1
|
Nguyen TM, Jimenez J, Rendin LE, Müller C, Westergren-Thorsson G, Deprest J, Toelen J. The proportion of alveolar type 1 cells decreases in murine hypoplastic congenital diaphragmatic hernia lungs. PLoS One 2019; 14:e0214793. [PMID: 30995255 PMCID: PMC6469843 DOI: 10.1371/journal.pone.0214793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pulmonary hypoplasia, characterized by incomplete alveolar development, remains a major cause of mortality and morbidity in congenital diaphragmatic hernia. Recently demonstrated to differentiate from a common bipotent progenitor during development, the two cell types that line the alveoli type 1 and type 2 alveolar cells have shown to alter their relative ratio in congenital diaphragmatic hernia lungs. OBJECTIVE We used the nitrofen/bisdiamine mouse model to induce congenital diaphragmatic hernia and accurately assess the status of alveolar epithelial cell differentiation in relation to the common bipotent progenitors. STUDY DESIGN Pregnant Swiss mice were gavage-fed with nitrofen/bisdiamine or vehicle at embryonic day 8.5. The administered dose was optimized by assessing the survival, congenital diaphragmatic hernia and facial abnormality rates of the exposed mouse pups. NanoCT was performed on embryonic day 11.5 and 16.5 to assess the embryonic and early canalicular stages of lung development. At embryonic day 17.5 corresponding to late canalicular stage, congenital diaphragmatic hernia lungs were characterized by measuring the lung weight/body weight ratio, morphometry, epithelial cell marker gene expression levels and alveolar cell type quantification. RESULTS Nitrofen/bisdiamine associated congenital diaphragmatic hernia lungs showed delayed development, hypoplasia with morphologic immaturity and thickened alveolar walls. Expression levels of distal epithelial progenitor marker Id2 increased, alveolar type 1 cell markers Pdpn and Hopx decreased, while type 2 cell markers pro-SPC and Muc1 remained constant during the canalicular stage. The number of Pdpn+ type 1 alveolar cells also decreased in congenital diaphragmatic hernia lungs. CONCLUSION The mouse nitrofen/bisdiamine model is a potential model allowing the study of congenital diaphragmatic hernia lung development from early stages using a wide array of methods. Based on this model, the alveolar epithelium showed a decrease in the number of alveolar type 1 cell in congenital diaphragmatic hernia lungs while type 2 cell population remains unchanged.
Collapse
Affiliation(s)
- Tram Mai Nguyen
- Department of Development and Regeneration, Division Organ Systems, KU Leuven, Leuven, Belgium
| | - Julio Jimenez
- Department of Development and Regeneration, Division Organ Systems, KU Leuven, Leuven, Belgium
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Catharina Müller
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Jan Deprest
- Department of Development and Regeneration, Division Organ Systems, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, United Kingdom
| | - Jaan Toelen
- Department of Development and Regeneration, Division Organ Systems, KU Leuven, Leuven, Belgium.,Department of Paediatrics, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Shue E, Wu J, Schecter S, Miniati D. Aberrant pulmonary lymphatic development in the nitrofen mouse model of congenital diaphragmatic hernia. J Pediatr Surg 2013; 48:1198-204. [PMID: 23845607 PMCID: PMC3710439 DOI: 10.1016/j.jpedsurg.2013.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 02/01/2023]
Abstract
PURPOSE Many infants develop a postsurgical chylothorax after diaphragmatic hernia repair. The pathogenesis remains elusive but may be owing to dysfunctional lymphatic development. This study characterizes pulmonary lymphatic development in the nitrofen mouse model of CDH. METHODS CD1 pregnant mice were fed nitrofen/bisdiamine (N/B) or olive oil at E8.5. At E14.5 and E15.5, lung buds were categorized by phenotype: normal, N/B without CDH (N/B - CDH), or N/B with CDH (N/B+CDH). Anti-CD31 was used to localize all endothelial cells, while anti-LYVE-1 was used to identify lymphatic endothelial cells in lung buds using immunofluorescence. Differential protein expression of lymphatic-specific markers was analyzed. RESULTS Lymphatic endothelial cells localized to the mesenchyme surrounding the airway epithelium at E15.5. CD31 and LYVE-1 colocalization identified lymphatic endothelial cells. LYVE-1 expression was upregulated in N/B+CDH lung buds in comparison to N/B - CDH and normal lung buds by immunofluorescence. Western blotting shows that VEGF-D, LYVE-1, Prox-1, and VEGFR-3 expression was upregulated in N/B+CDH lung buds in comparison to N/B - CDH or control lung buds at E14.5. CONCLUSIONS Lung lymphatics are hyperplastic in N/B+CDH. Upregulation of lymphatic-specific genes suggests that lymphatic hyperplasia plays an important role in dysfunctional lung lymphatic development in the nitrofen mouse model of CDH.
Collapse
Affiliation(s)
- Eveline Shue
- Department of Surgery, Division of Pediatric Surgery and Fetal Treatment Center, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
3
|
Park J, Lai L, Samuel M, Wax D, Bruno RS, French R, Prather RS, Yang X, Tian XC. Altered gene expression profiles in the brain, kidney, and lung of one-month-old cloned pigs. Cell Reprogram 2011; 13:215-23. [PMID: 21453050 DOI: 10.1089/cell.2010.0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although numerous mammalian species have been successfully cloned by somatic cell nuclear transfer (SCNT), little is known about gene expression of cloned pigs by SCNT. In the present study, expression profiles of 1-month-old cloned pigs generated from fetal fibroblasts (n = 5) were compared to those of age-matched controls (n = 5) using a 13K oligonucleotide microarray. The brain, kidney, and lung were chosen for microarray analysis to represent tissues from endoderm, mesoderm, and ectoderm in origin. In clones, 179 and 154 genes were differentially expressed in the kidney and the lung, respectively (fold change >2, p < 0.05, false discovery rate = 0.05), whereas only seven genes were differentially expressed in the brain of clones. Functional analysis of the differentially expressed genes revealed that they were enriched in diabetic nephropathy in the kidney, delayed alveologenesis as well as downregulated MAPK signaling pathways in the lung, which was accompanied with collapsed alveoli in the histological examination of the lung. To evaluate whether the gene expression anomalies are associated with changes in DNA methylation, global concentration of the methylated cytosine was measured in lung DNA by HPLC. Clones were significantly hypermethylated (5.72%) compared to the controls (4.13%). Bisulfite-pyrosequencing analyses of the promoter regions of differentially expressed genes, MYC and Period 1 (PER1), however, did not show any differences in the degree of DNA methylation between controls and clones. Together, these findings demonstrate that cloned pigs have altered gene expression that may potentially cause organ dysfunction.
Collapse
Affiliation(s)
- Joonghoon Park
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Martínez L, Aras-López R, Lancha S, Vallejo-Cremades MT, Pederiva F, XiaoMei L, Tovar JA. Abnormal development of the enteric nervous system in rat embryos and fetuses with congenital diaphragmatic hernia. Pediatr Surg Int 2011; 27:165-73. [PMID: 21069350 DOI: 10.1007/s00383-010-2788-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIM Esophageal dilatation, gastroesophageal reflux, and intestinal obstruction have been demonstrated in CDH survivors. Abnormal esophageal and intestinal innervations were recently found in rats and babies with this disease. Our aim was to further characterize these malformations in embryos and fetal rats exposed to nitrofen. METHODS Pregnant rats received either 100 mg nitrofen or vehicle on E9.5. Fetuses were recovered at E15, E18, and E21. Sections of esophagus and small bowel were histochemically stained with acetylcholinesterase (AChE) and immunostained for PGP9.5. PGP9.5 gen protein were measured on E21 and PGP9.5 mRNA on E15, E18 and E21. Comparisons between groups were made with non-parametrics tests. RESULTS Histochemistry and immunohistochemistry showed deficient innervation in all anatomical areas studied at E15, E18, and E21, and WB confirmed this decrease in E21 fetuses. PGP9.5 messenger was decreased in nitrofen-exposed animals on E18 (esophagus) or E15 (small bowel), and increased on E21 in the esophagus and E18 in small bowel. CONCLUSIONS Development of the enteric nervous system of the esophagus, stomach, and small bowel is deficient in rat embryos and fetuses exposed to nitrofen. These anomalies could account in part for the long-term gastrointestinal morbidity observed in CDH survivors.
Collapse
Affiliation(s)
- Leopoldo Martínez
- Department of Pediatric Surgery, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
5
|
Burgos CM, Uggla AR, Fagerström-Billai F, Eklöf AC, Frenckner B, Nord M. Gene expression analysis in hypoplastic lungs in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2010; 45:1445-54. [PMID: 20638522 DOI: 10.1016/j.jpedsurg.2009.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pulmonary hypoplasia and persistent pulmonary hypertension are the main causes of mortality and morbidity in newborns with congenital diaphragmatic hernia (CDH). Nitrofen is well known to induce CDH and lung hypoplasia in a rat model, but the mechanism remains unknown. To increase the understanding of the underlying pathogenesis of CDH, we performed a global gene expression analysis using microarray technology. METHODS Pregnant rats were given 100 mg nitrofen on gestational day 9.5 to create CDH. On day 21, fetuses after nitrofen administration and control fetuses were removed; and lungs were harvested. Global gene expression analysis was performed using Affymetrix Platform and the RAE 230 set arrays. For validation of microarray data, we performed real-time polymerase chain reaction and Western blot analysis. RESULTS Significantly decreased genes after nitrofen administration included several growth factors and growth factors receptors involved in lung development, transcription factors, water and ion channels, and genes involved in angiogenesis and extracellular matrix. These results could be confirmed with real-time polymerase chain reaction and protein expression studies. CONCLUSIONS The pathogenesis of lung hypoplasia and CDH in the nitrofen model includes alteration at a molecular level of several pathways involved in lung development. The complexity of the nitrofen mechanism of action reminds of human CDH; and the picture is consistent with lung hypoplasia and vascular disease, both important contributors to the high mortality and morbidity in CDH. Increased understanding of the molecular mechanisms that control lung growth may be the key to develop novel therapeutic techniques to stimulate pre- and postnatal lung growth.
Collapse
Affiliation(s)
- Carmen Mesas Burgos
- Department of Woman and Child Health, Division for Peadiatric Surgery, Karolinska Institutet Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
6
|
Volpe MV, Wang KTW, Nielsen HC, Chinoy MR. Unique spatial and cellular expression patterns of Hoxa5, Hoxb4, and Hoxb6 proteins in normal developing murine lung are modified in pulmonary hypoplasia. ACTA ACUST UNITED AC 2008; 82:571-84. [PMID: 18553509 DOI: 10.1002/bdra.20481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hox transcription factors modulate signaling pathways controlling organ morphogenesis and maintain cell fate and differentiation in adults. Retinoid signaling, key in regulating Hox expression, is altered in pulmonary hypoplasia. Information on pattern-specific expression of Hox proteins in normal lung development and in pulmonary hypoplasia is minimal. Our objective was to determine how pulmonary hypoplasia alters temporal, spatial, and cellular expression of Hoxa5, Hoxb4, and Hoxb6 proteins compared to normal lung development. METHODS Temporal, spatial, and cellular Hoxa5, Hoxb4, and Hoxb6 expression was studied in normal (untreated) and nitrofen-induced hypoplastic (NT-PH) lungs from gestational day 13.5, 16, and 19 fetuses and neonates using Western blot and immunohistochemistry. RESULTS Modification of protein levels and spatial and cellular Hox expression patterns in NT-PH lungs was consistent with delayed lung development. Distinct protein isoforms were detected for each Hox protein. Expression levels of the Hoxa5 and Hoxb6 protein isoforms changed with development and were altered further in NT-PH lungs. Compared to normal lungs, GD19 and neonatal NT-PH lungs had decreased Hoxb6 and increased Hoxa5 and Hoxb4. Hoxa5 cellular localization changed from mesenchyme to epithelia earlier in normal lungs. Hoxb4 was expressed in mesenchyme and epithelial cells throughout development. Hoxb6 remained mainly in mesenchymal cells around distal airways. CONCLUSIONS Unique spatial and cellular expression of Hoxa5, Hoxb4, and Hoxb6 participates in branching morphogenesis and terminal sac formation. Altered Hox protein temporal and cellular balance of expression either contributes to pulmonary hypoplasia or functions as a compensatory mechanism attempting to correct abnormal lung development and maturation in this condition.
Collapse
Affiliation(s)
- MaryAnn Vitoria Volpe
- Div. of Newborn Medicine, Department of Pediatrics, Tufts Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
AIM This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. METHODS The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. RESULTS The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. CONCLUSIONS The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/physiopathology
- Abnormalities, Multiple/surgery
- Blood Vessels/abnormalities
- Branchial Region/abnormalities
- Cardiovascular Abnormalities/embryology
- Cardiovascular Abnormalities/physiopathology
- Cell Lineage
- Cell Movement
- Child
- Child, Preschool
- Enteric Nervous System/abnormalities
- Esophageal Atresia/embryology
- Esophageal Atresia/physiopathology
- Esophageal Atresia/surgery
- Face/abnormalities
- Genes, Homeobox
- Hedgehog Proteins/physiology
- Hernia, Diaphragmatic/embryology
- Hernia, Diaphragmatic/physiopathology
- Hernia, Diaphragmatic/surgery
- Hernias, Diaphragmatic, Congenital
- Homeodomain Proteins/physiology
- Humans
- Infant
- Infant, Newborn
- Neoplasms/etiology
- Neural Crest/physiopathology
- Patched Receptors
- Pigmentation Disorders/etiology
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled/physiology
- Receptors, Retinoic Acid/physiology
- Signal Transduction
- Smoothened Receptor
- Syndrome
- Transcription Factors/physiology
- Tretinoin/physiology
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Juan A Tovar
- Departamento de Cirugía Pediátrica, Hospital Universitario La Paz, 28046 Madrid, Spain.
| |
Collapse
|
8
|
Mandeville I, Aubin J, LeBlanc M, Lalancette-Hébert M, Janelle MF, Tremblay GM, Jeannotte L. Impact of the loss of Hoxa5 function on lung alveogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1312-27. [PMID: 17003488 PMCID: PMC1698857 DOI: 10.2353/ajpath.2006.051333] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The involvement of genes controlling embryonic processes in the etiology of diseases often escapes attention because of the focus given to their inherent developmental role. Hoxa5 belongs to the Hox gene family encoding transcription factors known for their role in skeletal patterning. Hoxa5 is required for embryonic respiratory tract morphogenesis. We now show that the loss of Hoxa5 function has severe repercussions on postnatal lung development. Hoxa5-/- lungs present an emphysema-like morphology because of impaired alveogenesis. Chronic inflammation characteristics, including goblet cell hyperplasia, mucus hypersecretion, and recruitment of inflammatory cells, were also observed. Altered cell specification during lung morphogenesis triggered goblet cell anomalies. In addition, the defective motility of alveolar myofibroblast precursors in the embryonic lung led to the mispositioning of the alveolar myofibroblasts and to abnormal elastin deposition postnatally. Both goblet cell hyperplasia and elastic fiber abnormalities contributed to the chronic physiopathological features of Hoxa5-/- lungs. They constituted an attractive stimulus to recruit activated macrophages that in turn generated a positive feedback loop that perpetuated macrophage accumulation in the lung. The present work corroborates the notion that altered Hox gene expression may predispose to lung pathologies.
Collapse
Affiliation(s)
- Isabel Mandeville
- Centre de Recherche de L'Hôtel-Dieu de Québec, 9, rue McMahon, Québec, QC, Canada, G1R 2J6
| | | | | | | | | | | | | |
Collapse
|
9
|
Danzer E, Robinson LE, Davey MG, Schwarz U, Volpe M, Adzick NS, Flake AW, Hedrick HL. Tracheal occlusion in fetal rats alters expression of mesenchymal nuclear transcription factors without affecting surfactant protein expression. J Pediatr Surg 2006; 41:774-80. [PMID: 16567192 DOI: 10.1016/j.jpedsurg.2006.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND/PURPOSE Mesenchymal nuclear transcription factors (MNTF) are involved in lung development and maturation and regulate surfactant protein (SP) expression. Prolonged (>2 weeks) fetal tracheal occlusion (TO) has been shown to accelerate lung growth and inhibit pulmonary surfactant synthesis. The effects of TO on SP expression and MNTF, however, have not been formally assessed. The objectives of this study were to evaluate the effects of short-term (3 days) TO on normal lung growth and protein expression of pulmonary MNTF involved in SP synthesis. METHODS At E19 (term, 22 days), 2 fetuses per time-dated Sprague-Dawley rats underwent either TO (n = 23) or a sham (n = 22) operation. Lungs were harvested 72 hours post surgery. Pulmonary SP-A; SP-B; SP-C messenger RNA (mRNA) expression; and SP-A and SP-B, Hoxb5, thyroid transcription factor 1, and retinoic X receptor-alpha protein expression were analyzed. RESULTS Lung weight was significantly increased by TO (TO 0.32 +/- 0.02g vs SHAM 0.14 +/- 0.01 g; P < .001), resulting in 123% increase of the lung-to-body-weight ratio. No difference of SP-A-mRNA (177 +/- 4.3 TO vs 169 +/- 4.4 SHAM; P = .25), SP-B-mRNA (87.7 +/- 0.2 TO vs 87.4 +/- 0.02 SHAM; P = .33), and SP-C-mRNA (186.5 +/- 3.2 TO vs 183.2 +/- 2.7 SHAM; P = .45) expression was found. Surfactant protein A (175.6 +/- 25.3 TO vs 192.5 +/- 19.8 SHAM; P = .59) and SP-B (163.4 +/- 5.2 TO vs 166.8 +/- 9.3 SHAM; P = .75) protein expression were similar in both groups; however, Hoxb5 (70.3 +/- 18.9 TO vs 130.6 +/- 5.1 SHAM; P = .02) and thyroid transcription factor 1 (102.6 +/- 19 TO vs 181.1 +/- 6.3 SHAM; P = .007) expression were significantly decreased. Retinoic X receptor-alpha expression tended to be increased by TO (171.9 +/- 6.0 TO vs 155.4 +/- 6.7 SHAM; P = .06). CONCLUSIONS Short-term TO late in gestation induces rapid lung growth. Surfactant protein-mRNA and protein expression are not significantly altered. Thyroid transcription factor 1 and Hoxb5 are down-regulated by TO, suggesting that duration and timing of occlusion are important in balancing the effects of TO on lung growth vs lung maturation.
Collapse
Affiliation(s)
- Enrico Danzer
- The Children's Institute for Surgical Science, Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gosche JR, Islam S, Boulanger SC. Congenital diaphragmatic hernia: searching for answers. Am J Surg 2005; 190:324-32. [PMID: 16023454 DOI: 10.1016/j.amjsurg.2005.05.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 04/15/2005] [Indexed: 12/30/2022]
Abstract
BACKGROUND Pulmonary hypoplasia and hypertension are the primary causes of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). At present, the origin of CDH and the causes of pulmonary hypoplasia and hypertension are unknown. DATA SOURCES This article reviews the available published data regarding the origin of CDH and the pathogenesis of the associated pulmonary hypertension and hypoplasia. These investigations have employed human tissues as well as two types of CDH animal models. CONCLUSIONS Investigations performed to date have not yet provided definitive answers regarding the pathogenesis of CDH. However, they have yielded many new and exciting discoveries and several opportunities for intervention. Ongoing research should open new possibilities to improve the outcome for these unfortunate babies with CDH.
Collapse
Affiliation(s)
- John R Gosche
- Division of Pediatric Surgery, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA.
| | | | | |
Collapse
|
11
|
Abstract
Our understanding of lung development in the past two decades has moved from an anatomical to a histological basis and, most recently, to a molecular basis. Tissue interactions specify tracheal and lung primordia formation, program branching morphogenesis of the airway epithelium and regulate epithelial differentiation. In addition, lung development is influenced by mechanical and humoral factors. The regulatory molecules involved in morphogenetic signaling include growth and transcription factors and extracellular matrix molecules. These morphogenetic signals are responsible for lung patterning and differentiation. We will provide a brief overview of molecular signaling during early respiratory formation, airway branching, pulmonary vascularization and epithelial differentiation. We will then review aberrant morphogenetic signaling in human lung abnormalities, such as tracheoesophageal fistula, congenital diaphragmatic hernia, pulmonary hyperplasia, alveolar capillary dysplasia, congenital cystic adenomatoid malformation and bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Frederick Groenman
- Program in Lung Biology Research, Hospital for Sick Children Research Institute, Department of Pediatrics, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
12
|
Abstract
Congenital Diaphragmatic Hernia (CDH) is a congenital disorder with an incidence of 1 in 2500 live births. Respiratory distress of newborns with CDH is the result of pulmonary hypoplasia and pulmonary hypertension. Hypoplastic lungs are characterized by a decreased number of airways with smaller airspaces, whereas the combination of a decreased number of vascular branches and an increased adventitia and medial thickness of the pulmonary arterial walls result in pulmonary hypertension. The appearance of the CDH lungs suggests that its complete formation is stalled during development. Understanding the basic mechanisms of lung development is mandatory to unravel the origin of CDH. Although the histological abnormalities in CDH lungs have been well described, less is known about the underlying molecular mechanisms. In this review we will discuss the current molecular and genetic background of lung formation, as well as a reflection of this knowledge towards CDH.
Collapse
Affiliation(s)
- Robbert Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | |
Collapse
|
13
|
Abstract
Determining how the pulmonary vascular system is formed, maintained, or disrupted during development and disease represents a major challenge in contemporary lung biology. Whereas it is appreciated that cellular proliferation, differentiation, migration, and apoptosis need to be carefully controlled in order to attain pulmonary vascular homeostasis, knowledge of the underlying cellular and molecular mechanisms involved remains surprisingly limited. Because homeobox genes represent master regulators of organogenesis and tissue patterning, it is likely that these transcription factors play a critical role in the formation of blood vessels within the lung, as well as in pathologic states in which the highly ordered structure of the pulmonary vascular tree is compromised. The aim of this review is to discuss some of the known functions of homeobox genes in the vasculature, and to extrapolate these findings to their potential roles in developing and diseased pulmonary vessels.
Collapse
Affiliation(s)
- Peter Lloyd Jones
- Department of Pediatrics, Section of Critical Care & Developmental Lung Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
14
|
Volpe MV, Nielsen HC, Archavachotikul K, Ciccone TJ, Chinoy MR. Thyroid hormone affects distal airway formation during the late pseudoglandular period of mouse lung development. Mol Genet Metab 2003; 80:242-54. [PMID: 14567974 DOI: 10.1016/j.ymgme.2003.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We recently showed that T3 treatment of cultured gestational day 11.5 early pseudoglandular period mouse lungs, accelerated terminal airway development at the expense of decreased branching morphogenesis. As the ability of T3 to influence epithelial cell differentiation increases with advancing development, we hypothesized that in the late pseudoglandular period, T3 would cause further premature changes in the morphology of the distal airways leading to abnormal saccular development. Gestational day 13.5 embryonic mouse lungs were cultured for 3 and 7 days without or with added T3. Increasing T3 dose and time in culture resulted in progressive development of thin walled, abnormal saccules, an increase in cuboidal and flattened epithelia and airway space with a concomitant decrease in mesenchymal cell volume. Consistent with increased cuboidal and flattened epithelial cell volume identified by morphometry, immunostaining suggested increased cell proliferation detected by localization of proliferating cell nuclear antigen (PCNA) in epithelial cells of T3 treated lungs. T3 decreased mesenchymal expression of Hoxb-5 protein and caused progressive localization of Nkx2.1 and SP-C proteins to distal cuboidal epithelia of early abnormal saccules, evidence that T3 prematurely and abnormally advanced mesenchymal and epithelial cell differentiation. Western blot showed a T3-dependent decrease in Hoxb-5 and a trend towards decreased Nkx2.1 and SP-C, after 3 and 7 days of culture, respectively. We conclude that exogenous T3 treatment during the late pseudoglandular period prematurely and abnormally accelerates terminal saccular development. This may lead to abnormal mesenchymal and epithelial cell fate.
Collapse
Affiliation(s)
- MaryAnn V Volpe
- Department of Pediatrics, Division of Newborn Medicine, New England Medical Center, Box 44, 750 Washington St, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|