1
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Morad V, Stelmakh A, Svyrydenko M, Feld LG, Boehme SC, Aebli M, Affolter J, Kaul CJ, Schrenker NJ, Bals S, Sahin Y, Dirin DN, Cherniukh I, Raino G, Baumketner A, Kovalenko MV. Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature 2024; 626:542-548. [PMID: 38109940 PMCID: PMC10866715 DOI: 10.1038/s41586-023-06932-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.
Collapse
Affiliation(s)
- Viktoriia Morad
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Andriy Stelmakh
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Mariia Svyrydenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Leon G Feld
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Simon C Boehme
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Marcel Aebli
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Joel Affolter
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Christoph J Kaul
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Nadine J Schrenker
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Yesim Sahin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Ihor Cherniukh
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Gabriele Raino
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Andrij Baumketner
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland.
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
3
|
Tavera-Méndez CL, Bergen A, Trzeciak S, Heinemann FW, Graf R, Zahn D, Meyer K, Hartmann M, Wisser D. Self-Assembled Supported Ionic Liquids. Chemistry 2024; 30:e202303673. [PMID: 37963087 DOI: 10.1002/chem.202303673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Separation and reuse of the catalytically active metal complexes are persistent issues in homogeneous catalysis. Supported Ionic Liquid Phase (SILP) catalysts, where the catalytic center is dissolved in a thin film of a stable ionic liquid, deposited on a solid support, present a promising alternative. However, the dissolution of the metal center in the film leaves little control over its position and its activity. We present here four novel, task-specific ionic liquids [FPhn ImH R]I (n=1, 2; R=PEG2 , C12 H25 ), designed to self-assemble on a silica surface without any covalent bonding and offering a metal binding site in a controlled distance to the support. Advanced multinuclear solid-state NMR spectroscopic techniques under Magic Angle Spinning, complemented by molecular dynamics (MD) simulations, allow us to determine their molecular conformation when deposited inside SBA-15 as a model silica support. We provide here conceptual proof for a rational design of ionic liquids self-assembling into thin films, opening an avenue for a second, improved generation of SILP catalysts.
Collapse
Affiliation(s)
- Cindy-Ly Tavera-Méndez
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Alexander Bergen
- Chair of Inorganic and General Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Simon Trzeciak
- Computer Chemistry Center (CCC), Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Frank W Heinemann
- Chair of Inorganic and General Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dirk Zahn
- Computer Chemistry Center (CCC), Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Karsten Meyer
- Chair of Inorganic and General Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Perras FA, Culver DB. On the use of NMR distance measurements for assessing surface site homogeneity. Dalton Trans 2023. [PMID: 38015038 DOI: 10.1039/d3dt03201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The past few decades have seen tremendous growth in the area of single-site heterogeneous catalysis, which aims to combine the best aspects of homogeneous and heterogeneous catalysis, namely molecular-level site control and ease of separation/recycling. Despite this, we still do not have a means of assessing site homogeneity and whether the produced catalyst is indeed a "single-site". Recent developments have enabled the use of NMR-based distance measurements to determine the conformations and configurations of surface sites, leading to the question whether such measurements can be used to distinguish materials containing either single or multiple surface sites with otherwise indistinguishable NMR properties. We describe a Monte Carlo-based multi-structure search algorithm and its application to the determination of multi-site structures from supported metal complexes. The sensitivity of REDOR data to the existence of multiple sites is assessed using synthetic data and prior literature examples are revisited to determine whether the single-site approximation was indeed appropriate. We lastly apply this new methodology to differentiate the configurations of zirconocene complexes grafted onto alumina supports that were thermally treated at different temperatures.
Collapse
Affiliation(s)
- Frédéric A Perras
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
- Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA
| | - Damien B Culver
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Jabbour R, Ashling CW, Robinson TC, Khan AH, Wisser D, Berruyer P, Ghosh AC, Ranscht A, Keen DA, Brunner E, Canivet J, Bennett TD, Mellot-Draznieks C, Lesage A, Wisser FM. Unravelling the Molecular Structure and Confining Environment of an Organometallic Catalyst Heterogenized within Amorphous Porous Polymers. Angew Chem Int Ed Engl 2023; 62:e202310878. [PMID: 37647152 DOI: 10.1002/anie.202310878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The catalytic activity of multifunctional, microporous materials is directly linked to the spatial arrangement of their structural building blocks. Despite great achievements in the design and incorporation of isolated catalytically active metal complexes within such materials, a detailed understanding of their atomic-level structure and the local environment of the active species remains a fundamental challenge, especially when these latter are hosted in non-crystalline organic polymers. Here, we show that by combining computational chemistry with pair distribution function analysis, 129 Xe NMR, and Dynamic Nuclear Polarization enhanced NMR spectroscopy, a very accurate description of the molecular structure and confining surroundings of a catalytically active Rh-based organometallic complex incorporated inside the cavity of amorphous bipyridine-based porous polymers is obtained. Small, but significant, differences in the structural properties of the polymers are highlighted depending on their backbone motifs.
Collapse
Affiliation(s)
- Ribal Jabbour
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Christopher W Ashling
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Thomas C Robinson
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Arafat Hossain Khan
- Chair of Bioanalytical Chemistry, TU Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Pierrick Berruyer
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Ashta C Ghosh
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Alisa Ranscht
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, TU Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France, PSL Research University, CNRS Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Florian M Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
6
|
Toke O. Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing. Int J Mol Sci 2023; 24:13637. [PMID: 37686450 PMCID: PMC10487747 DOI: 10.3390/ijms241713637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Solid-state NMR (ss-NMR) is a powerful tool to investigate noncrystallizable, poorly soluble molecular systems, such as membrane proteins, amyloids, and cell walls, in environments that closely resemble their physical sites of action. Rotational-echo double resonance (REDOR) is an ss-NMR methodology, which by reintroducing heteronuclear dipolar coupling under magic angle spinning conditions provides intramolecular and intermolecular distance restraints at the atomic level. In addition, REDOR can be exploited as a selection tool to filter spectra based on dipolar couplings. Used extensively as a spectroscopic ruler between isolated spins in site-specifically labeled systems and more recently as a building block in multidimensional ss-NMR pulse sequences allowing the simultaneous measurement of multiple distances, REDOR yields atomic-scale information on the structure and interaction of proteins. By extending REDOR to the determination of 1H-X dipolar couplings in recent years, the limit of measurable distances has reached ~15-20 Å, making it an attractive method of choice for the study of complex biomolecular assemblies. Following a methodological introduction including the most recent implementations, examples are discussed to illustrate the versatility of REDOR in the study of biological systems.
Collapse
Affiliation(s)
- Orsolya Toke
- Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Dervişoğlu R, Antonschmidt L, Nimerovsky E, Sant V, Kim M, Ryazanov S, Leonov A, Carlos Fuentes-Monteverde J, Wegstroth M, Giller K, Mathies G, Giese A, Becker S, Griesinger C, Andreas LB. Anle138b interaction in α-synuclein aggregates by dynamic nuclear polarization NMR. Methods 2023; 214:18-27. [PMID: 37037308 DOI: 10.1016/j.ymeth.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.
Collapse
Affiliation(s)
- Rıza Dervişoğlu
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leif Antonschmidt
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Evgeny Nimerovsky
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Myeongkyu Kim
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Andrei Leonov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | | | - Melanie Wegstroth
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Stefan Becker
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
8
|
Lin CC, Huang SJ, Wu PH, Chen TP, Huang CY, Wang YC, Chen PT, Radeva D, Petrov O, Gelev VM, Sankar R, Chen CC, Chen CW, Yu TY. Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR. Nat Commun 2022; 13:1513. [PMID: 35314691 PMCID: PMC8938534 DOI: 10.1038/s41467-022-29207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic-inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and ¹³C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-site cation dynamics and the structural rigidity of the organic spacers, so providing a molecular-level insight into the design of 2D OIHPs.
Collapse
Affiliation(s)
- Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, 10617, Taipei, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, 11529, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, 10617, Taipei, Taiwan
| | - Pei-Hao Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 10617, Taipei, Taiwan
| | - Tzu-Pei Chen
- Department of Materials Science and Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Chih-Ying Huang
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, 10617, Taipei, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, 11529, Taipei, Taiwan
| | - Ying-Chiao Wang
- Department of Materials Science and Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Po-Tuan Chen
- Department of Vehicle Engineering, National Taipei University of Technology, 10608, Taipei, Taiwan
| | - Denitsa Radeva
- Department of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Boulevard, 1164, Sofia, Bulgaria
| | - Ognyan Petrov
- Department of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Boulevard, 1164, Sofia, Bulgaria
| | - Vladimir M Gelev
- Department of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Boulevard, 1164, Sofia, Bulgaria
| | - Raman Sankar
- Institute of Physics, Academia Sinica, 115201, Taipei, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, 11677, Taipei, Taiwan
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, 10617, Taipei, Taiwan.
- Department of Materials Science and Engineering, National Taiwan University, 10617, Taipei, Taiwan.
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, 10617, Taipei, Taiwan.
| | - Tsyr-Yan Yu
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, 10617, Taipei, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, 11529, Taipei, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, 10617, Taipei, Taiwan.
| |
Collapse
|
9
|
Atterberry BA, Carnahan SL, Chen Y, Venkatesh A, Rossini AJ. Double echo symmetry-based REDOR and RESPDOR pulse sequences for proton detected measurements of heteronuclear dipolar coupling constants. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107147. [PMID: 35149335 DOI: 10.1016/j.jmr.2022.107147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
1H{X} symmetry-based rotational echo double resonance pulse sequences (S-REDOR) and symmetry-based rotational echo saturation pulse double resonance (S-RESPDOR) solid-state NMR experiments have found widespread application for 1H detected measurements of difference NMR spectra, dipolar coupling constants, and internuclear distances under conditions of fast magic angle spinning (MAS). In these experiments the supercycled R412 (SR412) symmetry-based recoupling pulse sequence is typically applied to the 1H spins to reintroduce heteronuclear dipolar couplings. However, the timing of SR412 and other symmetry-based pulse sequences must be precisely synchronized with the rotation of the sample, otherwise, the evolution of 1H CSA and other interactions will not be properly refocused. For this reason, significant distortions are often observed in experimental dipolar dephasing difference curves obtained with S-REDOR or S-RESPDOR pulse sequences. Here we introduce a family of double echo (DE) S-REDOR/S-RESPDOR pulse sequences that function in an analogous manner to the recently introduced t1-noise eliminated (TONE) family of dipolar heteronuclear multiple quantum coherence (D-HMQC) pulse sequences. Through numerical simulations and experiments the DE S-REDOR/S-RESPDOR sequences are shown to provide dephasing difference curves similar to those obtained with S-REDOR/S-RESPDOR. However, the DE sequences are more robust to the deviations of the MAS frequency from the ideal value that occurs during typical solid-state NMR experiments. The DE sequences are shown to provide more reliable 1H detected dipolar dephasing difference curves for nuclei such as 15N (with isotopic labelling), 183W and 35Cl. The double echo sequences are therefore recommended to be used in place of conventional S-REDOR/S-RESPDOR sequences for measurement of weak dipolar coupling constants and long-range distances.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Scott L Carnahan
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Yunhua Chen
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Perras FA, Kanbur U, Paterson AL, Chatterjee P, Slowing II, Sadow AD. Determining the Three-Dimensional Structures of Silica-Supported Metal Complexes from the Ground Up. Inorg Chem 2021; 61:1067-1078. [PMID: 34962783 DOI: 10.1021/acs.inorgchem.1c03200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immobilization of molecularly precise metal complexes to substrates, such as silica, provides an attractive platform for the design of active sites in heterogeneous catalysts. Specific steric and electronic variations of the ligand environment enable the development of structure-activity relationships and the knowledge-driven design of catalysts. At present, however, the three-dimensional environment of the precatalyst, much less the active site, is generally not known for heterogeneous single-site catalysts. We explored the degree to which NMR-based surface-to-complex interatomic distances could be used to solve the three-dimensional structures of three silica-supported metal complexes. The structure solution revealed unexpected features related to the environment around the metal that would be difficult to discern otherwise. This approach appears to be highly robust and, due to its simplicity, is readily applied to most single-site catalysts with little extra effort.
Collapse
Affiliation(s)
| | - Uddhav Kanbur
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Puranjan Chatterjee
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Igor I Slowing
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron D Sadow
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
Goldbourt A. Distance measurements to quadrupolar nuclei: Evolution of the rotational echo double resonance technique. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:908-919. [PMID: 33729630 DOI: 10.1002/mrc.5150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Molecular structure determination is the basis for understanding chemical processes and the property of materials. The direct dependence of the magnetic dipolar interaction on the distance makes solid-state nuclear magnetic resonance (NMR) an excellent tool to study molecular structure when X-ray crystallography fails to provide atomic-resolution data. Although techniques to measure distances between pairs of isolated nuclear spin-1/2 pairs are routine and easy to implement using the rotational echo double resonance (REDOR) experiment (Gullion & Schaefer, 1989), the existence of a nucleus with a spin > 1/2, appearing in approximately 75% of the elements in the periodic table, poses a challenge due to difficulties stemming from the large nuclear quadrupolar coupling constant (QCC). This mini-review presents the existing solid-state magic-angle spinning NMR techniques aimed toward the efficient and accurate determination of internuclear distances between a spin-1/2 and a "quadrupolar" nucleus having a spin larger than one half. Analytical expressions are provided for the various recoupling curves stemming from different techniques, and a coherent nomenclature for these various techniques is suggested. Treatment of some special cases such as multiple spin effects and spins with close Larmor frequencies is also discussed. The most advanced methods can recouple spins with quadrupolar frequencies up to tens of megahertz and beyond, expanding the distance measurement capabilities of solid-state NMR to an increasingly growing number of applications and nuclear spin systems.
Collapse
Affiliation(s)
- Amir Goldbourt
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Lu X, Li M, Huang C, Lowinger MB, Xu W, Yu L, Byrn SR, Templeton AC, Su Y. Atomic-Level Drug Substance and Polymer Interaction in Posaconazole Amorphous Solid Dispersion from Solid-State NMR. Mol Pharm 2020; 17:2585-2598. [DOI: 10.1021/acs.molpharmaceut.0c00268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Chengbin Huang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael B. Lowinger
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lian Yu
- School of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, Indiana 47907, United States
| | - Allen C. Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Chen Y, Smock SR, Flintgruber AH, Perras FA, Brutchey RL, Rossini AJ. Surface Termination of CsPbBr3 Perovskite Quantum Dots Determined by Solid-State NMR Spectroscopy. J Am Chem Soc 2020; 142:6117-6127. [DOI: 10.1021/jacs.9b13396] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yunhua Chen
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Sara R. Smock
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | - Richard L. Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Aaron J. Rossini
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Wong KM, Wang Y, Seroski DT, Larkin GE, Mehta AK, Hudalla GA, Hall CK, Paravastu AK. Molecular complementarity and structural heterogeneity within co-assembled peptide β-sheet nanofibers. NANOSCALE 2020; 12:4506-4518. [PMID: 32039428 DOI: 10.1039/c9nr08725g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembling peptides have garnered an increasing amount of interest as a functional biomaterial for medical and biotechnological applications. Recently, β-sheet peptide designs utilizing complementary pairs of peptides composed of charged amino acids positioned to impart co-assembly behavior have expanded the portfolio of peptide aggregate structures. Structural characterization of these charge-complementary peptide co-assemblies has been limited. Thus, it is not known how the complementary peptides organize on the molecular level. Through a combination of solid-state NMR measurements and discontinuous molecular dynamics simulations, we investigate the molecular organization of King-Webb peptide nanofibers. KW+ and KW- peptides co-assemble into near stoichiometric two-component β-sheet structures as observed by computational simulations and 13C-13C dipolar couplings. A majority of β-strands are aligned with antiparallel nearest neighbors within the β-sheet as previously suggested by Fourier transform infrared spectroscopy measurements. Surprisingly, however, a significant proportion of β-strand neighbors are parallel. While charge-complementary peptides were previously assumed to organize in an ideal (AB)n pattern, dipolar recoupling measurements on isotopically diluted nanofiber samples reveal a non-negligible amount of self-associated (AA and BB) pairs. Furthermore, computational simulations predict these different structures can coexist within the same nanofiber. Our results highlight structural disorder at the molecular level in a charge-complementary peptide system with implications on co-assembling peptide designs.
Collapse
Affiliation(s)
- Kong M Wong
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Asami S, Reif B. Accessing Methyl Groups in Proteins via 1H-detected MAS Solid-state NMR Spectroscopy Employing Random Protonation. Sci Rep 2019; 9:15903. [PMID: 31685894 PMCID: PMC6828780 DOI: 10.1038/s41598-019-52383-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/16/2019] [Indexed: 11/09/2022] Open
Abstract
We recently introduced RAP (reduced adjoining protonation) labelling as an easy to implement and cost-effective strategy to yield selectively methyl protonated protein samples. We show here that even though the amount of H2O employed in the bacterial growth medium is rather low, the intensities obtained in MAS solid-state NMR 1H,13C correlation spectra are comparable to spectra obtained for samples in which α-ketoisovalerate was employed as precursor. In addition to correlations for Leu and Val residues, RAP labelled samples yield also resonances for all methyl containing side chains. The labelling scheme has been employed to quantify order parameters, together with the respective asymmetry parameters. We obtain a very good correlation between the order parameters measured using a GlcRAP (glucose carbon source) and a α-ketoisovalerate labelled sample. The labelling scheme holds the potential to be very useful for the collection of long-range distance restraints among side chain atoms. Experiments are demonstrated using RAP and α-ketoisovalerate labelled samples of the α-spectrin SH3 domain, and are applied to fibrils formed from the Alzheimer's disease Aβ1-40 peptide.
Collapse
Affiliation(s)
- Sam Asami
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
16
|
Kashefi M, Malik N, Struppe JO, Thompson LK. Carbon-nitrogen REDOR to identify ms-timescale mobility in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:5-15. [PMID: 31158793 PMCID: PMC6656615 DOI: 10.1016/j.jmr.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Protein dynamics play key mechanistic roles but are difficult to measure in large proteins and protein complexes. INEPT and CP solid-state NMR experiments have often been used to obtain spectra of protein regions that are mobile and rigid, respectively, on the nanosecond timescale. To complement this approach, we have implemented 13C{15N} REDOR to detect protein regions with backbone dynamics on the millisecond time scale that average the ≈1 kHz carbon-nitrogen dipolar coupling. REDOR-filtering of carbon correlation spectra removes signals from rigid backbone carbons and retains signals from backbone carbons with ms-timescale dynamics that would be missing in dipolar-driven NCA/NCO spectra. We use these experiments to investigate functionally important dynamics within the E coli Asp receptor cytoplasmic fragment (U-13C, 15N-CF) in native-like complexes with CheA and CheW. The CF backbone carbons exhibit only 60-75% of the expected REDOR dephasing, suggesting that 40-25% of the backbone experiences significant mobility that averages the 13C15N dipolar couplings to zero. Furthermore, the extent of this mobility changes with signaling state.
Collapse
Affiliation(s)
- Maryam Kashefi
- Department of Chemistry, University of Massachusetts Amherst, 710 N Pleasant St, Amherst, MA 01003, USA
| | - Nikita Malik
- Department of Chemistry, University of Massachusetts Amherst, 710 N Pleasant St, Amherst, MA 01003, USA
| | - Jochem O Struppe
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA
| | - Lynmarie K Thompson
- Department of Chemistry, University of Massachusetts Amherst, 710 N Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
17
|
Perras FA, Wang Z, Kobayashi T, Baiker A, Huang J, Pruski M. Shedding light on the atomic-scale structure of amorphous silica–alumina and its Brønsted acid sites. Phys Chem Chem Phys 2019; 21:19529-19537. [DOI: 10.1039/c9cp04099d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advanced solid-state NMR methods, using dynamic nuclear polarization (DNP), are applied to probe the atomic-scale bulk structure of amorphous silica–alumina catalysts prepared by flame-spray pyrolysis, and the structure of their Brønsted acid sites.
Collapse
Affiliation(s)
| | - Zichun Wang
- Laboratory for Catalysis Engineering
- School of Chemical and Biomolecular Engineering & Sydney Nano Institute
- University of Sydney
- Sydney
- Australia
| | | | - Alfons Baiker
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Bioscience
- ETH Zürich
- HCI
- Switzerland
| | - Jun Huang
- Laboratory for Catalysis Engineering
- School of Chemical and Biomolecular Engineering & Sydney Nano Institute
- University of Sydney
- Sydney
- Australia
| | - Marek Pruski
- US DOE
- Ames Laboratory
- Ames
- USA
- Department of Chemistry
| |
Collapse
|
18
|
Makrinich M, Nimerovsky E, Goldbourt A. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 92:19-24. [PMID: 29751342 DOI: 10.1016/j.ssnmr.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31P-79/81Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13C-209Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure.
Collapse
Affiliation(s)
- M Makrinich
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - E Nimerovsky
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - A Goldbourt
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
19
|
Asami S, Reif B. Comparative Study of REDOR and CPPI Derived Order Parameters by 1H-Detected MAS NMR and MD Simulations. J Phys Chem B 2017; 121:8719-8730. [DOI: 10.1021/acs.jpcb.7b06812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sam Asami
- Munich
Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Bernd Reif
- Munich
Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
20
|
Lee JH, Kim MS, Lee HW, Lee IYC, Kim HK, Kim ND, Lee S, Seo H, Paik Y. The Application of REDOR NMR to Understand the Conformation of Epothilone B. Int J Mol Sci 2017; 18:E1472. [PMID: 28698492 PMCID: PMC5535963 DOI: 10.3390/ijms18071472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
The structural information of small therapeutic compounds complexed in biological matrices is important for drug developments. However, structural studies on ligands bound to such a large and dynamic system as microtubules are still challenging. This article reports an application of the solid-state NMR technique to investigating the bioactive conformation of epothilone B, a microtubule stabilizing agent, whose analog ixabepilone was approved by the U.S. Food and Drug Administration (FDA) as an anticancer drug. First, an analog of epothilone B was designed and successfully synthesized with deuterium and fluorine labels while keeping the high potency of the drug; Second, a lyophilization protocol was developed to enhance the low sensitivity of solid-state NMR; Third, molecular dynamics information of microtubule-bound epothilone B was revealed by high-resolution NMR spectra in comparison to the non-bound epothilone B; Last, information for the macrolide conformation of microtubule-bound epothilone B was obtained from rotational-echo double-resonance (REDOR) NMR data, suggesting the X-ray crystal structure of the ligand in the P450epoK complex as a possible candidate for the conformation. Our results are important as the first demonstration of using REDOR for studying epothilones.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Cheongju, Chungbuk 28644, Korea.
| | - Moon-Su Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Cheongju, Chungbuk 28644, Korea.
| | - Hyo Won Lee
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Cheongju, Chungbuk 28644, Korea.
| | - Ihl-Young C Lee
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| | - Hyun Kyoung Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro, Dong-gu, Daegu 41061, Korea.
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro, Dong-gu, Daegu 41061, Korea.
| | - SangGap Lee
- Spin Physics & Engineering Team, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea.
| | - Hwajeong Seo
- Daegu Center, Korea Basic Science Institute, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Younkee Paik
- Spin Physics & Engineering Team, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea.
- Daegu Center, Korea Basic Science Institute, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| |
Collapse
|
21
|
Chen CH, Shimon D, Lee JJ, Didas SA, Mehta AK, Sievers C, Jones CW, Hayes SE. Spectroscopic Characterization of Adsorbed 13CO 2 on 3-Aminopropylsilyl-Modified SBA15 Mesoporous Silica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6553-6559. [PMID: 28460168 DOI: 10.1021/acs.est.6b06605] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Multiple chemisorption products are found from the interaction of CO2 with the solid-amine sorbent, 3-aminopropyl silane (APS), bound to mesoporous silica (SBA15) using solid-state NMR and FTIR spectroscopy. We employed a combination of both 15N{13C} rotational-echo double-resonance (REDOR) NMR and 13C{15N} REDOR to determine the chemical identity of these products. 15N{13C} REDOR measurements are consistent with a single 13C-15N pair and distance of 1.45 Å. In contrast, both 13C{15N} REDOR and 13C CPMAS are consistent with multiple 13C products. 13C CPMAS shows two neighboring resonances, whose chemical shifts are consistent with carbamate (at 165 ppm) and carbamic acid. The 13C{15N} REDOR experiments resonant at 165 ppm show an incomplete buildup of the REDOR data to ∼90% of the expected maximum. We conclude this 10% missing intensity corresponds to a 13C NMR species that resonates at the identical chemical shift but that is not in dipolar contact with 15N. These data are consistent with the presence of bicarbonate, HCO3-, since it is commonly observed at ∼165 ppm and lacks 15N for dipolar coupling.
Collapse
Affiliation(s)
- Chia-Hsin Chen
- Department of Chemistry, Washington University in Saint Louis , One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Daphna Shimon
- Department of Chemistry, Washington University in Saint Louis , One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Jason J Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Stephanie A Didas
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Anil K Mehta
- Solid-State NMR Center, Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Sophia E Hayes
- Department of Chemistry, Washington University in Saint Louis , One Brookings Drive, Saint Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Greenwood AI, Clay MC, Rienstra CM. 31P-dephased, 13C-detected REDOR for NMR crystallography at natural isotopic abundance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 278:8-17. [PMID: 28319851 PMCID: PMC5478420 DOI: 10.1016/j.jmr.2017.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 05/14/2023]
Abstract
Typically, the process of NMR-based structure determination relies on accurately measuring a large number of internuclear distances to serve as restraints for simulated annealing calculations. In solids, the rotational-echo double-resonance (REDOR) experiment is a widely used approach to determine heteronuclear dipolar couplings corresponding to distances usually in the range of 1.5-8Å. A challenge in the interpretation of REDOR data is the degeneracy of symmetric subunits in an oligomer or equivalent molecules in a crystal lattice, which produce REDOR trajectories that depend explicitly on two or more distances instead of one. This degeneracy cannot be overcome by either spin dilution (for molecules containing 31P, 19F and other highly abundant nuclei) or selective pulses (in the case where there is chemical shift degeneracy). For small, crystalline molecules, such as phosphoserine, we demonstrate that as many as five inter-molecular distances must be considered to model 31P-dephased REDOR data accurately. We report excellent agreement between simulation and experiment once lattice couplings, 31P chemical shift anisotropy, and radio-frequency field inhomogeneity are all taken into account. We also discuss the systematic inaccuracies that may result from approximations that consider only the initial slope of the REDOR trajectory and/or that utilize a two- or three-spin system. Furthermore, we demonstrate the applicability of 31P-dephased REDOR for validation or refinement of candidate crystal structures and show that this approach is especially informative for NMR crystallography of 31P-containing molecules.
Collapse
Affiliation(s)
- Alexander I Greenwood
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mary C Clay
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chad M Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
23
|
Perras FA, Padmos JD, Johnson RL, Wang LL, Schwartz TJ, Kobayashi T, Horton JH, Dumesic JA, Shanks BH, Johnson DD, Pruski M. Characterizing Substrate–Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. J Am Chem Soc 2017; 139:2702-2709. [DOI: 10.1021/jacs.6b11408] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Frédéric A. Perras
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - J. Daniel Padmos
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L. Johnson
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Lin-Lin Wang
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Thomas J. Schwartz
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Takeshi Kobayashi
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - J. Hugh Horton
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - James A. Dumesic
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Brent H. Shanks
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Duane D. Johnson
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department
of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Marek Pruski
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
24
|
Bärwinkel K, Herling MM, Rieß M, Sato H, Li L, Avadhut YS, Kemnitzer TW, Kalo H, Senker J, Matsuda R, Kitagawa S, Breu J. Constant Volume Gate-Opening by Freezing Rotational Dynamics in Microporous Organically Pillared Layered Silicates. J Am Chem Soc 2017; 139:904-909. [DOI: 10.1021/jacs.6b11124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kilian Bärwinkel
- Inorganic
Chemistry III, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Markus M. Herling
- Bavarian
Polymer Institute and Inorganic Chemistry I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Martin Rieß
- Bavarian
Polymer Institute and Inorganic Chemistry I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Hiroshi Sato
- Department
of Chemistry and Biotechnology, School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Liangchun Li
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 615-8510, Japan
| | - Yamini S. Avadhut
- Inorganic
Chemistry III, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Tobias W. Kemnitzer
- Inorganic
Chemistry III, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Hussein Kalo
- Bavarian
Polymer Institute and Inorganic Chemistry I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Jürgen Senker
- Inorganic
Chemistry III, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Ryotaro Matsuda
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 615-8510, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Nagoya University, School of Engineering bldg. 1, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Susumu Kitagawa
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 615-8510, Japan
| | - Josef Breu
- Bavarian
Polymer Institute and Inorganic Chemistry I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
25
|
Li S, Mehta AK, Sidorov AN, Orlando TM, Jiang Z, Anthony NR, Lynn DG. Design of Asymmetric Peptide Bilayer Membranes. J Am Chem Soc 2016; 138:3579-86. [DOI: 10.1021/jacs.6b00977] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sha Li
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anil K. Mehta
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton N. Sidorov
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas M. Orlando
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhigang Jiang
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neil R. Anthony
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David G. Lynn
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Ren J, Eckert H. Applications of DQ-DRENAR for the structural analysis of phosphate glasses. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:140-147. [PMID: 26499362 DOI: 10.1016/j.ssnmr.2015.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new solid state NMR technique entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) has been recently described for measuring homonuclear dipole-dipole interactions in multi-spin-1/2 systems under magic-angle spinning conditions. As in rotational echo double resonance (REDOR), the homonuclear dipole-dipole coupling constant can be extracted from a plot of a normalized difference signal (S0-S')/S0 versus dipolar mixing time, where S is the signal amplitude with the DQ-Hamiltonian present, and S0 is the signal amplitude in the absence of the DQ-Hamiltonian, which is used for normalization. Within the range of (S0-S)/S0≤0.3-0.5 such "homonuclear REDOR curves" can be approximated by simple parabolae, yielding effective squared dipole-dipole coupling constants ∑bjk(2) summed over all the pairwise interactions present. The effect of glassy disorder has been studied by simulations, replacing singular-valued internuclear distances by Gaussian distance distributions with the same central value. This situation results in a systematic over-estimation effect, which tends to compensate the implicit under-estimation effect caused by the parabolic fitting approach. The present contribution describes applications to a number of phosphate-based glasses and glass ceramics. The method turns out to be well suited for the differentiation of the various Q((n)) phosphate species, for characterizing the spatial distribution of isolated orthophosphate ions and for the detection of incipient nano-segregation and/or phase separation effects in glass ceramics.
Collapse
Affiliation(s)
- Jinjun Ren
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, D-48149 Münster, Germany; Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Hellmut Eckert
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, D-48149 Münster, Germany; Instituto de Física de São Carlos, Universidade de São Paulo (USP), C.P. 369, CEP 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
27
|
Bach S, Celinski VR, Dietzsch M, Panthöfer M, Bienert R, Emmerling F, Schmedt auf der Günne J, Tremel W. Thermally Highly Stable Amorphous Zinc Phosphate Intermediates during the Formation of Zinc Phosphate Hydrate. J Am Chem Soc 2015; 137:2285-94. [DOI: 10.1021/ja5103663] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sven Bach
- Institute
of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate
School, Materials Science in Mainz, Staudinger Weg 9, D-55128 Mainz, Germany
| | - Vinicius R. Celinski
- Inorganic
Materials Chemistry, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Michael Dietzsch
- Institute
of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Martin Panthöfer
- Institute
of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Ralf Bienert
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| | | | - Wolfgang Tremel
- Institute
of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
28
|
Spencer TL, Plagos NW, Brouwer DH, Goward GR. The use of 6Li{7Li}-REDOR NMR spectroscopy to compare the ionic conductivities of solid-state lithium ion electrolytes. Phys Chem Chem Phys 2014; 16:2515-26. [PMID: 24363013 DOI: 10.1039/c3cp55132f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Garnet-like solid-state electrolyte materials for lithium ion batteries are promising replacements for the currently-used liquid electrolytes. This work compares the temperature dependent Li(+) ion hopping rate in Li6BaLa2M2O12 (M = Ta, Nb) using solid-state (6)Li{(7)Li}-REDOR NMR. The slope of the (6)Li{(7)Li}-REDOR curve is highly temperature dependent in these two phases, and a comparison of the changes of the REDOR slopes as a function of temperature has been used to evaluate the Li(+) ion dynamics. Our results indicate that the Nb phase has a higher overall ionic conductivity in the range of 247 K to 350 K, as well as a higher activation energy for lithium ion hopping than the Ta counterpart. For appropriate relative timescales of the dipolar couplings and ion transport processes, this is shown to be a facile method to compare ion dynamics among similar structures.
Collapse
Affiliation(s)
- T L Spencer
- McMaster University, Department of Chemistry and Chemical Biology, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 1H2.
| | | | | | | |
Collapse
|
29
|
Distance Measurements and Conformational Analysis of sn-2-Arachidonoylglycerol-Membrane Sample by 2H–31P REDOR NMR. J Membr Biol 2014; 247:231-8. [DOI: 10.1007/s00232-013-9627-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
30
|
Cegelski L. REDOR NMR for drug discovery. Bioorg Med Chem Lett 2013; 23:5767-75. [PMID: 24035486 PMCID: PMC4038398 DOI: 10.1016/j.bmcl.2013.08.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022]
Abstract
Rotational-echo double-resonance (REDOR) NMR is a powerful and versatile solid-state NMR measurement that has been recruited to elucidate drug modes of action and to drive the design of new therapeutics. REDOR has been implemented to examine composition, structure, and dynamics in diverse macromolecular and whole-cell systems, including taxol-bound microtubules, enzyme-cofactor-inhibitor ternary complexes, and antibiotic-whole-cell complexes. The REDOR approach involves the integrated design of specific isotopic labeling strategies and the selection of appropriate REDOR experiments. By way of example, this digest illustrates the versatility of the REDOR approach, with an emphasis on the practical considerations of experimental design and data interpretation.
Collapse
Affiliation(s)
- Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Ren J, Eckert H. DQ-DRENAR: A new NMR technique to measure site-resolved magnetic dipole-dipole interactions in multispin-1/2 systems: Theory and validation on crystalline phosphates. J Chem Phys 2013; 138:164201. [DOI: 10.1063/1.4801634] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Kim SJ, Singh M, Wohlrab A, Yu TY, Patti GJ, O’Connor RD, VanNieuwenhze M, Schaefer J. The isotridecanyl side chain of plusbacin-A3 is essential for the transglycosylase inhibition of peptidoglycan biosynthesis. Biochemistry 2013; 52:1973-9. [PMID: 23421534 PMCID: PMC3628776 DOI: 10.1021/bi4000222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plusbacin-A3 (pb-A3) is a cyclic lipodepsipeptide that exhibits antibacterial activity against multidrug-resistant Gram-positive pathogens. Plusbacin-A3 is thought not to enter the cell cytoplasm, and its lipophilic isotridecanyl side chain is presumed to insert into the membrane bilayer, thereby facilitating either lipid II binding or some form of membrane disruption. Analogues of pb-A3, [(2)H]pb-A3 and deslipo-pb-A3, were synthesized to test membrane insertion as a key to the mode of action. [(2)H]pb-A3 has an isotopically (2)H-labeled isopropyl subunit of the lipid side chain, and deslipo-pb-A3 is missing the isotridecanyl side chain. Both analogues have the pb-A3 core structure. The loss of antimicrobial activity in deslipo-pb-A3 showed that the isotridecanyl side chain is crucial for the mode of action of the drug. However, rotational-echo double-resonance nuclear magnetic resonance characterization of [(2)H]pb-A3 bound to [1-(13)C]glycine-labeled whole cells of Staphylococcus aureus showed that the isotridecanyl side chain does not insert into the lipid membrane but instead is found in the staphylococcal cell wall, positioned near the pentaglycyl cross-bridge of the cell-wall peptidoglycan. Addition of [(2)H]pb-A3 during the growth of S. aureus resulted in the accumulation of Park's nucleotide, consistent with the inhibition of the transglycosylation step of peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798
| | - Manmilan Singh
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Aaron Wohlrab
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Tsyr-Yan Yu
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Gary J. Patti
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | | | | | - Jacob Schaefer
- Department of Chemistry, Washington University, St. Louis, MO 63130
| |
Collapse
|
33
|
Celinski VR, Weber J, Schmedt Auf der Günne J. C-REDOR curves of extended spin systems. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 49-50:12-22. [PMID: 23141477 DOI: 10.1016/j.ssnmr.2012.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
The convergence of simulated C-REDOR curves of (infinitely) large spin systems is investigated with respect to the number of spins considered in the calculations. Taking a sufficiently large number of spins (>20,000 spins) into account enables the simulation of converged C-REDOR curves over the entire time period and not only the initial regime. The calculations are based on an existing approximation within first order average Hamiltonian theory (AHT), which assumes the absence of homonuclear dipole-dipole interactions. The C-REDOR experiment generates an average Hamiltonian close to the idealized AHT behavior even for multiple spin systems including multiple homonuclear dipole-dipole interactions which is shown from numerically exact calculations of the spin dynamics. Experimentally it is shown that calculations accurately predict the full, experimental C-REDOR curves of the multi-spin systems (31)P-(19)F in apatite, (31)P-(1)H in potassium trimetaphosphimate and (1)H-(31)P in potassium dihydrogen phosphate. We also present (13)C-(1)H and (15)N-(1)H data for the organic compounds glycine, l-alanine and l-histidine hydrochloride monohydrate which require consideration of molecular motion. Furthermore, we investigated the current limits of the method from systematic errors and we suggest a simple way to calculate errors for homogeneous and heterogeneous samples from experimental data.
Collapse
|
34
|
Lu X, Lafon O, Trébosc J, Amoureux JP. Detailed analysis of the S-RESPDOR solid-state NMR method for inter-nuclear distance measurement between spin-1/2 and quadrupolar nuclei. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 215:34-49. [PMID: 22257437 DOI: 10.1016/j.jmr.2011.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 05/31/2023]
Abstract
We present a detailed analysis of the Symmetry-based Resonance-Echo Saturation-Pulse DOuble-Resonance (S-RESPDOR) method in order to measure the inter-nuclear distances between spin-1/2 and quadrupolar nuclei. This recently introduced sequence employs a symmetry-based recoupling scheme on the observed spin-1/2 channel and a saturation pulse on the quadrupolar channel. This method requires a low radio-frequency (rf) field, is compatible with high MAS frequency and allows a rapid determination of inter-nuclear distances by fitting the experimental signal fraction to an analytical expression. Here, we analyze in detail the influence of the various experimental and spin-interaction parameters on the S-RESPDOR signal fraction and the measured distance. We show that the S-RESPDOR signal fraction only depends on the quadrupole interaction and the inter-nuclear distance. We demonstrate that the required rf-field on the quadrupolar channel is smaller than that required for an adiabatic-passage pulse in REAPDOR-type experiments. The only limitation of the method is the requirement of accurate rotor synchronization between the two parts of the dipolar recoupling sequences. Using S-RESPDOR, we have quantitatively measured a (31)P-(51)V distance of 357 pm in a mono-vanadium-substituted polyoxo-tungstate, K(4)PVW(11)O(40), from the Keggin family and a (13)C-(67)Zn distance of 286 pm in [80%-(67)Zn]zinc [1-(13)C]acetate. These results show that S-RESPDOR can be employed in the challenging cases of quadrupolar nuclei exhibiting a high spin number and either large chemical-shift anisotropy ((51)V) or low gyromagnetic ratio ((67)Zn).
Collapse
Affiliation(s)
- Xingyu Lu
- Unit of Catalysis and Chemistry of Solids, CNRS-8181, University Lille North of France, 59652 Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
35
|
Mao Y, Jeong M, Wang T, Ba Y. Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via ¹³C-¹⁵N dynamic REDOR NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2011; 39:7-13. [PMID: 21470833 PMCID: PMC3100732 DOI: 10.1016/j.ssnmr.2011.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
Antifreeze proteins (AFPs) provide survival mechanism for species living in subzero environments by lowering the freezing points of their body fluids effectively. The mechanism is attributed to AFPs' ability to inhibit the growth of seed ice crystals through adsorption on specific ice surfaces. We have applied dynamic REDOR (Rotational Echo Double Resonance) solid state NMR to study the threonine (Thr) side chain conformational population distribution of a site-specific Thr ¹³C(γ) and ¹⁵N doubly labeled type I AFP in frozen aqueous solution. It is known that the Thr side chains together with those of the 4th and 8th Alanine (Ala) residues commencing from the Thrs (the 1st) in the four 11-residue repeat units form the peptide ice-binding surface. The conformational information can provide structural insight with regard to how the AFP side chains structurally interact with the ice surface. χ-squared statistical analysis of the experimental REDOR data in fitting the theoretically calculated dynamic REDOR fraction curves indicates that when the AFP interacted with the ice surface in the frozen AFP solution, the conformations of the Thr side chains changed from the anti-conformations, as in the AFP crystal structure, to partial population in the anti-conformation and partial population in the two gauche conformations. This change together with the structural analysis indicates that the simultaneous interactions of the methyl groups and the hydroxyl groups of the Thr side chains with the ice surface could be the reason for the conformational population change. The analysis of the theoretical dynamic REDOR fraction curves shows that the set of experimental REDOR data may fit a number of theoretical curves with different population distributions. Thus, other structural information is needed to assist in determining the conformational population distribution of the Thr side chains.
Collapse
Affiliation(s)
- Yougang Mao
- Department of Chemistry and Biochemistry, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032
| | - Myongho Jeong
- Department of Chemistry and Biochemistry, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032
| | - Tieli Wang
- Department of Chemistry, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Yong Ba
- Department of Chemistry and Biochemistry, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032
| |
Collapse
|
36
|
Wang Q, Lu X, Lafon O, Trébosc J, Deng F, Hu B, Chen Q, Amoureux JP. Measurement of 13C–1H dipolar couplings in solids by using ultra-fast magic-angle spinning NMR spectroscopy with symmetry-based sequences. Phys Chem Chem Phys 2011; 13:5967-73. [DOI: 10.1039/c0cp01907k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Fowler DJ, Khalifah PG, Thompson LK. Design and characterization of a calixarene inclusion compound for calibration of long-range carbon-fluorine distance measurements by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 207:153-7. [PMID: 20822943 PMCID: PMC2956861 DOI: 10.1016/j.jmr.2010.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/01/2010] [Accepted: 08/06/2010] [Indexed: 05/17/2023]
Abstract
An inexpensive, easily synthesized calixarene:fluorotoluene host:guest inclusion complex has been designed for optimization and calibration of solid-state NMR measurements of carbon-fluorine distances using Rotational Echo DOuble Resonance (REDOR). Complexation of the fluorotoluene with the calixarene host separates the molecules such that simple two-spin behavior is observed for one site with a 4.08 Å carbon-fluorine distance. Fluorotoluene dynamics within the calixarene matrix cause motional averaging of the dipolar couplings, which makes it possible to easily optimize REDOR experiments and test their accuracy for relatively long distance measurements (>6.6 Å). This provides a new tool for accurate REDOR measurements of long carbon-fluorine distances, which have important applications in the characterization of fluorine-containing drugs, proteins, and polymers.
Collapse
Affiliation(s)
- Daniel J. Fowler
- Department of Chemistry, University of Massachusetts Amherst. 710 N. Pleasant St, Amherst, MA 01003
| | - Peter G. Khalifah
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794-3400
- Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973-5000
| | - Lynmarie K. Thompson
- Department of Chemistry, University of Massachusetts Amherst. 710 N. Pleasant St, Amherst, MA 01003
- Corresponding author. Department of Chemistry, University of Massachusetts Amherst. 710 N. Pleasant St, Amherst, MA 01003, USA, FAX: +1 413-545-4490,
| |
Collapse
|
38
|
Chen L, Lu X, Wang Q, Lafon O, Trébosc J, Deng F, Amoureux JP. Distance measurement between a spin-1/2 and a half-integer quadrupolar nuclei by solid-state NMR using exact analytical expressions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:269-273. [PMID: 20678947 DOI: 10.1016/j.jmr.2010.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 05/29/2023]
Abstract
We show that the S-RESPDOR NMR method can be used to measure distances between spin-1/2 and half-integer quadrupolar nuclei, and that a general analytical formula describes its dephasing curve for all spin values. We demonstrate the method on the C4-O4 spin pair of L-tyrosine·HCl, with 13C natural abundance and 30% 17O enrichment, using a moderate magnetic field (9.4 T), a moderate 17O rf-field (40 kHz) and a fast spinning speed (22 kHz). It is shown that S-RESPDOR is much more robust and accurate than previous methods.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Nimerovsky E, Goldbourt A. Efficient rotational echo double resonance recoupling of a spin-1/2 and a quadrupolar spin at high spinning rates and weak irradiation fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:52-58. [PMID: 20580579 DOI: 10.1016/j.jmr.2010.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 05/31/2010] [Indexed: 05/29/2023]
Abstract
A modification of the rotational echo (adiabatic passage) double resonance experiments, which allows recoupling of the dipolar interaction between a spin-1/2 and a half integer quadrupolar spin is proposed. We demonstrate efficient and uniform recoupling at high spinning rates (nu(r)), low radio-frequency (RF) irradiation fields (nu(1)), and high values of the quadrupolar interaction (nu(q)) that correspond to values of alpha=nu(1)(2)/nu(q)nu(r), the adiabaticity parameter, which are down to less than 10% of the traditional adiabaticity limit for a spin-5/2 (alpha=0.55). The low-alpha rotational echo double resonance curve is obtained when the pulse on the quadrupolar nucleus is extended to full two rotor periods and beyond. For protons (spin-1/2) and aluminum (spin-5/2) species in the zeolite SAPO-42, a dephasing curve, which is significantly better than the regular REAPDOR experiment (pulse length of one-third of the rotor period) is obtained for a spinning rate of 13 kHz and RF fields down to 10 and even 6 kHz. Under these conditions, alpha is estimated to be approximately 0.05 based on an average quadrupolar coupling in zeolites. Extensive simulations support our observations suggesting the method to be robust under a large range of experimental values.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | |
Collapse
|
40
|
Chen L, Wang Q, Hu B, Lafon O, Trébosc J, Deng F, Amoureux JP. Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR. Phys Chem Chem Phys 2010; 12:9395-405. [PMID: 20577687 DOI: 10.1039/b926546e] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Symmetry-based Resonance-Echo DOuble-Resonance (S-REDOR) method is proposed for measuring hetero-nuclear dipolar couplings between two different spin-1/2 nuclei, under fast magic-angle spinning. The hetero-nuclear dipolar couplings are restored by employing the SR4 sequence, which requires the rf-field strength to be only twice the spinning frequency. The S-REDOR experiment is extended to S-RESPDOR (Symmetry-based Resonance-Echo Saturation-Pulse DOuble-Resonance) for determining dipolar coupling between a spin-1/2 nucleus (e.g.(13)C) and (14)N. It is demonstrated that S-REDOR and S-RESPDOR methods suppress efficiently the homo-nuclear dipolar interaction of the irradiated nucleus and benefit from high robustness to the rf-field inhomogeneity, chemical shielding and dipolar truncation. Therefore, these methods allow the measurement of (13)C/(14,15)N distances, with (13)C observation, in uniformly (13)C-labeled samples. Furthermore, we provide analytical solutions for the S-REDOR and S-RESPDOR dephasing curves. These solutions facilitate the measurement of hetero-nuclear distances from experimental data.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Stueber D, Yu TY, Hess B, Kremer K, O'Connor RD, Schaefer J. Chain packing in polycarbonate glasses. J Chem Phys 2010; 132:104901. [PMID: 20232984 DOI: 10.1063/1.3330412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chain packing in homogeneous blends of carbonate (13)C-labeled bisphenol A polycarbonate with either (i) CF(3)-labeled bisphenol A polycarbonate or (ii) ring-F-labeled bisphenol A polycarbonate has been characterized using (13)C{(19)F} rotational-echo double-resonance (REDOR) nuclear magnetic resonance. In both blends, the (13)C observed spin was at high concentration, and the (19)F dephasing or probe spin was at low concentration. In this situation, an analysis in terms of a distribution of isolated heteronuclear pairs of spins is valid. Nearest-neighbor separation of (13)C and (19)F labels was determined by accurately mapping the initial dipolar evolution using a shifted-pulse version of REDOR. Based on the results of this experiment, the average distance from a ring-fluorine to the nearest (13)C=O is more than 1.2 A greater than the corresponding CF(3)-(13)C=O distance. Next-nearest and more-distant-neighbor separations of labels were measured in a 416-rotor-cycle constant-time version of REDOR for both blends. Statistically significant local order was established for the nearest-neighbor labels in the methyl-labeled blend. These interchain packing results are in qualitative agreement with predictions based on coarse-grained simulations of a specially adapted model for bisphenol A polycarbonate. The model itself has been previously used to determine static and dynamic properties of polycarbonate with results in good agreement with those from rheological and neutron scattering experiments.
Collapse
Affiliation(s)
- Dirk Stueber
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
42
|
Jensen M, Bjerring M, Nielsen NC, Nerdal W. Cisplatin interaction with phosphatidylserine bilayer studied by solid-state NMR spectroscopy. J Biol Inorg Chem 2009; 15:213-23. [DOI: 10.1007/s00775-009-0586-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 08/27/2009] [Indexed: 10/24/2022]
|
43
|
Patching SG, Edwards R, Middleton DA. Structural analysis of uniformly (13)C-labelled solids from selective angle measurements at rotational resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 199:242-246. [PMID: 19487142 DOI: 10.1016/j.jmr.2009.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/24/2009] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of (13)C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Calpha and Cbeta of uniformly labelled L-[(13)C,(15)N]valine is obtained with 25% efficiency. The evolution of Calpha-Cbeta double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Halpha-Calpha-Cbeta-Hbeta torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [(13)C,(15)N]uridine is achieved with 12% efficiency for a (13)C-(13)C distance of 2.5A, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.
Collapse
Affiliation(s)
- Simon G Patching
- Astbury Centre for Structural Molecular Biology and Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|
44
|
Hung I, Uldry AC, Becker-Baldus J, Webber AL, Wong A, Smith ME, Joyce SA, Yates JR, Pickard CJ, Dupree R, Brown SP. Probing Heteronuclear 15N−17O and 13C−17O Connectivities and Proximities by Solid-State NMR Spectroscopy. J Am Chem Soc 2009; 131:1820-34. [DOI: 10.1021/ja805898d] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ivan Hung
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Anne-Christine Uldry
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Johanna Becker-Baldus
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Amy L. Webber
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Alan Wong
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Mark E. Smith
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Siân A. Joyce
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Jonathan R. Yates
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Chris J. Pickard
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K., School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, U.K., Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and TCM Group, Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 OHE, U.K
| |
Collapse
|
45
|
Matsuoka S, Inoue M. Application of REDOR NMR in natural product chemistry. Chem Commun (Camb) 2009:5664-75. [DOI: 10.1039/b910230b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Manríquez R, López-Dellamary FA, Frydel J, Emmler T, Breitzke H, Buntkowsky G, Limbach HH, Shenderovich IG. Solid-State NMR Studies of Aminocarboxylic Salt Bridges in l-Lysine Modified Cellulose. J Phys Chem B 2008; 113:934-40. [DOI: 10.1021/jp8081968] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo Manríquez
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Kilómetro 15.5, Carretera Guadalajara-Nogales, Guadalajara, C.P. 45020, Jalisco, México; Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743, Jena, Germany; and V.A. Fock Institute of Physics, St.Petersburg State University, Ulianovskaya 1, 198504 St. Petersburg, Russian Federation
| | - Fernando A. López-Dellamary
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Kilómetro 15.5, Carretera Guadalajara-Nogales, Guadalajara, C.P. 45020, Jalisco, México; Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743, Jena, Germany; and V.A. Fock Institute of Physics, St.Petersburg State University, Ulianovskaya 1, 198504 St. Petersburg, Russian Federation
| | - Jaroslaw Frydel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Kilómetro 15.5, Carretera Guadalajara-Nogales, Guadalajara, C.P. 45020, Jalisco, México; Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743, Jena, Germany; and V.A. Fock Institute of Physics, St.Petersburg State University, Ulianovskaya 1, 198504 St. Petersburg, Russian Federation
| | - Thomas Emmler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Kilómetro 15.5, Carretera Guadalajara-Nogales, Guadalajara, C.P. 45020, Jalisco, México; Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743, Jena, Germany; and V.A. Fock Institute of Physics, St.Petersburg State University, Ulianovskaya 1, 198504 St. Petersburg, Russian Federation
| | - Hergen Breitzke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Kilómetro 15.5, Carretera Guadalajara-Nogales, Guadalajara, C.P. 45020, Jalisco, México; Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743, Jena, Germany; and V.A. Fock Institute of Physics, St.Petersburg State University, Ulianovskaya 1, 198504 St. Petersburg, Russian Federation
| | - Gerd Buntkowsky
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Kilómetro 15.5, Carretera Guadalajara-Nogales, Guadalajara, C.P. 45020, Jalisco, México; Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743, Jena, Germany; and V.A. Fock Institute of Physics, St.Petersburg State University, Ulianovskaya 1, 198504 St. Petersburg, Russian Federation
| | - Hans-Heinrich Limbach
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Kilómetro 15.5, Carretera Guadalajara-Nogales, Guadalajara, C.P. 45020, Jalisco, México; Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743, Jena, Germany; and V.A. Fock Institute of Physics, St.Petersburg State University, Ulianovskaya 1, 198504 St. Petersburg, Russian Federation
| | - Ilja G. Shenderovich
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Kilómetro 15.5, Carretera Guadalajara-Nogales, Guadalajara, C.P. 45020, Jalisco, México; Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743, Jena, Germany; and V.A. Fock Institute of Physics, St.Petersburg State University, Ulianovskaya 1, 198504 St. Petersburg, Russian Federation
| |
Collapse
|
47
|
Hirschinger J. Analytical solutions to several magic-angle spinning NMR experiments. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2008; 34:210-223. [PMID: 19026524 DOI: 10.1016/j.ssnmr.2008.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/03/2008] [Accepted: 10/06/2008] [Indexed: 05/27/2023]
Abstract
Using the Anderson-Weiss (AW) formalism, analytical expressions of the NMR signal are obtained for the following magic-angle spinning (MAS) experiments: total suppression of sidebands (TOSS); phase adjusted spinning sidebands (PASS); rotational-echo double-resonance (REDOR); rotor-encoded REDOR (REREDOR); cross-polarization magic-angle spinning (CPMAS); exchange induced sidebands (EIS); one-dimensional exchange spectroscopy by sideband alternation (ODESSA); time-reverse ODESSA (trODESSA); centerband-only detection of exchange (CODEX). In order to test the validity of the AW approach, the Gaussian powder approximation is compared with exact powder calculations. A quantitative study of the effect of molecular dynamics on the efficiency of the TOSS and REDOR pulse sequences is then presented.
Collapse
Affiliation(s)
- Jérôme Hirschinger
- Institut de Chimie, UMR 7177 CNRS, Université Louis Pasteur, BP 296, 67008 Strasbourg Cedex, France.
| |
Collapse
|
48
|
Madine J, Jack E, Stockley PG, Radford SE, Serpell LC, Middleton DA. Structural Insights into the Polymorphism of Amyloid-Like Fibrils Formed by Region 20−29 of Amylin Revealed by Solid-State NMR and X-ray Fiber Diffraction. J Am Chem Soc 2008; 130:14990-5001. [DOI: 10.1021/ja802483d] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jillian Madine
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Edward Jack
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Peter G. Stockley
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Sheena E. Radford
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Louise C. Serpell
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - David A. Middleton
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| |
Collapse
|
49
|
Yu TY, Schaefer J. REDOR NMR characterization of DNA packaging in bacteriophage T4. J Mol Biol 2008; 382:1031-42. [PMID: 18703073 PMCID: PMC2633174 DOI: 10.1016/j.jmb.2008.07.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/20/2008] [Accepted: 07/26/2008] [Indexed: 11/25/2022]
Abstract
Bacteriophage T4 is a large-tailed Escherichia coli virus whose capsid is 120x86 nm. ATP-driven DNA packaging of the T4 capsid results in the loading of a 171-kb genome in less than 5 min during viral infection. We have isolated 50-mg quantities of uniform (15)N- and [epsilon-(15)N]lysine-labeled bacteriophage T4. We have also introduced (15)NH(4)(+) into filled, unlabeled capsids from synthetic medium by exchange. We have examined lyo- and cryoprotected lyophilized T4 using (15)N{(31)P} and (31)P{(15)N} rotational-echo double resonance. The results of these experiments have shown that (i) packaged DNA is in an unperturbed duplex B-form conformation; (ii) the DNA phosphate negative charge is balanced by lysyl amines (3.2%), polyamines (5.8%), and monovalent cations (40%); and (iii) 11% of lysyl amines, 40% of -NH(2) groups of polyamines, and 80% of monovalent cations within the lyophilized T4 capsid are involved in the DNA charge balance. The NMR evidence suggests that DNA enters the T4 capsid in a charge-unbalanced state. We propose that electrostatic interactions may provide free energy to supplement the nanomotor-driven T4 DNA packaging.
Collapse
Affiliation(s)
- Tsyr-Yan Yu
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
50
|
Mihaliuk E, Gullion T. A frequency-selective REDOR experiment for an SI2 spin system. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 193:308-310. [PMID: 18547849 DOI: 10.1016/j.jmr.2008.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 05/10/2008] [Indexed: 05/26/2023]
Abstract
A frequency-selective REDOR experiment is described for SI2 spin systems. The experiment causes the net dipolar dephasing of the S spin to evolve only under the influence of one of the I spins. The experiment is based on a single pair of appropriately phased 90 degrees I-spin pulses, and the I spin causing the S-spin dipolar dephasing is determined by the relative phases between the two 90 degrees pulses. The experiment is demonstrated on a sample of 15N2-L-asparagine.
Collapse
Affiliation(s)
- Eugene Mihaliuk
- Department of Chemistry, West Virginia University, Clark Hall, P.O. Box 6045, Morgantown, WV 26505, USA
| | | |
Collapse
|