1
|
Sheet T, Supakar S, Banerjee R. Conformational preference of 'CαNN' short peptide motif towards recognition of anions. PLoS One 2013; 8:e57366. [PMID: 23516403 PMCID: PMC3596363 DOI: 10.1371/journal.pone.0057366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Among several ‘anion binding motifs’, the recently described ‘CαNN’ motif occurring in the loop regions preceding a helix, is conserved through evolution both in sequence and its conformation. To establish the significance of the conserved sequence and their intrinsic affinity for anions, a series of peptides containing the naturally occurring ‘CαNN’ motif at the N-terminus of a designed helix, have been modeled and studied in a context free system using computational techniques. Appearance of a single interacting site with negative binding free-energy for both the sulfate and phosphate ions, as evidenced in docking experiments, establishes that the ‘CαNN’ segment has an intrinsic affinity for anions. Molecular Dynamics (MD) simulation studies reveal that interaction with anion triggers a conformational switch from non-helical to helical state at the ‘CαNN’ segment, which extends the length of the anchoring-helix by one turn at the N-terminus. Computational experiments substantiate the significance of sequence/structural context and justify the conserved nature of the ‘CαNN’ sequence for anion recognition through “local” interaction.
Collapse
Affiliation(s)
- Tridip Sheet
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
| | - Subhrangshu Supakar
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
| | - Raja Banerjee
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
- * E-mail:
| |
Collapse
|
2
|
Di Donato M, van Wilderen LJGW, Van Stokkum IHM, Stuart TC, Kennis JTM, Hellingwerf KJ, van Grondelle R, Groot ML. Proton transfer events in GFP. Phys Chem Chem Phys 2011; 13:16295-305. [PMID: 21847481 DOI: 10.1039/c1cp20387h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.
Collapse
Affiliation(s)
- Mariangela Di Donato
- Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009; 89:73-120. [PMID: 19126755 PMCID: PMC2713585 DOI: 10.1152/physrev.00015.2008] [Citation(s) in RCA: 1290] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a "receptive substance," from which the idea of a "receptor" came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of alpha-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer's, Parkinson's, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy.
Collapse
Affiliation(s)
- Edson X Albuquerque
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
4
|
Szarecka A, Xu Y, Tang P. Dynamics of heteropentameric nicotinic acetylcholine receptor: implications of the gating mechanism. Proteins 2007; 68:948-60. [PMID: 17546671 DOI: 10.1002/prot.21462] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics characteristics of the currently available structure of Torpedo nicotinic acetylcholine receptor (nAChR), including the extracellular, transmembrane, and intracellular domains (ICDs), were analyzed using the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM). We found that a symmetric quaternary twist motion, reported previously in the literature in a homopentameric receptor (Cheng et al. J Mol Biol 2006;355:310-324; Taly et al. Biophys J 2005;88:3954-3965), occurred also in the heteropentameric Torpedo nAChR. We believe, however, that the symmetric twist alone is not sufficient to explain a large body of experimental data indicating asymmetry and subunit nonequivalence during gating. Here we report our results supporting the hypothesis that a combination of symmetric and asymmetric motions opens the gate. We show that the asymmetric motion involves tilting of the TM2 helices. Furthermore, our study reveals three additional aspects of channel dynamics: (1) loop A serves as an allosteric mediator between the ligand binding loops and those at the domain interface, particularly the linker between TM2 and TM3; (2) the ICD can modulate the pore dynamics and thus should not be neglected in gating studies; and (3) the F loops, which are peculiarly longer and poorly-conserved in non-alpha-subunits, have important dynamical implications.
Collapse
Affiliation(s)
- Agnieszka Szarecka
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
5
|
Shaitan KV, Li A, Tereshkina KB, Kirpichnikov MP. Acetylcholine receptor pore permeability studied by molecular dynamics simulation. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907030086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
McNulty MM, Edgerton GB, Shah RD, Hanck DA, Fozzard HA, Lipkind GM. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels. J Physiol 2007; 581:741-55. [PMID: 17363383 PMCID: PMC2075178 DOI: 10.1113/jphysiol.2007.130161] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our homology molecular model of the open/inactivated state of the Na(+) channel pore predicts, based on extensive mutagenesis data, that the local anaesthetic lidocaine docks eccentrically below the selectivity filter, such that physical occlusion is incomplete. Electrostatic field calculations suggest that the drug's positively charged amine produces an electrostatic barrier to permeation. To test the effect of charge at this pore level on permeation in hNa(V)1.5 we replaced Phe-1759 of domain IVS6, the putative binding site for lidocaine's alkylamino end, with positively and negatively charged residues as well as the neutral cysteine and alanine. These mutations eliminated use-dependent lidocaine block with no effect on tonic/rested state block. Mutant whole cell currents were kinetically similar to wild type (WT). Single channel conductance (gamma) was reduced from WT in both F1759K (by 38%) and F1759R (by 18%). The negatively charged mutant F1759E increased gamma by 14%, as expected if the charge effect were electrostatic, although F1759D was like WT. None of the charged mutations affected Na(+)/K(+) selectivity. Calculation of difference electrostatic fields in the pore model predicted that lidocaine produced the largest positive electrostatic barrier, followed by lysine and arginine, respectively. Negatively charged glutamate and aspartate both lowered the barrier, with glutamate being more effective. Experimental data were in rank order agreement with the predicted changes in the energy profile. These results demonstrate that permeation rate is sensitive to the inner pore electrostatic field, and they are consistent with creation of an electrostatic barrier to ion permeation by lidocaine's charge.
Collapse
Affiliation(s)
- Megan M McNulty
- Cardiac Electrophysiology Laboratory, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
7
|
Xu Y, Barrantes FJ, Shen J, Luo X, Zhu W, Chen K, Jiang H. Blocking of the Nicotinic Acetylcholine Receptor Ion Channel by Chlorpromazine, a Noncompetitive Inhibitor: A Molecular Dynamics Simulation Study. J Phys Chem B 2006; 110:20640-8. [PMID: 17034254 DOI: 10.1021/jp0604591] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large series of pharmacological agents, distinct from the typical competitive antagonists, block in a noncompetitive manner the permeability response of the nicotinic acetylcholine receptor (nAChR) to the neurotransmitter acetylcholine. Taking the neuroleptic chlorpromazine (CPZ) as an example of such agents, the blocking mechanism of noncompetitive inhibitors to the ion channel pore of the nAChR has been explored at the atomic level using both conventional and steered molecular dynamics (MD) simulations. Repeated steered MD simulations have permitted calculation of the free energy (approximately 36 kJ/mol) of CPZ binding and identification of the optimal site in the region of the serine and leucine rings, at approximately 4 A from the pore entrance. Coulomb and the Lennard-Jones interactions between CPZ and the ion channel as well as the conformational fluctuations of CPZ were examined to assess the contribution of each to the binding of CPZ to the nAChR. The MD simulations disclose a dynamic interaction of CPZ binding to the nAChR ionic channel. The cationic ammonium head of CPZ forms strong hydrogen bonds with Glu262 (alpha), Asp268 (beta), Glu272 (beta), Ser276 (beta), Glu280 (delta), Gln271 (gamma), Glu275 (gamma), and Asn279 (gamma) nAChR residues. Finally, the conventional MD simulation of CPZ at its identified binding site demonstrates that the binding of CPZ not only blocks ion transport through the channel but also markedly inhibits the conformational transitions of the channel, necessary for nAChR to carry out its biological function.
Collapse
Affiliation(s)
- Yechun Xu
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, and Graduate School, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Zloh M, Esposito D, Gibbons WA. Spectroscopy-Based Modelling of the 3D Structure of the β Subunit of the High Affinity IgE Receptor. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020008022386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Meltzer RH, Vila-Carriles W, Ebalunode JO, Briggs JM, Pedersen SE. Computed pore potentials of the nicotinic acetylcholine receptor. Biophys J 2006; 91:1325-35. [PMID: 16751248 PMCID: PMC1518625 DOI: 10.1529/biophysj.106.081455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrostatic surface potentials in the vestibule of the nicotinic acetylcholine receptor (nAChR) were computed from structural models using the University of Houston Brownian Dynamics program to determine their effect on ion conduction and ionic selectivity. To further determine whether computed potentials accurately reflect the electrostatic environment of the channel, the potentials were used to predict the rate constants for diffusion-enhanced fluorescence energy transfer; the calculated energy transfer rates are directly comparable with those determined experimentally (see companion article by Meltzer et al. in this issue). To include any effects on the local potentials by the bound acceptor fluorophore crystal violet, its binding site was first localized within the pore by fluorescence energy transfer measurements from dansyl-C6-choline bound to the agonist sites and also by simulations of binding using Autodock. To compare the computed potentials with those determined experimentally, we used the predicted energy transfer rates from Tb3+ chelates of varying charge to calculate an expected potential using the Boltzmann relationship. This expected potential (from -20 to -40 mV) overestimates the values determined experimentally (from -10 to -25 mV) by two- to fourfold at similar conditions of ionic strength. Although the results indicate a basic discrepancy between experimental and computed surface potentials, both methods demonstrate that the vestibular potential has a relatively small effect on conduction and selectivity.
Collapse
Affiliation(s)
- Robert H Meltzer
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77035, USA
| | | | | | | | | |
Collapse
|
10
|
Cook GA, Pajewski R, Aburi M, Smith PE, Prakash O, Tomich JM, Gokel GW. NMR Structure and Dynamic Studies of an Anion-Binding, Channel-Forming Heptapeptide. J Am Chem Soc 2006; 128:1633-8. [PMID: 16448136 DOI: 10.1021/ja055887j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthetic peptide (C(18)H(37))(2)NCOCH(2)OCH(2)CON-(Gly)(3)-Pro-(Gly)(3)-OCH(2)Ph forms chloride-selective channels in liposomes and exhibits voltage-gating properties in planar phospholipid bilayers. The peptide fragment of the channel is based on a conserved motif in naturally occurring chloride transporters. Membrane-anchoring residues at the N- and C-terminal ends augment the peptide. NMR spectra (1D and 2D) of the channel in CDCl(3) showed significant variation in the absence and presence of stoichiometric tetrabutylammonium chloride (Bu(4)NCl). One-dimensional solution-state NMR titration studies combined with computational molecular simulation studies indicate that the peptide interacts with the salt as an ion pair and H-bonds chloride. To our knowledge, this is the first structural analysis of any synthetic anion-channel salt complex.
Collapse
Affiliation(s)
- Gabriel A Cook
- Departments of Biochemistry and Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Menegazzo I, Fries A, Mammi S, Galeazzi R, Martelli G, Orena M, Rinaldi S. Synthesis and structural characterisation as 12-helix of the hexamer of a β-amino acid tethered to a pyrrolidin-2-one ring. Chem Commun (Camb) 2006:4915-7. [PMID: 17136245 DOI: 10.1039/b612071g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from (3S,4R,1'S)-3-amino-2-oxo-1-[1'-(4-methoxyphenylethyl)]pyrrolidine carboxylic acid (2), the first synthesis of a beta-foldamer containing pyrrolidin-2-one rings is described, whose 12-helix conformation is assigned by NMR analysis and confirmed by molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Ileana Menegazzo
- Dipartimento di Scienze Chimiche, Università di Padova, ICB-CNR, Via Marzolo 1, I-35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
O'Mara M, Cromer B, Parker M, Chung SH. Homology model of the GABAA receptor examined using Brownian dynamics. Biophys J 2005; 88:3286-99. [PMID: 15749776 PMCID: PMC1305477 DOI: 10.1529/biophysj.104.051664] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a homology model of the GABA(A) receptor, using the subunit combination of alpha1beta2gamma2, the most prevalent type in the mammalian brain. The model is produced in two parts: the membrane-embedded channel domain and the extracellular N-terminal domain. The pentameric transmembrane domain model is built by modeling each subunit by homology with the equivalent subunit of the heteropentameric acetylcholine receptor transmembrane domain. This segment is then joined with the extracellular domain built by homology with the acetylcholine binding protein. The all-atom model forms a wide extracellular vestibule that is connected to an oval chamber near the external surface of the membrane. A narrow, cylindrical transmembrane channel links the outer segment of the pore to a shallow intracellular vestibule. The physiological properties of the model so constructed are examined using electrostatic calculations and Brownian dynamics simulations. A deep energy well of approximately 80 kT accommodates three Cl(-) ions in the narrow transmembrane channel and seven Cl(-) ions in the external vestibule. Inward permeation takes place when one of the ions queued in the external vestibule enters the narrow segment and ejects the innermost ion. The model, when incorporated into Brownian dynamics, reproduces key experimental features, such as the single-channel current-voltage-concentration profiles. Finally, we simulate the gamma2 K289M epilepsy inducing mutation and examine Cl(-) ion permeation through the mutant receptor.
Collapse
Affiliation(s)
- Megan O'Mara
- Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
13
|
Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. Ligand-gated ion channels: mechanisms underlying ion selectivity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:161-204. [PMID: 15288758 DOI: 10.1016/j.pbiomolbio.2003.09.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.
Collapse
Affiliation(s)
- Angelo Keramidas
- Department of Physiology and Pharmacology, School of Medical Sciences, The University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
14
|
Trudell JR, Bertaccini E. Comparative modeling of a GABAA alpha1 receptor using three crystal structures as templates. J Mol Graph Model 2004; 23:39-49. [PMID: 15331052 DOI: 10.1016/j.jmgm.2004.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/20/2004] [Accepted: 03/03/2004] [Indexed: 11/27/2022]
Abstract
We built a model of a GABAA alpha1 receptor (GABAAR) that combines the ligand binding (LBD) and the transmembrane domains (TMD). We used six steps: (1) a four-alpha helical bundle in the crystal structure of bovine cytochrome c oxidase (2OCC) was identified as a template for the TMD of a single subunit. (2) The five pore-forming alpha helices of a bacterial mechanosensitive channel (1MSL) served as a template for the pentameric ion channel. (3) Five copies of the tetrameric template from 2OCC were superimposed on 1MSL to produce a homopentamer containing 20 alpha helices arranged around a funnel-shaped central pore. (4) Five copies of the GABAAR sequence were threaded onto the alpha-helical segments of this template and inter-helical loops were generated to produce the TMD model. (5) A model of the LBD was built by threading the aligned sequence of GABAAR onto the crystal structure of the acetylcholine binding protein (1I9B). (6) The models of the LBD and the TMD were aligned along a common five-fold axis, moved together along that axis until in vdW contact, merged, and then optimized with restrained molecular dynamics. Our model corresponds closely with recently published coordinates of the acetylcholine receptor (1OED) but also explains additional features. Our model reveals structures of loops that were not visible in the cryoelectron micrograph and satisfies most labeling and mutagenesis data. It also suggests mechanisms for ligand binding transduction, ion selectivity, and anesthetic binding.
Collapse
Affiliation(s)
- J R Trudell
- Department of Anesthesia, Stanford University, CA 94305-5117, USA.
| | | |
Collapse
|
15
|
|
16
|
Yushmanov VE, Xu Y, Tang P. NMR structure and dynamics of the second transmembrane domain of the neuronal acetylcholine receptor beta 2 subunit. Biochemistry 2004; 42:13058-65. [PMID: 14596621 DOI: 10.1021/bi0350396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure and backbone dynamics of a selectively [(15)N]Leu-labeled 28-residue segment of the extended second transmembrane domain (TM2e) of the human neuronal nicotinic acetylcholine receptor (nAChR) beta(2) subunit were studied by (1)H and (15)N solution-state NMR in dodecylphosphocholine micelles. The TM2e structure was determined on the basis of the nuclear Overhauser effects (NOEs) and the hydrogen bond restraints, which were inferred from the presence of H(alpha)(i)-H(N)(i+3), H(alpha)(i)-H(beta)(i+3), and H(alpha)(i)-H(N)(i+4) NOE connectivity and from the slow amide hydrogen exchange with D(2)O. The TM2e structure of the nAChR beta(2) subunit contains a helical region between T4 and K22. Backbone dynamics were calculated using the model-free approach based on the (15)N relaxation rate constants, R(1) and R(2), and on the (15)N-[(1)H] NOE. The data acquired at 9.4 and 14.1 T and calculations using different dynamic models demonstrated no conformational exchange and internal motions on the nanosecond time scale. The global tumbling time of TM2e in micelles was 14.4 +/- 0.2 ns; the NOE values were greater than 0.63 at 9.4 T, and the order parameter, S(2), was 0.83-0.96 for all (15)N-labeled leucine residues, suggesting a restricted internal motion. This is the first report of NMR structure and backbone dynamics of the second transmembrane domain of the human nAChR beta(2) subunit in a membrane-mimetic environment, providing the basis for subsequent studies of subunit interactions in the transmembrane domain complex of the neuronal nAChR.
Collapse
Affiliation(s)
- Victor E Yushmanov
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
17
|
Abstract
We study the effect of channel geometry on the potential barrier encountered by ions as they permeate the acetylcholine receptor channel. Among the various channel geometries which have been used to represent the acetylcholine receptor channel include the cylinder and the toroidal catenary. The main reasons for those choices appear to be the facilitation of separation of the Poisson equation, rather than biological considerations. We consider a novel and realistic acetylcholine channel geometry, and calculate the electrostatic potential profiles within it, and compare our results with results from other channel geometries.
Collapse
Affiliation(s)
- Anthony Y Aidoo
- Department of Mathematics and Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA.
| |
Collapse
|
18
|
Trudell JR, Bertaccini E. Molecular modelling of specific and non-specific anaesthetic interactions. Br J Anaesth 2002; 89:32-40. [PMID: 12173239 DOI: 10.1093/bja/aef157] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There has been rapid progress in molecular modelling in recent years. The convergence of improved software for molecular mechanics and dynamics, techniques for chimeric substitution and site-directed mutations, and the first x-ray structures of transmembrane ion channels have made it possible to build and test models of anaesthetic binding sites. These models have served as guides for site-directed mutagenesis and as starting points for understanding the molecular dynamics of anaesthetic-site interactions. Ligand-gated ion channels are targets for inhaled anaesthetics and alcohols in the central nervous system. The inhibitory strychnine-sensitive glycine and gamma-aminobutyric acid type A receptors are positively modulated by anaesthetics and alcohols; site-directed mutagenesis techniques have identified amino acid residues important for the action of volatile anaesthetics and alcohols in these receptors. Key questions are whether these amino acid mutations form part of alcohol- or anaesthetic-binding sites or if they alter protein stability in a way that allows anaesthetic molecules to act remotely by non-specific mechanisms. It is likely that molecular modelling will play a major role in answering these questions.
Collapse
Affiliation(s)
- J R Trudell
- Department of Anaesthesia, Beckman Program for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305-5117, USA
| | | |
Collapse
|
19
|
Bertaccini E, Trudell JR. Predicting the transmembrane secondary structure of ligand-gated ion channels. Protein Eng Des Sel 2002; 15:443-54. [PMID: 12082162 DOI: 10.1093/protein/15.6.443] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent mutational analyses of ligand-gated ion channels (LGICs) have demonstrated a plausible site of anesthetic action within their transmembrane domains. Although there is a consensus that the transmembrane domain is formed from four membrane-spanning segments, the secondary structure of these segments is not known. We utilized 10 state-of-the-art bioinformatics techniques to predict the transmembrane topology of the tetrameric regions within six members of the LGIC family that are relevant to anesthetic action. They are the human forms of the GABA alpha 1 receptor, the glycine alpha 1 receptor, the 5HT3 serotonin receptor, the nicotinic AChR alpha 4 and alpha 7 receptors and the Torpedo nAChR alpha 1 receptor. The algorithms utilized were HMMTOP, TMHMM, TMPred, PHDhtm, DAS, TMFinder, SOSUI, TMAP, MEMSAT and TOPPred2. The resulting predictions were superimposed on to a multiple sequence alignment of the six amino acid sequences created using the CLUSTAL W algorithm. There was a clear statistical consensus for the presence of four alpha helices in those regions experimentally thought to span the membrane. The consensus of 10 topology prediction techniques supports the hypothesis that the transmembrane subunits of the LGICs are tetrameric bundles of alpha helices.
Collapse
Affiliation(s)
- E Bertaccini
- Palo Alto VA Health Care System, Department of Anesthesia and Department of Anesthesia, Beckman Program for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117, USA
| | | |
Collapse
|
20
|
Bertaccini E, Trudell JR. Molecular modeling of ligand-gated ion channels: progress and challenges. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:141-66. [PMID: 11526737 DOI: 10.1016/s0074-7742(01)48015-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
There has been rapid progress in molecular modeling of LGICs in recent years. The convergence of improved software for molecular mechanics/dynamics, techniques of chimeric substitution and site-directed mutations, and the first X-ray structures of transmembrane ion channels will make it possible to build reasonable models of neuronal ion channels well in advance of publication of their crystal structures. These models will not only serve as guides for future site-directed mutagenesis, but they will also be a starting point for understanding the dynamics of ion channel gating.
Collapse
Affiliation(s)
- E Bertaccini
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
21
|
Rosenbusch JP, Lustig A, Grabo M, Zulauf M, Regenass M. Approaches to determining membrane protein structures to high resolution: do selections of subpopulations occur? Micron 2001; 32:75-90. [PMID: 10900383 DOI: 10.1016/s0968-4328(00)00021-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three different methods are currently used for the study of high-resolution structures of membrane proteins: X-ray crystallography, electron crystallography, and nuclear magnetic resonance (NMR) spectroscopy. Thus far, all methods combined have yielded a rather modest number of crystal structures that have been solved at the atomic level. It is hypothesized here that different methods may select different populations of proteins on the basis of various properties. Thus, protein stability may be a significant factor in the formation of three-dimensional (3D) crystals from detergent solutions, since exposure of hydrophobic protein zones to water may cause structural perturbation or denaturation in conformationally labile proteins. This is different in the formation of two-dimensional (2D) crystals where a protein remains protected in its native membrane environment. A biological selection mechanism may therefore be operative in that highly ordered lattices may form only if strong protein-protein interactions are relevant in vivo, thereby limiting the number of proteins that are amenable to electron crystallography. Keeping a protein in a bilayer environment throughout 3D crystallization maintains the lateral pressure existing in native membranes. This can be accomplished by using lipidic cubic phases. Alternatively, the hydrophobic interface of a membrane protein may be spared from contact with water by crystallization from organic solvents where the polar caps are protected in reverse micelles by using appropriate detergents. Some of the criteria that are useful in optimizing the various approaches are given. While the usefulness of complementary methods seems obvious, the results presented may be particularly critical in recognizing key problems in other structural approaches.
Collapse
Affiliation(s)
- J P Rosenbusch
- Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Abstract
All cells in a multicellular organism are constantly exposed to a variety of extracellular signals that they need to interpret and translate into an appropriate response to their environment. These signals can be soluble factors generated locally (for example, synaptic transmission) or distantly (for example, hormones and growth factors), ligands on the surface of other cells, or the extracellular matrix itself. To achieve this, cells maintain a diversity of receptors on their surface that respond specifically to individual stimuli. These receptors fall into families, based primarily on the way in which they generate the intracellular signals that give rise to the particular functional responses. Moreover, the activity of a given receptor can be modulated by other signalling pathways in a variety of ways, generating the flexibility required of such a complex system. This review aims to describe the function of the major classes of receptor, including G protein coupled receptors, receptor tyrosine kinases, ligand gated ion channels, integrins, and cytokine receptors, and to demonstrate the "crosstalk" that exists between these systems.
Collapse
Affiliation(s)
- I J Uings
- Cell Biology Department, Glaxo Wellcome Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | |
Collapse
|
23
|
Moy G, Corry B, Kuyucak S, Chung SH. Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys J 2000; 78:2349-63. [PMID: 10777732 PMCID: PMC1300825 DOI: 10.1016/s0006-3495(00)76780-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Continuum theories of electrolytes are widely used to describe physical processes in various biological systems. Although these are well-established theories in macroscopic situations, it is not clear from the outset that they should work in small systems whose dimensions are comparable to or smaller than the Debye length. Here, we test the validity of the mean-field approximation in Poisson-Boltzmann theory by comparing its predictions with those of Brownian dynamics simulations. For this purpose we use spherical and cylindrical boundaries and a catenary shape similar to that of the acetylcholine receptor channel. The interior region filled with electrolyte is assumed to have a high dielectric constant, and the exterior region representing protein a low one. Comparisons of the force on a test ion obtained with the two methods show that the shielding effect due to counterions is overestimated in Poisson-Boltzmann theory when the ion is within a Debye length of the boundary. As the ion gets closer to the boundary, the discrepancy in force grows rapidly. The implication for membrane channels, whose radii are typically smaller than the Debye length, is that Poisson-Boltzmann theory cannot be used to obtain reliable estimates of the electrostatic potential energy and force on an ion in the channel environment.
Collapse
Affiliation(s)
- G Moy
- Protein Dynamics Unit, Department of Chemistry, Research School of Physical Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
24
|
Pashkov VS, Maslennikov IV, Tchikin LD, Efremov RG, Ivanov VT, Arseniev AS. Spatial structure of the M2 transmembrane segment of the nicotinic acetylcholine receptor alpha-subunit. FEBS Lett 1999; 457:117-21. [PMID: 10486576 DOI: 10.1016/s0014-5793(99)01023-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A synthetic peptide corresponding to the transmembrane segment M2 (residues 236-267) of the alpha-subunit of the nicotinic acetylcholine receptor from Torpedo californica has been studied by two dimensional 1H-NMR spectroscopy in a chloroform-methanol (1:1) mixture containing 0.1 M LiClO4. Reconstruction of the spatial structure of M2 from the NMR data resulted in an alpha-helix formed by residues 241-263. Distribution of the molecular hydrophobicity potential on the helix surface is very similar to that in five-helix bundles of proteins with a known three dimensional structure: two hydrophilic bands located on the opposite helix sides separated by strong hydrophobic zones.
Collapse
Affiliation(s)
- V S Pashkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- D G Levitt
- Department of Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
26
|
Tieleman DP, Berendsen HJ, Sansom MS. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J 1999; 76:1757-69. [PMID: 10096876 PMCID: PMC1300154 DOI: 10.1016/s0006-3495(99)77337-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the results of 2-ns molecular dynamics (MD) simulations of a hexameric bundle of Alm helices in a 1-palmitoyl-2-oleoylphosphatidylcholine bilayer. These simulations explore the dynamic properties of a model of a helix bundle channel in a complete phospholipid bilayer in an aqueous environment. We explore the stability and conformational dynamics of the bundle in a phospholipid bilayer. We also investigate the effect on bundle stability of the ionization state of the ring of Glu18 side chains. If all of the Glu18 side chains are ionised, the bundle is unstable; if none of the Glu18 side chains are ionized, the bundle is stable. pKA calculations suggest that either zero or one ionized Glu18 is present at neutral pH, correlating with the stable form of the helix bundle. The structural and dynamic properties of water in this model channel were examined. As in earlier in vacuo simulations (Breed et al., 1996 .Biophys. J. 70:1643-1661), the dipole moments of water molecules within the pore were aligned antiparallel to the helix dipoles. This contributes to the stability of the helix bundle.
Collapse
Affiliation(s)
- D P Tieleman
- BIOSON Research Institute and Department of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
27
|
Abstract
Membrane proteins, of which the majority seem to contain one or more alpha-helix, constitute approx. 30% of most genomes. A complete understanding of the nature of helix/bilayer interactions is necessary for an understanding of the structural principles underlying membrane proteins. This review describes computer simulation studies of helix/bilayer interactions. Key experimental studies of the interactions of alpha-helices and lipid bilayers are briefly reviewed. Surface associated helices are found in some membrane-bound enzymes (e.g. prostaglandin synthase), and as stages in the mechanisms of antimicrobial peptides and of pore-forming bacterial toxins. Transmembrane alpha-helices are found in most integral membrane proteins, and also in channels formed by amphipathic peptides or by bacterial toxins. Mean field simulations, in which the lipid bilayer is approximated as a hydrophobic continuum, have been used in studies of membrane-active peptides (e.g. alamethicin, melittin, magainin and dermaseptin) and of simple membrane proteins (e.g. phage Pf1 coat protein). All atom molecular dynamics simulations of fully solvated bilayers with transmembrane helices have been applied to: the constituent helices of bacteriorhodopsin; peptide-16 (a simple model TM helix); and a number of pore-lining helices from ion channels. Surface associated helices (e.g. melittin and dermaseptin) have been simulated, as have alpha-helical bundles such as bacteriorhodopsin and alamethicin. From comparison of the results from the two classes of simulation, it emerges that a major theoretical challenge is to exploit the results of all atom simulations in order to improve the mean field approach.
Collapse
Affiliation(s)
- P C Biggin
- Salk Institute for Biological Studies, La Jolla, CA 92109, USA
| | | |
Collapse
|
28
|
Abstract
In a number of membrane-bound viruses, ion channels are formed by integral membrane proteins. These channel proteins include M2 from influenza A, NB from influenza B, and, possibly, Vpu from HIV-1. M2 is important in facilitating uncoating of the influenza A viral genome and is the target of amantadine, an anti-influenza drug. The biological roles of NB and Vpu are less certain. In all cases, the protein contains a single transmembrane alpha-helix close to its N-terminus. Channels can be formed by homo-oligomerization of these proteins, yielding bundles of transmembrane helices that span the membrane and surround a central ion-permeable pore. Molecular modeling may be used to integrate and interpret available experimental data concerning the structure of such transmembrane pores. This has proved successful for the M2 channel domain, where two independently derived models are in agreement with one another, and with solid-state nuclear magnetic resonance (NMR) data. Simulations based on channel models may yield insights into possible ion conduction and selectivity mechanisms.
Collapse
Affiliation(s)
- M S Sansom
- Department of Biochemistry, University of Oxford, UK.
| | | | | |
Collapse
|