1
|
Kishimoto S, Devasahayam N, Chandramouli GVR, Murugesan R, Otowa Y, Yamashita K, Yamamoto K, Brender JR, Krishna MC. Evaluation of a deuterated triarylmethyl spin probe for in vivo R 2 ∗-based EPR oximetric imaging with enhanced dynamic range. Magn Reson Med 2024; 91:413-423. [PMID: 37676121 PMCID: PMC10841161 DOI: 10.1002/mrm.29811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | | | | | - Ramachandran Murugesan
- Karpaga Vinayaga Institute of Medical Sciences and Research Center, Chengalpattu, Tamil Nadu, India
| | - Yasunori Otowa
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Kota Yamashita
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Takakusagi Y, Kobayashi R, Saito K, Kishimoto S, Krishna MC, Murugesan R, Matsumoto KI. EPR and Related Magnetic Resonance Imaging Techniques in Cancer Research. Metabolites 2023; 13:metabo13010069. [PMID: 36676994 PMCID: PMC9862119 DOI: 10.3390/metabo13010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI is unique in its ability to provide quantitative images of pO2 in vivo. The short electron spin relaxation times have been posing formidable challenge to the technology development for clinical application. With the availability of the narrow line width trityl compounds, pulsed EPR imaging techniques were developed for pO2 imaging. EPRI visualizes the exogenously administered spin probes/contrast agents and hence lacks the complementary morphological information. Dynamic nuclear polarization (DNP), a phenomenon that transfers the high electron spin polarization to the surrounding nuclear spins (1H and 13C) opened new capabilities in molecular imaging. DNP of 13C nuclei is utilized in metabolic imaging of 13C-labeled compounds by imaging specific enzyme kinetics. In this article, imaging strategies mapping physiologic and metabolic aspects in vivo are reviewed within the framework of their application in cancer research, highlighting the potential and challenges of each of them.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| | - Ryoma Kobayashi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Keita Saito
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Ramachandran Murugesan
- Karpaga Vinayaga Institute of Medical Sciences and Research Center, Palayanoor (PO), Chengalpattu 603308, India
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| |
Collapse
|
3
|
Rane V. Harnessing Electron Spin Hyperpolarization in Chromophore-Radical Spin Probes for Subcellular Resolution in Electron Paramagnetic Resonance Imaging: Concept and Feasibility. J Phys Chem B 2022; 126:2715-2728. [PMID: 35353514 DOI: 10.1021/acs.jpcb.1c10920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining a subcellular resolution for biological samples doped with stable radicals at room temperature (RT) is a long-sought goal in electron paramagnetic resonance imaging (EPRI). The spatial resolution in current EPRI methods is constrained either because of low electron spin polarization at RT or the experimental limitations associated with the field gradients and the radical linewidth. Inspired by the recent demonstration of a large electron spin hyperpolarization in chromophore-nitroxyl spin probe molecules, the present work proposes a novel optically hyperpolarized EPR imaging (OH-EPRI) method, which combines the optical method of two-photon confocal microscopy for hyperpolarization generation and the rapid scan (RS) EPR method for signal detection. An important aspect of OH-EPRI is that it is not limited by the abovementioned restrictions of conventional EPRI since the large hyperpolarization in the spin probes overcomes the poor thermal spin polarization at RT, and the use of two-photon optical excitation of the chromophore naturally generates the required spatial resolution, without the need for any magnetic field gradient. Simulations based on time-dependent Bloch equations, which took into account both the RS field modulation and the hyperpolarization generation by optical means, were performed to examine the feasibility of OH-EPRI. The simulation results revealed that a spatial resolution of up to 2 fL can be achieved in OH-EPRI at RT under in vitro conditions. Notably, the majority of the requirements for an OH-EPRI experiment can be fulfilled by the currently available technologies, thereby paving the way for its easy implementation. Thus, the proposed method could potentially bridge the sensitivity gap between the optical and magnetic imaging techniques.
Collapse
Affiliation(s)
- Vinayak Rane
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
4
|
Brender JR, Saida Y, Devasahayam N, Krishna MC, Kishimoto S. Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy. Antioxid Redox Signal 2022; 36:144-159. [PMID: 34428981 PMCID: PMC8856011 DOI: 10.1089/ars.2021.0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Szilágyi Z, Németh Z, Bakos J, Necz PP, Sáfár A, Kubinyi G, Selmaoui B, Thuróczy G. Evaluation of Inflammation by Cytokine Production Following Combined Exposure to Ultraviolet and Radiofrequency Radiation of Mobile Phones on 3D Reconstructed Human Skin In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124401. [PMID: 32575398 PMCID: PMC7344923 DOI: 10.3390/ijerph17124401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
The absorption of exposure to radiofrequency (RF) emitted by wireless devices leads to a high specific absorption rate in the skin. Ultraviolet (UV) radiation can induce several damages to the skin. The aim of this study was to examine whether combined, consecutive exposure to solar UV radiation and 1950 MHz RF exposure of third generation (3G) mobile system have any effect on inflammation processes in the skin. Under in vitro experiments, the inflammation process was examined by cytokines (IL-1α, IL-6, and IL-8) and MMP-1 enzyme secretion on 3D full thickness human skin model. The RF exposure was applied before or after UV irradiation, in order to study either the possible cooperative or protective effects of exposure to RF and UV. We did not find changes in cytokines due to exposure to RF alone. The RF exposure did not enhance the effects of UV radiation. There was a statistically not-significant decrease in cytokines when the skin tissues were pre-exposed to RF before being exposed to 4 standard erythemal dose (SED) UV compared to UV exposure alone. We found that RF exposure reduced the previously UV-treated MMP-1 enzyme concentration. This study might support the evaluation of the effects on the skin exposed to microwave radiation of 5G mobile technology.
Collapse
Affiliation(s)
- Zsófia Szilágyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Zsuzsanna Németh
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - József Bakos
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
- Correspondence: ; Tel.: +36-1-482-2019
| | - Péter Pál Necz
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Anna Sáfár
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Györgyi Kubinyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Brahim Selmaoui
- Department of Experimental Toxicology, National Institute of Industrial Environment and Risks (INERIS), 60550 Verneuilen Halate, France;
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025 Amiens, France
| | - György Thuróczy
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| |
Collapse
|
6
|
Li C, Huang Z, Gao N, Zheng J, Guan J. Injectable, thermosensitive, fast gelation, bioeliminable, and oxygen sensitive hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1191-1198. [PMID: 30889653 PMCID: PMC7368179 DOI: 10.1016/j.msec.2019.02.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 01/09/2023]
Abstract
The decrease of tissue oxygen content due to pathological conditions leads to severe cell death and tissue damage. Restoration of tissue oxygen content is the primary treatment goal. To accurately and efficiently assess efficacy of a treatment, minimally invasive, and long-term detection of oxygen concentration in the same tissue location represents a clinically attractive strategy. Among the different oxygen concentration measurement approaches, electron paramagnetic resonance (EPR) has the potential to accomplish this. Yet there lacks injectable EPR probes that can maintain a consistent concentration at the same tissue location during treatment period to acquire a stable EPR signal, and can finally be eliminated from body without retrieval. Herein, we developed injectable and bioeliminable hydrogel-based polymeric EPR probes that exhibited fast gelation rate, slow weight loss rate, and high oxygen sensitivity. The probe was based on N-Isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), dimethyl-γ-butyrolactone acrylate (DBA), and tetrathiatriarylmethyl (TAM) radical. The injectable probes can be implanted into tissues using a minimally invasive injection approach. The high gelation rate (~10 s) allowed the probes to quickly solidify upon injection to have a high retention in tissues. The polymeric probes overcame the toxicity issue of current small molecule EPR probes. The probes can be gradually hydrolyzed. Upon complete hydrolysis, the probes became water soluble at 37 °C, thus having the potential to be removed from the body by urinary system. The probes showed slow weight loss rate so as to maintain EPR signal intensity for extended periods while retaining in a certain tissue location. The probes remained their high oxygen sensitivity after in vitro hydrolysis and in vivo implantation for 4 weeks. These hydrogel-based EPR probes have attractive properties for in vivo oxygen detection.
Collapse
Affiliation(s)
- Chao Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zheng Huang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Gao
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Matsumoto KI, Hyodo F, Mitchell JB, Krishna MC. Effect of body temperature on the pharmacokinetics of a triarylmethyl-type paramagnetic contrast agent used in EPR oximetry. Magn Reson Med 2017; 79:1212-1218. [PMID: 29143987 DOI: 10.1002/mrm.27008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Pharmacokinetics of the tri[8-carboxy-2,2,6,6-tetrakis(2-hydroxymethyl)benzo[1,2-d:4,5-d']bis(1,3)dithio-4-yl]methyl radical (Oxo63) after a single bolus and/or continuous intravenous infusion was investigated in tumor-bearing C3H mice with or without body temperature control while under anesthesia. METHOD The in vivo time course of Oxo63 in blood was measured using X-band electron paramagnetic resonance spectroscopy. Distribution of Oxo63 in normal muscle and tumor tissues was obtained using a surface coil resonator and a 700-MHz electron paramagnetic resonance spectrometer. The whole-body distribution of Oxo63 was obtained by 300-MHz continuous-wave electron paramagnetic resonance imaging. The high-resolution 300-MHz time-domain electron paramagnetic resonance imaging was also carried out to probe the distribution of Oxo63. RESULTS Urination of mice was retarded at low body temperature, causing the concentration of Oxo63 in blood to attain high levels. However, the concentration of Oxo63 in tumor tissue was lower with no control of body temperature than active body temperature control. The nonsystemized blood flow in the tumor tissues may pool Oxo63 at lower body temperature. CONCLUSIONS Pharmacokinetics of the contrast agent were found to be significantly affected by body temperature of the experimental animal, and can influence the probe distribution and the image patterns. Magn Reson Med 79:1212-1218, 2018. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Fuminori Hyodo
- Department of Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Lumata L, Kovacs Z, Sherry AD, Malloy C, Hill S, van Tol J, Yu L, Song L, Merritt ME. Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP. Phys Chem Chem Phys 2013; 15:9800-7. [PMID: 23676994 PMCID: PMC3698225 DOI: 10.1039/c3cp50186h] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have performed temperature-dependent electron spin resonance (ESR) measurements of the stable free radical trityl OX063, an efficient polarizing agent for dissolution dynamic nuclear polarization (DNP), at the optimum DNP concentration (15 mM). We have found that (i) when compared to the W-band electron spin-lattice relaxation rate T1e(-1) of other free radicals used in DNP at the same concentration, trityl OX063 has slower T1e(-1) than BDPA and 4-oxo-TEMPO. At T > 20 K, the T1e(-1)vs. T data of trityl OX063 appears to follow a power law dependence close to the Raman process prediction whereas at T < 10 K, electronic relaxation slows and approaches the direct process behaviour. (ii) Gd(3+) doping, a factor known to enhance DNP, of trityl OX063 samples measured at W-band resulted in monotonic increases of T1e(-1) especially at temperatures below 20-40 K while the ESR lineshapes remained essentially unchanged. (iii) The high frequency ESR spectrum can be fitted with an axial g-tensor with a slight g-anisotropy: g(x) = g(y) = 2.00319(3) and g(z) = 2.00258(3). Although the ESR linewidth D monotonically increases with field, the temperature-dependent T1e(-1) is almost unchanged as the ESR frequency is increased from 9.5 GHz to 95 GHz, but becomes faster at 240 GHz and 336 GHz. The ESR properties of trityl OX063 reported here may provide insights into the efficiency of DNP of low-γ nuclei performed at various magnetic fields, from 0.35 T to 12 T.
Collapse
Affiliation(s)
- Lloyd Lumata
- Advanced Imaging Research Center, University of Texas at Dallas, 800West Campbell Road, Richardson, Texas 75080 USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas at Dallas, 800West Campbell Road, Richardson, Texas 75080 USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas at Dallas, 800West Campbell Road, Richardson, Texas 75080 USA
- Department of Chemistry
| | - Craig Malloy
- Advanced Imaging Research Center, University of Texas at Dallas, 800West Campbell Road, Richardson, Texas 75080 USA
- Molecular Biophysics, University of Texas at Dallas, 800West Campbell Road, Richardson, Texas 75080 USA
- VA North Texas Healthcare System, Dallas, TX 75216
| | - Stephen Hill
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306 USA
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310 USA
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310 USA
| | - Lu Yu
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310 USA
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310 USA
| | - Matthew E. Merritt
- Advanced Imaging Research Center, University of Texas at Dallas, 800West Campbell Road, Richardson, Texas 75080 USA
- Biomedical Engineering, University of Texas at Dallas, 800West Campbell Road, Richardson, Texas 75080 USA
- Molecular Biophysics, University of Texas at Dallas, 800West Campbell Road, Richardson, Texas 75080 USA
- Department of Bioengineering
| |
Collapse
|
9
|
Dhimitruka I, Bobko AA, Eubank TD, Komarov DA, Khramtsov VV. Phosphonated trityl probes for concurrent in vivo tissue oxygen and pH monitoring using electron paramagnetic resonance-based techniques. J Am Chem Soc 2013; 135:5904-10. [PMID: 23517077 DOI: 10.1021/ja401572r] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously we proposed the concept of dual function pH and oxygen paramagnetic probes based on the incorporation of ionizable groups into the structure of persistent triarylmethyl radicals, TAMs (J. Am. Chem. Soc.2007, 129, 7240-7241). In this paper, we synthesized an asymmetric monophosphonated TAM probe with the simplest doublet hfs pattern ideally suited for dual function electron paramagnetic resonance (EPR)-based applications. An extraordinary low line width of the synthesized deuterated derivative, p1TAM-D (ΔHpp ≤ 50 mG, Lorentz line width, ≤20 mG) results in high sensitivity to pO2 due to oxygen-induced line broadening (ΔLW/ΔpO2 ≈ 0.5 mG/mmHg or ≈400 mG/mM); accuracy of pO2 measurement, ≈1 mmHg). The presence of a phosphono group in the p1TAM-D structure provides pH sensitivity to its EPR spectra in the physiological range of pH from 5.9 to 8.2 with the ratio of signal intensities of protonated and deprotonated states being a reliable pH marker (accuracy of pH measurements, ± 0.05). The independent character of pH and [O2] effects on the EPR spectra of p1TAM-D provides dual functionality to this probe. The L-band EPR studies performed in breast tumor-bearing mice show a significant difference in extracellular pH and pO2 between tumor and normal mammary gland tissues, as well as the effect of animal breathing with 100% O2 on tissue oxygenation. The developed dual function phosphonated p1TAM-D probe provides a unique tool for in vivo concurrent tissue oxygen and pH monitoring.
Collapse
Affiliation(s)
- Ilirian Dhimitruka
- Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
10
|
Song Y, Liu Y, Hemann C, Villamena FA, Zweier JL. Esterified Dendritic TAM Radicals with Very High Stability and Enhanced Oxygen Sensitivity. J Org Chem 2013; 78:1371-6. [DOI: 10.1021/jo301849k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuguang Song
- The
Davis Heart and Lung Research Institute, the Division of Cardiovascular
Medicine, Department of Internal Medicine, and‡Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yangping Liu
- The
Davis Heart and Lung Research Institute, the Division of Cardiovascular
Medicine, Department of Internal Medicine, and‡Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig Hemann
- The
Davis Heart and Lung Research Institute, the Division of Cardiovascular
Medicine, Department of Internal Medicine, and‡Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Frederick A. Villamena
- The
Davis Heart and Lung Research Institute, the Division of Cardiovascular
Medicine, Department of Internal Medicine, and‡Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jay L. Zweier
- The
Davis Heart and Lung Research Institute, the Division of Cardiovascular
Medicine, Department of Internal Medicine, and‡Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Epel, B, Halpern H. Electron paramagnetic resonance oxygen imaging in vivo. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review covers the last 15 years of the development of EPR in vivo oxygen imaging. During this time, a number of major technological and methodological advances have taken place. Narrow line width, long relaxation time, and non-toxic triaryl methyl radicals were introduced in the late 1990s. These not only improved continuous wave (CW) imaging, but also enabled the application of pulse EPR imaging to animals. Recent developments in pulse technology have brought an order of magnitude increase in image acquisition speed, enhancement of sensitivity, and considerable improvement in the precision and accuracy of oxygen measurements. Consequently, pulse methods take up a significant part of this review.
Collapse
Affiliation(s)
- Boris Epel,
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| | - Howard Halpern
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| |
Collapse
|
12
|
Bobko AA, Dhimitruka I, Komarov DA, Khramtsov VV. Dual-function pH and oxygen phosphonated trityl probe. Anal Chem 2012; 84:6054-60. [PMID: 22703565 DOI: 10.1021/ac3008994] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triarylmethyl radicals (TAMs) are used as persistent paramagnetic probes for electron paramagnetic resonance (EPR) spectroscopic and imaging applications and as hyperpolarizing and contrast agents for magnetic resonance imaging (MRI) and proton-electron double-resonance imaging (PEDRI). Recently we proposed the concept of dual-function pH and oxygen TAM probes based on the incorporation of ionizable groups into the TAM structure ( J. Am. Chem. Soc. 2007 , 129 , 7240 - 7241 ). In this paper we report the synthesis of a deuterated derivative of phosphonated trityl radical, pTAM. The presence of phosphono substitutes in the structure of TAM provides pH sensitivity of its EPR spectrum in the physiological range from 6 to 8, the phosphorus hyperfine splitting acting as a convenient and highly sensitive pH marker (spectral sensitivity, 3Δa(P)/ΔpH ≈ 0.5 G/pH unit; accuracy of pH measurements, ±0.05). In addition, substitution of 36 methyl protons with deuterons significantly decreased the individual line width of pTAM down to 40 mG and, as consequence, provided high sensitivity of the line-width broadening to pO(2) (ΔH/ΔpO(2) ≈ 0.4 mG/mmHg; accuracy of pO(2) measurements, ≈1 mmHg). The independent character of pH and [O(2)] effects on the EPR spectra of pTAM provides dual functionality to this probe, allowing extraction of both parameters from a single EPR spectrum.
Collapse
Affiliation(s)
- Andrey A Bobko
- Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
13
|
BALASUBRAMANIAN D, KRISHNA MURALIC, MURUGESAN R. MULTI-OBJECTIVE GA-OPTIMIZED INTERPOLATION KERNELS FOR RECONSTRUCTION OF HIGH RESOLUTION EMR IMAGES FROM LOW-SAMPLED K-SPACE DATA. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2011. [DOI: 10.1142/s1469026809002539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The low-frequency instrumentation and imaging capabilities facilitate electron magnetic resonance imaging (EMRI) as an emerging non-invasive imaging technology for mapping free radicals in biological systems. Unlike MRI, EMRI is implemented as a pure phase–phase encoding technique. The fast bio-clearance of the imaging agent and the requirement to reduce radio frequency power deposition dictate collection of reduced k-space samples, compromising the quality and resolution of the EMR images. The present work evaluates various interpolation kernels to generate larger k-space samples for image reconstruction, from the acquired reduced k-space samples. Using k-space EMR data sets, acquired for phantom as well as live mice, the proposed technique is critically evaluated by computing quality metrics viz. signal-to-noise ratio (SNR), standard deviation error (SDE), root mean square error (RMSE), peak signal-to-noise ratio (PSNR), contrast-to-noise ratio (CNR) and Lui's error function (F(I)). The quantitative evaluation of 24 different interpolation functions (including piecewise polynomial functions and many windowed sinc functions) to upsample the k-space data for the Fourier EMR image reconstruction shows that at the expense of a slight increase in computing time, the reconstructed images from upsampled data, produced using Spline-sinc, Welch-sinc, and Gaussian-sinc kernels, are closer to reference image with minimal distortion. Support of the interpolating kernel is a characteristic parameter deciding the quality of the reconstructed image and the time complexity. In this paper, a method to optimize the kernel support using genetic algorithm (GA) is also explored. Maximization of the fitness function has two conflicting objectives and it is approached as a multi-objective optimization problem.
Collapse
|
14
|
Epel B, Sundramoorthy SV, Barth ED, Mailer C, Halpern HJ. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications. Med Phys 2011; 38:2045-52. [PMID: 21626937 DOI: 10.1118/1.3555297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. METHODS Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. RESULTS A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above 100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. CONCLUSIONS ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, MC1105, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
15
|
Shtirberg L, Twig Y, Dikarov E, Halevy R, Levit M, Blank A. High-sensitivity Q-band electron spin resonance imaging system with submicron resolution. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:043708. [PMID: 21529014 DOI: 10.1063/1.3581226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A pulsed electron spin resonance (ESR) microimaging system operating at the Q-band frequency range is presented. The system includes a pulsed ESR spectrometer, gradient drivers, and a unique high-sensitivity imaging probe. The pulsed gradient drivers are capable of producing peak currents ranging from ∼9 A for short 150 ns pulses up to more than 94 A for long 1400 ns gradient pulses. Under optimal conditions, the imaging probe provides spin sensitivity of ∼1.6 × 10(8) spins∕√Hz or ∼2.7 × 10(6) spins for 1 h of acquisition. This combination of high gradients and high spin sensitivity enables the acquisition of ESR images with a resolution down to ∼440 nm for a high spin concentration solid sample (∼10(8) spins∕μm(3)) and ∼6.7 μm for a low spin concentration liquid sample (∼6 × 10(5) spins/μm(3)). Potential applications of this system range from the imaging of point defects in crystals and semiconductors to measurements of oxygen concentration in biological samples.
Collapse
Affiliation(s)
- Lazar Shtirberg
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
16
|
In vivo measurement of tissue oxygen using electron paramagnetic resonance spectroscopy with oxygen-sensitive paramagnetic particle, lithium phthalocyanine. Methods Mol Biol 2010; 610:29-39. [PMID: 20013170 DOI: 10.1007/978-1-60327-029-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The partial pressure of oxygen (pO(2)) plays a determining role in the energy metabolism of aerobic cells. However, low pO(2) level induces pathophysiological conditions such as tumor hypoxia, ischemia or reperfusion injury, and delayed/altered wound healing. Especially, pO(2) level in the tumor is known to be related to tumor progression and effectiveness of radiotherapy. To monitor the pO(2) levels in vivo, continuous wave (CW) and time-domain (TD) electron paramagnetic resonance (EPR) spectroscopy method was used, in which surface coil resonator and Lithium phthalocyanine (LiPc) as oxygen sensor were crucial. Once LiPc particles are embedded in a desired location of organ/tissue, the pO(2) level can be monitored repeatedly and non-invasively. This method is based on the effect of oxygen concentration on the EPR spectra of LiPc which offers several advantages as follows: (1) high sensitivity, (2) minimum invasiveness, (3) repeated measurements, (4) absence of toxicity (non-toxic), and (5) measurement in a local region of the tissue with embedded LiPc. Therefore, in this chapter, we describe the method using CW and TD EPR spectroscopy with oxygen-sensitive particle, LiPc, for in vivo monitoring of oxygen.
Collapse
|
17
|
Subramanian S, Krishna MC. DANCING WITH THE ELECTRONS: TIME-DOMAIN AND CW IN VIVO EPR IMAGING. MAGNETIC RESONANCE INSIGHTS 2008; 2:43-74. [PMID: 22025900 DOI: 10.4137/mri.s1131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI), is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T(2)* or T(2) weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect) is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo. We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed 'dancing with the (unpaired) electrons', metaphorically speaking.
Collapse
Affiliation(s)
- Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
18
|
Matsumoto S, Hyodo F, Subramanian S, Devasahayam N, Munasinghe J, Hyodo E, Gadisetti C, Cook JA, Mitchell JB, Krishna MC. Low-field paramagnetic resonance imaging of tumor oxygenation and glycolytic activity in mice. J Clin Invest 2008; 118:1965-73. [PMID: 18431513 DOI: 10.1172/jci34928] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 03/05/2008] [Indexed: 12/16/2022] Open
Abstract
A priori knowledge of spatial and temporal changes in partial pressure of oxygen (oxygenation; pO(2)) in solid tumors, a key prognostic factor in cancer treatment outcome, could greatly improve treatment planning in radiotherapy and chemotherapy. Pulsed electron paramagnetic resonance imaging (EPRI) provides quantitative 3D maps of tissue pO(2) in living objects. In this study, we implemented an EPRI set-up that could acquire pO(2) maps in almost real time for 2D and in minutes for 3D. We also designed a combined EPRI and MRI system that enabled generation of pO(2) maps with anatomic guidance. Using EPRI and an air/carbogen (95% O(2) plus 5% CO(2)) breathing cycle, we visualized perfusion-limited hypoxia in murine tumors. The relationship between tumor blood perfusion and pO(2) status was examined, and it was found that significant hypoxia existed even in regions that exhibited blood flow. In addition, high levels of lactate were identified even in normoxic tumor regions, suggesting the predominance of aerobic glycolysis in murine tumors. This report presents a rapid, noninvasive method to obtain quantitative maps of pO(2) in tumors, reported with anatomy, with precision. In addition, this method may also be useful for studying the relationship between pO(2) status and tumor-specific phenotypes such as aerobic glycolysis.
Collapse
Affiliation(s)
- Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1002, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hyodo F, Subramanian S, Devasahayam N, Murugesan R, Matsumoto K, Mitchell JB, Krishna MC. Evaluation of sub-microsecond recovery resonators for in vivo electron paramagnetic resonance imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 190:248-254. [PMID: 18042414 PMCID: PMC2258207 DOI: 10.1016/j.jmr.2007.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/16/2007] [Accepted: 11/02/2007] [Indexed: 05/25/2023]
Abstract
Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300MHz for in vivo applications requires resonators with recovery times less than 1 micros after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis.
Collapse
Affiliation(s)
- F Hyodo
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The purpose of this review is to provide an overview of the methods available for imaging tissue oxygenation. The following imaging methods are reviewed: phosphorescence, near-infrared (NIR), positron emission tomography (PET), magnetic resonance imaging ((19)F MRI and BOLD MRI), and electron paramagnetic resonance (EPR). The methods are based on different principles and differ in their ability to accurately quantify tissue oxygenation, either the absolute value of a particular measure of oxygenation (partial pressure of oxygen, concentration), or a parameter related to it (oxygen saturation). Methods that can provide images of relative changes in oxygenation or visualization of hypoxia in a specific tissue of interest are also considered valuable tools for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Deepti S Vikram
- Center for Biomedical EPR Spectroscopy and Imaging, Comprehensive Cancer Center, Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
21
|
Hama Y, Matsumoto KI, Murugesan R, Subramanian S, Devasahayam N, Koscielniak JW, Hyodo F, Cook JA, Mitchell JB, Krishna MC. Continuous wave EPR oximetric imaging at 300 MHz using radiofrequency power saturation effects. Antioxid Redox Signal 2007; 9:1709-16. [PMID: 17696765 DOI: 10.1089/ars.2007.1720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel continuous wave (CW), radiofrequency (RF), electron paramagnetic resonance (EPR) oximetric imaging technique is proposed, based on the influence of oxygen concentration on the RF power saturation of the EPR resonance. A linear relationship is demonstrated between the partial oxygen pressure (pO(2)) and the normalized signal intensity (I(N)), defined as, I(N) = (I(HP) - I(LP))/I(LP), where I(LP) and I(HP) refer to signal intensities at low (P(L)) and high (P(H)) RF power levels, respectively. A formula for the determination of pO(2), derived on the basis of the experimental results, reliably estimated various oxygen concentrations in a five-tube phantom. This new technique was time-efficient and also avoided the missing angle problem associated with conventional spectral-spatial CW EPR oximetric imaging. In vivo power saturation oximetric imaging in a tumor bearing mouse clearly depicted the hypoxic foci within the tumor.
Collapse
Affiliation(s)
- Yukihiro Hama
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1002, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Matsumoto KI, Subramanian S, Murugesan R, Mitchell JB, Krishna MC. Spatially resolved biologic information from in vivo EPRI, OMRI, and MRI. Antioxid Redox Signal 2007; 9:1125-41. [PMID: 17571957 DOI: 10.1089/ars.2007.1638] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
EPR spectroscopy can give biologically important information, such as tissue redox status, pO2, pH, and microviscosity, based on variation of EPR spectral characteristics (i.e., intensity, linewidth, hyperfine splitting, and spectral shape of free radical probes. EPR imaging (EPRI) can obtain 1D-3D spatial distribution of such spectral components using several combinations of magnetic field gradients. Overhauser enhanced MRI (OMRI) is a double-resonance technique of electron and nuclear spins. Because the Overhauser enhancement depends on transverse relaxation rate of the electron spin, OMRI can provide pO2 information indirectly, along with a high-resolution MR image. MRI can also indirectly detect paramagnetic behaviors of free radical contrast agents. Imaging techniques and applications relating to paramagnetic species (i.e., EPRI, OMRI, and MRI) have the potential to obtain maximally 5D information (i.e., 3D spatial + 1D spectral + 1D temporal dimensions, theoretically). To obtain suitable dimensionality, several factors, such as the EPR spectral information, spatial resolution, temporal resolution, will have to be taken into account. For this review, the EPRI, OMRI, and MRI applications for the study biological systems were evaluated for researchers to apply the method of choice and the mode of measurements to specific experimental systems.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
23
|
Devasahayam N, Subramanian S, Murugesan R, Hyodo F, Matsumoto KI, Mitchell JB, Krishna MC. Strategies for improved temporal and spectral resolution in in vivo oximetric imaging using time-domain EPR. Magn Reson Med 2007; 57:776-83. [PMID: 17390350 DOI: 10.1002/mrm.21194] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A radiofrequency (RF) time-domain electron paramagnetic resonance (EPR) instrument operating at 300, 600, and 750 MHz was used to image tumor hypoxia with high spatial and temporal resolution. A high-speed signal-averaging Peripheral Component Interconnect (PCI) board with flexibility in the input signal level and the number of digitized samples per free induction decay (FID) was incorporated into the receive arm of the spectrometer. This enabled effective and fast averaging of FIDs. Modification of the phase-encoding protocol, and replacement of the General Purpose Interface Bus (GPIB)-based handshake with a PCI-based D/A board for direct control of the gradient amplifier decreased the gradient settling and communication overhead times by nearly two orders of magnitude. Cyclically-ordered phase sequence (CYCLOPS) phase cycling was implemented to correct for pulse imperfections and cancel out unwanted constant signals. These upgrades considerably enhanced the performance of the imager in terms of image collection time, sensitivity, and temporal resolution. We demonstrated this by collecting a large number of 2D images successively and rapidly. The results show that it is feasible to achieve accurate, 2D pO(2) maps of tumor hypoxia with 1-mm(2) resolution and minimal artifacts using a set of multigradient images within an acceptable measuring time of about 3 s, and 3D maps can be obtained in less than 1 min.
Collapse
Affiliation(s)
- Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Deng Y, Petryakov S, He G, Kesselring E, Kuppusamy P, Zweier JL. Fast 3D spatial EPR imaging using spiral magnetic field gradient. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 185:283-90. [PMID: 17267252 PMCID: PMC2020526 DOI: 10.1016/j.jmr.2007.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/18/2006] [Accepted: 01/03/2007] [Indexed: 05/05/2023]
Abstract
Electron paramagnetic resonance imaging (EPRI) provides direct detection and mapping of free radicals. The continuous wave (CW) EPRI technique, in particular, has been widely used in a variety of applications in the fields of biology and medicine due to its high sensitivity and applicability to a wide range of free radicals and paramagnetic species. However, the technique requires long image acquisition periods, and this limits its use for many in vivo applications where relatively rapid changes occur in the magnitude and distribution of spins. Therefore, there has been a great need to develop fast EPRI techniques. We report the development of a fast 3D CW EPRI technique using spiral magnetic field gradient. By spiraling the magnetic field gradient and stepping the main magnetic field, this approach acquires a 3D image in one sweep of the main magnetic field, enabling significant reduction of the imaging time. A direct one-stage 3D image reconstruction algorithm, modified for reconstruction of the EPR images from the projections acquired with the spiral magnetic field gradient, was used. We demonstrated using a home-built L-band EPR system that the spiral magnetic field gradient technique enabled a 4-7-fold accelerated acquisition of projections. This technique has great potential for in vivo studies of free radicals and their metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Periannan Kuppusamy
- *Address for correspondence, Periannan Kuppusamy, PhD, The Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, E-mail:
| | | |
Collapse
|
25
|
Durairaj DC, Krishna MC, Murugesan R. A neural network approach for image reconstruction in electron magnetic resonance tomography. Comput Biol Med 2007; 37:1492-501. [PMID: 17362904 DOI: 10.1016/j.compbiomed.2007.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 01/09/2007] [Accepted: 01/22/2007] [Indexed: 11/28/2022]
Abstract
An object-oriented, artificial neural network (ANN) based, application system for reconstruction of two-dimensional spatial images in electron magnetic resonance (EMR) tomography is presented. The standard back propagation algorithm is utilized to train a three-layer sigmoidal feed-forward, supervised, ANN to perform the image reconstruction. The network learns the relationship between the 'ideal' images that are reconstructed using filtered back projection (FBP) technique and the corresponding projection data (sinograms). The input layer of the network is provided with a training set that contains projection data from various phantoms as well as in vivo objects, acquired from an EMR imager. Twenty five different network configurations are investigated to test the ability of the generalization of the network. The trained ANN then reconstructs two-dimensional temporal spatial images that present the distribution of free radicals in biological systems. Image reconstruction by the trained neural network shows better time complexity than the conventional iterative reconstruction algorithms such as multiplicative algebraic reconstruction technique (MART). The network is further explored for image reconstruction from 'noisy' EMR data and the results show better performance than the FBP method. The network is also tested for its ability to reconstruct from limited-angle EMR data set.
Collapse
|
26
|
|
27
|
Isenberg JS, Hyodo F, Matsumoto KI, Romeo MJ, Abu-Asab M, Tsokos M, Kuppusamy P, Wink DA, Krishna MC, Roberts DD. Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 2006; 109:1945-52. [PMID: 17082319 PMCID: PMC1801044 DOI: 10.1182/blood-2006-08-041368] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The nitric oxide (NO)/cGMP pathway, by relaxing vascular smooth muscle cells, is a major physiologic regulator of tissue perfusion. We now identify thrombospondin-1 as a potent antagonist of NO for regulating F-actin assembly and myosin light chain phosphorylation in vascular smooth muscle cells. Thrombospondin-1 prevents NO-mediated relaxation of precontracted vascular smooth muscle cells in a collagen matrix. Functional magnetic resonance imaging demonstrated that an NO-mediated increase in skeletal muscle perfusion was enhanced in thrombospondin-1-null relative to wild-type mice, implicating endogenous thrombospondin-1 as a physiologic antagonist of NO-mediated vasodilation. Using a random myocutaneous flap model for ischemic injury, tissue survival was significantly enhanced in thrombospondin-1-null mice. Improved flap survival correlated with increased recovery of oxygen levels in the ischemic tissue of thrombospondin-1-null mice as measured by electron paramagnetic resonance oximetry. These findings demonstrate an important antagonistic relation between NO/cGMP signaling and thrombospondin-1 in vascular smooth muscle cells to regulate vascular tone and tissue perfusion.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mailer C, Sundramoorthy SV, Pelizzari CA, Halpern HJ. Spin echo spectroscopic electron paramagnetic resonance imaging. Magn Reson Med 2006; 55:904-12. [PMID: 16526015 DOI: 10.1002/mrm.20849] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of spin echoes to obtain spectroscopic EPR images (spectral-spatial images) at 250 MHz is described. The advantages of spin echoes-larger signals than the free induction decay, better phase characteristics for Fourier transformation, and decay shapes undistorted by instrumental dead time-are clearly shown. An advantage is gained from using a crossed loop resonator that isolates the 250-W pump power by greater than 50 dB from the observer arm preamplifiers. The echo decay rates can be used to determine the oxygen content in solutions containing 1 mM trityl concentrations. Two- and three-dimensional images of oxygen concentration are presented.
Collapse
Affiliation(s)
- Colin Mailer
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
29
|
Matsumoto A, Matsumoto S, Sowers AL, Koscielniak JW, Trigg NJ, Kuppusamy P, Mitchell JB, Subramanian S, Krishna MC, Matsumoto KI. Absolute oxygen tension (pO(2)) in murine fatty and muscle tissue as determined by EPR. Magn Reson Med 2006; 54:1530-5. [PMID: 16276490 DOI: 10.1002/mrm.20714] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The absolute partial pressure of oxygen (pO(2)) in the mammary gland pad and femoral muscle of female mice was measured using EPR oximetry at 700 MHz. A small quantity of lithium phthalocyanine (LiPc) crystals was implanted in both mammary and femoral muscle tissue of female C3H mice. Subsequent EPR measurements were carried out 1-30 days after implantation with or without control of core body temperature. The pO(2) values in the tissue became stable 2 weeks after implantation of LiPc crystals. The pO(2) level was found to be higher in the femoral muscle than in the mammary tissue. However, the pO(2) values showed a strong dependence on the core body temperature of the mice. The pO(2) values were responsive to carbogen (95% O(2), 5% CO(2)) breathing even 44-58 days after the implantation of LiPc. The LiPc linewidth was also sensitive to changes in the blood supply even 60 days after implantation of the crystals. This study further validates the use of LiPc crystals and EPR oximetry for long-term non-invasive assessment of pO(2) levels in tissues, underscores the importance of maintaining normal body core temperature during the measurements, and demonstrates that mammary tissue functions at a lower pO(2) level than muscle in female C3H mice.
Collapse
Affiliation(s)
- Atsuko Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1002, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Matsumoto KI, Subramanian S, Devasahayam N, Aravalluvan T, Murugesan R, Cook JA, Mitchell JB, Krishna MC. Electron paramagnetic resonance imaging of tumor hypoxia: Enhanced spatial and temporal resolution for in vivo pO2 determination. Magn Reson Med 2006; 55:1157-63. [PMID: 16596636 DOI: 10.1002/mrm.20872] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The time-domain (TD) mode of electron paramagnetic resonance (EPR) data collection offers a means of estimating the concentration of a paramagnetic probe and the oxygen-dependent linewidth (LW) to generate pO2 maps with minimal errors. A methodology for noninvasive pO2 imaging based on the application of TD-EPR using oxygen-induced LW broadening of a triarylmethyl (TAM)-based radical is presented. The decay of pixel intensities in an image is used to estimate T2*, which is inversely proportional to pO2. Factors affecting T2* in each pixel are critically analyzed to extract the contribution of dissolved oxygen to EPR line-broadening. Suitable experimental and image-processing parameters were obtained to produce pO2 maps with minimal artifacts. Image artifacts were also minimized with the use of a novel data collection strategy using multiple gradients. Results from a phantom and in vivo imaging of tumor-bearing mice validated this novel method of noninvasive oximetry. The current imaging protocols achieve a spatial resolution of approximately 1.0 mm and a temporal resolution of approximately 9 s for 2D pO2 mapping, with a reliable oxygen resolution of approximately 1 mmHg (0.12% oxygen in gas phase). This work demonstrates that in vivo oximetry can be performed with good sensitivity, accuracy, and high spatial and temporal resolution.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-1002, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Deng Y, Kuppusamy P, Zweier JL. Progressive EPR imaging with adaptive projection acquisition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 174:177-87. [PMID: 15862233 PMCID: PMC3010900 DOI: 10.1016/j.jmr.2005.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 05/11/2023]
Abstract
Continuous wave electron paramagnetic resonance imaging (EPRI) of living biological systems requires rapid acquisition and visualization of free radical images. In the commonly used multiple-stage back-projection image reconstruction algorithm, the EPR image cannot be reconstructed until a complete set of projections is collected. If the data acquisition is incomplete, the previously acquired incomplete data set is no longer useful. In this work, a 3-dimensional progressive EPRI technique was implemented based on inverse Radon transform in which a 3-dimensional EPR image is acquired and reconstructed gradually from low resolution to high resolution. An adaptive data acquisition strategy is proposed to determine the significance of projections and acquire them in an order from the most significant to the least significant. The image acquisition can be terminated at any time if further collection of projections does not improve the image resolution distinctly, providing flexibility to trade image quality with imaging time. The progressive imaging technique was validated using computer simulations as well as imaging experiments. The adaptive acquisition uses 50-70% less projections as compared to the regular acquisition. In conclusion, adaptive data acquisition with progressive image reconstruction should be very useful for the accelerated acquisition and visualization of free radical distribution.
Collapse
|
32
|
Curto CA, Placidi G, Sotgiu A, Alecci M. An open volume, high isolation, radio frequency surface coil system for pulsed magnetic resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 171:353-358. [PMID: 15546763 DOI: 10.1016/j.jmr.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Revised: 08/25/2004] [Indexed: 05/24/2023]
Abstract
We present an open volume, high isolation, RF system suitable for pulsed NMR and EPR spectrometers with reduced dead time. It comprises a set of three RF surface coils disposed with mutually parallel RF fields and a double-channel receiver (RX). Theoretical and experimental results obtained with a prototype operating at about 100 MHz are reported. Each surface RF coil (diameter 5.5 cm) was tuned to f0=100.00+/-0.01 MHz when isolated. Because of the mutual coupling and the geometry of the RF coils, only two resonances at f1=97.94 MHz and f2=101.85 MHz were observed. We show they are associated with two different RF field spatial distributions. In continuous mode (CW) operation the isolation between the TX coil and one of the RX coils (single-channel) was about -10 dB. By setting the double-channel RF assembly in subtraction mode the isolation values at f1 or f2 could be optimised to about -75 dB. Following a TX RF pulse (5 micros duration) an exponential decay with time constant of about 600 ns was observed. The isolation with single-channel RX coil was about -11 dB and it increased to about -47 dB with the double-channel RX in subtraction mode. Similar results were obtained with the RF pulse frequency selected to f2 and also with shorter (500 ns) RF pulses. The above geometrical parameters and operating frequency of the RF assembly were selected as a model for potential applications in solid state NMR and in free radical EPR spectroscopy and imaging.
Collapse
Affiliation(s)
- Carlo Alberto Curto
- INFM and Dipartimento di Scienze e Tecnologie Biomediche, Università dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | | | | | | |
Collapse
|
33
|
Durairaj DC, Krishna MC, Murugesan R. Integration of color and boundary information for improved region of interest identification in electron magnetic resonance images. Comput Med Imaging Graph 2004; 28:445-52. [PMID: 15541951 DOI: 10.1016/j.compmedimag.2004.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 07/30/2004] [Accepted: 07/30/2004] [Indexed: 11/16/2022]
Abstract
A Windows-based, object-oriented application system for segmentation and analysis of electron magnetic resonance (EMR) images is described. The integrated system is developed for better recognition of regions of interest (ROI) in murine EMR images. The system combines the clustering method of color segmentation with boundary detection, for efficient segmentation of regions of interest in EMR images. Initially, the red/green/blue (RGB) color space is converted into spherical coordinates transform (SCT) space. Color quantization is then achieved by center split algorithm applied on the color dimensions of the SCT space. Subsequently, Laplacian boundary detection operator is used to extract the contours of the ROI from the variegated coloring information. The system is implemented in Visual C++ and tested on temporal EMR color images of mouse. The system performs well giving perceptually reasonable segmentation of tumor, kidney and bladder of the mouse image. Experimental results with extensive set of EMR color images demonstrate the efficacy of the system developed.
Collapse
|
34
|
Deng Y, He G, Petryakov S, Kuppusamy P, Zweier JL. Fast EPR imaging at 300 MHz using spinning magnetic field gradients. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:220-7. [PMID: 15140431 DOI: 10.1016/j.jmr.2004.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 02/09/2004] [Indexed: 05/13/2023]
Abstract
Electron paramagnetic resonance imaging (EPRI) technology has rapidly progressed in the last decade enabling many important applications in the fields of biology and medicine. At frequencies of 300-1200 MHz a range of in vivo applications have been performed. However, the requisite imaging time duration to acquire a given number of projections, limits the use of this technique in many in vivo applications where relatively rapid kinetics occur. Therefore, there has been a great need to develop approaches to accelerate EPRI data acquisition. We report the development of a fast low-frequency EPRI technique using spinning magnetic field gradients (SMFG). Utilizing a 300 MHz CW (continuous wave) EPRI system, SMFG enabled over 10-fold accelerated acquisition of image projections. 2D images with over 200 projections could be acquired in less than 3s and with 20s acquisitions good image quality was obtained on large aqueous free radical samples. This technique should be particularly useful for in vivo studies of free radicals and their metabolism.
Collapse
Affiliation(s)
- Yuanmu Deng
- Center for Biomedical EPR Spectroscopy and Imaging, The Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
35
|
Devasahayam N, Murugesan R, Matsumoto K, Mitchell JB, Cook JA, Subramanian S, Krishna MC. Tailored sinc pulses for uniform excitation and artifact-free radio frequency time-domain EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:110-117. [PMID: 15082255 DOI: 10.1016/j.jmr.2004.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/26/2004] [Indexed: 05/24/2023]
Abstract
A method to generate shaped radiofrequency pulses for uniform excitation of electron spins in time-domain radio frequency (RF) electron paramagnetic resonance (EPR) imaging is presented. A commercial waveform generator was integrated with the transmit arm of the existing time-domain RF-EPR spectrometer to generate tailored excitation pulses with sub-nano second resolution for excitation with a 90 degrees flip-angle. A truncated sinc [sin(x)/x] pulse, tailored to compensate for the Q-profile (RF frequency response) of the resonator, was shown to yield images from phantom objects as well as in vivo images, with minimal distortion. These studies point to the advantages in using shaped sinc pulses to achieve improved uniform excitation over a relatively wide bandwidth region in time-domain RF-EPR imaging (RF-FT-EPRI).
Collapse
Affiliation(s)
- N Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Eaton GR, Eaton SS. EPR Spectrometers at Frequencies Below X-band. EPR: INSTRUMENTAL METHODS 2004. [DOI: 10.1007/978-1-4419-8951-2_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Matsumoto KI, English S, Yoo J, Yamada KI, Devasahayam N, Cook JA, Mitchell JB, Subramanian S, Krishna MC. Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry. Magn Reson Med 2004; 52:885-92. [PMID: 15389949 DOI: 10.1002/mrm.20222] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The paramagnetic spin probe Oxo63 is used in oximetric imaging studies based on electron paramagnetic resonance (EPR) methods by monitoring the oxygen-dependent linewidth while minimizing the contributions from self-broadening seen at high probe concentrations. Therefore, it is necessary to determine a suitable dose of Oxo63 for EPR-based oxygen mapping where the self-broadening effects are minimized while signal intensity adequate for imaging can be realized. A constant tissue concentration of spin probe would be useful to image a subject and assess changes in pO2 over time; accumulation or elimination of the compound in specific anatomical regions could translate to and be mistaken for changes in local pO2, especially in OMRI-based oximetry. The in vivo pharmacokinetics of the spin probe, Oxo63, after bolus and/or continuous intravenous infusion was investigated in mice using a novel approach with X-band EPR spectroscopy. The results show that the half-life in blood was 17-21 min and the clearance by excretion was 0.033-0.040 min(-1). Continuous infusion following a bolus injection of the probe was found to be effective to obtain stable plasma concentration as well as image intensity to permit reliable pO2 estimates.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1002, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Blank A, Dunnam CR, Borbat PP, Freed JH. High resolution electron spin resonance microscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 165:116-127. [PMID: 14568522 DOI: 10.1016/s1090-7807(03)00254-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NMR microscopy is routinely employed in fields of science such as biology, botany, and materials science to observe magnetic parameters and transport phenomena in small scale structures. Despite extensive efforts, the resolution of this method is limited (>10 microm for short acquisition times), and thus cannot answer many key questions in these fields. We show, through theoretical prediction and initial experiments, that ESR microscopy, although much less developed, can improve upon the resolution limits of NMR, and successfully undertake the 1 mum resolution challenge. Our theoretical predictions demonstrate that existing ESR technology, along with advanced imaging probe design (resonator and gradient coils), using solutions of narrow linewidth radicals (the trityl family), should yield 64 x 64 pixels 2D images (with z slice selection) with a resolution of 1 x 1 x 10 microm at approximately 60 GHz in less than 1h of acquisition. Our initial imaging results, conducted by CW ESR at X-band, support these theoretical predictions and already improve upon the previously reported state-of-the-art for 2D ESR image resolution achieving approximately 10 x 10 mum, in just several minutes of acquisition time. We analyze how future progress, which includes improved resonators, increased frequency of measurement, and advanced pulsed techniques, should achieve the goal of micron resolution.
Collapse
Affiliation(s)
- Aharon Blank
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
39
|
Matsumoto KI, Chandrika B, Lohman JAB, Mitchell JB, Krishna MC, Subramanian S. Application of continuous-wave EPR spectral-spatial image reconstruction techniques for in vivo oxymetry: Comparison of projection reconstruction and constant-time modalities. Magn Reson Med 2003; 50:865-74. [PMID: 14523974 DOI: 10.1002/mrm.10594] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study we report the application of continuous-wave (CW) electron paramagnetic resonance (EPR) constant-time spectral spatial imaging (CTSSI) for in vivo oxymetry. 2D and 3D SSI studies of a phantom and live mice were carried out using projection reconstruction (PR) and constant-time (CT) modalities using a CW-EPR spectrometer/imager operating at 300 MHz frequency. Distortion of line shape, which is inherent in the PR method, was minimized by the CTSSI modality. It was also found that CTSSI offers improved noise reduction, restores a smoother line shape, and gives high convergence of estimated values. Spatial resolution was also improved by CTSSI, although fundamental spectral line-width broadening was observed. Although additional corrections are required for accurate estimations of spectral line width, CTSSI was able to demonstrate distinct differences in oxygen tension between a tumor and the normal legs of a C3H mouse. The PR method, on the other hand, was unable to make such a distinction unequivocally with the triarylmethyl spin probes. CTSSI promises to be a more suitable method for quantitative in vivo oxymetric studies using radiofrequency EPR imaging (EPRI).
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Subramanian S, Devasahayam N, Murugesan R, Yamada K, Cook J, Taube A, Mitchell JB, Lohman JAB, Krishna MC. Single-point (constant-time) imaging in radiofrequency Fourier transform electron paramagnetic resonance. Magn Reson Med 2002; 48:370-9. [PMID: 12210946 DOI: 10.1002/mrm.10199] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study describes the use of the single-point imaging (SPI) modality, also known as constant-time imaging (CTI), in radiofrequency (RF) Fourier transform (FT) electron paramagnetic resonance (EPR). The SPI technique, commonly used for high-resolution solid-state nuclear magnetic resonance (NMR) imaging, has been successfully applied to 2D and 3D RF-FT-EPR imaging of phantoms containing narrow-line EPR spin probes. The SPI scheme is essentially a phase-encoding technique that operates by acquiring a single data point in the free induction decay (FID) after a fixed delay (phase-encoding time), following the pulsed RF excitation, in the presence of static magnetic field gradients. Since the phase-encoding time remains constant for a given image data set, the spectral information is automatically deconvolved, providing well-resolved pure spatial images. Therefore, images obtained using SPI are artifact-free and the resolution is not significantly limited by the line width, compared to the images obtained using the conventional filtered back-projection (FBP) scheme, suggesting that the SPI modality may have advantages for EPR imaging of large objects. In this work the advantages and limitations of SPI as compared to FBP are investigated by imaging suitable phantom objects. Although SPI takes longer to perform than the FBP method, optimization of the data collection scheme may increase the temporal resolution, rendering this technique suitable for in vivo studies. Spectral information can also be extracted from a series of SPI images that are generated as a function of the delay from the excitation pulse.
Collapse
Affiliation(s)
- Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|