1
|
Masters TA, Marsh RJ, Blacker TS, Armoogum DA, Larijani B, Bain AJ. Polarized two-photon photoselection in EGFP: Theory and experiment. J Chem Phys 2018; 148:134311. [PMID: 29626864 DOI: 10.1063/1.5011642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.
Collapse
Affiliation(s)
- T A Masters
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - R J Marsh
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - T S Blacker
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - D A Armoogum
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - B Larijani
- Cell Biophysics Laboratory, Ikerbasque, Basque Foundation for Science and Unidad de Biofisica (CSIC-UPV/EHU), Bilbao, Spain
| | - A J Bain
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Azevedo A, Prado A, Issa J, Gerlach R. Matrix metalloproteinase 2 fused to GFP, expressed in E. coli, successfully tracked MMP-2 distribution in vivo. Int J Biol Macromol 2016; 89:737-45. [DOI: 10.1016/j.ijbiomac.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/22/2023]
|
3
|
N-terminal truncated intracellular matrix metalloproteinase-2 induces cardiomyocyte hypertrophy, inflammation and systolic heart failure. PLoS One 2013; 8:e68154. [PMID: 23874529 PMCID: PMC3712965 DOI: 10.1371/journal.pone.0068154] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/26/2013] [Indexed: 11/27/2022] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) is increasingly recognized as a major contributor to progressive cardiac injury within the setting of ischemia-reperfusion injury and ischemic ventricular remodeling. A common feature of these conditions is an increase in oxidative stress, a process that engages multiple pro-inflammatory and innate immunity cascades. We recently reported on the identification and characterization of an intracellular isoform of MMP-2 generated by oxidative stress-mediated activation of an alternative promoter located within the first intron of the MMP-2 gene. Transcription from this site generates an N-terminal truncated 65 kDa isoform of MMP-2 (NTT-MMP-2) that lacks the secretory sequence and the inhibitory prodomain region. The NTT-MMP-2 isoform is intracellular, enzymatically active and localizes in part to mitochondria. Expression of the NTT-MMP-2 isoform triggers Nuclear Factor of Activated T-cell (NFAT) and NF-κB signaling with the expression of a highly defined innate immunity transcriptome, including Interleukin-6, MCP-1, IRF-7 and pro-apoptotic transcripts. To determine the functional significance of the NTT-MMP-2 isoform in vivo we generated cardiac-specific NTT-MMP-2 transgenic mice. These mice developed progressive cardiomyocyte and ventricular hypertrophy associated with systolic heart failure. Further, there was evidence for cardiomyocyte apoptosis and myocardial infiltration with mononuclear cells. The NTT-MMP-2 transgenic hearts also demonstrated more severe injury following ex vivo ischemia-reperfusion injury. We conclude that a novel intracellular MMP-2 isoform induced by oxidant stress directly contributes, in the absence of superimposed injury, to cardiomyocyte hypertrophy. inflammation, systolic heart failure and enhanced susceptibility to ischemia-reperfusion injury.
Collapse
|
4
|
Alvarez-Saavedra M, Carrasco L, Sura-Trueba S, Demarchi Aiello V, Walz K, Neto JX, Young JI. Elevated expression of MeCP2 in cardiac and skeletal tissues is detrimental for normal development. Hum Mol Genet 2010; 19:2177-90. [PMID: 20203171 DOI: 10.1093/hmg/ddq096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MeCP2 plays a critical role in interpreting epigenetic signatures that command chromatin conformation and regulation of gene transcription. In spite of MeCP2's ubiquitous expression, its functions have always been considered in the context of brain physiology. In this study, we demonstrate that alterations of the normal pattern of expression of MeCP2 in cardiac and skeletal tissues are detrimental for normal development. Overexpression of MeCP2 in the mouse heart leads to embryonic lethality with cardiac septum hypertrophy and dysregulated expression of MeCP2 in skeletal tissue produces severe malformations. We further show that MeCP2's expression in the heart is developmentally regulated; further suggesting that it plays a key role in regulating transcriptional programs in non-neural tissues.
Collapse
|
5
|
Abstract
The localization of enhanced green fluorescent protein (EGFP) was studied in preimplantation embryos obtained from reciprocal mating of hemizygous C57Bl/6-Tgn (ACTbEGFP)1Osb/J mice with C57Bl/6 mice. Specific fluorescence of EGFP was observed in all oocytes and embryos obtained from transgenic females during all preimplantation stages and in embryos inheriting the EGFP gene from transgenic males starting from the 8 blastomere stage during the compactization period. EGFP mRNA or EGFP synthesized during oogenesis can be retained in embryos during the entire preimplantation period, while expression of EGFP gene transferred from the father coincides with the onset of compactization. The possibility of using these embryos in experimental mammalian embryology is discussed.
Collapse
|
6
|
Badrian B, Bogoyevitch MA. Changes in the transcriptional profile of cardiac myocytes following green fluorescent protein expression. DNA Cell Biol 2008; 26:727-36. [PMID: 17723104 DOI: 10.1089/dna.2007.0604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Green fluorescent protein (GFP) and its multiple forms, such as enhanced GFP (EGFP), have been widely used as marker proteins and for tracking purposes in many biological systems, including the heart and cardiac cell systems. Despite some concerns on its toxicity under certain circumstances, GFP remains amongst the most reliable and easy-to-use markers available. Using rat full genome DNA microarrays, we have investigated the broader consequences of adenoviral-driven GFP expression in cardiac myocytes. In our transcriptional profiling analysis, we set a threshold of a twofold change. We removed possible changes resulting from adenoviral infection by comparison with transcriptional profiles of cardiac myocytes with adenoviral-driven expression of an unrelated protein, the kinase MEK. Our analysis revealed changes in the expression of 212 genes. Of these genes, 174 were upregulated and 38 were downregulated following GFP expression. Many of these genes remain unannotated, but an evaluation of those with described functions for their resulting proteins indicated that many were involved in processes, including responses to stimuli/stress and signal transduction. Our analysis thus indicates the broader consequences of GFP expression in altering gene expression profiles in cardiac cells. Care should therefore be taken when using GFP expression as a control in gene expression studies.
Collapse
Affiliation(s)
- Bahareh Badrian
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular, and Chemical Sciences, University of Western Australia, Perth, Western Australia, Australia.
| | | |
Collapse
|
7
|
Haddad F, Qin AX, Bodell PW, Jiang W, Giger JM, Baldwin KM. Intergenic transcription and developmental regulation of cardiac myosin heavy chain genes. Am J Physiol Heart Circ Physiol 2007; 294:H29-40. [PMID: 17982008 DOI: 10.1152/ajpheart.01125.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac myosin heavy chain (MHC) gene expression undergoes a rapid transition from beta- to alpha-MHC during early rodent neonatal development (0-21 days of age). Thyroid hormone (3,5,3'-triiodothyronine, T(3)) is a major player in this developmental shift; however, the exact mechanism underlying this transition is poorly understood. The goal of this study was to conduct a more thorough analysis of transcriptional activity of the cardiac MHC gene locus during the early postnatal period in the rodent, in order to gain further insight on the regulation of cardiac MHC genes. We analyzed the expression of alpha- and beta-MHC at protein, mRNA, and pre-mRNA levels at birth and 7, 10, 15, and 21 days after birth in euthyroid and hypothyroid rodents. Using novel technology, we also analyzed RNA expression across the cardiac gene locus, and we discovered that the intergenic (IG) region between the two cardiac genes possesses bidirectional transcriptional activity. This IG transcription results in an antisense RNA product as described previously, which is thought to exert an inhibitory effect on beta-MHC gene transcription. On the second half of the IG region, sense transcription occurs, resulting in expression of a sense IG RNA that merges with the alpha-MHC pre-mRNA. This sense IG RNA transcription was detected in the alpha-MHC gene promoter, approximately -1.8 kb relative to the alpha-MHC transcription start site. Both sense and antisense IG RNAs were developmentally regulated and responsive to a hypothyroid state (11, 14). This novel observation provides more complexity to the cooperative regulation of the two genes, suggesting the involvement of epigenetic processes in the regulation of cardiac MHC gene locus.
Collapse
Affiliation(s)
- Fadia Haddad
- Physiology and Biophysics Department, University of California, Irvine, CA 92697-4560, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Nishimura S, Nagai S, Sata M, Katoh M, Yamashita H, Saeki Y, Nagai R, Sugiura S. Expression of Green Fluorescent Protein Impairs the Force-Generating Ability of Isolated Rat Ventricular Cardiomyocytes. Mol Cell Biochem 2006; 286:59-65. [PMID: 16532258 DOI: 10.1007/s11010-005-9090-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 11/23/2005] [Indexed: 11/25/2022]
Abstract
Green fluorescent protein (GFP) is widely used as a biologically inert expression marker for studying the effects of transgene expression in heart tissue, but its influence on the contractile function of cardiomyocytes has not yet been fully evaluated. We measured the contractile function of isolated rat ventricular myocytes before and after infection with a recombinant adenovirus expressing GFP (Adv-GFP). Myocytes infected with a non-transgene-containing adenovirus (Adv-Null) or uninfected myocytes (UI) served as controls. Using a carbon-fiber-based force-length measurement system for single cardiomyocytes, we evaluated the contractile function over a wide range of loading conditions including the shortening fraction (%FS) and maximal shortening velocity (Vmax) under the unloaded condition, and isometric force. At 24 hours after infection, nearly 80% of the Adv-GFP-infected myocytes expressed GFP. We found that the %FS and Vmax did not differ among the three groups, however, the isometric force showed a mild, but significant, decrease only in Adv-GFP myocytes (Adv-GFP: 29.1 +/- 4.0 mN/mm2; Adv-Null: 42.8 +/- 6.2 mN/mm2; UI: 47.1 +/- 4.8 mN/mm2; p = 0.03). An evaluation of the contractile function of isolated cardiomyocytes under high load conditions revealed impaired isometric contractility by GFP expression. Adv-GFP expression may not be an ideal control for specific gene expression experiments in myocardial tissue.
Collapse
Affiliation(s)
- Satoshi Nishimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Allegra S, Deleine C, Michael-Jubely R, Gryson C, Boirie Y, Kantakamalakul W, Vasson MP. Implementation of the EGFP-K562 flow cytometric NK test: Determination of NK cytotoxic activity in healthy elderly volunteers before and after feeding. Cytometry A 2006; 69:992-8. [PMID: 16969797 DOI: 10.1002/cyto.a.20301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Natural Killer (NK) cells are key actors of innate immunity that supervise the organism's cells, and fight against viral infections and cancer development through their cytotoxic activity. This cytotoxic activity is modulated by cytokines and hormones and could be influenced by physiological or pathological conditions. New techniques for measuring NK cytotoxic activity by flow-cytometry have recently been developed, and they correlated strongly with the standard chromium ((51)Cr) release assay. Our aim was to implement a previously published enhanced green fluorescent protein (EGFP)-K562 flow cytometric method and use it to evaluate NK cytotoxic activity under different nutritional conditions. METHODS NK effector cells were isolated from peripheral blood mononuclear cells, and a K562 cell line stably transfected by EGFP was used as target cells. Different analytical parameters, including cell ratios and incubation times, were studied to improve the EGFP-K562 flow cytometric NK test conditions. RESULTS The optimized test was then used to determine the effect of fasting and refeeding on NK cell numbers and activity in a physiological situation. NK cytotoxic activity in fasted conditions (30.4 +/- 4.4%) increased by a factor 1.7 +/- 0.2 (P = 0.0025) in nourished conditions (45.0 +/- 4.6%) in healthy elderly people. CONCLUSION Therefore, this method provides a reliable, reproducible and rapid test for analyzing NK cytotoxicity under various conditions.
Collapse
Affiliation(s)
- Séverine Allegra
- Laboratoire de Biochimie, Biologie Moléculaire et Nutrition EA2416, Faculté de Pharmacie, IFR 79 Santé-Auvergne, CLARA, Université Clermont 1, Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Du L, Kido M, Lee DV, Rabinowitz JE, Samulski RJ, Jamieson SW, Weitzman MD, Thistlethwaite PA. Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol Ther 2005; 10:604-8. [PMID: 15336660 DOI: 10.1016/j.ymthe.2004.06.110] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 06/05/2004] [Indexed: 10/26/2022] Open
Abstract
Recombinant cross-packaging of adeno-associated virus (AAV) genome of one serotype into other AAV serotypes has the potential to optimize tissue-specific gene transduction and expression in the heart. To evaluate the role of AAV1 to 5 virion shells on AAV2 transgene transduction, we constructed hybrid vectors in which each serotype capsid coding domain was cloned into a common vector backbone containing AAV2 replication genes. Constructs were tested for expression in: (1) adult murine heart in vivo using direct injection of virus, (2) neonatal and adult murine ventricular cardiomyocytes in vitro, and (3) adult human ventricular cardiomyocytes in vitro, using green fluorescent protein (GFP) as the measurable transgene. Serotype 1 virus demonstrated the highest transduction efficiency in adult murine cardiomyocytes both in vitro and in vivo, while serotype 2 virus had the greater transduction efficiency in neonatal cardiomyocytes in vitro. Prolonged in vivo myocardial GFP expression was observed for up to 12 months using serotype 1 and 2 vectors only. In human cardiomyocytes, serotype 1 vector was superior in transduction efficiency, followed by types 2, 5, 4, and 3. These data establish a hierarchy for efficient serotype-specific vector transduction in myocardial tissue. AAV1 serotype packaging results in more efficient transduction of genes in the murine and human adult heart, compared to other AAV serotypes. Our results suggest that adult human cardiac gene therapy may be enhanced by the use of serotype 1-specific AAV vectors.
Collapse
Affiliation(s)
- Lingling Du
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92103-8892, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Allegra S, Bouazza L, Benetollo C, Li JY, Langlois D. A 7.1 kbp beta-myosin heavy chain promoter, efficient for green fluorescent protein expression, probably induces lethality when overexpressing a mutated transforming growth factor-beta type II receptor in transgenic mice. Transgenic Res 2005; 14:69-80. [PMID: 15865050 DOI: 10.1007/s11248-004-5788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The roles of transforming growth factor-beta (TGFbeta) in heart or skeletal muscle development and physiology are still the subject of controversies. Our aim was to block, in transgenic mice, the TGFbeta signalling pathway by a dominant negative mutant of the TGFbeta type II receptor fused to the enhanced green fluorescent protein (TbetaRII-KR-EGFP) under the control of a 7.1 kbp mouse beta-myosin heavy chain (betaMHC) promoter to investigate the roles of TGFbeta in the heart and slow skeletal muscles. First, we generated two transgenic lines overexpressing EGFP under the control of the 7.1 kbp betaMHC promoter. In embryos, EGFP was detectable as early as 7.5 days post coitum. In embryos, newborns and adults, EGFP was expressed mainly in the cardiac ventricles and in slow skeletal muscles. EGFP expression was intense in the bladder but weak in the intestines. In contrast to the endogenous betaMHC promoter, the activity of the 7.1 kbp betaMHC promoter in the transgene was not repressed after birth and remained high in adult transgenic mice. We obtained two founders with the transgene comprising the TbetaRII-KR-EGFP sequence under the control of the 7.1 kbp betaMHC promoter. These founders were generated at a very low frequency and expressed barely detectable levels of TbetaRII-KR-EGFP mRNA. Our failure to obtain transgenic lines overexpressing the dominant negative receptor suggests that the blocking of the TGFbeta signalling pathway in the heart and slow skeletal muscles could be embryonically lethal. To conclude, the 7.1 kbp betaMHC promoter directs high levels of transgene expression in the cardiac ventricles and in slow skeletal muscles of the mouse. Analysis of the consequences of the blocking of the TGFbeta signalling pathway in the heart will require the use of tissue specific means of conditional gene invalidation.
Collapse
|
12
|
Patel R, Kos L. Endothelin-1 and Neuregulin-1 convert embryonic cardiomyocytes into cells of the conduction system in the mouse. Dev Dyn 2005; 233:20-8. [PMID: 15759273 DOI: 10.1002/dvdy.20284] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The cells that form the cardiac conduction system (CCS) are recruited from embryonic cardiomyocytes. Endothelin-1 (ET-1) and Neuregulin-1 (NRG-1) have been associated with this transition in the avian and murine systems, respectively. We established murine embryonic cardiomyocyte cultures induced or not with ET-1 and/or NRG-1 to compare the expression of cardiomyocyte and CCS-specific genes. Semiquantitative reverse transcription-polymerase chain reaction analysis showed that cardiomyogenesis and CCS-specific markers, such as Nkx2.5, GATA4, Irx4, Connexin 40, Connexin 45, HF-1b, and MinK, were up-regulated in the presence of either growth factor. Additionally, immunofluorescence analysis demonstrated that ET-1 or NRG-1 increased the number of cells expressing the Purkinje fiber-specific marker Connexin 40 in induced cultures but did not selectively increase their proliferation rate. Interestingly, additive effects were not observed in ET-1 and NRG-1 combination treatments. Among other possibilities, this observation suggests that these factors may interact to promote the differentiation of the murine CCS.
Collapse
Affiliation(s)
- Rita Patel
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|
13
|
Hsiao YC, Chang HH, Tsai CY, Jong YJ, Horng LS, Lin SF, Tsai TF. Coat color-tagged green mouse with EGFP expressed from the RNA polymerase II promoter. Genesis 2005; 39:122-9. [PMID: 15170698 DOI: 10.1002/gene.20038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Laborious molecular genotyping and variegated gene expression are two widely encountered issues for transgenic mouse studies. To facilitate genotyping in the FVB/N albino background and to reduce variegated expression, we successfully generated double-tagged transgenic mice for direct visual genotyping with the coat color phenotype derived from tyrosinase cDNA driven by the tyrosinase promoter and with simultaneous high enhanced green fluorescent protein (EGFP) expression driven by the promoter of RNA polymerase II large subunit gene. Incorporation of insulator into a transgene construct achieved high efficiency of transgene expression in more than 90% of the founders. EGFP was detected as early as the one-cell fertilized egg and lasted for the whole embryo development, as well as in all of the adult tissues examined. The coat color-tagged green mice offer opportunities in applications such as tissue transplantation, lineage tracing, chimera biology, RNA interference, and other transgenic studies.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Faculty of Life Sciences and Institute of Genetics, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Allegra S, Li J, Saez J, Langlois D. Terminal differentiation of Sol 8 myoblasts is retarded by a transforming growth factor-beta autocrine regulatory loop. Biochem J 2004; 381:429-36. [PMID: 15056073 PMCID: PMC1133849 DOI: 10.1042/bj20031008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 03/24/2004] [Accepted: 03/31/2004] [Indexed: 11/17/2022]
Abstract
In DM (differentiation medium), Sol 8 myoblasts spontaneously form myotubes and express the betaMHC (beta-myosin heavy chain), their main marker of terminal differentiation. This marker is detectable at 24 h, and increases up to 72 h. Our aim was to define temporal effects of TGFbeta (transforming growth factor beta) on betaMHC expression in Sol 8 cells. TGFbeta1 (1 ng/ml) added at time zero to DM decreased MyoD expression and completely inhibited betaMHC expression in Sol 8 cells. This inhibition of betaMHC expression was progressively lost when TGFbeta1 was added from 8 to 34 h. After 34 h, the cells were irreversibly differentiated, and TGFbeta1 did not inhibit betaMHC accumulation any longer. Two independent approaches showed that a TGFbeta autocrine regulatory loop retarded and partially impaired Sol 8 cell terminal differentiation. First, permanent immunoneutralization of the active TGFbetas released by the cells into DM increased betaMHC levels at 72 h compared with controls. Secondly, a dominant-negative mutant of the TGFbeta type II receptor was overexpressed in Sol 8 cells under the control of the betaMHC promoter. Both the dominant-negative receptor and the betaMHC gene were expressed after 24 h in DM. The delayed blocking of the TGFbeta signalling pathway by the dominant-negative receptor was as effective as permanent immunoneutralization to promote betaMHC expression. To conclude, TGFbeta inhibits Sol 8 cell terminal differentiation within a narrow time interval (24-34 h) that coincides with the onset of betaMHC expression.
Collapse
Key Words
- autocrine regulatory loop
- immunoneutralization
- sol 8 myoblasts
- terminal differentiation
- transforming growth factor β (tgfβ)
- dominant-negative tgfβ type ii receptor
- cmv, cytomegalovirus
- dm, differentiation medium
- dmem, dulbecco's modified eagle's medium
- egfp, enhanced green fluorescent protein
- fbs, fetal bovine serum
- gm, growth medium
- hs, horse serum
- βmhc, β-myosin heavy chain
- mrf, myogenic regulatory factor
- tgfβ, transforming growth factor β
- tβr(i/ii), type i/ii tgfβ receptor
- wt, wild-type
Collapse
Affiliation(s)
- Séverine Allegra
- UMR 369 INSERM/UCBL and IFR 62 Laënnec, Faculté de médecine, R.T.H. Laënnec, 7 rue G. Paradin, 69372 Lyon, Cedex 08, France
| | - Jacques Yuan Li
- UMR 369 INSERM/UCBL and IFR 62 Laënnec, Faculté de médecine, R.T.H. Laënnec, 7 rue G. Paradin, 69372 Lyon, Cedex 08, France
| | - José Maria Saez
- UMR 369 INSERM/UCBL and IFR 62 Laënnec, Faculté de médecine, R.T.H. Laënnec, 7 rue G. Paradin, 69372 Lyon, Cedex 08, France
| | - Dominique Langlois
- UMR 369 INSERM/UCBL and IFR 62 Laënnec, Faculté de médecine, R.T.H. Laënnec, 7 rue G. Paradin, 69372 Lyon, Cedex 08, France
| |
Collapse
|
15
|
Roper JM, Staversky RJ, Finkelstein JN, Keng PC, O'Reilly MA. Identification and isolation of mouse type II cells on the basis of intrinsic expression of enhanced green fluorescent protein. Am J Physiol Lung Cell Mol Physiol 2003; 285:L691-700. [PMID: 12740214 DOI: 10.1152/ajplung.00034.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The unique morphology and cell-specific expression of surfactant genes have been used to identify and isolate alveolar type II epithelial cells. Because these attributes can change during lung injury, a novel method was developed for detecting and isolating mouse type II cells on the basis of transgenic expression of enhanced green fluorescence protein (EGFP). A line of transgenic mice was created in which EGFP was targeted to type II cells under control of the human surfactant protein (SP)-C promoter. Green fluorescent cells that colocalized by immunostaining with endogenous pro-SP-C were scattered throughout the parenchyma. EGFP was not detected in Clara cell secretory protein-expressing airway epithelial cells or other nonlung tissues. Pro-SP-C immunostaining diminished in lungs exposed to hyperoxia, consistent with decreased expression and secretion of intracellular precursor protein. In contrast, type II cells could still be identified by their intrinsic green fluorescence, because EGFP is not secreted. Type II cells could also be purified from single-cell suspensions of lung homogenates using fluorescence-activated cell sorting. Less than 1% of presorted cells exhibited green fluorescence compared with >95% of the sorted population. As expected for type II cells, ultrastructural analysis revealed that the sorted cells contained numerous lamellar bodies. SP-A, SP-B, and SP-C mRNAs were detected in the sorted population, but T1alpha and CD31 (platelet endothelial cell adhesion molecule) were not, indicating enrichment of type II epithelial cells. This method will be invaluable for detecting and isolating mouse type II cells under a variety of experimental conditions.
Collapse
Affiliation(s)
- Jason M Roper
- Dept. of Pediatrics, Box 850, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
16
|
Schaefer BC, Schaefer ML, Kappler JW, Marrack P, Kedl RM. Observation of antigen-dependent CD8+ T-cell/ dendritic cell interactions in vivo. Cell Immunol 2001; 214:110-22. [PMID: 12088410 DOI: 10.1006/cimm.2001.1895] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to track hematopoetic cells of all lineages unambiguously at all stages of development, we have developed C57BL/6 mice that express a transgene coding for green fluorescent protein (GFP) under control of the human ubiquitin C promoter. These mice, called UBI-GFP/BL6, express GFP in all tissues examined, with high levels of GFP expression observed in hematopoetic cells. UBI-GFP/BL6 mice are unique in that B cells, T cells, and dendritic cells have distinct levels of GFP fluorescence. In cell transfer experiments, leukocytes from UBI-GFP/BL6 mice are readily identified by FACS or fluorescence microscopy. We demonstrate that transplanted UBI-GFP/BL6 dendritic cells are easily identified in secondary lymphoid tissues. Direct interactions between individual dendritic cells and multiple naïve CD8+ T cells are observed in lymph nodes within 12 h of cell transfer and require loading of the dendritic cells with the appropriate peptide antigen. Dendritic cells undergo specific morphologic changes following interactions with antigen-specific T cells.
Collapse
Affiliation(s)
- B C Schaefer
- National Jewish Medical and Research Center, 1400 Jackson Street, K512, Denver, Colorado 80206, USA.
| | | | | | | | | |
Collapse
|
17
|
Sato M, Watanabe T, Oshida A, Nagashima A, Miyazaki JI, Kimura M. Usefulness of double gene construct for rapid identification of transgenic mice exhibiting tissue-specific gene expression. Mol Reprod Dev 2001; 60:446-56. [PMID: 11746955 DOI: 10.1002/mrd.1109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Identification of transgenics still requires PCR and genomic Southern blot hybridization of genomic DNA isolated from tail pieces. Furthermore, identification of transgene-expressing transgenics (hereafter called "expressor") requires mRNA analyses (RT-PCR and Northern blot hybridization) or protein analysis (Western blotting and immunohistochemical staining using specific antibodies). These approaches are often labor-intensive and time-consuming. We developed a technique that simplifies the process of screening expressor transgenics using enhanced green fluorescent protein (EGFP), a noninvasive reporter recently utilized in a variety of organisms, including mice, as a tag. We constructed a MNCE transgene consisting of two expression units, MBP-NCre (termed "MN") and CAG-EGFP (termed "CE"). MN consists of a myelin basic protein (MBP) promoter and NCre gene (Cre gene carrying a nuclear localization signal (NLS) sequence at its 5' end). CE consists of a promoter element, CAG composed of cytomegalovirus (CMV) enhancer and chicken beta-actin promoter, and EGFP cDNA. Of a total of 72 F0 mice obtained after pronuclear injection of MNCE at 1-cell egg stage, 15 were found to express EGFP when the tail, eye, and inner surface of the ear were inspected for EGFP fluorescence under UV illumination at weaning stage. These fluorescent mice were found to possess MNCE and to express NCre mRNA in a brain-specific manner. Mice exhibiting no fluorescence were transgenic or nontransgenic. Mice carrying MNCE, but exhibiting no fluorescence, never expressed NCre mRNA in any organs tested. These findings indicate that (i) direct inspection of the surface of mice for fluorescence under UV illumination enables identification of expressor transgenics without performances of the molecular biological analyses mentioned above, and (ii) systemic promoters such as CAG do not affect the tissue-specificity of a tissue-specific promoter such as MBP promoter, which is located upstream of CAG by approximately 2 kb.
Collapse
MESH Headings
- Actins/genetics
- Animals
- Blotting, Southern
- Brain/metabolism
- Cells, Cultured
- Chickens/genetics
- Cytomegalovirus/genetics
- DNA, Recombinant/genetics
- Enhancer Elements, Genetic/genetics
- Gene Expression
- Gene Expression Profiling/methods
- Genes, Reporter/genetics
- Green Fluorescent Proteins
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Transgenic
- Myelin Basic Protein/genetics
- Organ Specificity
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Recombination, Genetic/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Transgenes/genetics
Collapse
Affiliation(s)
- M Sato
- Molecular Medicine Research Center, The Institute of Medical Sciences, Tokai University, Bohseidai, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Day RN, Periasamy A, Schaufele F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 2001; 25:4-18. [PMID: 11558993 DOI: 10.1006/meth.2001.1211] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells respond to environmental cues by modifying protein complexes in the nucleus to produce a change in the pattern of gene expression. In this article, we review techniques that allow us to visualize these protein interactions as they occur in living cells. The cloning of genes from marine organisms that encode fluorescent proteins provides a way to tag and monitor the intracellular behavior of expressed fusion proteins. The genetic engineering of jellyfish green fluorescent protein (GFP) and the recent cloning of a sea anemone red fluorescent protein (RFP) have provided fluorescent tags that emit light at wavelengths ranging from the blue to the red spectrum. Several of these color variants can be readily distinguished by fluorescence microscopy, allowing them to be used in combination to monitor the behavior of two or more independent proteins in the same living cell. We describe the use of this approach to examine where transcription factors are assembled in the nucleus. To demonstrate that these labeled nuclear proteins are interacting, however, requires spatial resolution that exceeds the optical limit of the light microscope. This degree of spatial resolution can be achieved with the conventional light microscope using the technique of fluorescence resonance energy transfer (FRET). The application of FRET microscopy to detect the interactions between proteins labeled with the color variants of GFP and the limitations of the FRET approach are discussed. The use of different-color fluorescent proteins in combination with FRET offers the opportunity to study the complex behavior of key regulatory proteins in their natural environment within the living cell.
Collapse
Affiliation(s)
- R N Day
- Department of Medicine, NSF Center for Biological Timing, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
19
|
Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11149956 PMCID: PMC14636 DOI: 10.1073/pnas.021548898] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adrenomedullin, a recently identified potent vasodilator, is expressed widely and has been suggested to have functions ranging from reproduction to blood pressure regulation. To elucidate these functions and define more precisely sites of Adm expression, we replaced the coding region of the Adm gene in mice with a sequence encoding enhanced green fluorescent protein while leaving the Adm promoter intact. We find that Adm(-/-) embryos die at midgestation with extreme hydrops fetalis and cardiovascular abnormalities, including overdeveloped ventricular trabeculae and underdeveloped arterial walls. These data suggest that genetically determined absence of Adm may be one cause of nonimmune hydrops fetalis in humans.
Collapse
|
20
|
Caron KM, Smithies O. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A 2001; 98:615-9. [PMID: 11149956 PMCID: PMC14636 DOI: 10.1073/pnas.98.2.615] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adrenomedullin, a recently identified potent vasodilator, is expressed widely and has been suggested to have functions ranging from reproduction to blood pressure regulation. To elucidate these functions and define more precisely sites of Adm expression, we replaced the coding region of the Adm gene in mice with a sequence encoding enhanced green fluorescent protein while leaving the Adm promoter intact. We find that Adm(-/-) embryos die at midgestation with extreme hydrops fetalis and cardiovascular abnormalities, including overdeveloped ventricular trabeculae and underdeveloped arterial walls. These data suggest that genetically determined absence of Adm may be one cause of nonimmune hydrops fetalis in humans.
Collapse
Affiliation(s)
- K M Caron
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | |
Collapse
|
21
|
Karliner JS, Honbo N, Epstein CJ, Xian M, Lau YF, Gray MO. Neonatal mouse cardiac myocytes exhibit cardioprotection induced by hypoxic and pharmacologic preconditioning and by transgenic overexpression of human Cu/Zn superoxide dismutase. J Mol Cell Cardiol 2000; 32:1779-86. [PMID: 11013122 DOI: 10.1006/jmcc.2000.1212] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although mouse models have been increasingly used for studies of cardiac pathophysiology, there is little information regarding cultured murine cardiac myocytes. Accordingly, we have developed a cell culture model of neonatal mouse cardiac myocytes by modifying a protocol used to prepare neonatal rat myocytes. The principal change is the substitution of cytosine arabinoside for bromodeoxyuridine to prevent fibroblast proliferation. Neonatal murine myocytes exhibited persistent spontaneous contraction and were viable for up to 14 days in culture. By flow cytometry 85% of the cells were cardiac myocytes. In sparse cultures (average cell density 259 cells/mm(2)), both hypoxic preconditioning (n=5) and phenylephrine pretreatment (n=8) produced significant protection of cardiac myocytes from cell death during a prolonged period of severe hypoxia (<0.5% O(2)for 18-20 h, both P<0.05). The phenylephrine effect was inhibited by the alpha(1)-adrenoceptor antagonist prazosin (n=4, P<0.05) and by an xi PKC peptide antagonist (xi V1-2) coupled to a TAT peptide (n=5, P<0. 05). Interestingly, the mixed alpha(1)- and beta -adrenoceptor agonist norepinephrine, which stimulates hypertrophy as measured by(14)[C]phenylalanine incorporation in neonatal rat cardiac myocytes, did not cause hypertrophy in mouse myocytes, suggesting that the signaling pathways for myocardial protection and hypertrophy are likely to be both divergent and species specific. In cardiac myocytes prepared from transgenic mice either homozygous or heterozygous for human Cu/Zn superoxide dismutase, there was protection from cell death (n=3) and restoration of(14)[C]phenyl- alanine uptake (n=4) during prolonged hypoxia (1% O(2)for 3 days, both P<0.05). We conclude that this cellular model, which is relatively simple to prepare, can be used for in-vitro examination of cardiac protection induced by preconditioning agents, various transgenes, and potentially by targeted gene deletions.
Collapse
Affiliation(s)
- J S Karliner
- Cardiology Section, VA Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | | | |
Collapse
|