PMCID: PMC3137881 DOI: 10.1556/aphysiol.96.2009.3.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The p38 MAP kinases are stress-activated MAP kinases whose induction is often associated with the onset of heart failure. This study investigated the role of p38 MAP kinase isoforms in the regulation of myocardial contractility and ischemia/reperfusion injury using mice with cardiac-specific expression of kinase dead (dominant negative) mutants of p38alpha (p38alphadn) or p38beta (p38betadn). Hearts were subjected to 20 min ischemia and 40 min reperfusion. Immunofluorescence staining for p38alphadn and p38betadn protein was performed on neonatal cardiomyocytes infected with adenovirus expressing flag-tagged p38alphadn and p38betadn protein. Basal contractile function was increased in both p38alphadn and p38betadn hearts compared to WT. Ischemic injury was increased in p38betadn vs. WT hearts, as indicated by lower posti-schemic recoveries of contractile function and ATP. However, despite a similar increase in contractility, ischemic injury was not increased in p38alphadn vs. WT hearts. Immunohistological analysis of cardiomyocytes with comparable levels of protein overexpression show that p38alphadn and p38betadn proteins were co-localized with sarcomeric alpha-actinin, however, p38alphadn was detected in the nucleus while p38betadn was exclusively detected in the cytosol. In summary, attenuated p38 activity led to increased myocardial contractility; specific isoforms of p38 and their sub-cellular localization may have different roles in modulating ischemic injury.
Collapse
Affiliation(s)
- H R Cross
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
37
|
Strande JL, Widlansky ME, Tsopanoglou NE, Su J, Wang J, Hsu A, Routhu KV, Baker JE. Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury. Cardiovasc Res 2009; 83:325-34. [PMID: 19380418 DOI: 10.1093/cvr/cvp122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIMS Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia-reperfusion injury. METHODS AND RESULTS We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia-reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia-reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and K(ATP) channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles. CONCLUSION A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and K(ATP) channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.
Collapse
Affiliation(s)
- Jennifer L Strande
- Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fan WJ, Genade S, Genis A, Huisamen B, Lochner A. Dexamethasone-induced cardioprotection: a role for the phosphatase MKP-1? Life Sci 2009; 84:838-46. [PMID: 19361533 DOI: 10.1016/j.lfs.2009.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 03/24/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
AIMS Previous studies suggested that p38 MAPK activation during sustained myocardial ischaemia and reperfusion was harmful. We hypothesize that attenuation of p38MAPK activity via dephosphorylation by the dual-specificity phosphatase MKP-1 should be protective against ischaemia/reperfusion injury. Since the glucocorticoid, dexamethasone, induces the expression of MKP-1, the aim of this study was to determine whether upregulation of this phosphatase by dexamethasone protects the heart against ischaemia/reperfusion injury. MAIN METHODS Male Wistar rats were treated with dexamethasone (3 mg/kg/day ip) for 10 days, before removal of the hearts for Western blot (ip Dex-P) or perfusion in the working mode (ip Dex+P). Hearts were subjected to 20 min global or 35 min regional ischaemia (36.5 degrees C) and 30 or 120 min reperfusion. In a separate series, dexamethasone (1 microM) was added to the perfusate for 10 min (Pre+Dex) before or after (Rep+Dex) ischaemia. KEY FINDINGS Dexamethasone, administered intraperitoneally or added directly to the perfusate, significantly improved post-ischaemic functional recovery and reduced infarct size compared to untreated controls (p<0.05). These were associated with enhanced up-regulation of MKP-1 protein expression (arbitrary units (mean+/-SD): Untreated: 1; ip Dex-P: 2.59+/-0.22; ip Dex+P: 1.51+/-0.22; Pre+Dex: 4.11+/-0.73, Rep+15'Dex: 1.51+/-0.14; untreated vs. all groups, p<0.05) and attenuation of p38 MAPK activation (p<0.05) in all dexamethasone-treated groups, except for Rep+10'Dex. ERK and PKB/Akt activation were unchanged. SIGNIFICANCE Dexamethasone-induced cardioprotection was associated with upregulation of the phosphatase MKP-1 and inactivation of pro-apoptotic p38 MAPK.
Collapse
Affiliation(s)
- W-J Fan
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Health Sciences, University of Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
39
|
Abstract
Adenosine, a catabolite of ATP, exerts numerous effects in the heart, including modulation of the cardiac response to stress, such as that which occurs during myocardial ischemia and reperfusion. Over the past 20 years, substantial evidence has accumulated that adenosine, administered either prior to ischemia or during reperfusion, reduces both reversible and irreversible myocardial injury. The latter effect results in a reduction of both necrosis or myocardial infarction (MI) and apoptosis. These effects appear to be mediated via the activation of one or more G-protein-coupled receptors (GPCRs), referred to as A(1), A(2A), A(2B) and A(3) adenosine receptor (AR) subtypes. Experimental studies in different species and models suggest that activation of the A(1) or A(3)ARs prior to ischemia is cardioprotective. Further experimental studies reveal that the administration of A(2A)AR agonists during reperfusion can also reduce MI, and recent reports suggest that A(2B)ARs may also play an important role in modulating myocardial reperfusion injury. Despite convincing experimental evidence for AR-mediated cardioprotection, there have been only a limited number of clinical trials examining the beneficial effects of adenosine or adenosine-based therapeutics in humans, and the results of these studies have been equivocal. This review summarizes our current knowledge of AR-mediated cardioprotection, and the roles of the four known ARs in experimental models of ischemia-reperfusion. The chapter concludes with an examination of the clinical trials to date assessing the safety and efficacy of adenosine as a cardioprotective agent during coronary thrombolysis in humans.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, School of Medical Science, Griffith University, Southport, Queensland, 4217, Australia.
| | | |
Collapse
|
40
|
Burger D, Xiang F, Hammoud L, Lu X, Feng Q. Role of heme oxygenase-1 in the cardioprotective effects of erythropoietin during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2008; 296:H84-93. [PMID: 18996987 DOI: 10.1152/ajpheart.00372.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that erythropoietin (EPO) protects cardiomyocytes from apoptosis during myocardial ischemia-reperfusion (I/R). The objective of the present study was to investigate the role of heme oxygenase (HO)-1 in the antiapoptotic effects of EPO. Primary cultures of neonatal mouse cardiomyocytes were subjected to anoxia-reoxygenation (A/R). Pretreatment with EPO significantly reduced apoptosis in A/R-treated cells. This reduction in apoptosis was preceded by an increase in the mRNA and protein expression of HO-1. Selective inhibition of HO-1 using chromium mesoporphyrin (CrMP) significantly diminished the ability of EPO to inhibit apoptosis. Cotreatment of EPO with SB-202190, an inhibitor of p38 activation, blocked the EPO-mediated HO-1 expression and antiapoptotic effects, suggesting a p38-dependent mechanism. The in vivo significance of p38 and HO-1 as mediators of EPO's cardioprotection was investigated in mice subjected to myocardial I/R. Pretreatment with EPO decreased infarct size as well as I/R-induced apoptosis in wild-type mice. However, these effects were significantly diminished in HO-1(-/-) mice. Furthermore, EPO given during ischemia reduced infarct size in mice subjected to I/R, and this effect was blocked by CrMP treatment in wild-type mice. Moreover, inhibition of p38 diminished the cardioprotective effects of EPO. We conclude that upregulation of HO-1 expression via p38 signaling contributes to EPO-mediated cardioprotection during myocardial I/R.
Collapse
Affiliation(s)
- Dylan Burger
- Dept. of Physiology and Pharmacology, Univ. of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
41
|
Valouskova E, Modriansky M. MODULATION OF UCP2 EXPRESSION BY P38 - A LINK TO CARDIOPROTECTION. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152:3-7. [DOI: 10.5507/bp.2008.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
42
|
Kan WH, Hsu JT, Ba ZF, Schwacha MG, Chen J, Choudhry MA, Bland KI, Chaudry IH. p38 MAPK-dependent eNOS upregulation is critical for 17beta-estradiol-mediated cardioprotection following trauma-hemorrhage. Am J Physiol Heart Circ Physiol 2008; 294:H2627-36. [PMID: 18408136 DOI: 10.1152/ajpheart.91444.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have shown that p38 MAPK and nitric oxide (NO), generated by endothelial NO synthase (eNOS), play key roles under physiological and pathophysiological conditions. Although administration of 17beta-estradiol (E2) protects cardiovascular injury from trauma-hemorrhage, the mechanism by which E2 produces those effects remains unknown. Our objective was to determine whether the E2-mediated activation of myocardial p38 MAPK and subsequent eNOS expression/phosphorylation would protect the heart following trauma-hemorrhage. To study this, male Sprague-Dawley rats underwent soft-tissue trauma (midline laparatomy) and hemorrhagic shock (mean blood pressure 35-40 mmHg for 90 min), followed by fluid resuscitation. Animals were pretreated with specific p38 MAPK inhibitor SB-203580 (SB; 2 mg/kg), and nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 30 mg/kg) 30 min before vehicle (cyclodextrin) or E2 (100 microg/kg) treatment, followed by resuscitation, and were killed 2 h thereafter. Cardiovascular performance and other parameters were measured. E2 administration following trauma-hemorrhage increased cardiac p38 MAPK activity, eNOS expression and phosphorylation at Ser(1177), and nitrate/nitrite levels in plasma and heart tissues; these were associated with normalized cardiac performance, which was reversed by SB administration. In addition, E2 also prevented trauma-hemorrhage-induced increase in cytokines (IL-6 and TNF-alpha), chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant-1), and ICAM-1, which was reversed by l-NAME administration. Administration of E2 following trauma-hemorrhage attenuated cardiac tissue injury markers, myeloperoxidase activity, and nitrotyrosine level, which were reversed by treatment with SB and l-NAME. The salutary effects of E2 on cardiac functions and tissue protection following trauma-hemorrhage are mediated, in part, through activation of p38 MAPK and subsequent eNOS expression and phosphorylation.
Collapse
Affiliation(s)
- Wen-Hong Kan
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008; 88:581-609. [PMID: 18391174 PMCID: PMC3199571 DOI: 10.1152/physrev.00024.2007] [Citation(s) in RCA: 1084] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play an important role in cell death and cardioprotection. During ischemia, when ATP is progressively depleted, ion pumps cannot function resulting in a rise in calcium (Ca(2+)), which further accelerates ATP depletion. The rise in Ca(2+) during ischemia and reperfusion leads to mitochondrial Ca(2+) accumulation, particularly during reperfusion when oxygen is reintroduced. Reintroduction of oxygen allows generation of ATP; however, damage to the electron transport chain results in increased mitochondrial generation of reactive oxygen species (ROS). Mitochondrial Ca(2+) overload and increased ROS can result in opening of the mitochondrial permeability transition pore, which further compromises cellular energetics. The resultant low ATP and altered ion homeostasis result in rupture of the plasma membrane and cell death. Mitochondria have long been proposed as central players in cell death, since the mitochondria are central to synthesis of both ATP and ROS and since mitochondrial and cytosolic Ca(2+) overload are key components of cell death. Many cardioprotective mechanisms converge on the mitochondria to reduce cell death. Reducing Ca(2+) overload and reducing ROS have both been reported to reduce ischemic injury. Preconditioning activates a number of signaling pathways that reduce Ca(2+) overload and reduce activation of the mitochondrial permeability transition pore. The mitochondrial targets of cardioprotective signals are discussed in detail.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.
| | | |
Collapse
|
44
|
Schwertz H, Carter JM, Abdudureheman M, Russ M, Buerke U, Schlitt A, Müller-Werdan U, Prondzinsky R, Werdan K, Buerke M. Myocardial ischemia/reperfusion causes VDAC phosphorylation which is reduced by cardioprotection with a p38 MAP kinase inhibitor. Proteomics 2008; 7:4579-88. [PMID: 18072194 DOI: 10.1002/pmic.200700734] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myocardial ischemia (MI) and reperfusion (R) results in activation of the p38 MAP kinase pathway. This pathway phosphorylates transcription factors and cytoplasmic proteins leading to expression of adhesion molecules and cytokines, increased neutrophil activation, and finally, myocardial necrosis and apoptosis. We studied the effects of a p38 MAP kinase inhibitor, PD169316, on cardioprotection, protein expression, and tyrosine phosphorylation, in a rabbit model of 1 h of (MI) and 3 h of (R). PD169316 administered just before (R) significantly reduced myocardial neutrophil accumulation, necrosis area (28.4 +/- 7.9% vs. 56.4 +/- 7.9% necrosis/AAR), and CK release compared to a vehicle treated group (p<0.05). We found several proteins altered in expression following MI + R alone or with p38 inhibition including myofilament proteins, energetics proteins, heat shock proteins, and the mitochondrial porin VDAC-1. p38 MAPK inhibition significantly reduced the phosphorylation of VDAC-1 which is a known mitochondrial regulator of cell survival. Thus, p38 MAP kinase inhibition with PD169316 is cardioprotective, reduces neutrophil activation, and controls protein expression and phosphorylation in MI and reperfusion.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Department of Internal Medicine III, Martin-Luther-University, Halle-Wittenberg, Halle/Saale, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liem DA, Manintveld OC, Schoonderwoerd K, McFalls EO, Heinen A, Verdouw PD, Sluiter W, Duncker DJ. Ischemic preconditioning modulates mitochondrial respiration, irrespective of the employed signal transduction pathway. Transl Res 2008; 151:17-26. [PMID: 18061124 DOI: 10.1016/j.trsl.2007.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 09/19/2007] [Accepted: 09/26/2007] [Indexed: 01/20/2023]
Abstract
We tested in the in vivo rat heart the hypothesis that although ischemic preconditioning can employ different signal transduction pathways, these pathways converge ultimately at the level of the mitochondrial respiratory chain. Infarct size produced by a 60-min coronary artery occlusion (69%+/-2% of the area at risk) was limited by a preceding 15-min coronary occlusion (48%+/-4%). Cardioprotection by this stimulus was triggered by adenosine receptor stimulation, which was followed by protein kinase C and tyrosine kinase activation and then mitochondrial K(+)(ATP)-channel opening. In contrast, cardioprotection by 3 cycles of 3-min coronary occlusions (infarct size 27%+/-5% of the area at risk) involved the release of reactive oxygen species, which was followed by protein kinase C and tyrosine kinase activation, but was independent of adenosine receptor stimulation and K(+)(ATP)-channel activation. However, both pathways decreased respiratory control index (RCI; state-3/state-2, using succinate as complex-II substrate) from 3.1+/-0.2 in mitochondria from sham-treated hearts to 2.4+/-0.2 and 2.5+/-0.1 in hearts subjected to a single 15-min and triple 3-min coronary occlusions, respectively (both P<0.05). The decreases in RCI were due to an increase in state-2 respiration, whereas state-3 respiration was unchanged. Abolition of cardioprotection by blockade of either signal transduction pathway was paralleled by a concomitant abolition of mitochondrial uncoupling. These observations are consistent with the concept that mild mitochondrial uncoupling contributes to infarct size limitation by various ischemic preconditioning stimuli, despite using different signal transduction pathways. In conclusion, in the in vivo rat heart, different ischemic preconditioning (IPC) stimuli can activate highly different signal transduction pathways, which seem to converge at the level of the mitochondria where they increase state-2 respiration.
Collapse
Affiliation(s)
- David A Liem
- Division of Experimental Cardiology, Thoraxcenter, Department of Clinical Genetics, Mitochondrial Research Unit, Cardiovascular Research Institute COEUR, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 2007; 59:418-58. [PMID: 18048761 DOI: 10.1124/pr.107.06002] [Citation(s) in RCA: 527] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Therapeutic strategies to protect the ischemic myocardium have been studied extensively. Reperfusion is the definitive treatment for acute coronary syndromes, especially acute myocardial infarction; however, reperfusion has the potential to exacerbate lethal tissue injury, a process termed "reperfusion injury." Ischemia/reperfusion injury may lead to myocardial infarction, cardiac arrhythmias, and contractile dysfunction. Ischemic preconditioning of myocardium is a well described adaptive response in which brief exposure to ischemia/reperfusion before sustained ischemia markedly enhances the ability of the heart to withstand a subsequent ischemic insult. Additionally, the application of brief repetitive episodes of ischemia/reperfusion at the immediate onset of reperfusion, which has been termed "postconditioning," reduces the extent of reperfusion injury. Ischemic pre- and postconditioning share some but not all parts of the proposed signal transduction cascade, including the activation of survival protein kinase pathways. Most experimental studies on cardioprotection have been undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of other disease processes. However, ischemic heart disease in humans is a complex disorder caused by or associated with known cardiovascular risk factors including hypertension, hyperlipidemia, diabetes, insulin resistance, atherosclerosis, and heart failure; additionally, aging is an important modifying condition. In these diseases and aging, the pathological processes are associated with fundamental molecular alterations that can potentially affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Among many other possible mechanisms, for example, in hyperlipidemia and diabetes, the pathological increase in reactive oxygen and nitrogen species and the use of the ATP-sensitive potassium channel inhibitor insulin secretagogue antidiabetic drugs and, in aging, the reduced expression of connexin-43 and signal transducer and activator of transcription 3 may disrupt major cytoprotective signaling pathways thereby significantly interfering with the cardioprotective effect of pre- and postconditioning. The aim of this review is to show the potential for developing cardioprotective drugs on the basis of endogenous cardioprotection by pre- and postconditioning (i.e., drug applied as trigger or to activate signaling pathways associated with endogenous cardioprotection) and to review the evidence that comorbidities and aging accompanying coronary disease modify responses to ischemia/reperfusion and the cardioprotection conferred by preconditioning and postconditioning. We emphasize the critical need for more detailed and mechanistic preclinical studies that examine car-dioprotection specifically in relation to complicating disease states. These are now essential to maximize the likelihood of successful development of rational approaches to therapeutic protection for the majority of patients with ischemic heart disease who are aged and/or have modifying comorbid conditions.
Collapse
Affiliation(s)
- Peter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary.
| | | | | |
Collapse
|
47
|
Abstract
Adenosine, a purine nucleoside, is ubiquitous in the body, and is a critical component of ATP. Its concentration jumps 100-fold during periods of oxygen depletion and ischemia. There are four adenosine receptors: A(1) and A(3) coupled to G(i/o) and the high-affinity A(2A) and low-affinity A(2B) coupled to G(s). Adenosine is one of three autacoids released by ischemic tissue which are important triggers of ischemic preconditioning (IPC). It is the A(1) and to some extent A(3) receptors which participate in the intracellular signaling that triggers cardioprotection. Unlike bradykinin and opioids, the other two autacoids, adenosine is not dependent on opening of mitochondrial K(ATP) channels or release of reactive oxygen species (ROS), but rather activates phospholipase C and/or protein kinase C (PKC) directly. Another signaling cascade at reperfusion involves activated PKC which initiates binding to and activation of an A(2) adenosine receptor that we believe is the A(2B). Although the latter is the low-affinity receptor, its interaction with PKC increases its affinity and makes it responsive to the accumulated tissue adenosine. A(2B) agonists, but not adenosine or A(1) agonists, infused at reperfusion can initiate this second signaling cascade and mimic preconditioning's protection. The same A(2B) receptors are critical for postconditioning's protection. Thus adenosine is both an important trigger and a mediator of cardioprotection.
Collapse
|
48
|
Clark JE, Sarafraz N, Marber MS. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol Ther 2007; 116:192-206. [PMID: 17765316 DOI: 10.1016/j.pharmthera.2007.06.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 06/14/2007] [Indexed: 11/25/2022]
Abstract
Chronic heart failure is debilitating, often fatal, expensive to treat and common. In most patients it is a late consequence of myocardial infarction (MI). The intracellular signals following infarction that lead to diminished contractility, apoptosis, fibrosis and ultimately heart failure are not fully understood but probably involve p38-mitogen activated protein kinases (p38), a family of serine/threonine kinases which, when activated, cause cardiomyocyte contractile dysfunction and death. Pharmacological inhibitors of p38 suppress inflammation and are undergoing clinical trials in rheumatoid arthritis, Chrohn's disease, psoriasis and surgery-induced tissue injury. In this review, we discuss the mechanisms, circumstances and consequences of p38 activation in the heart. The purpose is to evaluate p38 inhibition as a potential therapy for ischaemic heart disease.
Collapse
Affiliation(s)
- James E Clark
- The Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | | | | |
Collapse
|
49
|
Bell JR, Eaton P, Shattock MJ. Role of p38-mitogen-activated protein kinase in ischaemic preconditioning in rat heart. Clin Exp Pharmacol Physiol 2007; 35:126-34. [PMID: 17892505 DOI: 10.1111/j.1440-1681.2007.04794.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Activation of p38-mitogen-activated protein kinase (MAPK) has been implicated in the signalling cascade leading to protection by ischaemic preconditioning. This, however, is controversial and there is a plethora of conflicting data in the literature. Although many experimental differences may contribute to this, two in particular may be confounding: (i) the failure to account for p38-MAPK activation during aerobic perfusion; and (ii) the use of the anti-oxidant dimethylsulphoxide (DMSO) as the vehicle for the commonly used p38-MAPK inhibitor SB203580. We have investigated the effects of aerobic perfusion, ischaemia and preconditioning on p38-MAPK activation. In addition, we have used water-soluble SB203580 hydrochloride (SB203580.HCl) and DMSO to probe the role of p38-MAPK in preconditioning and ischaemic injury. 2. Activation of p38-MAPK in rat isolated hearts was assessed using a dual phosphospecific antibody during cannulation, aerobic perfusion and index, autolytic and preconditioned ischaemia. The effect of SB203580.HCl (10 mmol/L) in ischaemic preconditioning and ischaemia/reperfusion was tested using recovery of function and tetrazolium (TTC) staining as end-points. 3. Aerobic perfusion induced rapid activation (34% of maximal ischaemia-induced increase; P < 0.05) of p38-MAPK after 2 min that returned to baseline after 30 min. Index, autolytic and preconditioned ischaemia activated p38-MAPK, with index ischaemia peaking after 15 min (520% of basal; P < 0.05) before declining. SB203580.HCl blocked p38-MAPK activity, but did not block ischaemic preconditioning when bracketing the trigger phase and was not protective when given during ischaemia. 4. In the rat isolated heart, activation of p38-MAPK is neither a unique feature of preconditioning nor a prerequisite. Previous studies using SB203580 may have been complicated by failure to account for the activation of p38-MAPK by the protocol itself and the anti-oxidant properties of the most commonly used vehicle DMSO.
Collapse
Affiliation(s)
- James R Bell
- Cardiac Physiology, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London, UK
| | | | | |
Collapse
|
50
|
Jaswal JS, Gandhi M, Finegan BA, Dyck JRB, Clanachan AS. Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization. Am J Physiol Heart Circ Physiol 2007; 293:H1107-14. [PMID: 17496214 DOI: 10.1152/ajpheart.00455.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p38 mitogen-activated protein kinase (MAPK) and 5′-AMP-activated protein kinase (AMPK) are activated by metabolic stresses and are implicated in the regulation of glucose utilization and ischemia-reperfusion (IR) injury. This study tested the hypothesis that inhibition of p38 MAPK restores the cardioprotective effects of adenosine in stressed hearts by preventing activation of AMPK and the uncoupling of glycolysis from glucose oxidation. Working rat hearts were perfused with Krebs solution (1.2 mM palmitate, 11 mM [3H/14C]glucose, and 100 mU/l insulin). Hearts were stressed by transient antecedent IR (2 × 10 min I/5 min R) before severe IR (30 min I/30 min R). Hearts were treated with vehicle, p38 MAPK inhibitor (SB-202190, 10 μM), adenosine (500 μM), or their combination before severe IR. After severe IR, the phosphorylation (arbitrary density units) of p38 MAPK and AMPK, rates of glucose metabolism (μmol·g dry wt−1·min−1), and recovery of left ventricular (LV) work (Joules) were similar in vehicle-, SB-202190- and adenosine-treated hearts. Treatment with SB-202190 + adenosine versus adenosine alone decreased p38 MAPK (0.03 ± 0.01, n = 3 vs. 0.48 ± 0.10, n = 3, P < 0.05) and AMPK (0.00 ± 0.00, n = 3 vs. 0.26 ± 0.08, n = 3 P < 0.05) phosphorylation. This was accompanied by attenuated rates of glycolysis (1.51 ± 0.40, n = 7 vs. 3.95 ± 0.65, n = 7, P < 0.05) and H+ production (2.12 ± 0.76, n = 7 vs. 6.96 ± 1.48, n = 7, P < 0.05), and increased glycogen synthesis (1.91 ± 0.25, n = 6 vs. 0.27 ± 0.28, n = 6, P < 0.05) and improved recovery of LV work (0.81 ± 0.08, n = 7 vs. 0.30 ± 0.15, n = 8, P < 0.05). These data indicate that inhibition of p38 MAPK abolishes subsequent phosphorylation of AMPK and improves the coupling of glucose metabolism, thereby restoring adenosine-induced cardioprotection.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|