1
|
Takeuchi A, Matsuoka S. A simulation study on the role of mitochondria-sarcoplasmic reticulum Ca 2+ interaction in cardiomyocyte energetics during exercise. J Physiol 2024. [PMID: 39387569 DOI: 10.1113/jp286054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Previous studies demonstrated that the mitochondrial Ca2+ uniporter MCU and the Na+-Ca2+ exchanger NCLX exist in proximity to the sarcoplasmic reticulum (SR) ryanodine receptor RyR and the Ca2+ pump SERCA, respectively, creating a mitochondria-SR Ca2+ interaction. However, the physiological relevance of the mitochondria-SR Ca2+ interaction has remained unsolved. Furthermore, although mitochondrial Ca2+ has been proposed to be an important factor regulating mitochondrial energy metabolism, by activating NADH-producing dehydrogenases, the contribution of the Ca2+-dependent regulatory mechanisms to cellular functions under physiological conditions has been controversial. In this study, we constructed a new integrated model of human ventricular myocyte with excitation-contraction-energetics coupling and investigated systematically the contribution of mitochondria-SR Ca2+ interaction, especially focusing on cardiac energetics during dynamic workload transitions in exercise. Simulation analyses revealed that the spatial coupling of mitochondria and SR, particularly via mitochondrial Ca2+ uniport activity-RyR, was the primary determinant of mitochondrial Ca2+ concentration, and that the Ca2+-dependent regulatory mechanism facilitated mitochondrial NADH recovery during exercise and contributed to the stability of NADH in the workload transition by about 40%, while oxygen consumption rate and cytoplasmic ATP level were not influenced. We concluded that the mitochondria-SR Ca2+ interaction, created via the uneven distribution of Ca2+ handling proteins, optimizes the contribution of the mitochondrial Ca2+-dependent regulatory mechanism to stabilizing NADH during exercise. KEY POINTS: The mitochondrial Ca2+ uniporter protein MCU and the Na+-Ca2+ exchanger protein NCLX are reported to exist in proximity to the sarcoplasmic reticulum (SR) ryanodine receptor RyR and the Ca2+ pump SERCA, respectively, creating a mitochondria-SR Ca2+ interaction in cardiomyocytes. Mitochondrial Ca2+ (Ca2+ mit) has been proposed to be an important factor regulating mitochondrial energy metabolism, by activating NADH-producing dehydrogenases. Here we constructed an integrated model of a human ventricular myocyte with excitation-contraction-energetics coupling and investigated the role of the mitochondria-SR Ca2+ interaction in cardiac energetics during exercise. Simulation analyses revealed that the spatial coupling particularly via mitochondrial Ca2+ uniport activity-RyR is the primary determinant of Ca2+ mit concentration, and that the activation of NADH-producing dehydrogenases by Ca2+ mit contributes to NADH stability during exercise. The mitochondria-SR Ca2+ interaction optimizes the contribution of Ca2+ mit to the activation of NADH-producing dehydrogenases.
Collapse
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences and Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences and Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
2
|
Abudureyimu M, Luo X, Jiang L, Jin X, Pan C, Yu W, Ge J, Zhang Y, Ren J. FBXL4 protects against HFpEF through Drp1-Mediated regulation of mitochondrial dynamics and the downstream SERCA2a. Redox Biol 2024; 70:103081. [PMID: 38359748 PMCID: PMC10878117 DOI: 10.1016/j.redox.2024.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is a devastating health issue although limited knowledge is available for its pathogenesis and therapeutics. Given the perceived involvement of mitochondrial dysfunction in HFpEF, this study was designed to examine the role of mitochondrial dynamics in the etiology of HFpEF. METHOD AND RESULTS Adult mice were placed on a high fat diet plus l-NAME in drinking water ('two-hit' challenge to mimic obesity and hypertension) for 15 consecutive weeks. Mass spectrometry revealed pronounced changes in mitochondrial fission protein Drp1 and E3 ligase FBXL4 in 'two-hit' mouse hearts. Transfection of FBXL4 rescued against HFpEF-compromised diastolic function, cardiac geometry, and mitochondrial integrity without affecting systolic performance, in conjunction with altered mitochondrial dynamics and integrity (hyperactivation of Drp1 and unchecked fission). Mass spectrometry and co-IP analyses unveiled an interaction between FBXL4 and Drp1 to foster ubiquitination and degradation of Drp1. Truncated mutants of FBXL4 (Delta-Fbox) disengaged interaction between FBXL4 and Drp1. Metabolomic and proteomics findings identified deranged fatty acid and glucose metabolism in HFpEF patients and mice. A cellular model was established with concurrent exposure of high glucose and palmitic acid as a 'double-damage' insult to mimic diastolic anomalies in HFpEF. Transfection of FBXL4 mitigated 'double-damage'-induced cardiomyocyte diastolic dysfunction and mitochondrial injury, the effects were abolished and mimicked by Drp1 knock-in and knock-out, respectively. HFpEF downregulated sarco(endo)plasmic reticulum (SR) Ca2+ uptake protein SERCA2a while upregulating phospholamban, RYR1, IP3R1, IP3R3 and Na+-Ca2+ exchanger with unaltered SR Ca2+ load. FBXL4 ablated 'two-hit' or 'double-damage'-induced changes in SERCA2a, phospholamban and mitochondrial injury. CONCLUSION FBXL4 rescued against HFpEF-induced cardiac remodeling, diastolic dysfunction, and mitochondrial injury through reverting hyperactivation of Drp1-mediated mitochondrial fission, underscoring the therapeutic promises of FBXL4 in HFpEF.
Collapse
Affiliation(s)
- Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Xuanming Luo
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China
| | - Lingling Jiang
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Xuejuan Jin
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Cuizhen Pan
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Wei Yu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Junbo Ge
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Yingmei Zhang
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Jun Ren
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Kopańska K, Rodríguez-Belenguer P, Llopis-Lorente J, Trenor B, Saiz J, Pastor M. Uncertainty assessment of proarrhythmia predictions derived from multi-level in silico models. Arch Toxicol 2023; 97:2721-2740. [PMID: 37528229 PMCID: PMC10474996 DOI: 10.1007/s00204-023-03557-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
In silico methods can be used for an early assessment of arrhythmogenic properties of drug candidates. However, their use for decision-making is conditioned by the possibility to estimate the predictions' uncertainty. This work describes our efforts to develop uncertainty quantification methods for the predictions produced by multi-level proarrhythmia models. In silico models used in this field usually start with experimental or predicted IC50 values that describe drug-induced ion channel blockade. Using such inputs, an electrophysiological model computes how the ion channel inhibition, exerted by a drug in a certain concentration, translates to an altered shape and duration of the action potential in cardiac cells, which can be represented as arrhythmogenic risk biomarkers such as the APD90. Using this framework, we identify the main sources of aleatory and epistemic uncertainties and propose a method based on probabilistic simulations that replaces single-point estimates predicted using multiple input values, including the IC50s and the electrophysiological parameters, by distributions of values. Two selected variability types associated with these inputs are then propagated through the multi-level model to estimate their impact on the uncertainty levels in the output, expressed by means of intervals. The proposed approach yields single predictions of arrhythmogenic risk biomarkers together with value intervals, providing a more comprehensive and realistic description of drug effects on a human population. The methodology was tested by predicting arrhythmogenic biomarkers on a series of twelve well-characterised marketed drugs, belonging to different arrhythmogenic risk classes.
Collapse
Affiliation(s)
- Karolina Kopańska
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pablo Rodríguez-Belenguer
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de València, Valencia, Spain
| | - Jordi Llopis-Lorente
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Manuel Pastor
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
5
|
Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, Li N. Sinus node dysfunction: current understanding and future directions. Am J Physiol Heart Circ Physiol 2023; 324:H259-H278. [PMID: 36563014 PMCID: PMC9886352 DOI: 10.1152/ajpheart.00618.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. Normal SAN function is crucial in maintaining proper cardiac rhythm and contraction. Sinus node dysfunction (SND) is due to abnormalities within the SAN, which can affect the heartbeat frequency, regularity, and the propagation of electrical pulses through the cardiac conduction system. As a result, SND often increases the risk of cardiac arrhythmias. SND is most commonly seen as a disease of the elderly given the role of degenerative fibrosis as well as other age-dependent changes in its pathogenesis. Despite the prevalence of SND, current treatment is limited to pacemaker implantation, which is associated with substantial medical costs and complications. Emerging evidence has identified various genetic abnormalities that can cause SND, shedding light on the molecular underpinnings of SND. Identification of these molecular mechanisms and pathways implicated in the pathogenesis of SND is hoped to identify novel therapeutic targets for the development of more effective therapies for this disease. In this review article, we examine the anatomy of the SAN and the pathophysiology and epidemiology of SND. We then discuss in detail the most common genetic mutations correlated with SND and provide our perspectives on future research and therapeutic opportunities in this field.
Collapse
Affiliation(s)
- Pavan Manoj
- School of Public Health, Texas A&M University, College Station, Texas
| | - Jitae A Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kim
- Department of BioSciences, Rice University, Houston, Texas
| | - Tingting Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Maham Sewani
- Department of BioSciences, Rice University, Houston, Texas
| | - Mihail G Chelu
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Mora MT, Zaza A, Trenor B. Insights from an electro-mechanical heart failure cell model: Role of SERCA enhancement on arrhythmogenesis and myocyte contraction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107350. [PMID: 36689807 DOI: 10.1016/j.cmpb.2023.107350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Structural and electrical remodeling in heart failure predisposes the heart to ventricular arrhythmias. Computer modeling approaches, used to complement experimental results, can provide a more mechanistic knowledge of the biophysical phenomena underlying cardiac pathologies. Indeed, previous in-silico studies have improved the understanding of the electrical correlates of heart failure involved in arrhythmogenesis; however, information on the crosstalk between electrical activity, intracellular Ca2+ and contraction is still incomplete. This study aims to investigate the electro-mechanical behavior of virtual failing human ventricular myocytes to help in the development of therapies, which should ideally target pump failure and arrhythmias at the same time. METHODS We implemented characteristic remodeling of heart failure with reduced ejection fraction by including reported changes in ionic conductances, sarcomere function and cell structure (e.g. T-tubules disarray). Model parametrization was based on published experimental data and the outcome of simulations was validated against experimentally observed patterns. We focused on two aspects of myocardial dysfunction central in heart failure: altered force-frequency relationship and susceptibility to arrhythmogenic early afterdepolarizations. Because biological variability is a major problem in the generalization of in-silico findings based on a unique set of model parameters, we generated and evaluated a population of models. RESULTS The population-based approach is crucial in robust identification of parameters at the core of abnormalities and in generalizing the outcome of their correction. As compared to non-failing ones, failing myocytes had prolonged repolarization, a higher incidence of early afterdepolarizations, reduced contraction and a shallower force-frequency relationship, all features peculiar of heart failure. Component analysis applied to the model population identified reduced SERCA function as a relevant contributor to most of these derangements, which were largely reverted or diminished by restoration of SERCA function alone. CONCLUSIONS These simulated results encourage the development of strategies comprising SERCA stimulation and highlight the need to evaluate both electrical and mechanical outcomes.
Collapse
Affiliation(s)
- Maria Teresa Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Zaza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Italy; Unità di Fisiologia Cardiovascolare, IRCCs Istituto Auxologico Italiano, Italy
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
7
|
Nikolaienko R, Bovo E, Yuen SL, Treinen LM, Berg K, Aldrich CC, Thomas DD, Cornea RL, Zima AV. New N-aryl-N-alkyl-thiophene-2-carboxamide compound enhances intracellular Ca 2+ dynamics by increasing SERCA2a Ca 2+ pumping. Biophys J 2023; 122:386-396. [PMID: 36463408 PMCID: PMC9892616 DOI: 10.1016/j.bpj.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in μM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Samantha L Yuen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Levy M Treinen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Kaja Berg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
8
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
9
|
A Large-Scale High-Throughput Screen for Modulators of SERCA Activity. Biomolecules 2022; 12:biom12121789. [PMID: 36551215 PMCID: PMC9776381 DOI: 10.3390/biom12121789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The sarco/endoplasmic reticulum Ca-ATPase (SERCA) is a P-type ion pump that transports Ca2+ from the cytosol into the endoplasmic/sarcoplasmic reticulum (ER/SR) in most mammalian cells. It is critically important in muscle, facilitating relaxation and enabling subsequent contraction. Increasing SERCA expression or specific activity can alleviate muscle dysfunction, most notably in the heart, and we seek to develop small-molecule drug candidates that activate SERCA. Therefore, we adapted an NADH-coupled assay, measuring Ca-dependent ATPase activity of SERCA, to high-throughput screening (HTS) format, and screened a 46,000-compound library of diverse chemical scaffolds. This HTS platform yielded numerous hits that reproducibly alter SERCA Ca-ATPase activity, with few false positives. The top 19 activating hits were further tested for effects on both Ca-ATPase and Ca2+ transport, in both cardiac and skeletal SR. Nearly all hits increased Ca2+ uptake in both cardiac and skeletal SR, with some showing isoform specificity. Furthermore, dual analysis of both activities identified compounds with a range of effects on Ca2+-uptake and ATPase, which fit into distinct classifications. Further study will be needed to identify which classifications are best suited for therapeutic use. These results reinforce the need for robust secondary assays and criteria for selection of lead compounds, before undergoing HTS on a larger scale.
Collapse
|
10
|
Llopis-Lorente J, Trenor B, Saiz J. Considering population variability of electrophysiological models improves the in silico assessment of drug-induced torsadogenic risk. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106934. [PMID: 35687995 DOI: 10.1016/j.cmpb.2022.106934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE In silico tools are known to aid in drug cardiotoxicity assessment. However, computational models do not usually consider electrophysiological variability, which may be crucial when predicting rare adverse events such as drug-induced Torsade de Pointes (TdP). In addition, classification tools are usually binary and are not validated using an external data set. Here we analyze the role of incorporating electrophysiological variability in the prediction of drug-induced arrhythmogenic-risk, using a ternary classification and two external validation datasets. METHODS The effects of the 12 training CiPA drugs were simulated at three different concentrations using a single baseline model and an electrophysiologically calibrated population of models. 9 biomarkers related with action potential (AP), calcium dynamics and net charge were measured for each simulated concentration. These biomarkers were used to build ternary classifiers based on Support Vector Machines (SVM) methodology. Classifiers were validated using two external drug sets: the 16 validation CiPA drugs and 81 drugs from CredibleMeds database. RESULTS Population of models allowed to obtain different AP responses under the same pharmacological intervention and improve the prediction of drug-induced TdP with respect to the baseline model. The classification tools based on population of models achieve an accuracy higher than 0.8 and a mean classification error (MCE) lower than 0.3 for both validation drug sets and for the two electrophysiological action potential models studied (Tomek et al. 2020 and a modified version of O'Hara et al. 2011). In addition, simulations with population of models allowed the identification of individuals with lower conductances of IKr, IKs, and INaK and higher conductances of ICaL, INaL, and INCX, which are more prone to develop TdP. CONCLUSIONS The methodology presented here provides new opportunities to assess drug-induced TdP-risk, taking into account electrophysiological variability and may be helpful to improve current cardiac safety screening methods.
Collapse
Affiliation(s)
- Jordi Llopis-Lorente
- Centro de Investigación e Innovación en Bioingeniería (Ci(2)B), Universitat Politècnica de València, camino de Vera, s/n, Valencia 46022, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (Ci(2)B), Universitat Politècnica de València, camino de Vera, s/n, Valencia 46022, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (Ci(2)B), Universitat Politècnica de València, camino de Vera, s/n, Valencia 46022, Spain.
| |
Collapse
|
11
|
Syomin F, Osepyan A, Tsaturyan A. Computationally efficient model of myocardial electromechanics for multiscale simulations. PLoS One 2021; 16:e0255027. [PMID: 34293046 PMCID: PMC8297763 DOI: 10.1371/journal.pone.0255027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
A model of myocardial electromechanics is suggested. It combines modified and simplified versions of previously published models of cardiac electrophysiology, excitation-contraction coupling, and mechanics. The mechano-calcium and mechano-electrical feedbacks, including the strain-dependence of the propagation velocity of the action potential, are also accounted for. The model reproduces changes in the twitch amplitude and Ca2+-transients upon changes in muscle strain including the slow response. The model also reproduces the Bowditch effect and changes in the twitch amplitude and duration upon changes in the interstimulus interval, including accelerated relaxation at high stimulation frequency. Special efforts were taken to reduce the stiffness of the differential equations of the model. As a result, the equations can be integrated numerically with a relatively high time step making the model suitable for multiscale simulation of the human heart and allowing one to study the impact of myocardial mechanics on arrhythmias.
Collapse
Affiliation(s)
- Fyodor Syomin
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Anna Osepyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Tsaturyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and Heart Failure: How Did We Get Here and Where Are We Going? Int J Mol Sci 2021; 22:ijms22147392. [PMID: 34299010 PMCID: PMC8306046 DOI: 10.3390/ijms22147392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage heart failure. This exploration has resulted in many failed clinical trials testing novel classes of pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm shifts toward and away from differing therapeutic approaches. The continued prevalence of death from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces the need to discover new therapeutic approaches.
Collapse
Affiliation(s)
- Natthaphat Siri-Angkul
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Behzad Dadfar
- Department of General Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari 1471655836, Iran
| | - Riya Jaleel
- School of International Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jazna Naushad
- Weill Cornell Medicine Qatar, Doha P. O. Box 24144, Qatar
| | | | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +973-972-2411; Fax: +973-972-7489
| |
Collapse
|
13
|
Complex functionality of protein phosphatase 1 isoforms in the heart. Cell Signal 2021; 85:110059. [PMID: 34062239 DOI: 10.1016/j.cellsig.2021.110059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/04/2023]
Abstract
Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1β, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.
Collapse
|
14
|
Sugumar H, Nanayakkara S, Vizi D, Wright L, Chieng D, Leet A, Mariani JA, Voskoboinik A, Prabhu S, Taylor AJ, Kalman JM, Kistler PM, Kaye DM, Ling LH. A prospective STudy using invAsive haemodynamic measurements foLLowing catheter ablation for AF and early HFpEF: STALL AF-HFpEF. Eur J Heart Fail 2021; 23:785-796. [PMID: 33565197 DOI: 10.1002/ejhf.2122] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS The impact of atrial fibrillation (AF) ablation in early heart failure with preserved ejection fraction (HFpEF) is unknown. Our aim was to determine the impact of AF ablation on symptoms and exercise haemodynamic parameters of early HFpEF. METHODS AND RESULTS Symptomatic AF patients referred for index AF ablation with ejection fraction ≥50% underwent baseline quality of life questionnaires, echocardiography, cardiac magnetic resonance imaging, exercise right heart catheterisation (exRHC), and brain natriuretic peptide (BNP) testing. HFpEF was defined by resting pulmonary capillary wedge pressure (PCWP) ≥15 mmHg or peak exercise PCWP ≥25 mmHg. Patients with HFpEF were offered AF ablation and follow-up exRHC ≥6 months post-ablation. Of 54 patients undergoing baseline evaluation, 35 (65%) had HFpEF identified by exRHC. HFpEF patients were older (64 ± 10 vs. 54 ± 13 years, P < 0.01), and more frequently female (54% vs. 16%, P < 0.01), hypertensive (63% vs. 16%, P < 0.001), and suffering persistent AF (66% vs. 11%, P < 0.001), compared to those without HFpEF. Twenty HFpEF patients underwent AF ablation and follow-up exRHC 12 ± 6 months post-ablation. Nine (45%) patients no longer fulfilled exRHC criteria for HFpEF at follow-up. Patients remaining arrhythmia free (n = 9, 45%) showed significant improvements in peak exercise PCWP (29 ± 4 to 23 ± 2 mmHg, P < 0.01) and Minnesota Living with Heart Failure (MLHF) score (55 ± 30 to 22 ± 30, P < 0.01) while the remainder did not (PCWP 31 ± 5 to 30.0 ± 4 mmHg, P = NS; MLHF score 55 ± 23 to 25 ± 20, P = NS). CONCLUSION Heart failure with preserved ejection fraction frequently coexists in patients with symptomatic AF and preserved ejection fraction. Restoration and maintenance of sinus rhythm in patients with comorbid AF and HFpEF improves haemodynamic parameters, BNP and symptoms associated with HFpEF.
Collapse
Affiliation(s)
- Hariharan Sugumar
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,Royal Melbourne Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Shane Nanayakkara
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Donna Vizi
- The Alfred Hospital, Melbourne, Australia
| | - Leah Wright
- Baker Heart & Diabetes Institute, Melbourne, Australia
| | - David Chieng
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,Royal Melbourne Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Angeline Leet
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Justin A Mariani
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Aleksandr Voskoboinik
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia
| | - Sandeep Prabhu
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia
| | - Andrew J Taylor
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Jonathan M Kalman
- Royal Melbourne Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Peter M Kistler
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - David M Kaye
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Liang-Han Ling
- Baker Heart & Diabetes Institute, Melbourne, Australia.,The Alfred Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Sampedro-Puente DA, Raphel F, Fernandez-Bes J, Laguna P, Lombardi D, Pueyo E. Characterization of Spatio-Temporal Cardiac Action Potential Variability at Baseline and Under β-Adrenergic Stimulation by Combined Unscented Kalman Filter and Double Greedy Dimension Reduction. IEEE J Biomed Health Inform 2021; 25:276-288. [PMID: 32248135 DOI: 10.1109/jbhi.2020.2984647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Elevated spatio-temporal variability of human ventricular repolarization has been related to increased risk for ventricular arrhythmias and sudden cardiac death, particularly under β-adrenergic stimulation ( β-AS). This work presents a methodology for theoretical characterization of temporal and spatial repolarization variability at baseline conditions and in response to β-AS. For any measured voltage trace, the proposed methodology estimates the parameters and state variables of an underlying human ventricular action potential (AP) model by combining Double Greedy Dimension Reduction (DGDR) with automatic selection of biomarkers and the Unscented Kalman Filter (UKF). Such theoretical characterization can facilitate subsequent characterization of underlying variability mechanisms. MATERIAL AND METHODS Given an AP trace, initial estimates for the ionic conductances in a stochastic version of the baseline human ventricular O'Hara et al. model were obtained by DGDR. Those estimates served to initialize and update model parameter estimates by the UKF method based on formulation of an associated nonlinear state-space representation and joint estimation of model parameters and state variables. Similarly, β-AS-induced phosphorylation levels of cellular substrates were estimated by the DGDR-UKF methodology. Performance was tested by building an experimentally-calibrated population of virtual cells, from which synthetic AP traces were generated for baseline and β-AS conditions. RESULTS The combined DGDR-UKF methodology led to 25% reduction in the error associated with estimation of ionic current conductances at baseline conditions and phosphorylation levels under β-AS with respect to individual DGDR and UKF methods. This improvement was not at the expense of higher computational load, which was diminished by 90% with respect to the individual UKF method. Both temporal and spatial AP variability of repolarization were accurately characterized by the DGDR-UKF methodology. CONCLUSIONS A combined DGDR-UKF methodology is proposed for parameter and state variable estimation of human ventricular cell models from available AP traces at baseline and under β-AS. This methodology improves the estimation performance and reduces the convergence time with respect to individual DGDR and UKF methods and renders a suitable approach for computational characterization of spatio-temporal repolarization variability to be used for ascertainment of variability mechanisms and its relation to arrhythmogenesis.
Collapse
|
16
|
Miura M, Hasegawa T, Matsumoto A, Nishiyama M, Someya Y, Satoh W, Kumasaka K, Shindoh C, Sato H. Effect of transient elevation of glucose on contractile properties in non-diabetic rat cardiac muscle. Heart Vessels 2020; 36:568-576. [PMID: 33226494 DOI: 10.1007/s00380-020-01726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
In non-diabetic patients with severe disease, such as acute myocardial infarction or acute heart failure, admission blood glucose level is associated with their short-term and long-term mortality. We examined whether transient elevation of glucose affects contractile properties in non-diabetic hearts. Force, intracellular Ca2+ ([Ca2+]i), and sarcomere length were measured in trabeculae from rat hearts. To assess contractile properties, maximum velocity of contraction (Max dF/dt) and minimum velocity of relaxation (Min dF/dt) were calculated. The ratio of phosphorylated troponin I (P-TnI) to troponin I (TnI) was measured. One hour after elevation of glucose from 150 to 400 mg/dL, developed force, Max dF/dt, and Min dF/dt were reduced without changes in [Ca2+]i transients at 2.5 Hz stimulation and 2.0 mM [Ca2+]o, while developed force and [Ca2+]i transients showed no changes at 0.5 Hz stimulation and 0.7 mM [Ca2+]o. In the presence of 1 μM KN-93, a Ca2+/calmodulin-dependent protein kinaseII (CaMKII) inhibitor, or 50 μM diazo-5-oxonorleucine, a L-glutamine-D-fructose-6-phosphate amidotransferase inhibitor, the reduction of contractile properties after elevation of glucose was suppressed. Furthermore, 1 h after elevation of glucose to 400 mg/dL at 2.0 mM [Ca2+]o, the ratio of P-TnI to TnI was increased. These results suggest that in non-diabetic hearts under higher Ca2+-load, transient elevation of glucose for 1 h reduces contractile properties probably by activating CaMKII through O-GlcNAcylation. Thus, in the patients with severe disease, transient elevation of blood glucose, such as due to stress, may worsen cardiac function and thereby affect their mortality without known diabetes.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Taiki Hasegawa
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ayana Matsumoto
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masami Nishiyama
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yuka Someya
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Wakako Satoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazunori Kumasaka
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Chiyohiko Shindoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Haruka Sato
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
17
|
In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:58-74. [PMID: 32710902 PMCID: PMC7848595 DOI: 10.1016/j.pbiomolbio.2020.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022]
Abstract
Human-based computational modelling and simulation are powerful tools to accelerate the mechanistic understanding of cardiac patho-physiology, and to develop and evaluate therapeutic interventions. The aim of this study is to calibrate and evaluate human ventricular electro-mechanical models for investigations on the effect of the electro-mechanical coupling and pharmacological action on human ventricular electrophysiology, calcium dynamics, and active contraction. The most recent models of human ventricular electrophysiology, excitation-contraction coupling, and active contraction were integrated, and the coupled models were calibrated using human experimental data. Simulations were then conducted using the coupled models to quantify the effects of electro-mechanical coupling and drug exposure on electrophysiology and force generation in virtual human ventricular cardiomyocytes and tissue. The resulting calibrated human electro-mechanical models yielded active tension, action potential, and calcium transient metrics that are in agreement with experiments for endocardial, epicardial, and mid-myocardial human samples. Simulation results correctly predicted the inotropic response of different multichannel action reference compounds and demonstrated that the electro-mechanical coupling improves the robustness of repolarisation under drug exposure compared to electrophysiology-only models. They also generated additional evidence to explain the partial mismatch between in-silico and in-vitro experiments on drug-induced electrophysiology changes. The human calibrated and evaluated modelling and simulation framework constructed in this study opens new avenues for future investigations into the complex interplay between the electrical and mechanical cardiac substrates, its modulation by pharmacological action, and its translation to tissue and organ models of cardiac patho-physiology.
Collapse
|
18
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|
19
|
Shati AA, Dallak M. Acylated Ghrelin Protects the Hearts of Rats from Doxorubicin-Induced Fas/FasL Apoptosis by Stimulating SERCA2a Mediated by Activation of PKA and Akt. Cardiovasc Toxicol 2020; 19:529-547. [PMID: 31093930 DOI: 10.1007/s12012-019-09527-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study investigated if the cardioprotective effect of acylated ghrelin (AG) against doxorubicin (DOX)-induced cardiac toxicity in rats involves inhibition of Fas/FasL-mediated cell death. It also investigated if such an effect is mediated by restoring Ca+2 homeostasis from the aspect of stimulation of SERCA2a receptors. Adult male Wistar rats were divided into 4 groups (20 rats/each) as control, control + AG, DOX, and DOX + AG. AG was co-administered to all rats consecutively for 35 days. In addition, isolated cardiomyocytes were cultured and treated with AG in the presence or absence of DOX with or without pre-incubation with [D-Lys3]-GHRP-6 (a AG receptor antagonist), VIII (]an Akt inhibitor), or KT-5720 (a PKA inhibitor). AG increased LVSP, dp/dtmax, and dp/dtmin in both control and DOX-treated animals and improved cardiac ultrastructural changes in DOX-treated rats. It also inhibited ROS in control rats and lowered LVEDP, intracellular levels of ROS and Ca2+, and activity of calcineurin in LVs of DOX-treated rats. Concomitantly, it inhibited LV NFAT-4 nuclear translocation and downregulated their protein levels of Fas and FasL. Mechanistically, in control or DOX-treated hearts or cells, AG upregulated the levels of SERCA2a and increased the activities of PKA and Akt, leading to increase phosphorylation of phospholamban at Ser16 and Thr17. All these effects were abolished by D-Lys3-GHRP-6, VIII, or KT-5720 and were independent of food intake or GH/IGF-1. In conclusion, AG cardioprotection against DOX involves inhibition of extrinsic cell death and restoring normal Ca+2 homeostasis.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.
| | - M Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
20
|
Røe ÅT, Ruud M, Espe EK, Manfra O, Longobardi S, Aronsen JM, Nordén ES, Husebye T, Kolstad TRS, Cataliotti A, Christensen G, Sejersted OM, Niederer SA, Andersen GØ, Sjaastad I, Louch WE. Regional diastolic dysfunction in post-infarction heart failure: role of local mechanical load and SERCA expression. Cardiovasc Res 2020; 115:752-764. [PMID: 30351410 PMCID: PMC6432054 DOI: 10.1093/cvr/cvy257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 01/08/2023] Open
Abstract
Aims Regional heterogeneities in contraction contribute to heart failure with reduced ejection fraction (HFrEF). We aimed to determine whether regional changes in myocardial relaxation similarly contribute to diastolic dysfunction in post-infarction HFrEF, and to elucidate the underlying mechanisms. Methods and results Using the magnetic resonance imaging phase-contrast technique, we examined local diastolic function in a rat model of post-infarction HFrEF. In comparison with sham-operated animals, post-infarction HFrEF rats exhibited reduced diastolic strain rate adjacent to the scar, but not in remote regions of the myocardium. Removal of Ca2+ within cardiomyocytes governs relaxation, and we indeed found that Ca2+ transients declined more slowly in cells isolated from the adjacent region. Resting Ca2+ levels in adjacent zone myocytes were also markedly elevated at high pacing rates. Impaired Ca2+ removal was attributed to a reduced rate of Ca2+ sequestration into the sarcoplasmic reticulum (SR), due to decreased local expression of the SR Ca2+ ATPase (SERCA). Wall stress was elevated in the adjacent region. Using ex vivo experiments with loaded papillary muscles, we demonstrated that high mechanical stress is directly linked to SERCA down-regulation and slowing of relaxation. Finally, we confirmed that regional diastolic dysfunction is also present in human HFrEF patients. Using echocardiographic speckle-tracking of patients enrolled in the LEAF trial, we found that in comparison with controls, post-infarction HFrEF subjects exhibited reduced diastolic train rate adjacent to the scar, but not in remote regions of the myocardium. Conclusion Our data indicate that relaxation varies across the heart in post-infarction HFrEF. Regional diastolic dysfunction in this condition is linked to elevated wall stress adjacent to the infarction, resulting in down-regulation of SERCA, disrupted diastolic Ca2+ handling, and local slowing of relaxation.
Collapse
Affiliation(s)
- Åsmund T Røe
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Emil K Espe
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Stefano Longobardi
- Biomedical Engineering Department, The Rayne Institute, King's College, London, London, UK
| | - Jan M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Einar Sjaastad Nordén
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Trygve Husebye
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Terje R S Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ole M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Steven A Niederer
- Biomedical Engineering Department, The Rayne Institute, King's College, London, London, UK
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Bartolucci C, Passini E, Hyttinen J, Paci M, Severi S. Simulation of the Effects of Extracellular Calcium Changes Leads to a Novel Computational Model of Human Ventricular Action Potential With a Revised Calcium Handling. Front Physiol 2020; 11:314. [PMID: 32351400 PMCID: PMC7174690 DOI: 10.3389/fphys.2020.00314] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/19/2020] [Indexed: 01/13/2023] Open
Abstract
The importance of electrolyte concentrations for cardiac function is well established. Electrolyte variations can lead to arrhythmias onset, due to their important role in the action potential (AP) genesis and in maintaining cell homeostasis. However, most of the human AP computer models available in literature were developed with constant electrolyte concentrations, and fail to simulate physiological changes induced by electrolyte variations. This is especially true for Ca2+, even in the O'Hara-Rudy model (ORd), one of the most widely used models in cardiac electrophysiology. Therefore, the present work develops a new human ventricular model (BPS2020), based on ORd, able to simulate the inverse dependence of AP duration (APD) on extracellular Ca2+ concentration ([Ca2+]o), and APD rate dependence at 4 mM extracellular K+. The main changes needed with respect to ORd are: (i) an increased sensitivity of L-type Ca2+ current inactivation to [Ca2+]o; (ii) a single compartment description of the sarcoplasmic reticulum; iii) the replacement of Ca2+ release. BPS2020 is able to simulate the physiological APD-[Ca2+]o relationship, while also retaining the well-reproduced properties of ORd (APD rate dependence, restitution, accommodation and current block effects). We also used BPS2020 to generate an experimentally-calibrated population of models to investigate: (i) the occurrence of repolarization abnormalities in response to hERG current block; (ii) the rate adaptation variability; (iii) the occurrence of alternans and delayed after-depolarizations at fast pacing. Our results indicate that we successfully developed an improved version of ORd, which can be used to investigate electrophysiological changes and pro-arrhythmic abnormalities induced by electrolyte variations and current block at multiple rates and at the population level.
Collapse
Affiliation(s)
- Chiara Bartolucci
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| | - Elisa Passini
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Stefano Severi
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| |
Collapse
|
22
|
Li X, Xiong D, Ding G, Fan Y, Ma X, Wang C, Xiong Y, Jiang X. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish. CHEMOSPHERE 2019; 235:423-433. [PMID: 31272002 DOI: 10.1016/j.chemosphere.2019.06.199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
The present study investigated the developmental toxicity of water-accommodated fractions (WAFs) of Oman crude oil (OCO) and Merey crude oil (MCO) on zebrafish (Danio rerio) in early-life stages (ELS). Based on total petroleum hydrocarbons (TPH), LC50 values manifested that OCO WAF was 1.2-fold more lethal to zebrafish embryos than MCO WAF. As for hatching rate, EC50 value for OCO WAF was 5.7-fold lower than that for MCO WAF. To evaluate the sublethal morphological effects, semi-quantitative extended general morphological score (GMS) and general teratogenic score (GTS) systems were adopted. The GMS and GTS scores indicated that the WAFs caused remarkable developmental delay and high frequencies of malformation in a dose-dependent manner. Additionally, OCO and MCO WAFs exposure exhibited severe bradycardia (reduced heart rate) and overt reduction of stroke volume, with a concomitant decrease in the cardiac output. Meanwhile, the WAFs also induced dose-dependent down-regulated expressions of several key functional genes of excitation-contraction coupling in cardiomyocytes, including ryr2, atp2a2a, atp2a2b, ncx1h, and kcnh2. For key gene markers of swim bladder development, results showed that high dose of TPH induced significant down-regulation of hb9 and anxa5 with no obvious change of acta2, suggesting that the WAFs could affect the specification and development of epithelium and outer mesothelium of swim bladder in zebrafish ELS. A strong negative relationship between the failure of swim bladder inflation and cardiac dysfunction via cardiac output was found. All these findings provide novel insights into the complicated mechanisms of the developmental toxicity of crude oil on fish in ELS.
Collapse
Affiliation(s)
- Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Youmei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinrui Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yijun Xiong
- Biological Chemistry & Statistics, Grinnell College, IA, 50112, USA
| | - Xi Jiang
- China Railway No.9 Group Fourth Engineering Co., Ltd, Shenyang, 110013, China
| |
Collapse
|
23
|
Daniels LJ, Varma U, Annandale M, Chan E, Mellor KM, Delbridge LMD. Myocardial Energy Stress, Autophagy Induction, and Cardiomyocyte Functional Responses. Antioxid Redox Signal 2019; 31:472-486. [PMID: 30417655 DOI: 10.1089/ars.2018.7650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Energy stress in the myocardium occurs in a variety of acute and chronic pathophysiological contexts, including ischemia, nutrient deprivation, and diabetic disease settings of substrate disturbance. Although the heart is highly adaptive and flexible in relation to fuel utilization and routes of adenosine-5'-triphosphate (ATP) generation, maladaptations in energy stress situations confer functional deficit. An understanding of the mechanisms that link energy stress to impaired myocardial performance is crucial. Recent Advances: Emerging evidence suggests that, in parallel with regulated enzymatic pathways that control intracellular substrate supply, other processes of "bulk" autophagic macromolecular breakdown may be important in energy stress conditions. Recent findings indicate that cargo-specific autophagic activity may be important in different stress states. In particular, induction of glycophagy, a glycogen-specific autophagy, has been described in acute and chronic energy stress situations. The impact of elevated cardiomyocyte glucose flux relating to glycophagy dysregulation on contractile function is unknown. Critical Issues: Ischemia- and diabetes-related cardiac adverse events comprise the majority of cardiovascular disease morbidity and mortality. Current therapies involve management of systemic comorbidities. Cardiac-specific adjunct treatments targeted to manage myocardial energy stress responses are lacking. Future Directions: New knowledge is required to understand the mechanisms involved in selective recruitment of autophagic responses in the cardiomyocyte energy stress response. In particular, exploration of the links between cell substrate flux, calcium ion (Ca2+) flux, and phagosomal cargo flux is required. Strategies to target specific fuel "bulk" management defects in cardiac energy stress states may be of therapeutic value.
Collapse
Affiliation(s)
- Lorna J Daniels
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Upasna Varma
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Marco Annandale
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Eleia Chan
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand.,2 Department of Physiology, University of Melbourne, Melbourne, Australia.,3 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Lea M D Delbridge
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
24
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018. [PMID: 30425651 DOI: 10.3389/fphys.2018.01517, 10.3389/fpls.2018.01517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
25
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
26
|
Carro J, Pueyo E, Rodríguez Matas JF. A response surface optimization approach to adjust ionic current conductances of cardiac electrophysiological models. Application to the study of potassium level changes. PLoS One 2018; 13:e0204411. [PMID: 30281636 PMCID: PMC6169915 DOI: 10.1371/journal.pone.0204411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023] Open
Abstract
Cardiac electrophysiological computational models are often developed from previously published models. The new models may incorporate additional features to adapt the model to a different species or may upgrade a specific ionic formulation based on newly available experimental data. A relevant challenge in the development of a new model is the estimation of certain ionic current conductances that cannot be reliably identified from experiments. A common strategy to estimate those conductances is by means of constrained non-linear least-squares optimization. In this work, a novel methodology is proposed for estimation of ionic current conductances of cardiac electrophysiological models by using a response surface approximation-based constrained optimization with trust region management. Polynomial response surfaces of a number of electrophysiological markers were built using statistical sampling methods. These markers included action potential duration (APD), triangulation, diastolic and systolic intracellular calcium concentration, and time constants of APD rate adaptation. The proposed methodology was applied to update the Carro et al. human ventricular action potential model after incorporation of intracellular potassium ([K+]i) dynamics. While the Carro et al. model was well suited for investigation of arrhythmogenesis, it did not allow simulation of [K+]i changes. With the methodology proposed in this study, the updated Carro et al. human ventricular model could be used to simulate [K+]i changes in response to varying extracellular potassium ([K+]o) levels. Additionally, it rendered values of evaluated electrophysiological markers within physiologically plausible ranges. The optimal values of ionic current conductances in the updated model were found in a notably shorter time than with previously proposed methodologies. As a conclusion, the response surface optimization-based approach proposed in this study allows estimating ionic current conductances of cardiac electrophysiological computational models while guaranteeing replication of key electrophysiological features and with an important reduction in computational cost with respect to previously published approaches. The updated Carro et al. model developed in this study is thus suitable for the investigation of arrhythmic risk-related conditions, including those involving large changes in potassium concentration.
Collapse
Affiliation(s)
- Jesús Carro
- Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
- Aragón Institute for Engineering Research, University of Zaragoza, IIS Aragón, Spain
- CIBER in Bioengineering, Biomaterials & Nanomedicne (CIBER-BBN), Spain
- * E-mail:
| | - Esther Pueyo
- Aragón Institute for Engineering Research, University of Zaragoza, IIS Aragón, Spain
- CIBER in Bioengineering, Biomaterials & Nanomedicne (CIBER-BBN), Spain
| | - José F. Rodríguez Matas
- Aragón Institute for Engineering Research, University of Zaragoza, IIS Aragón, Spain
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Italy
| |
Collapse
|
27
|
Targeting protein-protein interactions for therapeutic discovery via FRET-based high-throughput screening in living cells. Sci Rep 2018; 8:12560. [PMID: 30135432 PMCID: PMC6105598 DOI: 10.1038/s41598-018-29685-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/16/2018] [Indexed: 01/16/2023] Open
Abstract
We have developed a structure-based high-throughput screening (HTS) method, using time-resolved fluorescence resonance energy transfer (TR-FRET) that is sensitive to protein-protein interactions in living cells. The membrane protein complex between the cardiac sarcoplasmic reticulum Ca-ATPase (SERCA2a) and phospholamban (PLB), its Ca-dependent regulator, is a validated therapeutic target for reversing cardiac contractile dysfunction caused by aberrant calcium handling. However, efforts to develop compounds with SERCA2a-PLB specificity have yet to yield an effective drug. We co-expressed GFP-SERCA2a (donor) in the endoplasmic reticulum membrane of HEK293 cells with RFP-PLB (acceptor), and measured FRET using a fluorescence lifetime microplate reader. We screened a small-molecule library and identified 21 compounds (Hits) that changed FRET by >3SD. 10 of these Hits reproducibly alter SERCA2a-PLB structure and function. One compound increases SERCA2a calcium affinity in cardiac membranes but not in skeletal, suggesting that the compound is acting specifically on the SERCA2a-PLB complex, as needed for a drug to mitigate deficient calcium transport in heart failure. The excellent assay quality and correlation between structural and functional assays validate this method for large-scale HTS campaigns. This approach offers a powerful pathway to drug discovery for a wide range of protein-protein interaction targets that were previously considered “undruggable”.
Collapse
|
28
|
Nguyên UC, Verzaal NJ, van Nieuwenhoven FA, Vernooy K, Prinzen FW. Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace 2018; 20:1898-1909. [DOI: 10.1093/europace/euy035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Uyên Châu Nguyên
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Nienke J Verzaal
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Frans A van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| |
Collapse
|
29
|
The role of RyR2 oxidation in the blunted frequency-dependent facilitation of Ca 2+ transient amplitude in rabbit failing myocytes. Pflugers Arch 2018; 470:959-968. [PMID: 29500669 DOI: 10.1007/s00424-018-2122-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Defective Ca2+ regulation plays a key role in the blunted force-frequency response in heart failure (HF). Since HF is commonly associated with oxidative stress, we studied whether oxidation of ryanodine receptor (RyR2) contributes to this defect. In control ventricular myocytes, oxidative stress induced formation of disulfide bonds between RyR2 subunits: intersubunit cross-linking (XL). Western blot analysis and Ca2+ imaging revealed a strong positive correlation between RyR2 XL and sarcoplasmic reticulum (SR) Ca2+ leak. These results illustrate that RyR2 XL can be used as a sensitive indicator of RyR2 dysfunction during oxidative stress. HF myocytes were in a state of oxidative stress since they exhibited an increase in reactive oxygen species (ROS) level, a decrease in ROS defense and an overall protein oxidation. These myocytes were also characterized by RyR2 XL and increased SR Ca2+ leak. Moreover, the frequency-dependent increase of Ca2+ transient amplitude was suppressed due to the inability of the SR to maintain Ca2+ load at high pacing rates. Because SR Ca2+ load is determined by the balance between SR Ca2+ uptake and leak, the blunted frequency-dependent inotropy in HF can be mediated by ROS-induced SR Ca2+ leak. Preventing RyR2 XL in HF myocytes decreased SR Ca2+ leak and increased Ca2+ transients at high pacing rate. We also studied whether RyR2 oxidation alone can cause the blunted frequency-dependent facilitation of Ca2+ transient amplitude in control myocytes. When RyR2 XL was induced in control myocytes to a similar level seen in HF, an increase of Ca2+ transient amplitude at high pacing rate was significantly suppressed. These results suggest that SR Ca2+ leak induced by RyR2 oxidation can play an important role in the blunted frequency-dependent inotropy of HF.
Collapse
|
30
|
Krishnan B, Massilamany C, Basavalingappa RH, Gangaplara A, Rajasekaran RA, Afzal MZ, Khalilzad-Sharghi V, Zhou Y, Riethoven JJ, Nandi SS, Mishra PK, Sobel RA, Strande JL, Steffen D, Reddy J. Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:523-537. [PMID: 29229678 PMCID: PMC5760440 DOI: 10.4049/jimmunol.1701090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA)2a, a critical regulator of calcium homeostasis, is known to be decreased in heart failure. Patients with myocarditis or dilated cardiomyopathy develop autoantibodies to SERCA2a suggesting that they may have pathogenetic significance. In this report, we describe epitope mapping analysis of SERCA2a in A/J mice that leads us to make five observations: 1) SERCA2a contains multiple T cell epitopes that induce varying degrees of myocarditis. One epitope, SERCA2a 971-990, induces widespread atrial inflammation without affecting noncardiac tissues; the cardiac abnormalities could be noninvasively captured by echocardiography, electrocardiography, and magnetic resonance microscopy imaging. 2) SERCA2a 971-990-induced disease was associated with the induction of CD4 T cell responses and the epitope preferentially binds MHC class II/IAk rather than IEk By creating IAk/and IEk/SERCA2a 971-990 dextramers, the T cell responses were determined by flow cytometry to be Ag specific. 3) SERCA2a 971-990-sensitized T cells produce both Th1 and Th17 cytokines. 4) Animals immunized with SERCA2a 971-990 showed Ag-specific Abs with enhanced production of IgG2a and IgG2b isotypes, suggesting that SERCA2a 971-990 can potentially act as a common epitope for both T cells and B cells. 5) Finally, SERCA2a 971-990-sensitized T cells were able to transfer disease to naive recipients. Together, these data indicate that SERCA2a is a critical autoantigen in the mediation of atrial inflammation in mice and that our model may be helpful to study the inflammatory events that underlie the development of conditions such as atrial fibrillation in humans.
Collapse
Affiliation(s)
- Bharathi Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Rakesh H Basavalingappa
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rajkumar A Rajasekaran
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | | | - Vahid Khalilzad-Sharghi
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588
| | | | - Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Raymond A Sobel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304
| | | | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583;
| |
Collapse
|
31
|
Wang Y, Shen C, Wang C, Zhou Y, Gao D, Zuo Z. Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish (Danio rerio), and the mechanisms involved. CHEMOSPHERE 2018; 191:7-16. [PMID: 29024898 DOI: 10.1016/j.chemosphere.2017.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The water-soluble fraction (WSF) of crude oil plays an important role in the toxicity of crude oil in aquatic environments. Heavy metals, such as lead (Pb) are also important environmental contaminants, which can reach aquatic systems via the effluents of industrial, urban and mining sources. In the present study, we investigated whether maternal and embryonic exposure to the WSF (5, 50 μg/L) or Pb (10, 100 μg/L) could induce behavioral abnormalities in zebrafish. Our results showed that maternal and embryonic exposure to the WSF (5, 50 μg/L) and Pb (10, 100 μg/L) induced swimming activity alterations in larval and juvenile zebrafish. In 15 days post-fertilization (dpf) larval zebrafish, the distance moved was significantly increased in the groups treated with the WSF (5, 50 μg/L), but the angular velocity and turn angle were decreased after treatment with the WSF (5, 50 μg/L) or Pb (10, 100 μg/L). In 30 dpf juvenile zebrafish, the distance moved was markedly decreased in both groups treated with the WSF (5, 50 μg/L) and the Pb (10 μg/L) group, but the percentage of zebrafish moving up and the inter-fish distance of two juvenile fish were increased after treatment with the WSF (5, 50 μg/L) or Pb (10, 100 μg/L). Maternal and embryonic exposure to the WSF (5, 50 μg/L) or Pb (10, 100 μg/L) likely impaired the brain neurons growth and induced behavioral abnormalities in the larval and juvenile zebrafish. Furthermore, the expressions of some key genes, which were associated with calcium channels, behavioral development or the metabolism of environmental contaminants, were changed.
Collapse
Affiliation(s)
- Yuanchuan Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chao Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chonggang Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Yixi Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dongxu Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
32
|
Mora MT, Ferrero JM, Romero L, Trenor B. Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLoS One 2017; 12:e0187739. [PMID: 29117223 PMCID: PMC5678731 DOI: 10.1371/journal.pone.0187739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/25/2017] [Indexed: 12/27/2022] Open
Abstract
Abnormal intracellular Ca2+ handling is the major contributor to the depressed cardiac contractility observed in heart failure. The electrophysiological remodeling associated with this pathology alters both the action potential and the Ca2+ dynamics, leading to a defective excitation-contraction coupling that ends in mechanical dysfunction. The importance of maintaining a correct intracellular Ca2+ concentration requires a better understanding of its regulation by ionic mechanisms. To study the electrical activity and ionic homeostasis of failing myocytes, a modified version of the O’Hara et al. human action potential model was used, including electrophysiological remodeling. The impact of the main ionic transport mechanisms was analyzed using single-parameter sensitivity analyses, the first of which explored the modulation of electrophysiological characteristics related to Ca2+ exerted by the remodeled parameters. The second sensitivity analysis compared the potential consequences of modulating individual channel conductivities, as one of the main effects of potential drugs, on Ca2+ dynamic properties under both normal conditions and in heart failure. The first analysis revealed the important contribution of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) dysfunction to the altered Ca2+ homeostasis, with the Na+/Ca2+ exchanger (NCX) and other Ca2+ cycling proteins also playing a significant role. Our results highlight the importance of improving the SR uptake function to increase Ca2+ content and restore Ca2+ homeostasis and contractility. The second sensitivity analysis highlights the different response of the failing myocyte versus the healthy myocyte to potential pharmacological actions on single channels. The result of modifying the conductances of the remodeled proteins such as SERCA and NCX in heart failure has less impact on Ca2+ modulation. These differences should be taken into account when designing drug therapies.
Collapse
Affiliation(s)
- Maria T. Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Jose M. Ferrero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Lucia Romero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
33
|
Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter. Proc Natl Acad Sci U S A 2017; 114:E9096-E9104. [PMID: 29073106 PMCID: PMC5664535 DOI: 10.1073/pnas.1711303114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypertension increases the risk for development of abdominal aortic aneurysms, a silent pathology that is prone to rupture and cause sudden cardiac death. Male gender, smoking, and hypertension appear to increase risk for development of abdominal aortic aneurysms by provoking oxidative stress responses in cardiovascular tissues. Here we uncovered unexpected linkages between the calcium-sensing regulatory subunit MICU2 of the mitochondrial calcium uniporter and stress responses. We show that naive Micu2−/− mice had abnormalities of cardiac relaxation but, with modest blood pressure elevation, developed abdominal aortic aneurysms with spontaneous rupture. These findings implicate mitochondrial calcium homeostasis as a critical pathway involved in protecting cardiovascular tissues from oxidative stress. Comparative analyses of transcriptional profiles from humans and mice with cardiovascular pathologies revealed consistently elevated expression of MICU2, a regulatory subunit of the mitochondrial calcium uniporter complex. To determine if MICU2 expression was cardioprotective, we produced and characterized Micu2−/− mice. Mutant mice had left atrial enlargement and Micu2−/− cardiomyocytes had delayed sarcomere relaxation and cytosolic calcium reuptake kinetics, indicating diastolic dysfunction. RNA sequencing (RNA-seq) of Micu2−/− ventricular tissues revealed markedly reduced transcripts encoding the apelin receptor (Micu2−/− vs. wild type, P = 7.8 × 10−40), which suppresses angiotensin II receptor signaling via allosteric transinhibition. We found that Micu2−/− and wild-type mice had comparable basal blood pressures and elevated responses to angiotensin II infusion, but that Micu2−/− mice exhibited systolic dysfunction and 30% lethality from abdominal aortic rupture. Aneurysms and rupture did not occur with norepinephrine-induced hypertension. Aortic tissue from Micu2−/− mice had increased expression of extracellular matrix remodeling genes, while single-cell RNA-seq analyses showed increased expression of genes related to reactive oxygen species, inflammation, and proliferation in fibroblast and smooth muscle cells. We concluded that Micu2−/− mice recapitulate features of diastolic heart disease and define previously unappreciated roles for Micu2 in regulating angiotensin II-mediated hypertensive responses that are critical in protecting the abdominal aorta from injury.
Collapse
|
34
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
35
|
Early Right Ventricular Apical Pacing-Induced Gene Expression Alterations Are Associated with Deterioration of Left Ventricular Systolic Function. DISEASE MARKERS 2017; 2017:8405196. [PMID: 28928601 PMCID: PMC5591927 DOI: 10.1155/2017/8405196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/04/2017] [Indexed: 01/05/2023]
Abstract
The chronic high-dose right ventricular apical (RVA) pacing may have deleterious effects on left ventricular (LV) systolic function. We hypothesized that the expression changes of genes regulating cardiomyocyte energy metabolism and contractility were associated with deterioration of LV function in patients who underwent chronic RVA pacing. Sixty patients with complete atrioventricular block and preserved ejection fraction (EF) who underwent pacemaker implantation were randomly assigned to either RVA pacing (n = 30) group or right ventricular outflow tract (RVOT) pacing (n = 30) group. The mRNA levels of OPA1 and SERCA2a were significantly lower in the RVA pacing group at 1 month's follow-up (both p < 0.001). Early changes in the expression of selected genes OPA1 and SERCA2a were associated with deterioration in global longitudinal strain (GLS) that became apparent months later (p = 0.002 and p = 0.026, resp.) The altered expressions of genes that regulate cardiomyocyte energy metabolism and contractility measured in the peripheral blood at one month following pacemaker implantation were associated with subsequent deterioration in LV dyssynchrony and function in patients with preserved LVEF, who underwent RVA pacing.
Collapse
|
36
|
Monteiro LM, Vasques-Nóvoa F, Ferreira L, Pinto-do-Ó P, Nascimento DS. Restoring heart function and electrical integrity: closing the circuit. NPJ Regen Med 2017; 2:9. [PMID: 29302345 PMCID: PMC5665620 DOI: 10.1038/s41536-017-0015-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are the main cause of death in the world and are often associated with the occurrence of arrhythmias due to disruption of myocardial electrical integrity. Pathologies involving dysfunction of the specialized cardiac excitatory/conductive tissue are also common and constitute an added source of morbidity and mortality since current standard therapies withstand a great number of limitations. As electrical integrity is essential for a well-functioning heart, innovative strategies have been bioengineered to improve heart conduction and/or promote myocardial repair, based on: (1) gene and/or cell delivery; or (2) conductive biomaterials as tools for cardiac tissue engineering. Herein we aim to review the state-of-art in the area, while briefly describing the biological principles underlying the heart electrical/conduction system and how this system can be disrupted in heart disease. Suggestions regarding targets for future studies are also presented.
Collapse
Affiliation(s)
- Luís Miguel Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Francisco Vasques-Nóvoa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lino Ferreira
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Perpétua Pinto-do-Ó
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana Santos Nascimento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
37
|
Li L, Hou X, Xu R, Liu C, Tu M. Research review on the pharmacological effects of astragaloside IV. Fundam Clin Pharmacol 2016; 31:17-36. [PMID: 27567103 DOI: 10.1111/fcp.12232] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/09/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
Astragalus membranaceus Bunge has been used to treat numerous diseases for thousands of years. As the main active substance of Astragalus membranaceus Bunge, astragaloside IV (AS-IV) also demonstrates the potent protective effect on focal cerebral ischemia/reperfusion, cardiovascular disease, pulmonary disease, liver fibrosis, and diabetic nephropathy. Based on studies published during the past several decades, the current state of AS-IV research and the pharmacological effects are detailed, elucidated, and summarized. This review systematically summarizes the pharmacological effects, metabolism mechanism, and the toxicity of AS-IV. AS-IV has multiple pharmacologic effects, including anti-inflammatory, antifibrotic, antioxidative stress, anti-asthma, antidiabetes, immunoregulation, and cardioprotective effect via numerous signaling pathways. According to the existing studies and clinical practices, AS-IV possesses potential for broad application in many diseases.
Collapse
Affiliation(s)
- Lei Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaojiao Hou
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| | - Rongfang Xu
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| | - Chang Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Menbayaer Tu
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| |
Collapse
|
38
|
Zhu S, Guleria RS, Thomas CM, Roth A, Gerilechaogetu F, Kumar R, Dostal DE, Baker KM, Pan J. Loss of myocardial retinoic acid receptor α induces diastolic dysfunction by promoting intracellular oxidative stress and calcium mishandling in adult mice. J Mol Cell Cardiol 2016; 99:100-112. [PMID: 27539860 DOI: 10.1016/j.yjmcc.2016.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/09/2023]
Abstract
Retinoic acid receptor (RAR) has been implicated in pathological stimuli-induced cardiac remodeling. To determine whether the impairment of RARα signaling directly contributes to the development of heart dysfunction and the involved mechanisms, tamoxifen-induced myocardial specific RARα deletion (RARαKO) mice were utilized. Echocardiographic and cardiac catheterization studies showed significant diastolic dysfunction after 16wks of gene deletion. However, no significant differences were observed in left ventricular ejection fraction (LVEF), between RARαKO and wild type (WT) control mice. DHE staining showed increased intracellular reactive oxygen species (ROS) generation in the hearts of RARαKO mice. Significantly increased NOX2 (NADPH oxidase 2) and NOX4 levels and decreased SOD1 and SOD2 levels were observed in RARαKO mouse hearts, which were rescued by overexpression of RARα in cardiomyocytes. Decreased SERCA2a expression and phosphorylation of phospholamban (PLB), along with decreased phosphorylation of Akt and Ca2+/calmodulin-dependent protein kinase II δ (CaMKII δ) was observed in RARαKO mouse hearts. Ca2+ reuptake and cardiomyocyte relaxation were delayed by RARα deletion. Overexpression of RARα or inhibition of ROS generation or NOX activation prevented RARα deletion-induced decrease in SERCA2a expression/activation and delayed Ca2+ reuptake. Moreover, the gene and protein expression of RARα was significantly decreased in aged or metabolic stressed mouse hearts. RARα deletion accelerated the development of diastolic dysfunction in streptozotocin (STZ)-induced type 1 diabetic mice or in high fat diet fed mice. In conclusion, myocardial RARα deletion promoted diastolic dysfunction, with a relative preserved LVEF. Increased oxidative stress have an important role in the decreased expression/activation of SERCA2a and Ca2+ mishandling in RARαKO mice, which are major contributing factors in the development of diastolic dysfunction. These data suggest that impairment of cardiac RARα signaling may be a novel mechanism that is directly linked to pathological stimuli-induced diastolic dysfunction.
Collapse
Affiliation(s)
- Sen Zhu
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States
| | - Rakeshwar S Guleria
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States; Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States.
| | - Candice M Thomas
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States
| | - Amanda Roth
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States
| | - Fnu Gerilechaogetu
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States
| | - Rajesh Kumar
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States; Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States
| | - David E Dostal
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States; Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States
| | - Kenneth M Baker
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States
| | - Jing Pan
- Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States; Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Baylor Scott & White Health, Temple, TX, United States.
| |
Collapse
|
39
|
Ying X, Weiqing L, Guihua L, Juhong Z, Huang Z. Effect of Valsartan on Sarcoplasmic Reticulum Ca2+-ATPase Pump of the Left Ventricular Myocardium in Rats with Heart Failure with Preserved Ejection Fraction. Biomed Hub 2016; 1:1-9. [PMID: 31988887 PMCID: PMC6945928 DOI: 10.1159/000448132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives The aim was to investigate the effects of valsartan on the sarcoplasmic reticulum Ca2+-ATPase pump (SERCA) and L-type Ca2+ channel current (I<sub>CaL</sub>) of the left ventricular myocardium in rats with heart failure with preserved ejection fraction. Methods The 30-week-old male spontaneously hypertensive rats (SHRs) are randomly divided into the non-Valsartan and Valsartan groups, and the 30-week-old male Wistar-Kyoto rats served as control rats. The expression of SERCA is measured by Western blot. The I<sub>CaL</sub> is measured by whole-cell patch clamp. The left ventricular end-diastolic pressure and left ventricular relaxation time constant quantity are measured at the same time. Results The left ventricular end-diastolic pressure is much higher in SHRs compared with that in control rats (p < 0.01). The left ventricular relaxation time constant quantity is markedly extended in SHRs compared with control rats (p < 0.01). Valsartan cannot increase the expression of SERCA nor decrease the density of I<sub>CaL</sub> compared with the non-Valsartan group (p > 0.05). Conclusions Valsartan has no effect on SERCA and I<sub>CaL</sub> of the left ventricular myocardium in rats with heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Xiao Ying
- Department of Anesthesiology, Sun Yat-sen University, Guangzhou, China
| | - Long Weiqing
- Department of Clinical Laboratory, Sun Yat-sen University, Guangzhou, China
| | - Lu Guihua
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhang Juhong
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhibin Huang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Wu M, Wu D, Wang C, Guo Z, Li B, Zuo Z. Hexabromocyclododecane exposure induces cardiac hypertrophy and arrhythmia by inhibiting miR-1 expression via up-regulation of the homeobox gene Nkx2.5. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:304-313. [PMID: 26476318 DOI: 10.1016/j.jhazmat.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/25/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Hexabromocyclododecane (HBCD) is one of the most widely used brominated flame retardants. Although studies have reported that HBCD can cause a wide range of toxic effects on animals including humans, limited information can be found about its cardiac toxicity. In the present study, zebrafish embryos were exposed to HBCD at low concentrations of 0, 2, 20 and 200 nM. The results showed that HBCD exposure could induce cardiac hypertrophy and increased deposition of collagen. In addition, disordered calcium (Ca(2+)) handling was observed in H9C2 rat cardiomyocyte cells exposed to HBCD. Using small RNA sequencing and real-time quantitative PCR, HBCD exposure was shown to induce significant changes in the miRNA expression profile associated with the cardiovascular system. Further findings indicated that miR-1, which was depressed by Nkx2.5, might play a fundamental role in mediating cardiac hypertrophy and arrhythmia via its target genes Mef2a and Irx5 after HBCD treatment. HBCD exposure induced an arrhythmogenic disorder, which was triggered by the imbalance of Ryr2, Serca2a and Ncx1 expression, inducing Ca(2+) overload in the sarcoplasmic reticulum and high Ca(2+)-ATPase activities in the H9C2 cells.
Collapse
Affiliation(s)
- Meifang Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Di Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhizhun Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Bowen Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
41
|
Brandenburg S, Arakel EC, Schwappach B, Lehnart SE. The molecular and functional identities of atrial cardiomyocytes in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1882-93. [PMID: 26620800 DOI: 10.1016/j.bbamcr.2015.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca(2+) signalling, voltage-dependent L-type Ca(2+) channels and ryanodine receptor Ca(2+) release channels are each expressed at high levels similar to ventricles. However, intracellular Ca(2+) transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K(+) channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eric C Arakel
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
42
|
Roe AT, Frisk M, Louch WE. Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Curr Pharm Des 2015; 21:431-48. [PMID: 25483944 PMCID: PMC4475738 DOI: 10.2174/138161282104141204124129] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 08/06/2014] [Indexed: 12/19/2022]
Abstract
Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease
mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it
plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline
existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic intervention:
the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss
experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic
approaches.
Collapse
Affiliation(s)
| | | | - William E Louch
- Institute for Experimental Medical Research, Kirkeveien 166, 4.etg. Bygg 7, Oslo University Hospital Ullevål, 0407 Oslo, Norway.
| |
Collapse
|
43
|
|
44
|
Heinis FI, Vermillion KL, Andrews MT, Metzger JM. Myocardial performance and adaptive energy pathways in a torpid mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2015; 309:R368-77. [PMID: 26017496 DOI: 10.1152/ajpregu.00365.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/22/2015] [Indexed: 11/22/2022]
Abstract
The hearts of mammalian hibernators maintain contractile function in the face of severe environmental stresses during winter heterothermy. To enable survival in torpor, hibernators regulate the expression of numerous genes involved in excitation-contraction coupling, metabolism, and stress response pathways. Understanding the basis of this transition may provide new insights into treatment of human cardiac disease. Few studies have investigated hibernator heart performance during both summer active and winter torpid states, and seasonal comparisons of whole heart function are generally lacking. We investigated the force-frequency relationship and the response to ex vivo ischemia-reperfusion in intact isolated hearts from 13-lined ground squirrels (Ictidomys tridecemlineatus) in the summer (active, July) and winter (torpid, January). In standard euthermic conditions, we found that winter hearts relaxed more rapidly than summer hearts at low to moderate pacing frequencies, even though systolic function was similar in both seasons. Proteome data support the hypothesis that enhanced Ca(2+) handling in winter torpid hearts underlies the increased relaxation rate. Additionally, winter hearts developed significantly less rigor contracture during ischemia than summer hearts, while recovery during reperfusion was similar in hearts between seasons. Winter torpid hearts have an increased glycogen content, which likely reduces development of rigor contracture during the ischemic event due to anaerobic ATP production. These cardioprotective mechanisms are important for the hibernation phenotype and highlight the resistance to hypoxic stress in the hibernator.
Collapse
Affiliation(s)
- Frazer I Heinis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis Medical School, Minnesota; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota; and
| | - Katie L Vermillion
- Department of Biology, University of Minnesota-Duluth, Duluth, Minnesota
| | - Matthew T Andrews
- Department of Biology, University of Minnesota-Duluth, Duluth, Minnesota
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota; and
| |
Collapse
|
45
|
Effects of dantrolene on arrhythmogenicity in isolated regional ischemia-reperfusion rabbit hearts with or without pacing-induced heart failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:532820. [PMID: 25789321 PMCID: PMC4350948 DOI: 10.1155/2015/532820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022]
Abstract
Dantrolene was reported to suppress ventricular fibrillation (VF) in failing hearts with acute myocardial infarction, but its antiarrhythmic efficacy in regional ischemia-reperfusion (IR) hearts remains debatable. Heart failure (HF) was induced by right ventricular pacing. The IR rabbit model was created by coronary artery ligation for 30 min, followed by reperfusion for 15 min in vivo in both HF and non-HF groups (n = 9 in each group). Simultaneous voltage and intracellular Ca2+ (Cai) optical mapping was then performed in isolated Langendorff-perfused hearts. Electrophysiological studies were conducted and VF inducibility was evaluated by dynamic pacing. Dantrolene (10 μM) was administered after baseline studies. The HF group had a higher VF inducibility than the control group. Dantrolene had both antiarrhythmic (prolonged action potential duration (APD) and effective refractory period) and proarrhythmic effects (slowed conduction velocity, steepened APD restitution slope, and enhanced arrhythmogenic alternans induction) but had no significant effects on ventricular premature beat (VPB) suppression and VF inducibility in both groups. A higher VF conversion rate in the non-HF group was likely due to greater APD prolonging effects in smaller hearts compared to the HF group. The lack of significant effects on VPB suppression by dantrolene suggests that triggered activity might not be the dominant mechanism responsible for VPB induction in the IR model.
Collapse
|
46
|
Locatelli J, de Assis LVM, Isoldi MC. Calcium handling proteins: structure, function, and modulation by exercise. Heart Fail Rev 2014; 19:207-25. [PMID: 23436107 DOI: 10.1007/s10741-013-9373-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a serious public health issue with a growing prevalence, and it is related with the aging of the population. Hypertension is identified as the main precursor of left ventricular hypertrophy and therefore can lead to diastolic dysfunction and heart failure. Scientific studies have confirmed the beneficial effects of the physical exercise by reducing the blood pressure and improving the functional status of the heart in hypertension. Several proteins are involved in the mobilization of calcium during the coupling excitation-contraction process in the heart among those are sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban, calsequestrin, sodium-calcium exchanger, L-type calcium's channel, and ryanodine receptors. Our goal is to address the beneficial effects of exercise on the calcium handling proteins in a heart with hypertension.
Collapse
Affiliation(s)
- Jamille Locatelli
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Prêto, Brazil
| | | | | |
Collapse
|
47
|
Abstract
Recent advances in our understanding of the pathophysiology of myocardial dysfunction in the setting of congestive heart failure have created a new opportunity in developing nonpharmacological approaches to treatment. Gene therapy has emerged as a powerful tool in targeting the molecular mechanisms of disease by preventing the ventricular remodeling and improving bioenergetics in heart failure. Refinements in vector technology, including the creation of recombinant adeno-associated viruses, have allowed for safe and efficient gene transfer. These advancements have been coupled with evolving delivery methods that include vascular, pericardial, and direct myocardial approaches. One of the most promising targets, SERCA2a, is currently being used in clinical trials. The recent success of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease phase 2 trials using adeno-associated virus 1-SERCA2a in improving outcomes highlights the importance of gene therapy as a future tool in treating congestive heart failure.
Collapse
|
48
|
Gwathmey JK, Yerevanian A, Hajjar RJ. Targeting sarcoplasmic reticulum calcium ATPase by gene therapy. Hum Gene Ther 2014; 24:937-47. [PMID: 24164241 DOI: 10.1089/hum.2013.2512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although pharmacologic therapies have provided gains in reducing the mortality of heart failure, the rising incidence of the disease requires new approaches to combat its health burden. Twenty-five years ago, abnormal calcium cycling was identified as a characteristic of failing human myocardium. Sarcoplasmic reticulum calcium ATPase (SERCA2a), the sarcoplasmic reticulum calcium pump, was found to be a key factor in the alteration of calcium cycling. With the advancement of gene vectors, SERCA2a emerged as an attractive clinical target for gene delivery purposes. Using adeno-associated virus constructs, SERCA2a upregulation has been found to improve myocardial function in animal models. The clinical benefits of overexpressing SERCA2a have been demonstrated in the phase I study Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID). This study has demonstrated that a persistent expression of the transgene SERCA2a is associated with a significant improvement in associated biochemical alterations and clinical symptoms of heart failure. In the coming years, additional targets will likely emerge that are amenable to genetic manipulations along with the development of more advanced vector systems with safer delivery approaches.
Collapse
Affiliation(s)
- Judith K Gwathmey
- Cardiovascular Research Center, Icahn School of Medicine , New York, NY 10029
| | | | | |
Collapse
|
49
|
Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D. Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch 2014; 466:1129-37. [PMID: 24515294 DOI: 10.1007/s00424-014-1469-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Abstract
In the heart, coupling between excitation of the surface membrane and activation of contractile apparatus is mediated by Ca released from the sarcoplasmic reticulum (SR). Several components of Ca machinery are perfectly arranged within the SR network and the T-tubular system to generate a regular Ca cycling and thereby rhythmic beating activity of the heart. Among these components, ryanodine receptor (RyR) and SR Ca ATPase (SERCA) complexes play a particularly important role and their dysfunction largely underlies abnormal Ca homeostasis in diseased hearts such as in heart failure. The abnormalities in Ca regulation occur at practically all main steps of Ca cycling in the failing heart, including activation and termination of SR Ca release, diastolic SR Ca leak, and SR Ca uptake. The contributions of these different mechanisms to depressed contractile function and enhanced arrhythmogenesis may vary in different HF models. This brief review will therefore focus on modifications in RyR and SERCA structure that occur in the failing heart and how these molecular modifications affect SR Ca regulation and excitation-contraction coupling.
Collapse
Affiliation(s)
- Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL, 60153, USA,
| | | | | | | | | | | |
Collapse
|
50
|
Sikkel MB, Hayward C, MacLeod KT, Harding SE, Lyon AR. SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope. Br J Pharmacol 2014; 171:38-54. [PMID: 24138023 PMCID: PMC3874695 DOI: 10.1111/bph.12472] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 01/14/2023] Open
Abstract
Therapeutic options that directly enhance cardiomyocyte contractility in chronic heart failure (HF) therapy are currently limited and do not improve prognosis. In fact, most positive inotropic agents, such as β-adrenoreceptor agonists and PDE inhibitors, which have been assessed in HF patients, cause increased mortality as a result of arrhythmia and sudden cardiac death. Cardiac sarcoplasmic reticulum Ca(2)(+) -ATPase2a (SERCA2a) is a key protein involved in sequestration of Ca(2)(+) into the sarcoplasmic reticulum (SR) during diastole. There is a reduction of SERCA2a protein level and function in HF, which has been successfully targeted via viral transfection of the SERCA2a gene into cardiac tissue in vivo. This has enhanced cardiac contractility and reduced mortality in several preclinical models of HF. Theoretical concerns have been raised regarding the possibility of arrhythmogenic adverse effects of SERCA2a gene therapy due to enhanced SR Ca(2)(+) load and induction of SR Ca(2)(+) leak as a result. Contrary to these concerns, SERCA2a gene therapy in a wide variety of preclinical models, including acute ischaemia/reperfusion, chronic pressure overload and chronic myocardial infarction, has resulted in a reduction in ventricular arrhythmias. The potential mechanisms for this unexpected beneficial effect, as well as mechanisms of enhancement of cardiac contractile function, are reviewed in this article.
Collapse
Affiliation(s)
- Markus B Sikkel
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
| | - Carl Hayward
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton HospitalLondon, UK
| | - Kenneth T MacLeod
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
| | - Sian E Harding
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
| | - Alexander R Lyon
- Myocardial Function Section, National Heart and Lung Institute, Imperial CollegeLondon, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton HospitalLondon, UK
| |
Collapse
|