1
|
Mahmoud NN, Hamad S, Shraim S. Inflammation-Modulating Biomedical Interventions for Diabetic Wound Healing: An Overview of Preclinical and Clinical Studies. ACS OMEGA 2024; 9:44860-44875. [PMID: 39554458 PMCID: PMC11561615 DOI: 10.1021/acsomega.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 11/19/2024]
Abstract
A diabetic wound exemplifies the challenge of chronic, nonhealing wounds. Elevated blood sugar levels in diabetes profoundly disrupt macrophage function, impairing crucial activities such as phagocytosis, immune response, cell migration, and blood vessel formation, all essential for effective wound healing. Moreover, the persistent presence of pro-inflammatory cytokines and reactive oxygen species, coupled with a decrease in anti-inflammatory factors, exacerbates the delay in wound healing associated with diabetes. This review emphasizes the dysfunctional inflammatory responses underlying diabetic wounds and explores preclinical studies of inflammation-modulating bioactives and biomaterials that show promise in expediting diabetic wound healing. Additionally, this review provides an overview of selected clinical studies employing biomaterials and bioactive molecules, shedding light on the gap between extensive preclinical research and limited clinical studies in this field.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Salma Hamad
- International
School of London Qatar, Doha 18511, Qatar
| | - Sawsan Shraim
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| |
Collapse
|
2
|
Mihai MM, Bălăceanu-Gurău B, Ion A, Holban AM, Gurău CD, Popescu MN, Beiu C, Popa LG, Popa MI, Dragomirescu CC, Preda M, Muntean AA, Macovei IS, Lazăr V. Host-Microbiome Crosstalk in Chronic Wound Healing. Int J Mol Sci 2024; 25:4629. [PMID: 38731848 PMCID: PMC11083077 DOI: 10.3390/ijms25094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The pathogenesis of chronic wounds (CW) involves a multifaceted interplay of biochemical, immunological, hematological, and microbiological interactions. Biofilm development is a significant virulence trait which enhances microbial survival and pathogenicity and has various implications on the development and management of CW. Biofilms induce a prolonged suboptimal inflammation in the wound microenvironment, associated with delayed healing. The composition of wound fluid (WF) adds more complexity to the subject, with proven pro-inflammatory properties and an intricate crosstalk among cytokines, chemokines, microRNAs, proteases, growth factors, and ECM components. One approach to achieve information on the mechanisms of disease progression and therapeutic response is the use of multiple high-throughput 'OMIC' modalities (genomic, proteomic, lipidomic, metabolomic assays), facilitating the discovery of potential biomarkers for wound healing, which may represent a breakthrough in this field and a major help in addressing delayed wound healing. In this review article, we aim to summarize the current progress achieved in host-microbiome crosstalk in the spectrum of CW healing and highlight future innovative strategies to boost the host immune response against infections, focusing on the interaction between pathogens and their hosts (for instance, by harnessing microorganisms like probiotics), which may serve as the prospective advancement of vaccines and treatments against infections.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| | | | - Ana Ion
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| | - Cristian-Dorin Gurău
- Orthopedics and Traumatology Clinic, Clinical Emergency Hospital, 014451 Bucharest, Romania;
| | - Marius Nicolae Popescu
- Department of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Clinic of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Mircea Ioan Popa
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Cerasella Cristiana Dragomirescu
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Mădălina Preda
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru-Andrei Muntean
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Ioana Sabina Macovei
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Veronica Lazăr
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| |
Collapse
|
3
|
Hou Y, Wei D, Zhang Z, Lei T, Li S, Bao J, Guo H, Tan L, Xie X, Zhuang Y, Lu Z, Zhao Y. Downregulation of nutrition sensor GCN2 in macrophages contributes to poor wound healing in diabetes. Cell Rep 2024; 43:113658. [PMID: 38175755 DOI: 10.1016/j.celrep.2023.113658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Poor skin wound healing, which is common in patients with diabetes, is related to imbalanced macrophage polarization. Here, we find that nutrition sensor GCN2 (general control nonderepressible 2) and its downstream are significantly upregulated in human skin wound tissue and mouse skin wound macrophages, but skin wound-related GCN2 expression and activity are significantly downregulated by diabetes and hyperglycemia. Using wound healing models of GCN2-deleted mice, bone marrow chimeric mice, and monocyte-transferred mice, we show that GCN2 deletion in macrophages significantly delays skin wound healing compared with wild-type mice by altering M1 and M2a/M2c polarization. Mechanistically, GCN2 inhibits M1 macrophages via OXPHOS-ROS-NF-κB pathway and promotes tissue-repairing M2a/M2c macrophages through eukaryotic translation initiation factor 2 (eIF2α)-hypoxia-inducible factor 1α (HIF1α)-glycolysis pathway. Importantly, local supplementation of GCN2 activator halofuginone efficiently restores wound healing in diabetic mice with re-balancing M1 and M2a/2c polarization. Thus, the decreased macrophage GCN2 expression and activity contribute to poor wound healing in diabetes and targeting GCN2 improves wound healing in diabetes.
Collapse
Affiliation(s)
- Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Sihong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Bao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Kidney Transplantation Department, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xubiao Xie
- Kidney Transplantation Department, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhongbing Lu
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China; Beijing Institute for Stem Cell and Regeneration, Beijing, China.
| |
Collapse
|
4
|
Ebrahimpour-Malekshah R, Amini A, Mostafavinia A, Ahmadi H, Zare F, Safaju S, Shahbazi A, Chien S, Rezaei F, Hasan A, Bayat M. The stereological, immunohistological, and gene expression studies in an infected ischemic wound in diabetic rats treated by human adipose-derived stem cells and photobiomodulation. Arch Dermatol Res 2023; 315:1717-1734. [PMID: 36808225 DOI: 10.1007/s00403-023-02563-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
We investigated the impacts of photobiomodulation (PBM) and human allogeneic adipose-derived stem cells (ha-ADS) together and or alone applications on the stereological parameters, immunohistochemical characterizing of M1 and M2 macrophages, and mRNA levels of hypoxia-inducible factor (HIF-1α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) on inflammation (day 4) and proliferation phases (day 8) of repairing tissues in an infected delayed healing and ischemic wound model (IDHIWM) in type 1 diabetic (DM1) rats. DM1 was created in 48 rats and an IDHIWM was made in all of them, and they were distributed into 4 groups. Group1 = control rats with no treatment. Group2 = rats received (10 × 100000 ha-ADS). Group3 = rats exposed to PBM (890 nm, 80 Hz, 3.46 J/cm2). Group4 = rats received both PBM and ha-ADS. On day 8, there were significantly higher neutrophils in the control group than in other groups (p < 0.01). There were substantially higher macrophages in the PBM + ha-ADS group than in other groups on days 4 and 8 (p < 0.001). Granulation tissue volume, on both days 4 and 8, was meaningfully greater in all treatment groups than in the control group (all, p = 0.000). Results of M1 and M2 macrophage counts of repairing tissue in the entire treatment groups were considered preferable to those in the control group (p < 0.05). Regarding stereological and macrophage phenotyping, the results of the PBM + ha-ADS group were better than the ha-ADS and PBM groups. Results of the tested gene expression of repairing tissue on inflammation and proliferation steps in PBM and PBM + ha-ADS groups were meaningfully better than the control and ha-ADS groups (p < 0.05). We showed that PBM, ha-ADS, and PBM plus ha-ADS, hastened the proliferation step of healing in an IDHIWM in rats with DM1 by regulation of the inflammatory reaction, macrophage phenotyping, and augmented granulation tissue formation. In addition PBM and PBM plus ha-ADS protocols hastened and increased mRNA levels of HIF-1α, bFGF, SDF-1α, and VEGF-A. Totally, in terms of stereological and immuno-histological tests, and also gene expression HIF-1α and VEGF-A, the results of PBM + ha-ADS were superior (additive) to PBM, and ha-ADS alone treatments.
Collapse
Affiliation(s)
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Safaju
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Shahbazi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA
| | - Fatemehalsadat Rezaei
- College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY, 40536, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar.
- Biomedical Research Centre, Qatar University, 2713, Doha, Qatar.
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
5
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
6
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Singh SS, Behera SK, Rai S, Tripathy SK, Chakrabortty S, Mishra A. A critical review on nanomaterial based therapeutics for diabetic wound healing. Biotechnol Genet Eng Rev 2022:1-35. [PMID: 36576250 DOI: 10.1080/02648725.2022.2161732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus is a chronic endocrine disease that occurs mostly in the state of hyperglycemia (elevated blood glucose level). In the recent times, diabetes is listed under world's utmost critical health issues. Wound treatment procedures are complicated in diabetic individuals all over the world. Diabetic wound care not only involves high-cost, but also the primary cause of hospitalization, which can lead to amputation thereby reducing diabetic patient life expectancy. To lower the risk of amputation, wound healing requires the development of effective treatments. Traditional management systems for Diabetes are frequently chastised due to their high costs, difficulties in maintaining a sustainable supply chain and limited disposal alternatives. The worrisome rise in diabetes prevalence has sparked a surge of interest in the discovery of viable remedies to supplement existing treatments. Nanomaterials wound healing has a lot of potential for treating and preventing wound infections and it has recently gained popularity owing to its ability to transport drugs to the wound area in a regulated fashion, potentially overpowering the limits of traditional approaches. This research assessed several nanosystems, such as nanocarriers and nanotherapeutics, to explore how they can benefit in diabetic wound healing, with a focus on current obstacles and future prospects.
Collapse
Affiliation(s)
- Swati Sucharita Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Susanta Kumar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- Department of cell biology, IMGENEX India Pvt. Ltd, Bhubaneswar, India
| | - Suchita Rai
- Bauxite -Alumina Division, Jawaharlal Nehru Aluminium Research Development and Design Centre, Nagpur, India
| | - Suraj K Tripathy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Sankha Chakrabortty
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
8
|
Song R, Wu Z, Ma J, Yin S, Liu C, Sun R, Cao G, Lu Y, Chen A, Zhang G, Liu J, Wang Y. Research status and hot topics of the effects of skin innervation on wound healing from 1959 to 2022: A bibliometric analysis. Front Surg 2022; 9:966375. [PMID: 36303853 PMCID: PMC9592856 DOI: 10.3389/fsurg.2022.966375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Background Skin innervation plays an important role in wound healing by either direct contact with or indirect secretions that impact skin cells. Many studies in this field have been published; however, there is a lack of bibliometric analyses focusing on the effect of skin innervation on skin wound healing. In this study, we aimed to analyse the research trends, status, and hotspots in this field. Methods Reviews and articles published in English were extracted from the Web of Science Core Collection (WoSCC) database based on subject term searches. Microsoft Office Excel, VOSviewer, and CiteSpace were used to analyse publication date, country or region, institution, author, and author keywords. Results A total of 368 papers published between 1959 and 2022 were included in the analysis. Although there was a pulsation during this period, there was an overall upward trend in studies related to the effect of skin innervation on wound healing. The United States, particularly the University of Washington, and Gibran, Nicole S. from the University of Washington, was the most active in this field. Wound Repair and Regeneration published the most relevant literature, and “Calcitonin gene-related peptide: physiology and pathophysiology” had the highest total number of citations. “Diabetic foot ulcer,” “epidermal stem cells,” “mesenchymal stem cells,” and “mast cells” are current and potential future research hotspots. Conclusion This bibliometric analysis will inform the overall trends in research related to the effect of skin innervation on wound healing, summarise relevant research hotspots, and guide future work.
Collapse
Affiliation(s)
- Ru Song
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhenjie Wu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiaxu Ma
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Siyuan Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Rui Sun
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guoqi Cao
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yongpan Lu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Aoyu Chen
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guang Zhang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jian Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yibing Wang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Correspondence: Yibing Wang
| |
Collapse
|
9
|
Wilson JM, Farley KX, Erens GA, Bradbury TL, Guild GN. Preoperative opioid use is a risk factor for complication following revision total hip arthroplasty. Hip Int 2022; 32:363-370. [PMID: 32762258 DOI: 10.1177/1120700020947400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The demand for revision total hip arthroplasty (THA) procedures continues to increase. A growing body of evidence in primary THA suggests that preoperative opioid use confers increased risk for complication. However, it is unknown whether the same is true for patients undergoing revision procedures. The purpose of this study was to investigate whether or not there was a relationship between preoperative opioid use and surgical complications, medical complications, and healthcare utilisation following revision THA. METHODS This is a retrospective cohort study using the Truven Marketscan database. Patients undergoing revision THA were identified. Preoperative opioid prescriptions were queried for 1 year preoperatively and were used to divide patients into cohorts based on temporality and quantity of opioid use. This included an opioid naïve group as well as an "opioid holiday" group (6 months opioid naïve period after chronic use). Demographic and complication data were collected and both univariate and multivariate analysis was then performed. RESULTS 62.5% of patients had received an opioid prescription in the year preceding surgery. Patients with continuous preoperative opioid use had higher odds of the following: infection (superficial or deep surgical site infection; OR 1.29; 95% CI, 1.03-1.62, p = 0.029), wound complication (OR 1.36; 95% CI, 1.02-1.82, p = 0.037), sepsis (OR 1.90; 95% CI 1.08-3.34, p = 0.026), and revision surgery (OR 1.54, 95% CI, 1.28-1.85, p < 0.001). This group also had higher care utilisation including extended length of stay, non-home discharge, 90-day readmission, and emergency room visits (p < 0.001). An opioid holiday mitigated some of this increased risk as this cohort has baseline (i.e. same as opioid naïve) risk (p > 0.05 for all comparison). CONCLUSIONS Opioid use prior to revision THA is common and is associated with increased risk of postoperative complication. Given that risk was reduced by a preoperative opioid holiday, this represents a modifiable risk factor which should be discussed and addressed preoperatively to optimise outcomes.
Collapse
Affiliation(s)
- Jacob M Wilson
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| | - Kevin X Farley
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| | - Greg A Erens
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| | - Thomas L Bradbury
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| | - George N Guild
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Gupta D, Kaushik D, Mohan V. Role of neurotransmitters in the regulation of cutaneous wound healing. Exp Brain Res 2022; 240:1649-1659. [PMID: 35488904 DOI: 10.1007/s00221-022-06372-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
Wound healing is a highly coordinated and dynamic process of tissue repair after injury. The global burden of disease associated with wounds, both acute and chronic, is a significantly rising health concern. Upon skin wounding, neurons have the ability to sense the disruption to mediate the release of neurotransmitters into the wound microenvironment. Serotonin that has long been recognised as a potential vasoconstrictor is now also being contemplated to play a role in re-epithelialisation of wounds. While the role of neuropeptides in stimulating diabetic wound healing is being increasingly emphasised, on the other hand, dopamine is being widely studied for its dual role in mediating both pro- and antiangiogenic effects at the site of the wounds. Similarly, epinephrine levels that are known to be elevated during stress is now recognised as a contributing factor towards delayed wound closure, thereby serving as an inhibitor of wound healing. Thus, each neurotransmitter regulates wound repair and their active regeneration in a typical way. Strengthening our understanding of the molecular pathways via which the neurotransmitter modulates the immune system to control wound healing can yield potential therapeutic measures. Further investigations regarding the safety, efficacy, and cost-effectiveness of these processes are a prerequisite for their possible translation into clinical trials.
Collapse
Affiliation(s)
- Divya Gupta
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India
| | - Dhirender Kaushik
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India.
| |
Collapse
|
11
|
Bardill JR, Laughter MR, Stager M, Liechty KW, Krebs MD, Zgheib C. Topical gel-based biomaterials for the treatment of diabetic foot ulcers. Acta Biomater 2022; 138:73-91. [PMID: 34728428 PMCID: PMC8738150 DOI: 10.1016/j.actbio.2021.10.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating ailment for many diabetic patients with increasing prevalence and morbidity. The complex pathophysiology of DFU wound environments has made finding effective treatments difficult. Standard wound care treatments have limited efficacy in healing these types of chronic wounds. Topical biomaterial gels have been developed to implement novel treatment approaches to improve therapeutic effects and are advantageous due to their ease of application, tunability, and ability to improve therapeutic release characteristics. Here, we provide an updated, comprehensive review of novel topical biomaterial gels developed for treating chronic DFUs. This review will examine preclinical data for topical gel treatments in diabetic animal models and clinical applications, focusing on gels with protein/peptides, drug, cellular, herbal/antioxidant, and nano/microparticle approaches. STATEMENT OF SIGNIFICANCE: By 2050, 1 in 3 Americans will develop diabetes, and up to 34% of diabetic patients will develop a diabetic foot ulcer (DFU) in their lifetime. Current treatments for DFUs include debridement, infection control, maintaining a moist wound environment, and pressure offloading. Despite these interventions, a large number of DFUs fail to heal and are associated with a cost that exceeds $31 billion annually. Topical biomaterials have been developed to help target specific impairments associated with DFU with the goal to improve healing. A summary of these approaches is needed to help better understand the current state of the research. This review summarizes recent research and advances in topical biomaterials treatments for DFUs.
Collapse
Affiliation(s)
- James R Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | | | - Michael Stager
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Melissa D Krebs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
12
|
Thomas A, Bankar N, Nagore D, Kothapalli L, Chitlange S. Herbal Oils for Treatment of Chronic and Diabetic Wounds: A Systematic Review. Curr Diabetes Rev 2022; 18:e220321192406. [PMID: 34225631 DOI: 10.2174/1573399817666210322151700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/29/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the present scenario, diabetes is a growing health challenge, and its occurrence is growing across the globe. Diabetes, with its complications like diabetic wounds, vasculopathy, neuropathy, wound infections, and oxidative stress, is a serious cause of mortality worldwide. INTRODUCTION Among the various complications, treatment of diabetic foot and ulcers is one of the major concerns in patients who are suffering from diabetes. The causative factors for this condition include increased oxidative stress, high blood glucose levels, vascular insufficiency, and microbial infections, and many a time, if left untreated, it may even lead to amputations of the lower extremities. The present therapy for the treatment of diabetic wounds mainly involves the use of synthetic moieties and other biotechnology-derived biomolecules, including growth factors. Few plant products are also useful in the treatment of wounds. METHODS Essential oils derived from various herbs are reported to possess significant wound healing potential and promote blood clotting, help to fight infections, and accelerate the wound healing process. Hence, the present review is a systematic analysis of all the available data on the use of the natural oils with their biological source, active phytochemical constituents present, and the probable mechanism of action for the treatment of chronic and diabetic wounds in suitable animal models. A methodical collection of data was performed, and information was searched up to April 2020 in entirety. Key phrases used for the data search include the pathophysiology of wounds, diabetic foot wound and its complications, natural oils for chronic and diabetic wound treatment. RESULTS This review summarizes the natural oils which are reported in the literature to be beneficial in the treatment of chronic wounds, while some oils have been specifically also studied against wounds in diabetic rats. Essential oils are said to interact with the body pharmacologically, physiologically and psychologically and help in rapid wound healing. However, the majority of the literature studies have demonstrated wound healing activity only in animal models (preclinical data), and further clinical studies are necessary. CONCLUSION This review provides a platform for further studies on the effective utilization of natural oils in the treatment of chronic and diabetic wounds, especially if oils are to receive credibility in the management of chronic wounds.
Collapse
Affiliation(s)
- Asha Thomas
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| | - Nilam Bankar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| | - Dheeraj Nagore
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| | - Lata Kothapalli
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| | - Sohan Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| |
Collapse
|
13
|
Yang S, Li Y, Liu C, Wu Y, Wan Z, Shen D. Pathogenesis and treatment of wound healing in patients with diabetes after tooth extraction. Front Endocrinol (Lausanne) 2022; 13:949535. [PMID: 36213270 PMCID: PMC9538860 DOI: 10.3389/fendo.2022.949535] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a common systematic chronic disease amongst dental patients. The elevated glucose microenvironment can prolong the healing of tooth extraction sockets. Therefore, the promotion of healing up tooth extraction sockets is of great clinical importance to the patients with diabetes mellitus. The current evidence indicates the mechanism of the recovery period of extraction sockets in hyperglycaemia conditions from physiological, inflammation, immune, endocrine and neural aspects. New advancements have been made in varied curative approaches and drugs in the management of wound healing of tooth extraction sockets in diabetes. However, most of the interventions are still in the stage of animal experiments, and whether it can be put into clinical application still needs further explorations. Specifically, our work showed topical administration of plasma-rich growth factor, advanced platelet-rich fibrin, leukocyte- and platelet-rich fibrin and hyaluronic acid as well as maxillary immediate complete denture is regarded as a promising approach for clinical management of diabetic patients requiring extractions. Overall, recent studies present a blueprint for new advances in novel and effective approaches for this worldwide health ailment and tooth extraction sockets healing.
Collapse
|
14
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
15
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
16
|
Beatty R, Lu CE, Marzi J, Levey RE, Carvajal Berrio D, Lattanzi G, Wylie R, O'Connor R, Wallace E, Ghersi G, Salamone M, Dolan EB, Layland SL, Schenke-Layland K, Duffy GP. The Foreign Body Response to an Implantable Therapeutic Reservoir in a Diabetic Rodent Model. Tissue Eng Part C Methods 2021; 27:515-528. [PMID: 34541880 DOI: 10.1089/ten.tec.2021.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advancements in type 1 diabetes mellitus treatments have vastly improved in recent years. The move toward a bioartificial pancreas and other fully implantable systems could help restore patient's glycemic control. However, the long-term success of implantable medical devices is often hindered by the foreign body response. Fibrous encapsulation "walls off" the implant to the surrounding tissue, impairing its functionality. In this study we aim to examine how streptozotocin-induced diabetes affects fibrous capsule formation and composition surrounding implantable drug delivery devices following subcutaneous implantation in a rodent model. After 2 weeks of implantation, the fibrous capsule surrounding the devices were examined by means of Raman spectroscopy, micro-computed tomography (μCT), and histological analysis. Results revealed no change in mean fibrotic capsule thickness between diabetic and healthy animals as measured by μCT. Macrophage numbers (CCR7 and CD163 positive) remained similar across all groups. True component analysis also showed no quantitative difference in the alpha-smooth muscle actin and extracellular matrix proteins. Although principal component analysis revealed significant secondary structural difference in collagen I in the diabetic group, no evidence indicates an influence on fibrous capsule composition surrounding the device. This study confirms that diabetes did not have an effect on the fibrous capsule thickness or composition surrounding our implantable drug delivery device. Impact Statement Understanding the impact diabetes has on the foreign body response (FBR) to our implanted material is essential for developing an effective drug delivery device. We used several approaches (Raman spectroscopy and micro-computed tomography imaging) to demonstrate a well-rounded understanding of the diabetic impact on the FBR to our devices, which is imperative for its clinical translation.
Collapse
Affiliation(s)
- Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,SFI Research Centre for Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Chuan-En Lu
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Julia Marzi
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Daniel Carvajal Berrio
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany
| | - Giulia Lattanzi
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Raymond O'Connor
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Eimear Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Giulio Ghersi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,ABIEL srl, c/o ARCA Incubatore di Imprese, Palermo, Italia
| | - Monica Salamone
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,ABIEL srl, c/o ARCA Incubatore di Imprese, Palermo, Italia
| | - Eimear B Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,Department of Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Shannon L Layland
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,SFI Research Centre for Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Ge S, Khachemoune A. The Importance of Cutaneous Innervation in Wound Healing: From Animal Studies to Clinical Applications. INT J LOW EXTR WOUND 2021:15347346211045022. [PMID: 34533075 DOI: 10.1177/15347346211045022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The skin is a neuroimmunoendocrine organ that regularly undergoes injury and repair. The complex process of wound healing relies heavily on the cutaneous nervous system. Despite the observation that wound healing deficiencies cause significant morbidity and mortality for patients with nervous dysfunction across many disciplinaries, the role of cutaneous innervation in wound repair has not been well elucidated. In a previous article, we learned the basics of cutaneous neuroanatomy and the important neuropeptides involved in the wound healing process. Currently, we aim to synthesize the basics with observations from animal models and human studies for a more comprehensive understanding of nervous system involvement in cutaneous wound healing. We have demonstrated in this review, the importance of the cutaneous nervous system in each phase of wound healing through basic science research, animal experiments, and human studies.
Collapse
Affiliation(s)
| | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA.,SUNY Downstate, Brooklyn, NY, USA
| |
Collapse
|
18
|
Ahn J. Treatment of diabetic foot ulcers. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.8.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Diabetic foot ulcers (DFUs), a risk factor for infection, remain a difficult clinical complication. Infected DFUs may be associated with lower extremity amputation. To achieve wound healing and avoid amputation, an assortment of dressing materials and negative pressure wound therapy (NPWT) have been used on soft tissue injuries resulting from infected DFUs. A great deal of interest about the use of dressing materials and NPWT in the treatment of DFUs has arisen. However, there have only been a few high-quality studies regarding this topic.Current Concepts: Ideal dressing materials should satisfy certain conditions to alleviate symptoms of DFU infection and enhance the wound healing process. A single dressing material cannot fulfill all of these requirements. Based on clinical trials, different dressing materials must be chosen according to the status of the individual wound environment, including the amount of exudate, degree of pain, severity of the infection, and cost-effectiveness. However, there has been no clear evidence that advanced wound dressing materials are superior to basic dressing materials in wound healing. Recently, NPWT has been used to cover the soft tissue defects of infected DFU with granulation tissue. NPWT may contribute to changing growth factor expression, micro- and macro-deformation, vascular flow, amount of exudate, and the bacterial environment in DFU, despite the unclear mechanism of its role in wound repair.Discussion and Conclusion: Further research to obtain high-quality evidence regarding the benefits of using dressing materials and NPWT is needed. The optimal protocol for DFU and cost-effectiveness should be included in these future studies.
Collapse
|
19
|
Pichu S, Vimalraj S, Viswanathan V. Impact of microRNA-210 on wound healing among the patients with diabetic foot ulcer. PLoS One 2021; 16:e0254921. [PMID: 34293021 PMCID: PMC8297780 DOI: 10.1371/journal.pone.0254921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Aim Diabetic foot ulcer (DFU) is a major concern in diabetes and its control requires in-depth molecular investigation. The present study aimed to screen the expression of microRNA-210 (miR-210) and its association in hypoxic pathway in DFU patients. Methods The study consists of 3 groups of circulation samples (50 in each group of: healthy volunteers, T2DM and T2DM with DFU) and 2 groups of tissue samples (10 in each group of: control and T2DM with DFU). Expression of miR-210 and hypoxia inducible factor-1 alpha (HIF-1α), and its responsive genes such as VEGF, TNF-α, IL-6, BCl2, Bax and Caspase 3 were analyzed by RT-PCR, Western blot and ELISA analyses. Results The HIF-1α expression decreased in DFU patients with increased miR-210 expression in both circulation and tissue biopsies. The circulatory IL-6 and inflammatory gene TNF-α expression was increased in DFU compared to healthy controls and T2DM subjects. Further, we found there was no alteration in the angiogenic marker, VEGF expression. In comparison, anti-apoptotic BCl2 was decreased and Bax and Caspase 3 was increased in DFU tissues relative to control. Conclusions The study showed that there was an inverse relationship between miR-210 and HIF-1α expression in patients with DFU, indicating that miR-210 may regulate the expression of the hypoxic gene.
Collapse
Affiliation(s)
- Sivakamasundari Pichu
- AU-KBC Research Center, Anna University MIT campus, Chromepet, Chennai, India
- * E-mail:
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Vijay Viswanathan
- Department of Genetics and Molecular Biology, Prof M. Viswanathan Diabetes Research Centre, MV Hospital for Diabetes, Royapuram, Chennai, India
| |
Collapse
|
20
|
Liu J, Yang Q, Lan J, Hong Y, Huang X, Yang B. Risk factors and prediction model of urosepsis in patients with diabetes after percutaneous nephrolithotomy. BMC Urol 2021; 21:74. [PMID: 33910537 PMCID: PMC8082959 DOI: 10.1186/s12894-021-00799-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Objective To analyze the risk factors of patients with diabetes mellitus (DM) and urosepsis after percutaneous nephrolithotomy (PCNL) for upper urinary tract stones and to develop a nomogram to predict postoperative urosepsis according to the risk factors. Methods The data of patients with type 2 diabetes who underwent one-stage PCNL due to upper urinary tract stones were retrospectively analyzed. The risk factors of patients with postoperative urosepsis were evaluated by univariate and multivariate logistic regression analysis, and the nomogram prediction model was developed according to the regression coefficient. Results One-stage PCNL was successfully completed in 241 patients with DM, and urosepsis occurred in 41 (17.0%) patients after PCNL. Based on multivariate logistic regression analysis, the independent risk factors associated with postoperative urosepsis included preoperative leukocyte elevation (OR = 3.973, P = 0.005), positive urine nitrite (OR = 3.697, P = 0.010), and positive urine culture (OR = 3.562, P = 0.002). According to the results of the logistic regression analysis model, staghorn stones (OR = 2.049, P < 0.1) and complete intraoperative stone clearance (OR = 0.431, P < 0.1), were used to develop the nomogram. Internal validation of the nomogram showed that the concordance index (C-index) was 0.725. Additionally, the Hosmer–Lemeshow test was performed, P = 0.938 > 0.05. Conclusion Preoperative leukocyte elevation, positive urine nitrite, and positive urine culture are independent risk factors for urosepsis after one-stage PCNL for patients with DM with upper urinary tract stones. The nomogram, which is based on independent risk factors that combine stone morphology and intraoperative stone clearance, can help predict the risk of postoperative urosepsis.
Collapse
Affiliation(s)
- Jun Liu
- Urology and Lithotripsy Center, Peking University People's Hospital, 133 Fuchengmen Inner Street, Xicheng District, Beijing, 100034, People's Republic of China.,Peking University Applied Lithotripsy Institute, Peking University, Beijing, 100034, People's Republic of China
| | - Qingya Yang
- Department of Urology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, People's Republic of China
| | - Jiayi Lan
- Urology and Lithotripsy Center, Peking University People's Hospital, 133 Fuchengmen Inner Street, Xicheng District, Beijing, 100034, People's Republic of China.,Peking University Applied Lithotripsy Institute, Peking University, Beijing, 100034, People's Republic of China
| | - Yang Hong
- Urology and Lithotripsy Center, Peking University People's Hospital, 133 Fuchengmen Inner Street, Xicheng District, Beijing, 100034, People's Republic of China.,Peking University Applied Lithotripsy Institute, Peking University, Beijing, 100034, People's Republic of China
| | - Xiaobo Huang
- Urology and Lithotripsy Center, Peking University People's Hospital, 133 Fuchengmen Inner Street, Xicheng District, Beijing, 100034, People's Republic of China.,Peking University Applied Lithotripsy Institute, Peking University, Beijing, 100034, People's Republic of China
| | - Bo Yang
- Urology and Lithotripsy Center, Peking University People's Hospital, 133 Fuchengmen Inner Street, Xicheng District, Beijing, 100034, People's Republic of China. .,Peking University Applied Lithotripsy Institute, Peking University, Beijing, 100034, People's Republic of China.
| |
Collapse
|
21
|
Kant V, Mahapatra PS, Gupta V, Bag S, Gopalakrishnan A, Kumar D, Kumar D. Substance P, a Neuropeptide, Promotes Wound Healing via Neurokinin-1 Receptor. INT J LOW EXTR WOUND 2021; 22:291-297. [PMID: 33856252 DOI: 10.1177/15347346211004060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Substance P (SP), an endogenous neuropeptide, mediates intracellular signaling, mainly through a tachykinin receptor. The tachykinin receptors family consists of neurokinin-1 (NK-1), neurokinin-2 (NK-2), and neurokinin-3 receptors. Our previous studies on SP have shown its wound healing potentials. But the exact mechanism of wound healing by SP is not exactly known. In view of this, the present study was aimed at evaluating the in vitro wound healing effect of SP alone and in the presence of NK-1, NK-2, and both receptor antagonists. Scratch assay, transwell assay, and tumor growth factor-beta 1 (TGF-β1) assay were performed on buffalo fetal fibroblast culture. The cotreatment of fibroblast cultures with SP alone during the 24 h caused the significant proliferation and migrations of cells in both horizontal and vertical directions. The SP in the presence of spantide II (NK-1 antagonist) failed to stimulate this migration. The treatment of cells with SP in the presence of NK-2 antagonist treatment also showed a significant reduction of migration of cells with respect to SP treatment alone. The SP in the presence of both NK-1 and NK-2 antagonists failed to stimulate the horizontal migration of cells and most of the ineffectiveness of SP was observed in this combination. The TGF-β1 levels were significantly higher in the supernatants of cells that were exposed to SP alone. All other treatments have significantly lower TGF-β1 levels than SP alone treatment. It is concluded that different actions on fibroblast cells by SP were mainly mediated through the NK-1 receptor.
Collapse
Affiliation(s)
- Vinay Kant
- Division of Pharmacology and Toxicology, 30072Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India.,Department of Veterinary Pharmacology & Toxicology, COVS, LUVAS, Hisar, Haryana, India
| | - Puspendra S Mahapatra
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | - Vijayta Gupta
- Department of Chemistry, 29074University of Jammu, Jammu & Kashmir, India
| | - Sadhan Bag
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | - Anu Gopalakrishnan
- Division of Pharmacology and Toxicology, 30072Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Dhirendra Kumar
- Division of Pharmacology and Toxicology, 30072Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, 30072Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| |
Collapse
|
22
|
Qian J, Park DJ, Perrott S, Patel P, Eliceiri BP. Genetic Background and Kinetics Define Wound Bed Extracellular Vesicles in a Mouse Model of Cutaneous Injury. Int J Mol Sci 2021; 22:3551. [PMID: 33805585 PMCID: PMC8037942 DOI: 10.3390/ijms22073551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) have an important role in mediating intercellular signaling in inflammation and affect the kinetics of wound healing, however, an understanding of the mechanisms regulating these responses remains limited. Therefore, we have focused on the use of cutaneous injury models in which to study the biology of EVs on the inflammatory phase of wound healing. For this, the foreign body response using sterile subcutaneous polyvinylalcohol (PVA) sponges is ideally suited for the parallel analysis of immune cells and EVs without the need for tissue dissociation, which would introduce additional variables. We have previously used this model to identify mediators of EV biogenesis, establishing that control of how EVs are made affects their payload and biological activity. These studies in normal mice led us to consider how conditions such as immunodeficiency and obsesity affect the profile of immune cells and EVs in this model using genetically defined mutant mice. Since EVs are intrinsically heterogenous in biological fluids, we have focused our studies on a novel technology, vesicle flow cytometry (vFC) to quantify changes in EVs in mouse models. Here, we show that myeloid-derived immune cells and EVs express proteins relevant in antigen presentation in PVA sponge implants that have distinct profiles in wildtype, immune-deficient (NOD scid) vs. diabetic (Leprdb) mice. Together, these results establish a foundation for the parallel analysis of both immune cells and EVs with technologies that begin to address the heterogeneity of intercellular communication in the wound bed.
Collapse
Affiliation(s)
- Jin Qian
- Division of Trauma, Department of Surgery, UC San Diego Health Sciences, 212 Dickinson Street, MC 8236, San Diego, CA 92103, USA; (J.Q.); (D.J.P.); (S.P.); (P.P.)
- Department of Plastic Surgery, Shanghai Jiao Tong, University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Dong Jun Park
- Division of Trauma, Department of Surgery, UC San Diego Health Sciences, 212 Dickinson Street, MC 8236, San Diego, CA 92103, USA; (J.Q.); (D.J.P.); (S.P.); (P.P.)
| | - Sophia Perrott
- Division of Trauma, Department of Surgery, UC San Diego Health Sciences, 212 Dickinson Street, MC 8236, San Diego, CA 92103, USA; (J.Q.); (D.J.P.); (S.P.); (P.P.)
| | - Parth Patel
- Division of Trauma, Department of Surgery, UC San Diego Health Sciences, 212 Dickinson Street, MC 8236, San Diego, CA 92103, USA; (J.Q.); (D.J.P.); (S.P.); (P.P.)
| | - Brian P. Eliceiri
- Division of Trauma, Department of Surgery, UC San Diego Health Sciences, 212 Dickinson Street, MC 8236, San Diego, CA 92103, USA; (J.Q.); (D.J.P.); (S.P.); (P.P.)
| |
Collapse
|
23
|
Preoperative Analgesia, Complications, and Resource Utilization After Total Hip Arthroplasty: Tramadol Is Associated With Less Risk Than Other Preoperative Opioid Medications. J Arthroplasty 2021; 36:180-186. [PMID: 32788062 DOI: 10.1016/j.arth.2020.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Preoperative opioid use is known to be detrimental to outcomes after total hip arthroplasty (THA). This is concerning as multiple societies recommend tramadol for the management of arthritis. The purpose of this study was to determine if tramadol is associated with postoperative complications, increased resource utilization, and revision when compared with patients receiving nontramadol opioids (NTOs) and those who are opioid naive (ON). METHODS This is a retrospective cohort study using the Truven MarketScan databases (Truven Health, Ann Arbor, MI). Adult patients undergoing primary THA were identified and divided into 4 cohorts based on preoperative opioid medications (ie, ON, tramadol-only [TO], or NTOs; ±tramadol). Demographics, comorbidities, and 90-day complications were collected and compared between cohorts. Revision rates were compared at 3 years. Univariate and multivariate analyses were performed. Finally, preoperative prescription patterns were trended during the study period. RESULTS About 198,357 patients, including 18,694 TO and 106,768 ON, were identified. Compared with ON, TO patients had similar rates of complications and revision surgery (P > .05) but had slightly higher emergency department visits (odds ratio [OR], 1.06; 95% confidence interval [95% CI], 1.01-1.12; P = .027), readmissions (OR, 1.16; 95% CI, 1.09-1.22; P < .001), and nonhome discharges (OR, 1.07; 95% CI, 1.02-1.12; P = .010). TO patients had significantly lower odds of incurring most examined complications, including revision surgery, when compared with NTO (P < .05). From 2009 to 2018, the proportion of patients prescribed preoperative opioids decreased. CONCLUSION Preoperative TO is associated with less postoperative risk than NTO use and is similar to opioid naivety. Fortunately, the number of patients receiving preoperative NTOs appears to be decreasing. Our results support tramadol as an appropriate pre-THA analgesic.
Collapse
|
24
|
Kalani A, Shafagh S, Matini A, Noureddini M, Sehat M, Gharavi M. The effect of subcutaneous unfractionated heparin and low-molecular weight heparin toward modification of diabetic acute influence on surgical wound healing in rats. ARCHIVES OF TRAUMA RESEARCH 2021. [DOI: 10.4103/atr.atr_9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Wilson JM, Schwartz AM, Farley KX, Erens GA, Bradbury TL, Guild GN. The impact of preoperative tramadol-only use on outcomes following total knee arthroplasty - Is tramadol different than traditional opioids? Knee 2021; 28:131-138. [PMID: 33359945 DOI: 10.1016/j.knee.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Opioid use prior to total knee arthroplasty (TKA) is known to have detrimental influence on postoperative outcomes. Whether or not the same is true for tramadol is currently unclear. The aim of this study was to clarify the relationship between preoperative tramadol and postoperative complications. METHODS The Truven Marketscan® Databases were used to conduct this retrospective cohort study. Patients undergoing primary TKA were identified and divided into cohorts based on preoperative medication status (i.e. opioid naïve, tramadol-only, or non-tramadol opioids). Patient demographics, comorbidities, and 90-day outcomes were collected and compared between cohorts. Revision rates were analyzed at 1- and 3-years postoperatively. Univariate and multivariate analysis was performed. RESULTS 336,316 patients were included and 23,097 (6.9%) were preoperative tramadol-only users. Tramadol-only patients (v. opioid naïve) had increased odds of 90-day readmission (OR-1.07, 95%CI 1.02-1.12, p = 0.004), wound complication (OR-1.13, 95%CI 1.01-1.27, p = 0.34), and 3-year revision rates (OR-1.35, 95%CI 1.19-1.53, p < 0.001). However, when compared to the preoperative opioid cohorts, tramadol-only patients had decreased odds of nearly all outcomes. Over the study period, the number of patients receiving preoperative opioids decreased while the proportion of patients prescribed tramadol-only increased. CONCLUSIONS While tramadol-only use has lower risk than traditional opioids, tramadol-only use preceding TKA is associated with increased rates of readmission, wound complication and revision surgery. This is important information for prescribers who may be using tramadol to treat symptomatic knee arthrosis prior to arthroplasty referral and for thought leaders producing clinical practice guidelines. LEVEL OF EVIDENCE Level III, Prognostic.
Collapse
Affiliation(s)
- Jacob M Wilson
- Investigation Performed at Emory University, Atlanta, GA, United States.
| | - Andrew M Schwartz
- Investigation Performed at Emory University, Atlanta, GA, United States.
| | - Kevin X Farley
- Investigation Performed at Emory University, Atlanta, GA, United States.
| | - Greg A Erens
- Investigation Performed at Emory University, Atlanta, GA, United States.
| | - Thomas L Bradbury
- Investigation Performed at Emory University, Atlanta, GA, United States.
| | - George N Guild
- Investigation Performed at Emory University, Atlanta, GA, United States.
| |
Collapse
|
26
|
Shin DY, Park JU, Choi MH, Kim S, Kim HE, Jeong SH. Polydeoxyribonucleotide-delivering therapeutic hydrogel for diabetic wound healing. Sci Rep 2020; 10:16811. [PMID: 33033366 PMCID: PMC7546631 DOI: 10.1038/s41598-020-74004-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with diabetes experience delayed wound healing because of the uncontrolled glucose level in their bloodstream, which leads to impaired function of white blood cells, poor circulation, decreased production and repair of new blood vessels. Treatment using polydeoxyribonucleotide (PDRN), which is a DNA extracted from the sperm cells of salmon, has been introduced to accelerate the healing process of diabetic wounds. To accelerate the wound-healing process, sustained delivery of PDRN is critical. In this study, taking advantage of the non-invasive gelation property of alginate, PDRN was loaded inside the hydrogel (Alg-PDRN). The release behavior of PDRN was altered by controlling the crosslinking density of the Alg hydrogel. The amount of PDRN was the greatest inside the hydrogel with the highest crosslinking density because of the decreased diffusion. However, there was an optimal degree of crosslinking for the effective release of PDRN. In vitro studies using human dermal fibroblasts and diabetes mellitus fibroblasts and an in ovo chorioallantoic membrane assay confirmed that the Alg-PDRN hydrogel effectively induced cell proliferation and expression of angiogenic growth factors and promoted new blood vessel formation. Its effectiveness for accelerated diabetic wound healing was also confirmed in an in-vivo animal experiment using a diabetic mouse model.
Collapse
Affiliation(s)
- Da Yong Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Min-Ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Sukwha Kim
- Medical Big Data Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Seol-Ha Jeong
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
27
|
Wilson JM, Farley KX, Bradbury TL, Erens GA, Guild GN. Preoperative opioid use is a risk factor for complication and increased healthcare utilization following revision total knee arthroplasty. Knee 2020; 27:1121-1127. [PMID: 32711872 DOI: 10.1016/j.knee.2020.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/12/2020] [Accepted: 05/23/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Prior literature suggests that opioid use prior to primary arthroplasty procedures results in increased risk for complication. Despite this, it is unknown whether preoperative opioid use increases risk following revision TKA. The purpose of this study was to examine this relationship. METHODS The Truven Marketscan® database was used to conduct this retrospective cohort study. Patients undergoing revision TKA for aseptic indication were identified. Opioid prescriptions were collected for one-year preoperatively. Patients were divided into cohorts based on the number of prescriptions received preoperatively. Patients who had an "opioid holiday" (six months opioid naïve period after prior use) were also analyzed. Univariate and multivariate analysis was performed to assess the relationship between preoperative opioids and postoperative complications. RESULTS In the year preceding surgery, 84% of patients received an opioid prescription. Compared to opioid naïve patients, continuous preoperative use was associated with higher odds of every examined complication (p ≤ .008). This included PJI (OR 1.77, 95% CI 1.34-2.35, p < .001), VTE (OR 1.56, 95% CI 1.26-1.93, p < .001), opioid overdose (OR 5.03, 95% CI 1.64-15.42, p = .005), and revision surgery (OR 1.80, 95%CI 1.50-2.16, p < .001). Similarly, health care utilization was higher in this group including the following: extended length of stay, non-home discharge, 90-day readmission, and emergency room visits (p ≤ .01). The opioid holiday appeared to confer risk reduction. CONCLUSIONS Preoperative opioid use preceding revision TKA is common and is associated with complications following surgery. An opioid holiday appears to provide risk reduction and suggests that opioid use may be a modifiable risk factor.
Collapse
Affiliation(s)
- Jacob M Wilson
- Department of Orthopaedic Surgery, 59 S Executive Park NW, Atlanta, GA 30329, United States of America.
| | - Kevin X Farley
- Department of Orthopaedic Surgery, 59 S Executive Park NW, Atlanta, GA 30329, United States of America.
| | - Thomas L Bradbury
- Department of Orthopaedic Surgery, 59 S Executive Park NW, Atlanta, GA 30329, United States of America.
| | - Greg A Erens
- Department of Orthopaedic Surgery, 59 S Executive Park NW, Atlanta, GA 30329, United States of America.
| | - George N Guild
- Department of Orthopaedic Surgery, 59 S Executive Park NW, Atlanta, GA 30329, United States of America.
| |
Collapse
|
28
|
Miao X, Zhou T, Zhang J, Xu J, Guo X, Hu H, Zhang X, Hu M, Li J, Yang W, Xie J, Xu Z, Mou L. Enhanced cell selectivity of hybrid peptides with potential antimicrobial activity and immunomodulatory effect. Biochim Biophys Acta Gen Subj 2020; 1864:129532. [PMID: 31953126 DOI: 10.1016/j.bbagen.2020.129532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hybridization is a useful strategy to bond the advantages of different peptides into novel constructions. We designed a series of AMPs based on the structures of a synthetic AMP KFA3 and a naturally-occurred host defense peptide substance P (SP) to obtain peptides retaining the high antibacterial activity of KFA3 and the immunomodulatory activity and low cytotoxicity of SP. METHODS Two repeats of KFA and different C terminal fragments of SP were hybridized, generating a series of novel AMPs (KFSP1-8). The antibacterial activities, host cell toxicity and immunomodulation were measured. The antibacterial mechanisms were investigated. RESULTS Hybrid peptides KFSP1-4 exerted substantial antibacterial activities against Gram-negative bacteria of standard strains and clinical drug-resistant isolates including E.coli, A.baumannii and P.aeruginosa, while showing little toxicity towards host cells. Compared with KFA3, moderate reduction in α-helix content and the interruption in α-helix continuality were indicated in CD spectra analysis and secondary-structure simulation in these peptides. Membrane permeabilization combined with time-kill studies and FITC-labeled imaging, indicated a selective membrane interaction of KFSP1 with bacteria cell membranes. By specially activating NK1 receptor, the hybrid peptides kept the ability of SP to induce intracellular calcium release and ERK1/2 phosphorylation, but unable to stimulate NF-κB phosphorylation. KFSP1 facilitated the survival of mouse macrophage RAW264.7, directly interacting with LPS and inhibiting the LPS-induced NF-κB phosphorylation and TNF-α expression. CONCLUSION Hybridization is a useful strategy to bond the advantages of different peptides. KFSP1 and its analogs are worth of advanced efforts to explore their potential applications as novel antimicrobial agents.
Collapse
Affiliation(s)
- Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Tianxiong Zhou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjie Xu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Xiaomin Guo
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Hui Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Xiaowei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Mingning Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Jingyi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Lingyun Mou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
29
|
Park HJ, Kim S, Jeon EJ, Song IT, Lee H, Son Y, Hong HS, Cho SW. PEGylated substance P augments therapeutic angiogenesis in diabetic critical limb ischemia. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Lee YS, Kang SU, Lee MH, Kim HJ, Han CH, Won HR, Park YU, Kim CH. GnRH impairs diabetic wound healing through enhanced NETosis. Cell Mol Immunol 2019; 17:856-864. [PMID: 31217526 DOI: 10.1038/s41423-019-0252-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/02/2019] [Indexed: 11/09/2022] Open
Abstract
It has been reported that neutrophil extracellular traps (NETs) impair wound healing in diabetes and that inhibiting NET generation (NETosis) improves wound healing in diabetic mice. Gonadotropin-releasing hormone (GnRH) agonists are associated with a greater risk of diabetes. However, the role of GnRH in diabetic wound healing is unclear. We determined whether GnRH-promoted NETosis and induced more severe and delayed diabetic wound healing. A mouse model of diabetes was established using five injections with streptozotocin. Mice with blood glucose levels >250 mg/dL were then used in the experiments. GnRH agonist treatment induced delayed wound healing and increased NETosis at the skin wounds of diabetic mice. In contrast, GnRH antagonist treatment inhibited GnRH agonist-induced delayed wound healing. The expression of NETosis markers PAD4 and citrullinated histone H3 were increased in the GnRH-treated diabetic skin wounds in diabetic mice and patients. In vitro experiments also showed that neutrophils expressed a GnRH receptor and that GnRH agonist treatment increased NETosis markers and promoted phorbol myristate acetate (PMA)-induced NETosis in mouse and human neutrophils. Furthermore, GnRH antagonist treatment suppressed the expression of NETosis markers and PMA-induced NETosis, which were increased by GnRH treatment. These results indicated that GnRH-promoted NETosis and that increased NETosis induced delayed wound healing in diabetic skin wounds. Thus, inhibition of GnRH might be a novel treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Myung-Hoon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Haeng-Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chang-Hak Han
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Uk Park
- Department of Orthopedic Surgery, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
31
|
Subclinical lipopolysaccharide from Salmonella Enteritidis induces neuropeptide dysregulation in the spinal cord and the dorsal root ganglia. BMC Neurosci 2019; 20:18. [PMID: 31023212 PMCID: PMC6485123 DOI: 10.1186/s12868-019-0502-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Despite increasing evidence that lipopolysaccharide (LPS) affects the biological active substances of dorsal root ganglia (DRG) we have limited knowledge of the influence of a single low dose of LPS, which does not result in any clinical symptoms of disease (subclinical LPS) on neuropeptides connected with the sensory pathway. Accordingly, in this work, we investigated the influence of subclinical LPS from Salmonella Enteritidis on selected neuropeptides: substance P (SP), galanin (GAL), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and somatostatin (SOM) in the cervical, thoracic, lumbar and sacral regions of the DRG and spinal cord. Methods This study was performed on immature female pigs of the Pietrain × Duroc breed. Seven days after the intravenous injection of saline solution for control animals (n = 5) and 5 μg/kg b.w. LPS from S. Enteritidis for the experimental group (n = 5), the DRG and the spinal cord were collected to extract the neuropeptides using solid-phase extraction technology. Results Our results demonstrated that subclinical LPS in DRG was able to change the levels of all studied neuropeptides except SOM, whereas in the spinal cord it down-regulated all studied neuropeptides in the sacral spinal cord, maintaining the concentration of all studied neuropeptides in other regions similar to that observed in the control animals. The significant differences in the intensity and character of observed changes between particular regions of the DRG suggest that the exact functions of the studied neuropeptides and mechanisms of responses to subclinical LPS action depend on specific characteristics and functions of each examination region of DRG. Conclusions The mechanisms of observed changes are not fully understood and require further study of the molecular interactions between subclinical LPS from S. Enteritidis and neuronal and non-neuronal cells of DRG and spinal cord. The peripheral and central pain pathways must be analysed with the aspect of unknown long-term consequences of the influence of subclinical LPS from S. Enteritidis on neuropeptides in the spinal cord and the dorsal root ganglia.
Collapse
|
32
|
Liu J, Yan L, Yang W, Lan Y, Zhu Q, Xu H, Zheng C, Guo R. Controlled-release neurotensin-loaded silk fibroin dressings improve wound healing in diabetic rat model. Bioact Mater 2019; 4:151-159. [PMID: 30989151 PMCID: PMC6447858 DOI: 10.1016/j.bioactmat.2019.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic foot ulcers (DFU), which may lead to lower extremity amputation, is one of the severe and chronic complications of diabetic mellitus. This study aims to develop, and use dressings based on Silk fibroin (SF) as the scaffold material, gelatin microspheres (GMs) as the carrier for the neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing and NT as accelerate wound healing drug to treat DFU. We evaluated the wound healing processes and neo-tissue formation in rat diabetic model by macroscopic observation, histological observation (H&E staining and Masson's trichrome staining) and immunofluorescence analysis at 3, 7, 14, 21 and 28 post-operation days. Our results show that the NT/GMs/SF group performance the best not only in macroscopic healing and less scars in 28 post-operation days, but also in fibroblast accumulation in tissue granulation, collagen expression and deposition at the wound site. From release profiles, we can know the GMs are a good carrier for control release drugs. The SEM results shows that the NT/GMs/SF dressings have an average pore size are 40–80 μm and a porosity of ∼85%, this pore size is suit for wound healing regeneration. These results suggest that the NT/GMs/SF dressings may work as an effective support for control release NT to promote DFU wound healing. This study aims to develop, and use dressings based on Silk fibroin (SF) as the scaffold material, gelatin microspheres (GMs) as the carrier for the Neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing and NT as accelerate wound healing drug to treat DFU. The NT/GMs/SF dressings stimulated fibroblast accumulation in tissue granulation, collagen expression and deposition at the wound site, which lead to the production of a more organized collagen matrix. This treatment effectively accelerating wound regeneration and re-epithelialization.
Collapse
Affiliation(s)
- Jianghui Liu
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Liwei Yan
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yong Lan
- Beogene Biotech (Guangzhou) CO., LTD, Guangzhou, 510663, China
| | - Qiyu Zhu
- Beogene Biotech (Guangzhou) CO., LTD, Guangzhou, 510663, China
| | - Hongjie Xu
- Beogene Biotech (Guangzhou) CO., LTD, Guangzhou, 510663, China
| | - Canbin Zheng
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
33
|
Brishkoska-Boshkovski V, Kondova-Topuzovska I, Damevska K, Petrov A. Comorbidities as Risk Factors for Acute and Recurrent Erysipelas. Open Access Maced J Med Sci 2019; 7:937-942. [PMID: 30976336 PMCID: PMC6454161 DOI: 10.3889/oamjms.2019.214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND: Erysipelas is a common infectious skin disease. A typical feature of erysipelas, especially on the lower limbs, is the tendency to reoccur and the study aimed to define the comorbidities associated with it. AIM: We aimed to investigate systemic and local comorbidities in patients diagnosed with erysipelas on the lower limbs. MATERIAL AND METHODS: We conducted a retrospectively-prospective, population-based cohort study which included all patients diagnosed with erysipelas on the lower limbs, during two years. Patients were divided into two groups: patients with first episode and patients with recurrent erysipelas. These two groups were compared, with particular emphasis on systemic and local comorbidities. RESULTS: The study included 313 patients, of which 187 with the first episode of erysipelas and 126 with a recurrent. Regarding the analyzed systemic risk factors, the recurrent erysipelas was significantly associated with obesity (p < 0.0001), insulin dependent diabetes mellitus (p = 0.0015), history of malignant disease (p = 0.02) and tonsillectomy (p = 0.000001). For a p-value < 0.0001, significantly more frequent finding of peripheral arterial occlusive disease, chronic oedema/lymphoedema, fungal infections of the affected leg and chronic ulcer was confirmed in recurrent erysipelas. Neuropathy had 23% of the recurrent cases and 8.6% in patients without recurrence, and the difference was found to be significant for p = 0.0003. The only dissection of the lymph nodes was found more frequently in recurrent erysipelas (p = 0.017), but no associations with other analysed local surgery on the affected leg. Patients with recurrent erysipelas had ipsilateral coexisting dermatitis p = 0.00003 significantly more frequent. Minor trauma often preceded the first episode of erysipelas p = 0.005. CONCLUSION: Identification and treatment of modifiable risk factors are expected to reduce the risk of a subsequent episode of erysipelas on the lower limbs.
Collapse
Affiliation(s)
| | - Irena Kondova-Topuzovska
- University Infectious Diseases Clinic, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje Republic of Macedonia
| | - Katerina Damevska
- University Clinic of Dermatology, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje Republic of Macedonia
| | - Andrej Petrov
- Acibadem Sistina Hospital, Skopje, Republic of Macedonia.,Faculty of Medical Sciences, University Goce Delchev, Shtip, Republic of Macedonia
| |
Collapse
|
34
|
Acellular Flowable Matrix in the Treatment of Tunneled or Cavity Ulcers in Diabetic Feet: A Preliminary Report. Adv Skin Wound Care 2019; 31:270-275. [PMID: 29782416 DOI: 10.1097/01.asw.0000531350.08738.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The authors aimed to explore the feasibility and safety of an advanced, acellular, flowable wound matrix (FWM) in patients with diabetes-related cavity or tunnel lesions involving deep structures. METHODS Patients with diabetic foot ulcers were hospitalized at the General and Geriatric Surgery Unit of the University of Campania in Naples, Italy, between March 2015 and December 2015. Twenty-three patients with tunneled or cavity ulcers were treated. The lesions were filled with the FWM. Surgical wound edges were either approximated with stitches or left to heal by secondary intention. MAIN RESULTS After 6 weeks, 78.26% of patients completely healed after a single application of the FWM. The healing time for all healed wounds was 30.85 ± 12.62 days, or 26.11 ± 5.43 days in patients for whom wound edges were approximated by stitches, and 57.66 ± 3.05 days in the patients who healed by secondary intention (P = .01). Permanent tissue regeneration was observed in a high percentage of patients, and shorter healing time was achieved. Study authors observed a low rate of complications such as major amputation and increased hospitalization. CONCLUSIONS The FWM seems ideal for tunneled and cavity ulcers with irregular geometry. This new porous matrix allows closure of the lesion while reducing healing time and demolition surgery.
Collapse
|
35
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Abdullah BJ, Atasoy N, Omer AK. Evaluate the effects of platelet rich plasma (PRP) and zinc oxide ointment on skin wound healing. Ann Med Surg (Lond) 2018; 37:30-37. [PMID: 30581567 PMCID: PMC6297907 DOI: 10.1016/j.amsu.2018.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Abstract
In this study efficiency of platelet rich plasma (PRP) and zinc oxide on full thickness wounds created on rabbits was researched. This study conducted on 24 New Zealand rabbits divided 2 groups. A circular of 1.5 × 1.5 cm (2.5 cm2) full thickness skin wound was created under the general anesthesia. 1 ml PRP (5.503106/mm3) was applied to the one of the wounds subcutaneously. To the other wound 1 mm3 zinc oxide ointment was applied once a day during the study. Wound contraction rates were measured, biopsy materials were collected and evaluated macroscopically and histopathologically postoperatively 3rd, 7th and 15th days. As a result it is determined that PRP and zinc oxide accelerated wound contraction rates between the groups were determined as 3rd day p = 0.007, 7th day p = 0.0002 and 15th day p = 0.002. Wound healing is inborn to all species and is the biologic procedure by which the body repairs itself after injury, whichever it be traumatic, complicated, infected and/or surgical. Platelet rich plasma (PRP) gel is measured to be progressive wound treatment for acute and chronic wounds. PRP gel has mainly been applied to improve or accelerate healing of wound. Zinc is a vital trace element in the human body and its significance in wellbeing and infection is valued. Zinc deficiency of genetic or dietary cause can prompt neurotic, pathologic and physiological changes and deferred wound healing. Topical treatment with autologous PRP can be used as clinical therapy and can enhance tissue healing and enhanced angiogenesis compared to zinc oxide treatments.
Collapse
Affiliation(s)
- Barham Jalal Abdullah
- Sulaimani Veterinary Directorate, Veterinary Quarantine, Sulaimani International Airport, Iraq
| | - Nazmi Atasoy
- University of Van Yȕzȕncȕ Yıl, Veterinary College, Department of Surgery, Van, Turkey
| | - Abdullah Khalid Omer
- Sulaimani Veterinary Directorate, Veterinary Quarantine, Bashmakh International Border, Iraq
| |
Collapse
|
37
|
Doğanay Yıldız E, Arslan H, Köseoğlu S, Arabacı T, Yıldız DA, Savran L. The effect of photobiomodulation on total amount of substance P in gingival crevicular fluid: placebo-controlled randomized clinical trial. Lasers Med Sci 2018; 34:517-523. [DOI: 10.1007/s10103-018-2625-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
|
38
|
Nazir MA, AlGhamdi L, AlKadi M, AlBeajan N, AlRashoudi L, AlHussan M. The burden of Diabetes, Its Oral Complications and Their Prevention and Management. Open Access Maced J Med Sci 2018; 6:1545-1553. [PMID: 30159091 PMCID: PMC6108795 DOI: 10.3889/oamjms.2018.294] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM), chronic disease, is a public health problem that affects 8.5% adult population worldwide. The number of adults with DM has risen sharply from 108 million in 1980 to 422 million in 2014. In 2012, 1.5 million individuals died because of DM and an additional 2.2 million deaths occurred because of high blood glucose level resulting in cardiovascular and other systemic diseases. DM brings huge economic loss to patients, their families, and healthcare systems. Globally, the cost of DM was US$1•31 trillion in 2015. AIM This review article utilised the prevalence data of diabetes mellitus from the World Health Organization and International Diabetes Federation to provide a comprehensive picture of the disease in different parts of the world. METHODS Electronic databases such as Google Scholar, Medline via PubMed, Scopus, and Web of Science were used to search the literature. The library resources of Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia were used to retrieve studies on the topics of the present review. RESULTS Systemic complications of DM include heart attack, kidney disease, limb loss, blindness, and peripheral nerve damage. More than 90% of diabetic patients were found to have oral manifestations. It is known that DM severely damages oral tissues causing periodontal disease, tooth loss, xerostomia, caries, burning mouth disorder, taste and salivary gland dysfunction, delayed wound healing, lichen planus, geographic tongue, and candidiasis. The evidence is mounting about a strong bidirectional relationship between DM and periodontal disease. Unfortunately, many diabetic patients are unaware of the association between DM and oral health, and only a small percentage of them visit the dentist for routine dental check-ups. Changes in lifestyles (control of blood glucose levels and self-care practices), regular dental check-ups with emphasis on periodontal assessment, and reinforcement of oral health instructions can effectively prevent oral complications of DM. Scaling and root planning are effective in improving glycemic control among diabetic patients. CONCLUSION Dental professionals should be part of the multidisciplinary team that helps individuals with diabetes.
Collapse
Affiliation(s)
- Muhammad Ashraf Nazir
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lamiah AlGhamdi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mariam AlKadi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noura AlBeajan
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Latifah AlRashoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mai AlHussan
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
39
|
Mouritzen MV, Abourayale S, Ejaz R, Ardon CB, Carvalho E, Dalgaard LT, Roursgaard M, Jenssen H. Neurotensin, substance P, and insulin enhance cell migration. J Pept Sci 2018; 24:e3093. [PMID: 29938867 DOI: 10.1002/psc.3093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022]
Abstract
Neurotensin, substance P, and insulin have been demonstrated to improve wound healing in vivo. However, the mechanism behind their effect is still not fully understood. This study investigates the effects leading to enhanced scratch closure by these peptides in vitro. The skin keratinocyte cell line, HaCaT, was used to test scratch closure effects of the peptides and alterations of cytokine levels. HUVEC cells were used to test the angiogenic effect of the peptides. Furthermore, clinical isolates of Staphylococcus lugdunensis were used to examine the potential antimicrobial activity of each peptide. Our results demonstrate that neurotensin, substance P, and insulin had significant migratory effects in scratch assays were neurotensin had the lowest effect. Furthermore, we investigated use of the peptides in combination. When substance P was used in combination with neurotensin, the cell migratory capacity was decreased, and the peptides showed a negative correlation (r = -0.298, P < .001). Neurotensin and insulin significantly increased levels of monocyte chemoattractant protein-1 (P < .001) secreted from white blood cells, whereas substance P showed a tendency. Interestingly, neurotensin increased the level of monocyte chemoattractant protein-1 significantly compared to substance P (P < .01). Additionally, the peptides decreased TNFα mRNA levels (P < .001) in HaCaT cells, whereas only neurotensin and insulin decreased IL-8 mRNA (P < .001) but had no significant effect on IL-6 mRNA levels. Surprisingly, substance P increased IL-6 mRNA 9-fold (P < .001). Furthermore, we demonstrate that the peptides increased angiogenesis in the HUVEC cells (P < .001). Finally, S. lugdunensis isolates were not susceptible to the peptides. We demonstrate that the peptides worked differently on HaCaT cells, but substance P acted differently than neurotensin on cytokine levels expression as well as on migration of HaCaT cells. On the contrary, neurotensin and insulin worked similarly. All of these aspects are crucial for proper wound healing, and the results suggest multiple mechanisms for wound-healing properties of these peptides.
Collapse
Affiliation(s)
| | - Sali Abourayale
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rooshanie Ejaz
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Christine B Ardon
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
40
|
Thermoresponsive curcumin/DsiRNA nanoparticle gels for the treatment of diabetic wounds: synthesis and drug release. Ther Deliv 2018; 8:137-150. [PMID: 28145827 DOI: 10.4155/tde-2016-0075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Chitosan (CS) has been extensively studied as drug delivery systems for wound healing. Results/methodology: CS nanoparticles were loaded with curcumin (Cur) and DsiRNA against prostaglandin transporter gene and they were incorporated into 20 and 25% w/v Pluronic F-127. The gels were later analyzed for their rheology, gelation temperature (Tgel), morphology, drug incorporation and in vitro drug release. The particle size was in the range of 231 ± 17-320 ± 20 nm, depending on CS concentration. The gels had Tgel of 23-28°C and exhibited sustained drug release with high accumulated amount of drugs over 48 h. CONCLUSION A thermo-sensitive gel containing Cur/DsiRNA CS nanoparticles was successfully developed and has a great potential to be further developed.
Collapse
|
41
|
Dam DHM, Jelsma SA, Paller AS. Impaired Wound Healing in Diabetic Ulcers: Accelerated Healing Through Depletion of Ganglioside. WOUND HEALING 2018:167-175. [DOI: 10.1002/9781119282518.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Herskovitz I, MacQuhae FE, Dickerson JE, Cargill DI, Slade HB, Margolis DJ, Kirsner RS. Opioids' Effect on Healing of Venous Leg Ulcers. J Invest Dermatol 2017; 137:2646-2649. [PMID: 28842329 DOI: 10.1016/j.jid.2017.07.837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Ingrid Herskovitz
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Flor E MacQuhae
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jaime E Dickerson
- Smith and Nephew Biotherapeutics, Fort Worth, Texas, USA; Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | - Herbert B Slade
- Smith and Nephew Biotherapeutics, Fort Worth, Texas, USA; Department of Pediatrics, University of North Texas Health Science Center, Fort Worth, Texas
| | - David J Margolis
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert S Kirsner
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
44
|
Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats. J Surg Res 2017; 212:130-145. [DOI: 10.1016/j.jss.2017.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
|
45
|
Pichu S, Patel BM, Apparsundaram S, Goyal RK. Role of biomarkers in predicting diabetes complications with special reference to diabetic foot ulcers. Biomark Med 2017; 11:377-388. [DOI: 10.2217/bmm-2016-0205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcer (DFU) is one of the major complications of diabetes and about 1% of people with diabetes have to go for lower limb amputation. With better understanding of the pathological basis of DFU, number of biomarkers like atrial natriuretic peptides, galectin-3, and cardiac troponins for diabetic cardiomyopathy, cystatin C for diabetics nephropathy and C-reactive protein for infection and procalcitonin could aid in early and noninvasive diagnosis especially when clinical signs are misleading. Predictive role of novel biomarkers in primary prevention however, requires additional studies considering sex, age and multiple complications in DFU. The current review provides an insight about the novel and emerging biomarkers of diabetes and its complications with special reference to DFUs.
Collapse
Affiliation(s)
- Sivakamasundari Pichu
- V Clinbio labs (P) Ltd, Sri Ramachandra University, Porur, Chennai, India
- AU-KBC, Anna University – MIT campus, Chromepet, Chennai – 44, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad – 382481, India
| | | | - Ramesh K Goyal
- V Clinbio labs (P) Ltd, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
46
|
Girard D, Laverdet B, Buhé V, Trouillas M, Ghazi K, Alexaline MM, Egles C, Misery L, Coulomb B, Lataillade JJ, Berthod F, Desmoulière A. Biotechnological Management of Skin Burn Injuries: Challenges and Perspectives in Wound Healing and Sensory Recovery. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:59-82. [DOI: 10.1089/ten.teb.2016.0195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dorothée Girard
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Betty Laverdet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Virginie Buhé
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Marina Trouillas
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Kamélia Ghazi
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Maïa M. Alexaline
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Christophe Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Laurent Misery
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Bernard Coulomb
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Jean-Jacques Lataillade
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - François Berthod
- Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec and Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
47
|
Abu-Ashour W, Twells L, Valcour J, Randell A, Donnan J, Howse P, Gamble JM. The association between diabetes mellitus and incident infections: a systematic review and meta-analysis of observational studies. BMJ Open Diabetes Res Care 2017; 5:e000336. [PMID: 28761647 PMCID: PMC5530269 DOI: 10.1136/bmjdrc-2016-000336] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/03/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To quantify the association between diabetes and the risk of incident infections by conducting a systematic review and meta-analysis. RESEARCH DESIGN AND METHODS Two reviewers independently screened articles identified from PubMed, EMBASE, Cochrane Library, IPA, and Web of Science databases. Cohort studies (CS) or case-control studies (CCS) evaluating the incidence of infections in adults with diabetes were included. Infections were classified as: skin and soft tissue, respiratory, blood, genitourinary, head and neck, gastrointestinal, bone, viral, and non-specified infections. Study quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Summary crude and adjusted OR with 95% CIs were calculated using random effects models, stratified by study design. Heterogeneity was measured using the I2statistic and explored using subgroup analyses. RESULTS A total of 345 (243 CS and 102 CCS) studies were included. Combining adjusted results from all CS, diabetes was associated with an increased incidence of skin (OR 1.94, 95% CI 1.78 to 2.12), respiratory (OR 1.35, 95% CI 1.28 to 1.43), blood (OR 1.72, 95% CI 1.48 to 2.00), genitourinary (OR 1.61, 95% CI 1.42 to 1.82), head and neck (OR 1.17, 95% CI 1.13 to 1.22), gastrointestinal (OR 1.48, 95% CI 1.40 to 1.57), viral (OR 1.29, 95% CI 1.13 to 1.46), and non-specified (OR 1.84, 95% CI 1.66 to 2.04) infections. A stronger association was observed among CCS: skin (OR 2.64, 95% CI 2.20 to 3.17), respiratory (OR 1.62, 95% CI 1.37 to 1.92), blood (OR 2.40, 95% CI 1.68 to 3.42), genitourinary (OR 2.59, 95% CI 1.60 to 4.17), gastrointestinal (OR 3.61, 95% CI 2.94 to 4.43), and non-specified (OR 3.53, 95% CI 2.62 to 4.75). CONCLUSION Diabetes is associated with an increased risk of multiple types of infections. A high degree of heterogeneity was observed; however, subgroup analysis decreased the amount of heterogeneity within most groups. Results were generally consistent across types of infections.
Collapse
Affiliation(s)
- Waseem Abu-Ashour
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Laurie Twells
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - James Valcour
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Amy Randell
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jennifer Donnan
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Patricia Howse
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - John-Michael Gamble
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
48
|
Priyadarsini S, Sarker-Nag A, Rowsey TG, Ma JX, Karamichos D. Establishment of a 3D In Vitro Model to Accelerate the Development of Human Therapies against Corneal Diabetes. PLoS One 2016; 11:e0168845. [PMID: 28005998 PMCID: PMC5179241 DOI: 10.1371/journal.pone.0168845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To establish an in vitro model that would mirror the in vivo corneal stromal environment in diabetes (DM) patients. METHODS Human corneal fibroblasts from Healthy (HCFs), Type 1DM (T1DM) and Type 2DM (T2DM) donors were isolated and cultured for 4 weeks with Vitamin C stimulation in order to allow for extracellular matrix (ECM) secretion and assembly. RESULTS Our data indicated altered cellular morphology, increased cellular migration, increased ECM assembly, and severe mitochondrial damage in both T1DM and T2DMs when compared to HCFs. Furthermore, we found significant downregulation of Collagen I and Collagen V expression in both T1DM and T2DMs. Furthermore, a significant up regulation of fibrotic markers was seen, including α-smooth muscle actin in T2DM and Collagen III in both T1DM and T2DMs. Metabolic analysis suggested impaired Glycolysis and Tricarboxylic acid cycle (TCA) pathway. CONCLUSION DM has significant effects on physiological and clinical aspects of the human cornea. The benefits in developing and fully characterizing our 3D in vitro model are enormous and might provide clues for the development of novel therapeutics.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Akhee Sarker-Nag
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Tyler G. Rowsey
- Department of Biology and Chemistry, East Central University, Ada, Oklahoma, United States of America
| | - Jian-Xing Ma
- Department of Physiology Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
49
|
The Impact of Diabetes Mellitus and Obesity on Artificial Urinary Sphincter Outcomes in Men. Urology 2016; 98:176-182. [DOI: 10.1016/j.urology.2016.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022]
|
50
|
Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability 2016; 25:229-236. [DOI: 10.1016/j.jtv.2016.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/10/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
|