1
|
Frka-Petesic B, Parton TG, Honorato-Rios C, Narkevicius A, Ballu K, Shen Q, Lu Z, Ogawa Y, Haataja JS, Droguet BE, Parker RM, Vignolini S. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chem Rev 2023; 123:12595-12756. [PMID: 38011110 PMCID: PMC10729353 DOI: 10.1021/acs.chemrev.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 11/29/2023]
Abstract
Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas G. Parton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Camila Honorato-Rios
- Department
of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aurimas Narkevicius
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kevin Ballu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Qingchen Shen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zihao Lu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yu Ogawa
- CERMAV-CNRS,
CS40700, 38041 Grenoble cedex 9, France
| | - Johannes S. Haataja
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box
15100, Aalto, Espoo FI-00076, Finland
| | - Benjamin E. Droguet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard M. Parker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Uetani K, Uto T. Strong attractive interaction between finite element models of twisted cellulose nanofibers by intermeshing of twists. RSC Adv 2023; 13:16387-16395. [PMID: 37266489 PMCID: PMC10231428 DOI: 10.1039/d3ra01784b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Analysis of the attractive interaction between intrinsically twisted cellulose nanofibers (CNFs) is essential to control the physical properties of the higher-order structures of CNFs, such as paper and spun fiber. In this study, a finite element model reflecting the typical morphology of a twisted CNF was used to analyze the attractive interaction forces between multiple approaching CNF models. For two parallel CNF models, when one of the CNF models was rotated 90° around the long-axis direction, the twisting periods meshed, giving the maximum attraction force. Conversely, when the two CNF models were approaching diagonally, the CNF models were closest at an angle of -3.2° (i.e., in left-handed chirality) to give the most stable structure owing to the right-handed twist of the CNF models themselves. Furthermore, the two nematic layers were closest when one nematic layer was approached at an angle of -2° (i.e., in left-handed accumulation chirality), resulting in the greatest attraction. The results characterize the unique distribution of the attractive interaction forces between twisted CNF models, and they underscore the importance of chiral management in CNF aggregates, especially intermeshing of twists.
Collapse
Affiliation(s)
- Kojiro Uetani
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585 Japan
| | - Takuya Uto
- Graduate School of Engineering, University of Miyazaki Nishi 1-1 Gakuen Kibanadai Miyazaki 889-2192 Japan
| |
Collapse
|
3
|
Lim JH, Jing Y, Park S, Nishiyama Y, Veron M, Rauch E, Ogawa Y. Structural Anisotropy Governs the Kink Formation in Cellulose Nanocrystals. J Phys Chem Lett 2023; 14:3961-3969. [PMID: 37078694 DOI: 10.1021/acs.jpclett.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding the defect structure is fundamental to correlating the structure and properties of materials. However, little is known about the defects of soft matter at the nanoscale beyond their external morphology. We report here on the molecular-level structural details of kink defects of cellulose nanocrystals (CNCs) based on a combination of experimental and theoretical methods. Low-dose scanning nanobeam electron diffraction analysis allowed for correlation of the local crystallographic information and nanoscale morphology and revealed that the structural anisotropy governed the kink formation of CNCs. We identified two bending modes along different crystallographic directions with distinct disordered structures at kink points. The drying strongly affected the external morphology of the kinks, resulting in underestimating the kink population in the standard dry observation conditions. These detailed defect analyses improve our understanding of the structural heterogeneity of nanocelluloses and contribute to the future exploitation of soft matter defects.
Collapse
Affiliation(s)
- Jia Hui Lim
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Yun Jing
- Molecular Vista, Incorporated, 6840 Via Del Oro, Suite 110, San Jose, California 95119, United States
| | - Sung Park
- Molecular Vista, Incorporated, 6840 Via Del Oro, Suite 110, San Jose, California 95119, United States
| | | | - Muriel Veron
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
| | - Edgar Rauch
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| |
Collapse
|
4
|
Babaei-Ghazvini A, Acharya B. The effects of aspect ratio of cellulose nanocrystals on the properties of all CNC films: tunicate and wood CNCs. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
5
|
Uetani K, Kasuya K, Yoshikawa S, Uto T. Tunability of the thermal diffusivity of cellulose nanofibril films by addition of multivalent metal ions. Carbohydr Polym 2022; 297:120010. [DOI: 10.1016/j.carbpol.2022.120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
|
6
|
Dufresne A. Preparation and Applications of Cellulose Nanomaterials. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
7
|
Yurtsever A, Wang PX, Priante F, Morais Jaques Y, Miyazawa K, MacLachlan MJ, Foster AS, Fukuma T. Molecular insights on the crystalline cellulose-water interfaces via three-dimensional atomic force microscopy. SCIENCE ADVANCES 2022; 8:eabq0160. [PMID: 36240279 PMCID: PMC9565791 DOI: 10.1126/sciadv.abq0160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellulose, a renewable structural biopolymer, is ubiquitous in nature and is the basic reinforcement component of the natural hierarchical structures of living plants, bacteria, and tunicates. However, a detailed picture of the crystalline cellulose surface at the molecular level is still unavailable. Here, using atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we revealed the molecular details of the cellulose chain arrangements on the surfaces of individual cellulose nanocrystals (CNCs) in water. Furthermore, we visualized the three-dimensional (3D) local arrangement of water molecules near the CNC surface using 3D AFM. AFM experiments and MD simulations showed anisotropic water structuring, as determined by the surface topologies and exposed chemical moieties. These findings provide important insights into our understanding of the interfacial interactions between CNCs and water at the molecular level. This may allow the establishment of the structure-property relationship of CNCs extracted from various biomass sources.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Corresponding author. (A.Y.); (T.F.)
| | - Pei-Xi Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Fabio Priante
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Ygor Morais Jaques
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mark J. MacLachlan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Adam S. Foster
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Corresponding author. (A.Y.); (T.F.)
| |
Collapse
|
8
|
Parajuli S, Hasan MJ, Ureña-Benavides EE. Effect of the Interactions between Oppositely Charged Cellulose Nanocrystals (CNCs) and Chitin Nanocrystals (ChNCs) on the Enhanced Stability of Soybean Oil-in-Water Emulsions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196673. [PMID: 36234017 PMCID: PMC9573157 DOI: 10.3390/ma15196673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 05/05/2023]
Abstract
Chitin nanocrystals (ChNCs) and cellulose nanocrystals (CNCs) have been recently used to stabilize emulsions; however, they generally require significant amounts of salt, limiting their applicability in food products. In this study, we developed nanoconjugates by mixing positively charged ChNCs and negatively charged CNCs at various ChNC:CNC mass ratios (2:1, 1:1, and 1:2), and utilized them in stabilizing soybean oil-water Pickering emulsions with minimal use of NaCl salt (20 mM) and nanoparticle (NP) concentrations below 1 wt%. The nanoconjugates stabilized the emulsions better than individual CNC or ChNC in terms of a reduced drop growth and less creaming. Oppositely charged CNC and ChNC neutralized each other when their mass ratio was 1:1, leading to significant flocculation in the absence of salt at pH 6. Raman spectroscopy provided evidence for electrostatic interactions between the ChNCs and CNCs, and generated maps suggesting an assembly of ChNC bundles of micron-scale lengths intercalated by similar-size areas predominantly composed of CNC. The previous measurements, in combination with contact angles on nanoparticle films, suggested that the conjugates preferentially exposed the hydrophobic crystalline planes of CNCs and ChNCs at a 1:1 mass ratio, which was also the best ratio at stabilizing soybean oil-water Pickering emulsions.
Collapse
|
9
|
In vitro gastrointestinal digestibility of corn oil-in-water Pickering emulsions stabilized by three types of nanocellulose. Carbohydr Polym 2022; 277:118835. [PMID: 34893252 DOI: 10.1016/j.carbpol.2021.118835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
The effect of three nanocellulose (various in crystalline allomorph and morphology) on lipid in vitro gastrointestinal digestibility was investigated. Corn oil-in-water emulsions were prepared by CNCs-I, CNCs-II and CNFs respectively. The variations of droplets diameter D[4,3], zeta potential, and microstructure were measured during gastrointestinal digestion (mouth, stomach and small intestine), and the free fatty acid (FFA) released in the small intestine phase were examined. The FFA-released test results indicated that both crystalline allomorph and morphology of nanocellulose affected the degree of lipid digestion, especially the morphology. FFA released amount was ranked in the order of CNCs-I (56.60%), CNCs-II (48.67%) and CNFs (28.21%). This is mainly due to the difference in the self-assembly behavior of nanocellulose at the interface. Our findings provide an innovative solution that using nanocellulose as food-grade particle stabilizer to modulate the digestion of Pickering emulsified lipids, which would benefit the development of given functional foods.
Collapse
|
10
|
Parajuli S, Ureña-Benavides EE. Fundamental aspects of nanocellulose stabilized Pickering emulsions and foams. Adv Colloid Interface Sci 2022; 299:102530. [PMID: 34610863 DOI: 10.1016/j.cis.2021.102530] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/26/2022]
Abstract
Nanocelluloses in recent years have garnered a lot of attention for their use as stabilizers of liquid-liquid and gas-liquid interfaces. Both cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) have been used extensively in multiple studies to prepare emulsions and foams. However, there is limited literature available that systematically discusses the mechanisms that affect the ability of nanocelluloses (modified and unmodified) to stabilize different types of interfaces. This review briefly discusses key factors that affect the stability of Pickering emulsions and foams and provides a detailed and systematic analysis of the current state knowledge on factors affecting the stabilization of liquid-liquid and gas-liquid interfaces by nanocelluloses. The review also discusses the effect of nanocellulose surface modifications on mechanisms driving the Pickering stabilization of these interfaces.
Collapse
|
11
|
Chanthathamrongsiri N, Petchsomrit A, Leelakanok N, Siranonthana N, Sirirak T. The comparison of the properties of nanocellulose isolated from colonial and solitary marine tunicates. Heliyon 2021; 7:e07819. [PMID: 34458637 PMCID: PMC8379676 DOI: 10.1016/j.heliyon.2021.e07819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
This is the first comparative of tunicate cellulose nanocrystalline (t-CNC) from colonial and solitary tunicates. The t-CNC from the colonial tunicate Eudistoma sp. (CL1) was compared with solitary tunicates Polycarpa reniformis (CL2) and Phallusia nigra (CL3). Tunicate samples were extracted by methanol. Residues from the methanol extraction were then subjected to further cellulose purification using pre-hydrolysis, kraft-cooking, bleaching, and sulfuric acid hydrolysis to yield t-CNC. The solitary tunicates yielded higher microfibril contents after the bleaching step but obtained similar t-CNC content to the colonial one after acid hydrolysis. The isolated t-CNC were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, thermalgravimetric analysis, and transmission electron microscopy. Both colonial and solitary tunicates yielded cellulose type I. The pure cellulose type I was successfully isolated from solitary tunicates whereas high inorganic impurities were observed in colonial tunicates. The isolate t-CNC showed high aspect ratios. The solitary and colonial tunicates provided t-CNC with crystallinity indexes over 97% and 35%, respectively. The crystalline size of t-CNCs ranged from 55-124 Å. The thermal stability of all isolated t-CNC was slightly decreased due to the sulfate functional groups gained after acid hydrolysis. We concluded that solitary tunicates were better than colonial tunicates as a source of t-CNC preparation.
Collapse
Affiliation(s)
- Naphatson Chanthathamrongsiri
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Products for Drug Discovery, Burapha University, Chonburi, Thailand
| | - Arpa Petchsomrit
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | | | | | - Thanchanok Sirirak
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Products for Drug Discovery, Burapha University, Chonburi, Thailand
| |
Collapse
|
12
|
Release of internal molecular torque results in twists of Glaucocystis cellulose nanofibers. Carbohydr Polym 2021; 251:117102. [PMID: 33142640 DOI: 10.1016/j.carbpol.2020.117102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
The cellulose of the green alga Glaucocystis consists of almost pure Iα crystalline phase where the corresponding lattice b* axis parameter lies perpendicular to the cell wall surface in the multilamellar cell wall architecture, indicating that in this wall, cellulose is devoid of longitudinal twist. In contrast, when isolated from Glaucosytis cell walls, the cellulose microfibrils present a twisting behavior, which was investigated using electron microscopy techniques. Sequential electron microdiffraction analyses obtained under frozen hydrated conditions revealed that the cellulose microfibrils continuously right-hand twisted in the vitreous ice layer. This observation implies that the twists of these nanofibers are intrinsic to the cellulose molecule and not a result of the cell wall biogenesis process. Furthermore, scaling with the fourth power of width based on the classic mechanics of solid, the twist angle was in agreement with the reported values in higher plant celluloses, implying that the twist arises from the balance between tendency of individual chains to twist and the structure imposed by the crystal packing. The observed twist in isolated fibrils of Glaucocystis indicates that one cannot assume the presence of cellulose twisting in vivo based on observations of isolated cellulose nanoparticles, as microfibril can exist untwisted in the original cell wall but become twisted when released from the wall.
Collapse
|
13
|
Pylkkänen R, Mohammadi P, Arola S, de Ruijter JC, Sunagawa N, Igarashi K, Penttilä M. In Vitro Synthesis and Self-Assembly of Cellulose II Nanofibrils Catalyzed by the Reverse Reaction of Clostridium thermocellum Cellodextrin Phosphorylase. Biomacromolecules 2020; 21:4355-4364. [PMID: 32960595 DOI: 10.1021/acs.biomac.0c01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In nature, various organisms produce cellulose as microfibrils, which are processed into their nano- and microfibrillar and/or crystalline components by humans in order to obtain desired material properties. Interestingly, the natural synthesis machinery can be circumvented by enzymatically synthesizing cellulose from precursor molecules in vitro. This approach is appealing for producing tailor-made cellulosic particles and materials because it enables optimization of the reaction conditions for cellulose synthesis in order to generate particles with a desired morphology in their pure form. Here, we present enzymatic cellulose synthesis catalyzed by the reverse reaction of Clostridium thermocellum cellodextrin phosphorylase in vitro. We were able to produce cellulose II nanofibril networks in all conditions tested, using varying concentrations of the glycosyl acceptors d-glucose or d-cellobiose (0.5, 5, and 50 mM). We show that shorter cellulose chains assemble into flat ribbon-like fibrils with greater diameter, while longer chains assemble into cylindrical fibrils with smaller diameter.
Collapse
Affiliation(s)
- Robert Pylkkänen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland.,VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Suvi Arola
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Jorg C de Ruijter
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Kiyohiko Igarashi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland.,Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Merja Penttilä
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland.,VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
14
|
|
15
|
Song G, Delroisse J, Schoenaers D, Kim H, Nguyen TC, Horbelt N, Leclère P, Hwang DS, Harrington MJ, Flammang P. Structure and composition of the tunic in the sea pineapple Halocynthia roretzi: A complex cellulosic composite biomaterial. Acta Biomater 2020; 111:290-301. [PMID: 32438110 DOI: 10.1016/j.actbio.2020.04.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
Abstract
Biological organisms produce high-performance composite materials, such as bone, wood and insect cuticle, which provide inspiration for the design of novel materials. Ascidians (sea squirts) produce an organic exoskeleton, known as a tunic, which has been studied quite extensively in several species. However, currently, there are still gaps in our knowledge about the detailed structure and composition of this cellulosic biocomposite. Here, we investigate the composition and hierarchical structure of the tough tunic from the species Halocynthia roretzi, through a cross-disciplinary approach combining traditional histology, immunohistochemistry, vibrational spectroscopy, X-ray diffraction, and atomic force and electron microscopies. The picture emerging is that the tunic of H. roretzi is a hierarchically-structured composite of cellulose and proteins with several compositionally and structurally distinct zones. At the surface is a thin sclerotized cuticular layer with elevated composition of protein containing halogenated amino acids and cross-linked via dityrosine linkages. The fibrous layer makes up the bulk of the tunic and is comprised primarily of helicoidally-ordered crystalline cellulose fibres with a lower protein content. The subcuticular zone directly beneath the surface contains much less organized cellulose fibres. Given current efforts to utilize biorenewable cellulose sources for the sustainable production of bio-inspired composites, these insights establish the tunic of H. roretzi as an exciting new archetype for extracting relevant design principles. STATEMENT OF SIGNIFICANCE: Tunicates are the only animals able to produce cellulose. They use this structural polysaccharide to build an exoskeleton called a tunic. Here, we investigate the composition and hierarchical structure of the tough tunic from the sea pineapple Halocynthia roretzi through a multiscale cross-disciplinary approach. The tunic of this species is a composite of cellulose and proteins with two distinct layers. At the surface is a thin sclerotized cuticular layer with a higher protein content containing halogenated amino acids and cross-linked via dityrosine linkages. The fibrous layer makes up the bulk of the tunic and is comprised of well-ordered cellulose fibres with a lower protein content. Given current efforts to utilize cellulose to produce advanced materials, the tunic of the sea pineapple provides a striking model for the design of bio-inspired cellulosic composites.
Collapse
Affiliation(s)
- Geonho Song
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Jérôme Delroisse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Dorian Schoenaers
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Hyungbin Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673
| | - Thai Cuong Nguyen
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Nils Horbelt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Philippe Leclère
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673.
| | - Matthew J Harrington
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium.
| |
Collapse
|
16
|
The Impact of Composition and Morphology on Ionic Conductivity of Silk/Cellulose Bio-Composites Fabricated from Ionic Liquid and Varying Percentages of Coagulation Agents. Int J Mol Sci 2020; 21:ijms21134695. [PMID: 32630158 PMCID: PMC7370005 DOI: 10.3390/ijms21134695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Blended biocomposites created from the electrostatic and hydrophobic interactions between polysaccharides and structural proteins exhibit useful and unique properties. However, engineering these biopolymers into applicable forms is challenging due to the coupling of the material’s physicochemical properties to its morphology, and the undertaking that comes with controlling this. In this particular study, numerous properties of the Bombyx mori silk and microcrystalline cellulose biocomposites blended using ionic liquid and regenerated with various coagulation agents were investigated. Specifically, the relationship between the composition of polysaccharide-protein bio-electrolyte membranes and the resulting morphology and ionic conductivity is explored using numerous characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray scattering, atomic force microscopy (AFM) based nanoindentation, and dielectric relaxation spectroscopy (DRS). The results revealed that when silk is the dominating component in the biocomposite, the ionic conductivity is higher, which also correlates with higher β-sheet content. However, when cellulose becomes the dominating component in the biocomposite, this relationship is not observed; instead, cellulose semicrystallinity and mechanical properties dominate the ionic conduction.
Collapse
|
17
|
Zhong T, Dhandapani R, Liang D, Wang J, Wolcott MP, Van Fossen D, Liu H. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films. Carbohydr Polym 2020; 240:116283. [PMID: 32475567 DOI: 10.1016/j.carbpol.2020.116283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/28/2022]
Abstract
In this study, nanocellulose was extracted from indigo-dyed denim fabric and the resultant nanocellulose properties were evaluated in comparison with those derived from bleached cotton fabric and wood pulp in order to investigate the potential of recycling denim waste for nanocellulose production and application. Sulfuric acid hydrolysis and (2,2,6,6-tetramethylpiperidin-1-yl) oxyl (TEMPO)-oxidation were utilized to produce cellulose nanocrystals (CNC) and cellulose nanofibers (TOCN), respectively. A stable CNC suspension with blue color was obtained after acid hydrolysis and the TEMPO process yielded colorless TOCN. The denim-derived nanocellulose possessed similar yield, morphology, size, crystallinity, and thermal stability to those derived from bleached cotton but higher crystallinity and thermal stability compared to the nanocellulose from wood pulp. When used to reinforce polyvinyl alcohol film, the blue indigo-CNC not only enhanced mechanical properties of the film but also provided the film with outstanding UV blocking.
Collapse
Affiliation(s)
- Tuhua Zhong
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA
| | | | - Dan Liang
- Apparel, Merchandising, Design and Textiles, Washington State University, Pullman, WA 99164, USA
| | - Jinwu Wang
- Forest Products Laboratory, U.S. Forest Service, Madison, WI 53726, USA
| | - Michael P Wolcott
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA
| | - Dana Van Fossen
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Hang Liu
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA; Apparel, Merchandising, Design and Textiles, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
18
|
Ogawa Y. Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals. NANOSCALE 2019; 11:21767-21774. [PMID: 31573012 DOI: 10.1039/c9nr06044h] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanocellulose consisting of crystalline cellulose nanoparticles has high potential to serve as a building block for bio-based functional materials. The intrinsic chirality of cellulose provides them with high added values such as optical properties and chiral induction ability. At the nanoscale, this chirality is connected to the right-handed longitudinal twisting of these fibrous crystallites. However, this nanoscale fibrillar twist has been a matter of debate due to contradictory data between ultrastructural observations and molecular simulations and so far, the exact twist geometry has not been elucidated. Here, an electron microdiffraction (μED) analysis under cryogenic conditions reveals the continuous twisting of cellulose nanocrystals (CNCs) in aqueous suspension. This intrinsic regular twist is drastically modified to a discontinuous sharp twist when the CNCs are dried on a flat surface. The present μED-based analysis at the single nanoparticle level allows the establishment of the quantitative structure-property relationship of various solid and colloidal nanocellulose systems.
Collapse
Affiliation(s)
- Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
19
|
Blessing B, Trout C, Morales A, Rybacki K, Love SA, Lamoureux G, O'Malley SM, Hu X, Salas‐de la Cruz D. Morphology and ionic conductivity relationship in silk/cellulose biocomposites. POLYM INT 2019. [DOI: 10.1002/pi.5860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Cory Trout
- Computational and Integrative BiologyRutgers University Camden NJ USA
| | | | - Karleena Rybacki
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| | - Stacy A Love
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| | - Guillaume Lamoureux
- Department of ChemistryRutgers University Camden NJ USA
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| | - Sean M O'Malley
- Computational and Integrative BiologyRutgers University Camden NJ USA
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| | - Xiao Hu
- Department of Physics and Astronomy, Department of Biomedical EngineeringRowan University Glassboro NJ USA
| | - David Salas‐de la Cruz
- Department of ChemistryRutgers University Camden NJ USA
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| |
Collapse
|
20
|
Rongpipi S, Ye D, Gomez ED, Gomez EW. Progress and Opportunities in the Characterization of Cellulose - An Important Regulator of Cell Wall Growth and Mechanics. FRONTIERS IN PLANT SCIENCE 2019; 9:1894. [PMID: 30881371 PMCID: PMC6405478 DOI: 10.3389/fpls.2018.01894] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/06/2018] [Indexed: 05/02/2023]
Abstract
The plant cell wall is a dynamic network of several biopolymers and structural proteins including cellulose, pectin, hemicellulose and lignin. Cellulose is one of the main load bearing components of this complex, heterogeneous structure, and in this way, is an important regulator of cell wall growth and mechanics. Glucan chains of cellulose aggregate via hydrogen bonds and van der Waals forces to form long thread-like crystalline structures called cellulose microfibrils. The shape, size, and crystallinity of these microfibrils are important structural parameters that influence mechanical properties of the cell wall and these parameters are likely important determinants of cell wall digestibility for biofuel conversion. Cellulose-cellulose and cellulose-matrix interactions also contribute to the regulation of the mechanics and growth of the cell wall. As a consequence, much emphasis has been placed on extracting valuable structural details about cell wall components from several techniques, either individually or in combination, including diffraction/scattering, microscopy, and spectroscopy. In this review, we describe efforts to characterize the organization of cellulose in plant cell walls. X-ray scattering reveals the size and orientation of microfibrils; diffraction reveals unit lattice parameters and crystallinity. The presence of different cell wall components, their physical and chemical states, and their alignment and orientation have been identified by Infrared, Raman, Nuclear Magnetic Resonance, and Sum Frequency Generation spectroscopy. Direct visualization of cell wall components, their network-like structure, and interactions between different components has also been made possible through a host of microscopic imaging techniques including scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. This review highlights advantages and limitations of different analytical techniques for characterizing cellulose structure and its interaction with other wall polymers. We also delineate emerging opportunities for future developments of structural characterization tools and multi-modal analyses of cellulose and plant cell walls. Ultimately, elucidation of the structure of plant cell walls across multiple length scales will be imperative for establishing structure-property relationships to link cell wall structure to control of growth and mechanics.
Collapse
Affiliation(s)
- Sintu Rongpipi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Dan Ye
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, United States
- Materials Research Institute, The Pennsylvania State University, University Park, PA, United States
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
21
|
Stanton J, Xue Y, Pandher P, Malek L, Brown T, Hu X, Salas-de la Cruz D. Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials. Int J Biol Macromol 2018; 108:333-341. [DOI: 10.1016/j.ijbiomac.2017.11.137] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|
22
|
Funahashi R, Okita Y, Hondo H, Zhao M, Saito T, Isogai A. Different Conformations of Surface Cellulose Molecules in Native Cellulose Microfibrils Revealed by Layer-by-Layer Peeling. Biomacromolecules 2017; 18:3687-3694. [PMID: 28954511 DOI: 10.1021/acs.biomac.7b01173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Layer-by-layer peeling of surface molecules of native cellulose microfibrils was performed using a repeated sequential process of 2,2,6,6-tetramethylpiperidine-1-oxyl radical-mediated oxidation followed by hot alkali extraction. Both highly crystalline algal and tunicate celluloses and low-crystalline cotton and wood celluloses were investigated. Initially, the C6-hydroxy groups of the outermost surface molecules of each algal cellulose microfibril facing the exterior had the gauche-gauche (gg) conformation, whereas those facing the interior had the gauche-trans (gt) conformation. All the other C6-hydroxy groups of the cellulose molecules inside the microfibrils contributing to crystalline cellulose I had the trans-gauche (tg) conformation. After surface peeling, the originally second-layer molecules from the microfibril surface became the outermost surface molecules, and the original tg conformation changed to gg and gt conformations. The plant cellulose microfibrils likely had disordered structures for both the outermost surface and second-layer molecules, as demonstrated using the same layer-by-layer peeling technique.
Collapse
Affiliation(s)
- Ryunosuke Funahashi
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo 113-8657, Japan
| | - Yusuke Okita
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo 113-8657, Japan
| | - Hiromasa Hondo
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo 113-8657, Japan
| | - Mengchen Zhao
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo 113-8657, Japan
| | - Akira Isogai
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo 113-8657, Japan
| |
Collapse
|
23
|
Zhang Y, Karimkhani V, Makowski BT, Samaranayake G, Rowan SJ. Nanoemulsions and Nanolatexes Stabilized by Hydrophobically Functionalized Cellulose Nanocrystals. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00982] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yefei Zhang
- Department
of Macromolecules Science and Engineering, Case Western Reserve University, 2100 Adelbert Rd., Cleveland, Ohio 44106, United States
| | - Vahid Karimkhani
- Department
of Macromolecules Science and Engineering, Case Western Reserve University, 2100 Adelbert Rd., Cleveland, Ohio 44106, United States
| | - Brian T. Makowski
- Sherwin-Williams, 601 Canal Rd., Cleveland, Ohio 44113, United States
| | | | - Stuart J. Rowan
- Department
of Macromolecules Science and Engineering, Case Western Reserve University, 2100 Adelbert Rd., Cleveland, Ohio 44106, United States
| |
Collapse
|
24
|
Trache D, Hussin MH, Haafiz MKM, Thakur VK. Recent progress in cellulose nanocrystals: sources and production. NANOSCALE 2017; 9:1763-1786. [PMID: 28116390 DOI: 10.1039/c6nr09494e] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cellulose nanocrystals, a class of fascinating bio-based nanoscale materials, have received a tremendous amount of interest both in industry and academia owing to its unique structural features and impressive physicochemical properties such as biocompatibility, biodegradability, renewability, low density, adaptable surface chemistry, optical transparency, and improved mechanical properties. This nanomaterial is a promising candidate for applications in fields such as biomedical, pharmaceuticals, electronics, barrier films, nanocomposites, membranes, supercapacitors, etc. New resources, new extraction procedures, and new treatments are currently under development to satisfy the increasing demand of manufacturing new types of cellulose nanocrystals-based materials on an industrial scale. Therefore, this review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation. A critical and analytical examination of the shortcomings of various approaches employed so far is made. Additionally, structural organization of cellulose and nomenclature of cellulose nanomaterials have also been discussed for beginners in this field.
Collapse
Affiliation(s)
- Djalal Trache
- UER Chimie Appliquée, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, Algiers, Algeria.
| | - M Hazwan Hussin
- Lignocellulosic Research Group, School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - M K Mohamad Haafiz
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
25
|
Lewis A, Waters JC, Stanton J, Hess J, Salas-de la Cruz D. Macromolecular Interactions Control Structural and Thermal Properties of Regenerated Tri-Component Blended Films. Int J Mol Sci 2016; 17:E1989. [PMID: 27916801 PMCID: PMC5187789 DOI: 10.3390/ijms17121989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/16/2022] Open
Abstract
With a growing need for sustainable resources research has become highly interested in investigating the structure and physical properties of biomaterials composed of natural macromolecules. In this study, we assessed the structural, morphological, and thermal properties of blended, regenerated films comprised of cellulose, lignin, and hemicellulose (xylan) using the ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl). Attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray scattering, and thermogravimetric analysis (TGA) were used to qualitatively and quantitatively measure bonding interactions, morphology, and thermal stability of the regenerated films. The results demonstrated that the regenerated films' structural, morphological, and thermal character changed as a function of lignin-xylan concentration. The decomposition temperature rose according to an increase in lignin content and the surface topography of the regenerated films changed from fibrous to spherical patterns. This suggests that lignin-xylan concentration alters the self-assembly of lignin and the cellulose microfibril development. X-ray scattering confirms the extent of the morphological and molecular changes. Our data reveals that the inter- and intra-molecular interactions with the cellulose crystalline domains, along with the amount of disorder in the system, control the microfibril dimensional characteristics, lignin self-assembly, and possibly the overall material's structural and thermal properties.
Collapse
Affiliation(s)
- Ashley Lewis
- Department of Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| | - Joshua C Waters
- Department of Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| | - John Stanton
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| | - Joseph Hess
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| | - David Salas-de la Cruz
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
- Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| |
Collapse
|
26
|
Santos FAD, Iulianelli GCV, Tavares MIB. The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/msa.2016.75026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Su Y, Burger C, Ma H, Chu B, Hsiao BS. Exploring the Nature of Cellulose Microfibrils. Biomacromolecules 2015; 16:1201-9. [DOI: 10.1021/bm501897z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ying Su
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Christian Burger
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Hongyang Ma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin Chu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
28
|
Oliveira RP, Driemeier C. CRAFS: a model to analyze two-dimensional X-ray diffraction patterns of plant cellulose. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813014805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cellulose from higher plants is a vast renewable resource organized as crystals. Analysis of these crystals by X-ray diffraction poses very specific challenges, including ubiquitous crystallite texture and substantial overlapping of diffraction peaks. In this article, a tailor-made model named Cellulose Rietveld Analysis for Fine Structure (CRAFS) is developed to analyze two-dimensional X-ray diffraction patterns from raw and processed plant cellulose. One-dimensional powder diffractograms are analyzable as a particular case. The CRAFS model considers cellulose Iβ crystal structure, fibrillar crystal shape, paracrystalline peak broadening, pseudo-Voigt peak profiles, harmonic crystallite orientation distribution function and diffraction in fiber geometry. Formulated on the basis of the Rietveld method, CRAFS is presently written in the MATLAB computing language. A set of meaningful coefficients are output from each analyzed pattern. To exemplify model applicability, representative samples are analyzed, bringing some general insights and evidencing the model's potential for systematic parameterization of the fine structure of raw and processed plant celluloses.
Collapse
|
29
|
Rebouillat S, Pla F. State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbnb.2013.42022] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A. An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules 2012; 14:248-53. [DOI: 10.1021/bm301674e] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tsuguyuki Saito
- Department of Biomaterials Sciences,
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryota Kuramae
- Department of Biomaterials Sciences,
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | - Akira Isogai
- Department of Biomaterials Sciences,
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF. Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem 2012; 287:20603-12. [PMID: 22496371 PMCID: PMC3370244 DOI: 10.1074/jbc.m112.358184] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 μs of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose.
Collapse
Affiliation(s)
- Mark R Nimlos
- National Bioenergy Center, National Renewable Energy Center, Golden, Colorado 80401, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Ureña-Benavides EE, Kitchens CL. Static light scattering of triaxial nanoparticle suspensions in the Rayleigh-Gans-Debye regime: application to cellulose nanocrystals. RSC Adv 2012. [DOI: 10.1039/c1ra00391g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Guo J, Catchmark JM. Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.07.060] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Ogawa Y, Kimura S, Wada M. Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril. J Struct Biol 2011; 176:83-90. [PMID: 21771660 DOI: 10.1016/j.jsb.2011.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 11/16/2022]
Abstract
The ultrastructure of β-chitin microfibrils from a centric diatom, Thalassiosira, and a tubeworm, Lamellibrachia, was studied using electron diffraction and high-resolution electron microscopy. Electron microdiffraction diagrams corresponding to each projection of the β-chitin crystals were obtained, and all the data support the structure model of anhydrous β-chitin crystals proposed by X-ray diffraction experiments. From high-resolution electron microscopy on ultrathin sections, the cross-sectional shapes of the microfibrils from Thalassiosira and Lamellibrachia were observed as a rectangular and parallelogram, respectively. The lattice fringes corresponding to the (010) plane of anhydrous β-chitin crystals were clearly observed in both cross-sections. Based on these observations, we have constructed a molecular packing model for β-chitin microfibrils.
Collapse
Affiliation(s)
- Yu Ogawa
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
35
|
Internal surface polarity of regenerated cellulose gel depends on the species used as coagulant. J Colloid Interface Sci 2011; 359:194-201. [DOI: 10.1016/j.jcis.2011.03.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/17/2022]
|
36
|
Nakashima K, Nishino A, Hirose E. Forming a tough shell via an intracellular matrix and cellular junctions in the tail epidermis of Oikopleura dioica (Chordata: Tunicata: Appendicularia). Naturwissenschaften 2011; 98:661-9. [PMID: 21667277 DOI: 10.1007/s00114-011-0815-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 11/26/2022]
Abstract
A postanal tail is a major synapomorphy of the phylum Chordata, which is composed of three subphyla: Vertebrata, Cephalochordata, and Tunicata (Urochordata). Among tunicates, appendicularians are the only group that retains the tail in the adult, and the adult tail functions in locomotion and feeding in combination with a cellulose-based house structure. Given the phylogenetic position of tunicates, the appendicularian adult tail may possess ancestral features of the chordate tail. We assess the ultrastructural development of the tail epidermis of the appendicularian Oikopleura dioica. The epidermis of the larval tail is enclosed by the larval envelope, which is a thin sheet similar to the outer tunic layer of ascidian larvae. The epidermis of the adult tail seems to bear no tunic-like cellulosic integuments, and the tail fin is a simple folding of the epidermis. Every epidermal cell, except for the triangular cells at the edge of the tail fin, has a conspicuous matrix layer of fibrous content in the apical cytoplasm without enclosing membranes. The epidermis of the larval tail does not have a fibrous matrix layer, suggesting the production of the layer during larval development and metamorphosis. Zonulae adhaerentes firmly bind the epidermal cells of the adult tail to one another, and the dense microfilaments lining the cell borders constitute a mechanical support for the cell membranes. The intracellular matrix, cell junctions, and cytoskeletons probably make the tail epidermis a tough, flexible shell supporting the active beating of the oikopleuran adult tail.
Collapse
Affiliation(s)
- Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, 1919-1 Tancha, Onna, Okinawa 904-0412, Japan
| | | | | |
Collapse
|
37
|
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011; 40:3941-94. [PMID: 21566801 DOI: 10.1039/c0cs00108b] [Citation(s) in RCA: 2552] [Impact Index Per Article: 196.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).
Collapse
Affiliation(s)
- Robert J Moon
- The Forest Products Laboratory, US Forest Service, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
38
|
Iwamoto S, Isogai A, Iwata T. Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers. Biomacromolecules 2011; 12:831-6. [DOI: 10.1021/bm101510r] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shinichiro Iwamoto
- Graduate School of Agricultural, Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Isogai
- Graduate School of Agricultural, Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Graduate School of Agricultural, Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
39
|
|
40
|
Ureña-Benavides EE, Brown PJ, Kitchens CL. Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14263-14270. [PMID: 20712357 DOI: 10.1021/la102216v] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Alginate fibers have found many applications such as the preparation of dressings to treat exuding wounds, drug delivery, enzyme immobilization, etc.; however, their use is limited due to poor mechanical properties. Cellulose nanocrystals (CNCs) were isolated from cotton and introduced into calcium alginate fibers with the goal of improving their strength and modulus. The isolated CNCs are elongated nanoparticles of crystalline cellulose with an average length of 130 nm with a standard deviation (s) of 63 nm, an average width of 20.4 nm (s = 7.8 nm), and an average height of 6.8 nm (s = 3.3 nm). The CNCs were mixed with an aqueous sodium alginate dope solution and wet spun into a CaCl(2) bath to form fibers. It was found that if the apparent jet stretch (ratio of the fiber draw velocity to extrusion velocity) is kept constant, addition of the nanocrystals reduces the tensile strength and modulus of the material; however, a small concentration of CNCs in the dope solution increases the tensile energy to break and enables an increase in the fiber spinning apparent jet stretch ratio by nearly 2-fold at up to 25% CNCs load; the maximum ratio of 4.6 is observed at 25 wt % CNC loading as compared to a maximum of 2.4 for the native alginate. Mechanical testing showed a 38% increase in tenacity and a 123% increase in tensile modulus with 10 wt % CNCs loading and an apparent jet stretch of 4.2. The data suggest that alignment of the nanocrystals in the composites is a key factor influencing the mechanical properties. CNCs have potential to become a biocompatible, renewable, and cost-effective solution to reinforce alginate fibers.
Collapse
Affiliation(s)
- Esteban E Ureña-Benavides
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|
41
|
Zabler S, Paris O, Burgert I, Fratzl P. Moisture changes in the plant cell wall force cellulose crystallites to deform. J Struct Biol 2010; 171:133-41. [DOI: 10.1016/j.jsb.2010.04.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/29/2022]
|
42
|
Nishiyama Y, Wada M, Hanson BL, Langan P. Time-resolved X-ray diffraction microprobe studies of the conversion of cellulose I to ethylenediamine-cellulose I. CELLULOSE (LONDON, ENGLAND) 2010; 17:735-745. [PMID: 22693365 PMCID: PMC3371382 DOI: 10.1007/s10570-010-9415-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Structural changes during the treatment of films of highly crystalline microfibers of Cladophora cellulose with ethylenediamine (EDA) have been studied by time-resolved X-ray microprobe diffraction methods. As EDA penetrates the sample and converts cellulose I to EDA-cellulose I, the measured profile widths of reflections reveal changes in the shapes and average dimensions of cellulose I and EDA-cellulose I crystals. The (200) direction of cellulose I is most resistant to EDA penetration, with EDA penetrating most effectively at the hydrophilic edges of the hydrogen bonded sheets of cellulose chains. Most of the cellulose chains in the initial crystals of cellulose I are incorporated into crystals of EDA-cellulose I. The size of the emerging EDA-cellulose I crystals is limited to about half of their size in cellulose I, most likely due to strains introduced by the penetration of EDA molecules. There is no evidence of any gradual structural transition from cellulose I to EDA-cellulose I involving a continuously changing intermediate phase. Rather, the results point to a rapid transition to EDA-cellulose I in regions of the microfibrils that have been penetrated by EDA.
Collapse
Affiliation(s)
- Yoshiharu Nishiyama
- Centre de Recherches sur les Macromolécules, Végétales—CNRS, Joseph Fourier University of Grenoble, BP 53, 38041 Grenoble Cedex 9, France
| | - Masahisa Wada
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan. Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1, Seocheon-dong, Giheung-ku, Yongin-si, Gyeonggi-do 446-701, Korea
| | - B. Leif Hanson
- Department of Chemistry, University of Toledo, 2801W. Bancroft, Toledo, OH 43606, USA
| | - Paul Langan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
43
|
Habibi Y, Lucia LA, Rojas OJ. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem Rev 2010; 110:3479-500. [PMID: 20201500 DOI: 10.1021/cr900339w] [Citation(s) in RCA: 2565] [Impact Index Per Article: 183.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Youssef Habibi
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, North Carolina 27695-8005, and Department of Forest Products Technology, Faculty of Chemistry and Materials Sciences, Helsinki University of Technology, P.O. Box 3320, FIN-02015 TKK, Espoo, Finland
| | - Lucian A. Lucia
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, North Carolina 27695-8005, and Department of Forest Products Technology, Faculty of Chemistry and Materials Sciences, Helsinki University of Technology, P.O. Box 3320, FIN-02015 TKK, Espoo, Finland
| | - Orlando J. Rojas
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, North Carolina 27695-8005, and Department of Forest Products Technology, Faculty of Chemistry and Materials Sciences, Helsinki University of Technology, P.O. Box 3320, FIN-02015 TKK, Espoo, Finland
| |
Collapse
|
44
|
Iwamoto S, Kai W, Isogai A, Iwata T. Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy. Biomacromolecules 2009; 10:2571-6. [DOI: 10.1021/bm900520n] [Citation(s) in RCA: 558] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shinichiro Iwamoto
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Weihua Kai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
45
|
Wu M, Kuga S, Huang Y. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10494-10497. [PMID: 18680325 DOI: 10.1021/la801602k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We demonstrate a simple, facile approach to the deposition of silver nanoparticles on the surface of cellulose microfibrils with a quasi-one-dimensional arrangement. The process involves the generation of aldehyde groups by oxidizing the surface of cellulose microfibrils and then the assembly of silver nanoparticles on the surface by means of the silver mirror reaction. The linear nature of the microfibrils and the relatively uniform surface chemical modification result in a uniform linear distribution of silver particles along the microfibrils. The effects of various reaction parameters, such as the reaction time for the reduction process and employed starting materials, have been investigated by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Additionally, the products were examined for their electric current-voltage characteristics, the results showing that these materials had an electric conductivity of approximately 5 S/cm, being different from either the oxidated cellulose or bulk silver materials by many orders of magnitude.
Collapse
Affiliation(s)
- Min Wu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, China.
| | | | | |
Collapse
|
46
|
A spectroscopic assessment of cellulose and the molecular mechanisms of cellulose biosynthesis in the ascidian Ciona intestinalis. Mar Genomics 2008; 1:9-14. [PMID: 21798148 DOI: 10.1016/j.margen.2008.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 01/31/2008] [Indexed: 11/23/2022]
|
47
|
Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 2007; 9:57-65. [PMID: 18052127 DOI: 10.1021/bm700769p] [Citation(s) in RCA: 522] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The shape and size distribution of crystalline nanoparticles resulting from the sulfuric acid hydrolysis of cellulose from cotton, Avicel, and tunicate were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM) as well as small- and wide-angle X-ray scattering (SAXS and WAXS). Images of negatively stained and cryo-TEM specimens showed that the majority of cellulose particles were flat objects constituted by elementary crystallites whose lateral adhesion was resistant against hydrolysis and sonication treatments. Moreover, tunicin whiskers were described as twisted ribbons with an estimated pitch of 2.4-3.2 microm. Length and width distributions of all samples were generally well described by log-normal functions, with the exception of tunicin, which had less lateral aggregation. AFM observation confirmed that the thickness of the nanocrystals was almost constant for a given origin and corresponded to the crystallite size measured from peak broadening in WAXS spectra. Experimental SAXS profiles were numerically simulated, combining the dimensions and size distribution functions determined by the various techniques.
Collapse
Affiliation(s)
- Samira Elazzouzi-Hafraoui
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP 53, F-38041 Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
48
|
Cardoso MB, Putaux JL, Nishiyama Y, Helbert W, Hÿtch M, Silveira NP, Chanzy H. Single Crystals of V-Amylose Complexed with α-Naphthol. Biomacromolecules 2007; 8:1319-26. [PMID: 17348704 DOI: 10.1021/bm0611174] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lamellar square single crystals of V-amylose were obtained by adding alpha-naphthol to metastable dilute aqueous solutions of synthetic amylose chains with an average degree of polymerization of 100. The morphology and structure of the crystals were studied using low-dose transmission electron microscopy including high-resolution imaging, as well as electron and X-ray diffraction. The crystals are crystallized in a tetragonal P4(1)2(1)2 or P4(3)2(1)2 space group with unit cell parameters, calculated from X-ray diffraction data, a = b = 2.2844 nm (+/-0.0005) and c = 0.7806 nm (+/-0.001), implying the presence of two amylose chains per unit cell. High-resolution lattice images of the crystals confirmed that the amylose chains were crystallized as 8-fold helices corresponding to the repeat of four maltosyl units.
Collapse
Affiliation(s)
- Mateus B Cardoso
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP 53, F-38041 Grenoble Cédex 9, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The enzymatic kinetics of glycoside hydrolase family 7 cellobiohydrolase (Cel7A) towards highly crystalline celluloses at the solid-liquid interface was evaluated by applying the novel concept of surface density (rho) of the enzyme, which is defined as the amount of adsorbed enzyme divided by the maximum amount of adsorbed enzyme. When the adsorption levels of Trichoderma viride Cel7A on cellulose I(alpha) from Cladophora and cellulose I(beta) from Halocynthia were compared, the maximum adsorption of the enzyme on cellulose I(beta) was approximately 1.5 times higher than that on cellulose I(alpha), although the rate of cellobiose production from cellulose I(beta) was lower than that from cellulose I(alpha). This indicates that the specific activity (k) of Cel7A adsorbed on cellulose I(alpha) is higher than that of Cel7A adsorbed on cellulose I(beta). When k was plotted versus rho, a dramatic decrease of the specific activity was observed with the increase of surface density (rho-value), suggesting that overcrowding of enzyme molecules on a cellulose surface lowers their activity. An apparent difference of the specific activity was observed between crystalline polymorphs, i.e. the specific activity for cellulose I(alpha) was almost twice that for cellulose I(beta). When cellulose I(alpha) was converted to cellulose I(beta) by hydrothermal treatment, the specific activity of Cel7A decreased and became similar to that of native cellulose I(beta) at the same rho-value. These results indicate that the hydrolytic activity (rate) of bound Cel7A depends on the nature of the crystalline cellulose polymorph, and an analysis that takes surface density into account is an effective means to evaluate cellulase kinetics at a solid-liquid interface.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
50
|
Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW. Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 2006; 341:138-52. [PMID: 16297893 DOI: 10.1016/j.carres.2005.09.028] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Molecular mechanics (MM) simulations have been used to model two small crystals of cellulose Ibeta surrounded by water. These small crystals contained six different extended surfaces: (110), (11 0), two types of (100), and two types of (010). Significant changes took place in the crystal structures. In both crystals there was an expansion of the unit cell, and a change in the gamma angle to almost orthogonal. Both microcrystals developed a right-hand twist of about 1.5 degrees per cellobiose unit, similar to the twisting of beta-sheets in proteins. In addition, in every other layer, made up of the unit cell center chains, a tilt of the sugar rings of 14.8 degrees developed relative to the crystal plane as a result of a transition of the primary alcohol groups in these layers away from the starting TG conformation to GG. In this conformation, these groups made interlayer hydrogen bonds to the origin chains above and below. No change in the primary alcohol conformations or hydrogen-bonding patterns in the origin chain layers was observed. Strong localization of the adjacent water was found for molecules in the first hydration layer of the surfaces, due to both hydrogen bonding to the hydroxyl groups of the sugar molecules and also due to hydrophobic hydration of the extensive regions of nonpolar surface resulting from the axial aliphatic hydrogen atoms of the 'tops' of the glucose monomers. Significant structuring of the water was found to extend far out into the solution. It is hypothesized that the structured layers of water might present a barrier to the approach of cellulase enzymes toward the cellulose surfaces in enzyme-catalyzed hydrolysis, and might inhibit the escape of soluble products, contributing to the slow rates of hydrolysis observed experimentally. Since the water structuring is different for the different surfaces, this might result in slower hydrolysis rates for some surfaces compared to others.
Collapse
Affiliation(s)
- James F Matthews
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|