1
|
Xu X, Guan R, Gong K, Xie H, Shi L. Circ_FURIN knockdown assuages Testosterone-induced human ovarian granulosa-like tumor cell disorders by sponging miR-423-5p to reduce MTM1 expression in polycystic ovary syndrome. Reprod Biol Endocrinol 2022; 20:32. [PMID: 35177076 PMCID: PMC8851856 DOI: 10.1186/s12958-022-00891-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/13/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder among reproductive-age women. The mechanism by which circular RNA (circRNA) drives PCOS development remains unclear. Thus, the study is designed to explore the role of a novel circRNA, circ_FURIN, in the PCOS cell model and the underlying mechanism. METHODS PCOS cell model was established by treating human ovarian granulosa-like tumor cells (KGN) with Testosterone (TTR). RNA expressions of circ_FURIN, microRNA-423-5p (miR-423-5p) and myotubularin 1 (MTM1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was checked by Western blot. Cell proliferation was investigated by a 5-Ethynyl-29-deoxyuridine assay, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis for cell cycle. Apoptotic cells were quantified by flow cytometry analysis for cell apoptosis. The interplay between miR-423-5p and circ_FURIN or MTM1 was identified by dual-luciferase reporter and RNA pull-down assays. RESULTS Circ_FURIN and MTM1 expressions were significantly upregulated, whereas miR-423-5p was downregulated in the ovarian cortex tissues of PCOS patients and TTR-treated KGN cells compared with controls. Circ_FURIN depletion relieved TTR-induced proliferation inhibition and apoptosis promotion. Besides, knockdown of miR-423-5p, a target miRNA of circ_FURIN, rescued circ_FURIN knockdown-mediated effects under TTR treatment. MiR-423-5p remitted TTR-induced cell disorders by binding to MTM1. Moreover, circ_FURIN modulated MTM1 expression through miR-423-5p. CONCLUSION Circ_FURIN silencing protected against TTR-induced dysfunction by the miR-423-5p/MTM1 pathway in human ovarian granulosa-like tumor cells.
Collapse
Affiliation(s)
- Xia Xu
- Department of Obstetrical, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Rui Guan
- Department of Gynaecology, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Ke Gong
- Department of Obstetrical, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Huaibing Xie
- Department of Oncology, Huai'an Second People's Hospital, Affiliated to Xuzhou Medical University, Qingjiangpu District, Huai'an City, No.62, Huaihai South Road, 223001, Jiangsu Province, China.
| | - Lei Shi
- Department of Obstetrics and Gynecology, Hongze Huai'an District People's Hospital, Hongze District, Huai'an City, No.102 Dongfeng Road, 223001, Jiangsu Province, China.
| |
Collapse
|
2
|
Velagapudi S, Yalcinkaya M, Piemontese A, Meier R, Nørrelykke SF, Perisa D, Rzepiela A, Stebler M, Stoma S, Zanoni P, Rohrer L, von Eckardstein A. VEGF-A Regulates Cellular Localization of SR-BI as Well as Transendothelial Transport of HDL but Not LDL. Arterioscler Thromb Vasc Biol 2017; 37:794-803. [DOI: 10.1161/atvbaha.117.309284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 11/16/2022]
Abstract
Objective—
Low- and high-density lipoproteins (LDL and HDL) must pass the endothelial layer to exert pro- and antiatherogenic activities, respectively, within the vascular wall. However, the rate-limiting factors that mediate transendothelial transport of lipoproteins are yet little known. Therefore, we performed a high-throughput screen with kinase drug inhibitors to identify modulators of transendothelial LDL and HDL transport.
Approach and Results—
Microscopy-based high-content screening was performed by incubating human aortic endothelial cells with 141 kinase-inhibiting drugs and fluorescent-labeled LDL or HDL. Inhibitors of vascular endothelial growth factor (VEGF) receptors (VEGFR) significantly decreased the uptake of HDL but not LDL. Silencing of VEGF receptor 2 significantly decreased cellular binding, association, and transendothelial transport of
125
I-HDL but not
125
I-LDL. RNA interference with VEGF receptor 1 or VEGF receptor 3 had no effect. Binding, uptake, and transport of HDL but not LDL were strongly reduced in the absence of VEGF-A from the cell culture medium and were restored by the addition of VEGF-A. The restoring effect of VEGF-A on endothelial binding, uptake, and transport of HDL was abrogated by pharmacological inhibition of phosphatidyl-inositol 3 kinase/protein kinase B or p38 mitogen-activated protein kinase, as well as silencing of scavenger receptor BI. Moreover, the presence of VEGF-A was found to be a prerequisite for the localization of scavenger receptor BI in the plasma membrane of endothelial cells.
Conclusions—
The identification of VEGF as a regulatory factor of transendothelial transport of HDL but not LDL supports the concept that the endothelium is a specific and, hence, druggable barrier for the entry of lipoproteins into the vascular wall.
Collapse
Affiliation(s)
- Srividya Velagapudi
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Mustafa Yalcinkaya
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Antonio Piemontese
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Roger Meier
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Simon Flyvbjerg Nørrelykke
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Damir Perisa
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Andrzej Rzepiela
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Michael Stebler
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Szymon Stoma
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Paolo Zanoni
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Lucia Rohrer
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Arnold von Eckardstein
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| |
Collapse
|
3
|
Inaguma Y, Matsumoto A, Noda M, Tabata H, Maeda A, Goto M, Usui D, Jimbo EF, Kikkawa K, Ohtsuki M, Momoi MY, Osaka H, Yamagata T, Nagata KI. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders. J Neurochem 2016; 139:245-255. [PMID: 27607605 DOI: 10.1111/jnc.13832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/19/2016] [Accepted: 08/17/2016] [Indexed: 01/04/2023]
Abstract
Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD).
Collapse
Affiliation(s)
- Yutaka Inaguma
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | | | - Masahide Goto
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | | | - Eriko F Jimbo
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Kiyoshi Kikkawa
- Department of Pediatrics, Kochi Health Science Center, Kochi, Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Mariko Y Momoi
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | | | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan. .,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
4
|
Wu J, Xiao Y, Liu J, Yang H, Dong X, Hu S, Jin S, Wu D. Potential role of ATM in hepatocyte endocytosis of ApoE-deficient, ApoB48-containing lipoprotein in ApoE-deficient mice. Int J Mol Med 2013; 33:462-8. [PMID: 24276232 PMCID: PMC4035781 DOI: 10.3892/ijmm.2013.1566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/07/2013] [Indexed: 11/21/2022] Open
Abstract
Individuals carrying mutations at both ataxia telangiectasia mutated (ATM) gene alleles reportedly have increased plasma cholesterol and triglyceride levels. Previous studies have demonstrated that defective ATM function promotes atherosclerosis. We previously demonstrated that ATM facilitates the clearance of plasma apolipoprotein (Apo)E-deficient, ApoB48-containing (E−/B48) lipoproteins in ApoE-deficient mice (ApoE−/− mice). However, to date there is no exact explanation available as to the mechanism(s) through which ATM is involved in the removal of E−/B48 lipoprotein in ApoE−/− mice. In this study, to our knowledge, we demonstrate for the first time that heterozygous ATM mutation reduces the hepatocyte uptake of E−/B48 lipoproteins in ApoE−/− mice; however, heterozygous ATM mutation did not affect hepatocyte binding to E−/B48 lipoproteins. Moreover, our results revealed that ATM proteins were localized in the nucleus, early endosomes and late endosomes, but not in the plasma membrane in the hepatocytes of ApoE−/− mice. In addition, following treatment with the ATM activator, chloroquine, and E−/B48 lipoproteins, ATM interacted with class III phosphatidylinositol-3-kinases (PI3Ks) and the activated ATM protein enhanced class III PI3K activity. Furthermore, treatment with a class III PI3K inhibitor (LY290042 and 3-MA) attenuated the intracellular total cholesterol accumulation induced by ATM activation. These results provide insight into the mechanisms behind the involvment of ATM in the process of endocytosis of E−/B48 lipoprotein in ApoE−/− mice, demonstrating the role of class III PI3K protein.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanhong Xiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Juang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hong Yang
- Department of Cardiovascular Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Xiaomin Dong
- Department of Osteology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - San Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shanrui Jin
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
5
|
Transcriptional regulation of Δ6-desaturase by peroxisome proliferative-activated receptor δ agonist in human pancreatic cancer cells: role of MEK/ERK1/2 pathway. ScientificWorldJournal 2013; 2013:607524. [PMID: 24294133 PMCID: PMC3832962 DOI: 10.1155/2013/607524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022] Open
Abstract
The Δ6-desaturase (Δ6D), also known as fatty acid desaturase 2, is a regulatory enzyme in de novo fatty acid synthesis, which has been linked to obesity and diabetes. The aim of the present study was to investigate the effect of peroxisome proliferative-activated receptor δ (PPARδ) agonist and MEK/ERK1/2-dependent pathway on the expression of Δ6D in human pancreatic carcinoma cell line PANC-1. PANC-1 cells cultured in RPMI-1640 were exposed to the commonly used ERK1/2 pathway inhibitor PD98059 and PPARδ agonist GW0742. Changes in mRNA and protein expression of Δ6D were then determined using real-time RT-PCR and Western blot, respectively. The expression of Δ6D (P < 0.01) increased following treatment with PPARδ agonist both at mRNA and protein levels, whereas no significant change was observed after treatment with MEK/ERK1/2 pathway inhibitor. It was also found that the increase in the expression of Δ6D in response to GW0742 was significantly inhibited by PD98059 (>40%, P < 0.05) or EGF receptor-selective inhibitor AG1478 (>25%, P < 0.05) pretreatment. PPARδ and MEK/ERK1/2 signaling pathways affect differentially the expression of Δ6D in pancreatic cancer cells. Furthermore, there may be an inhibitory crosstalk between these two regulatory pathways on the mRNA expression of Δ6D and subsequently on Δ6D protein expression.
Collapse
|
6
|
Huang CX, Zhang YL, Wang JF, Jiang JY, Bao JL. MCP-1 impacts RCT by repressing ABCA1, ABCG1, and SR-BI through PI3K/Akt posttranslational regulation in HepG2 cells. J Lipid Res 2013; 54:1231-40. [PMID: 23402987 DOI: 10.1194/jlr.m032482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays crucial roles at multiple stages of atherosclerosis. We hypothesized that MCP-1 might impair the reverse cholesterol transport (RCT) capacity of HepG2 cells by decreasing the cell-surface protein expression of ATP binding cassette A1 (ABCA1), ATP binding cassette G1 (ABCG1), and scavenger receptor class B type I (SR-BI). MCP-1 reduced the total protein and mRNA levels of ABCA1 and SR-BI, but not of ABCG1. MCP-1 decreased the cell-surface protein expression of ABCA1, ABCG1, and SR-BI in dose-dependent and time-dependent manners, as measured using cell-surface biotinylation. We further studied the phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase Akt pathway in regulating receptor trafficking. Both the translation and transcription of ABCA1, ABCG1, and SR-BI were not found to be regulated by the PI3K/Akt pathway. However, the cell-surface protein expression of ABCA1, ABCG1, and SR-BI could be regulated by PI3K activity, and PI3K activation corrected the MCP-1-induced decreases in the cell-surface protein expression of ABCA1, ABCG1, and SR-BI. Moreover, we found that MCP-1 decreased the lipid uptake by HepG2 cells and the ABCA1-mediated cholesterol efflux to apoA-I, which could be reversed by PI3K activation. Our data suggest that MCP-1 impairs RCT activity in HepG2 cells by a PI3K/Akt-mediated posttranslational regulation of ABCA1, ABCG1, and SR-BI cell-surface expression.
Collapse
Affiliation(s)
- Can-Xia Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, University of Sun Yat-sen, Guangzhou, China
| | | | | | | | | |
Collapse
|
7
|
Zheng P, Baibakov B, Wang XH, Dean J. PtdIns(3,4,5)P3 is constitutively synthesized and required for spindle translocation during meiosis in mouse oocytes. J Cell Sci 2013; 126:715-21. [PMID: 23264738 PMCID: PMC3619807 DOI: 10.1242/jcs.118042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/20/2022] Open
Abstract
Prior to ovulation, mammalian oocytes complete their first meiotic division and arrest at metaphase II. During this marked asymmetric cell division, the meiotic spindle moves dramatically from the center of the oocyte to the cortex to facilitate segregation of half of its chromosomal content into the diminutive first polar body. Recent investigations have documented crucial roles for filamentous actin (F-actin) in meiotic spindle translocation. However, the identity of the upstream regulators responsible for these carefully orchestrated movements has remained elusive. Utilizing fluorescently tagged probes and time-lapse confocal microscopy, we document that phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] is constitutively synthesized with spatial and temporal dynamics similar to that of F-actin and Formin 2 (Fmn2). Blockage of PtdIns(3,4,5)P3 synthesis by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), disrupts cytoplasmic F-actin organization and meiotic spindle migration to the cortex. F-actin nucleator Fmn2 and Rho GTPase Cdc42 play roles in mediating the effect of PtdIns(3,4,5)P3 on F-actin assembly. Moreover, the spatial and temporal dynamics of PtdIns(3,4,5)P3 is impaired by depletion of MATER or Filia, two oocyte proteins encoded by maternal effect genes. Thus, PtdIns(3,4,5)P3 is synthesized during meiotic maturation and acts upstream of Cdc42 and Fmn2, but downstream of MATER/Filia proteins to regulate the F-actin organization and spindle translocation to the cortex during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Boris Baibakov
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xi-hong Wang
- Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Abstract
Over this past decade, macroautophagy has gained prominence in the field of adult-onset neurodegeneration: from sporadic disorders such as Alzheimer's and Parkinson's disease, to genetic disorders such as Huntington's disease and frontotemporal dementia, the influence of this fundamental pathway has become an important topic of discussion. While there has been particular emphasis on the potential benefits of macroautophagy, there is growing literature that also suggests that macroautophagy contributes towards neurotoxicity. In this review, we discuss the molecular mechanism of macroautophagy and the currently available pharmacological tools, with special emphasis on mammalian macroautophagy in adult brain. Studies indicate that neuronal context strongly influences the role macroautophagy plays in maintaining cellular health, reflecting an ongoing need for better understanding of how macroautophagic regulation is achieved in the heavily differentiated and polarized neurons if we are to effectively manipulate it to treat neurodegenerative disease.
Collapse
|
9
|
Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, Sadler KC, Bahary N. Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology 2011; 54:452-62. [PMID: 21488074 PMCID: PMC3140628 DOI: 10.1002/hep.24349] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/28/2011] [Indexed: 01/02/2023]
Abstract
UNLABELLED Hepatic steatosis is the initial stage of nonalcoholic fatty liver disease (NAFLD) and may predispose to more severe hepatic disease, including hepatocellular carcinoma. Endoplasmic reticulum (ER) stress has been recently implicated as a novel mechanism that may lead to NAFLD, although the genetic factors invoking ER stress are largely unknown. During a screen for liver defects from a zebrafish insertional mutant library, we isolated the mutant cdipthi559Tg/+ (hi559). CDIPT is known to play an indispensable role in phosphatidylinositol (PtdIns) synthesis. Here we show that cdipt is expressed in the developing liver, and its disruption in hi559 mutants abrogates de novo PtdIns synthesis, resulting in hepatomegaly at 5 days postfertilization. The hi559 hepatocytes display features of NAFLD, including macrovesicular steatosis, ballooning, and necroapoptosis. Gene set enrichment of microarray profiling revealed significant enrichment of endoplasmic reticulum stress response (ERSR) genes in hi559 mutants. ER stress markers, including atf6, hspa5, calr, and xbp1, are selectively up-regulated in the mutant liver. The hi559 expression profile showed significant overlap with that of mammalian hepatic ER stress and NAFLD. Ultrastructurally, the hi559 hepatocytes display marked disruption of ER architecture with hallmarks of chronic unresolved ER stress. Induction of ER stress by tunicamycin in wild-type larvae results in a fatty liver similar to hi559, suggesting that ER stress could be a fundamental mechanism contributing to hepatic steatosis. CONCLUSION cdipt-deficient zebrafish exhibit hepatic ER stress and NAFLD pathologies, implicating a novel link between PtdIns, ER stress, and steatosis. The tractability of hi559 mutant provides a valuable tool to dissect ERSR components, their contribution to molecular pathogenesis, and evaluation of novel therapeutics of NAFLD.
Collapse
Affiliation(s)
- Prakash C Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Carsten Stuckenholz
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Marcus R Rivera
- Childrens Hospital, Division of Pediatrics Gastroenterology, University of Pittsburgh, Pittsburgh, PA
| | - Jon M Davison
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, and Departments of Psychiatry and Pharmaceutical Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Adam Amsterdam
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Kirsten C Sadler
- Department of Medicine-Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Nathan Bahary
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA
,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
,Corresponding Author: Nathan Bahary, MD, PhD, Department of Medicine, Division of Hematology/Oncology, Department of Microbiology and Molecular Genetics, Biomedical Science Tower 3, Room 5058, 3501 Fifth Avenue, Pittsburgh, PA 15260, Office Phone: (412) 648-6507, Office Fax: (412) 648-9852,
| |
Collapse
|
10
|
Kedlaya R, Kandala G, Liu TF, Maddodi N, Devi S, Setaluri V. Interactions between GIPC-APPL and GIPC-TRP1 regulate melanosomal protein trafficking and melanogenesis in human melanocytes. Arch Biochem Biophys 2011; 508:227-33. [PMID: 21291857 DOI: 10.1016/j.abb.2011.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/23/2011] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
By virtue of the presence of multiple protein-protein interaction and signaling domains, PDZ proteins play important roles in assembling protein complexes that participate in diverse cell biological processes. GIPC is a versatile PDZ protein that binds a variety of target proteins in different cell types. In previous studies we showed that, in epidermal melanocytes, GIPC interacts with newly synthesized melanosomal protein TRP1 in the Golgi region and proposed that this interaction may facilitate intracellular trafficking of TRP1. However, since GIPC contains a single PDZ domain and no other known protein interaction motifs, it is not known how GIPC-TRP1 interaction affects melanosome biogenesis and/or melanin pigmentation. Here, we show that in human primary melanocytes GIPC interacts with AKT-binding protein APPL (adaptor protein containing pleckstrin homology, leucine zipper and phosphotyrosine binding domains), which readily co-precipitates with newly synthesized TRP1. Knockdown of either GIPC or APPL inhibits melanogenesis by decreasing tyrosinase protein levels and enzyme activity. In melanocytes, APPL exists in a complex with GIPC and phospho-AKT. Inhibition of AKT phosphorylation using a PI3-kinase inhibitor abolishes this interaction and results in retardation TRP1 in the Golgi. These data suggest that interactions between TRP1-GIPC and GIPC-APPL-AKT provide a potential link between melanogenesis and PI3 kinase signaling.
Collapse
Affiliation(s)
- Rajendra Kedlaya
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The MTM (myotubularin)/MTMR (myotubularin-related) protein family is comprised of 15 lipid phosphatases, of which nine members are catalytically active. MTMs are known to play a fundamental role in human physiology as gene mutations can give rise to X-linked myotubular myopathy or Charcot-Marie-Tooth disease, which manifest in skeletal muscle or in peripheral neurons respectively. Interestingly, studies have shown MTMR2 and MTMR5, two MTM family members, to be highly expressed in the testis, particularly in Sertoli and germ cells, and knockout of either gene resulted in spermatogenic defects. Other studies have shown that MTMR2 functions in endocytosis and membrane trafficking. In the testis, MTMR2 interacts and co-localizes with c-Src/phospho-Src-(Tyr⁴¹⁶), a non-receptor protein tyrosine kinase that regulates the phosphorylation state of proteins at the apical ES (ectoplasmic specialization), a unique type of cell junction found between Sertoli cells and elongating/elongated spermatids. In the present review, we highlight recent findings that have made a significant impact on our understanding of this protein family in normal cell function and in disease, with the emphasis on the role of MTMs and MTMRs in spermatogenesis. We also describe a working model to explain how MTMR2 interacts with other proteins such as c-Src, dynamin 2, EPS8 (growth factor receptor pathway substrate 8) and ARP2/3 (actin-related protein 2/3) at the apical ES and the apical TBC (tubulobulbar complex; tubular-like invaginations that function in the disassembly of the apical ES and in the recycling of its components) to regulate spermiation at late stage VIII of the seminiferous epithelial cycle.
Collapse
|
12
|
Sorting in early endosomes reveals connections to docking- and fusion-associated factors. Proc Natl Acad Sci U S A 2009; 106:9697-702. [PMID: 19487677 DOI: 10.1073/pnas.0901444106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The early endosomes constitute a major sorting platform in eukaryotic cells. They receive material through fusion with endocytotic vesicles or with trafficking vesicles from the Golgi complex and later sort it into budding vesicles. While endosomal fusion is well understood, sorting is less characterized; the 2 processes are generally thought to be effected by different, unrelated machineries. We developed here a cell-free assay for sorting/budding from early endosomes, by taking advantage of their ability to segregate different cargoes (such as transferrin, cholera toxin subunit B, and low-density lipoprotein, LDL) into different carrier vesicles. Cargo separation required both carrier vesicle formation and active maturation of the endosomes. Sorting and budding were insensitive to reagents perturbing clathrin coats, coatomer protein complex-I (COPI) coats, dynamin, and actin, but were inhibited by anti-retromer subunit antibodies. In addition, the process required Rab-GTPases, phosphatidylinositol-3-phosphate, and, surprisingly, the docking factor early endosomal autoantigen 1 (EEA1). Sorting also required the function of the N-ethylmaleimide-sensitive factor (NSF), a well-known fusion cofactor, while it did not depend on preceding fusion of endosomes. We conclude that fusion, docking, and sorting/budding are interconnected at the molecular level.
Collapse
|
13
|
Renner O, Blanco-Aparicio C, Carnero A. Genetic modelling of the PTEN/AKT pathway in cancer research. Clin Transl Oncol 2009; 10:618-27. [PMID: 18940742 DOI: 10.1007/s12094-008-0262-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The focus on targeted therapies has been fuelled by extensive research on molecular pathways and their role in tumorigenesis. Novel models of human cancer have been created to evaluate the role of specific genes in the different stages of cancer. Currently, mouse modelling of human cancer is possible through the expression of oncogenes, specific genetic mutations or the inactivation of tumour suppressor genes, and these models have begun to provide us with an understanding of the molecular pathways involved in tumour initiation and progression at the physiological level. Additionally, these mouse models serve as an excellent system to evaluate the efficacy of currently developed molecular targeted therapies and identify new potential targets for future therapies. The PTEN/AKT pathway is implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. Deregulation of the PTEN/AKT pathway is a common event in human cancer. Despite the abundant literature, the physiological role of each element of the pathway has begun to be uncovered thanks to genetically engineered mice. This review will summarise some of the key animal models which have helped us to understand this signalling network and its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Oliver Renner
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | | |
Collapse
|
14
|
O'Neill C. Phosphatidylinositol 3-kinase signaling in mammalian preimplantation embryo development. Reproduction 2008; 136:147-56. [PMID: 18515313 DOI: 10.1530/rep-08-0105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of the preimplantation mammalian embryo is an autopoietic process; once initiated development proceeds without an absolute requirement for external information or growth cues. This developmental autonomy is partly explained by the generation of autocrine trophic ligands that are released and act back on the embryo via specific receptors. Several embryotrophic ligands cause receptor-dependent activation of 1-o-phosphatidylinositol 3-kinase. This enzyme phosphorylates phosphatidylinositol-4,5-bisphosphate to form phosphatidylinositol-3,4,5-trisphosphate. Genetic or pharmacological ablation of this enzyme activity disrupts normal development of preimplantation embryos. Phosphatidylinositol-3,4,5-trisphosphate is a membrane lipid that acts as a docking site for a wide range of proteins possessing the pleckstrin homology (PH) domain. Such proteins are important regulators of cell survival, proliferation, and differentiation. RAC-alpha serine/threonine protein kinase is an important PH domain protein and its activity is required for normal preimplantation embryo development and survival. The activity of a range of PH domain proteins is also implicated in the normal development of the embryo. This review critically examines the evidence for the activation of 1-o-phosphatidylinositol 3-kinase in the generation of pleiotypic trophic response to embryotrophins in the autopoietic development of the preimplantation embryo.
Collapse
Affiliation(s)
- Chris O'Neill
- Disciplines of Medicine and Physiology, Human Reproduction Unit, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, Australia.
| |
Collapse
|
15
|
Abstract
The Class III PI3K (phosphoinositide 3-kinase), Vps34 (vacuolar protein sorting 34), was first described as a component of the vacuolar sorting system in Saccharomyces cerevisiae and is the sole PI3K in yeast. The homologue in mammalian cells, hVps34, has been studied extensively in the context of endocytic sorting. However, hVps34 also plays an important role in the ability of cells to respond to changes in nutrient conditions. Recent studies have shown that mammalian hVps34 is required for the activation of the mTOR (mammalian target of rapamycin)/S6K1 (S6 kinase 1) pathway, which regulates protein synthesis in response to nutrient availability. In both yeast and mammalian cells, Class III PI3Ks are also required for the induction of autophagy during nutrient deprivation. Finally, mammalian hVps34 is itself regulated by nutrients. Thus Class III PI3Ks are implicated in the regulation of both autophagy and, through the mTOR pathway, protein synthesis, and thus contribute to the integration of cellular responses to changing nutritional status.
Collapse
|
16
|
Mouneimne G, DesMarais V, Sidani M, Scemes E, Wang W, Song X, Eddy R, Condeelis J. Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr Biol 2007; 16:2193-205. [PMID: 17113383 DOI: 10.1016/j.cub.2006.09.016] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/23/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Previous work has led to the hypothesis that cofilin severing, as regulated by PLC, is involved in chemotactic sensing. We have tested this hypothesis by investigating whether activation of endogenous cofilin is spatially and temporally linked to sensing an EGF point source in carcinoma cells. RESULTS We demonstrate that inhibition of endogenous cofilin activity with either siRNA or overexpression of LIMK suppresses directional sensing in carcinoma cells. LIMK siRNA knockdown, which suppresses cofilin phosphorylation, and microinjection of S3C cofilin, a cofilin mutant that is constitutively active and not phosphorylated by LIMK, also inhibits directional sensing and chemotaxis. These results indicate that phosphorylation of cofilin by LIMK, in addition to cofilin activity, is required for chemotaxis. Cofilin activity concentrates rapidly at the newly formed leading edge facing the gradient, whereas cofilin phosphorylation increases throughout the cell. Quantification of these results indicates that the amplification of asymmetric actin polymerization required for protrusion toward the EGF gradient occurs at the level of cofilin but not at the level of PLC activation by EGFR. CONCLUSIONS These results indicate that local activation of cofilin by PLC and its global inactivation by LIMK phosphorylation combine to generate the local asymmetry of actin polymerization required for chemotaxis.
Collapse
Affiliation(s)
- Ghassan Mouneimne
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kong AM, Horan KA, Sriratana A, Bailey CG, Collyer LJ, Nandurkar HH, Shisheva A, Layton MJ, Rasko JEJ, Rowe T, Mitchell CA. Phosphatidylinositol 3-phosphate [PtdIns3P] is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns3P can promote GLUT4 translocation to the plasma membrane. Mol Cell Biol 2006; 26:6065-81. [PMID: 16880518 PMCID: PMC1592800 DOI: 10.1128/mcb.00203-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Exogenous delivery of carrier-linked phosphatidylinositol 3-phosphate [PtdIns(3)P] to adipocytes promotes the trafficking, but not the insertion, of the glucose transporter GLUT4 into the plasma membrane. However, it is yet to be demonstrated if endogenous PtdIns(3)P regulates GLUT4 trafficking and, in addition, the metabolic pathways mediating plasma membrane PtdIns(3)P synthesis are uncharacterized. In unstimulated 3T3-L1 adipocytes, conditions under which PtdIns(3,4,5)P3 was not synthesized, ectopic expression of wild-type, but not catalytically inactive 72-kDa inositol polyphosphate 5-phosphatase (72-5ptase), generated PtdIns(3)P at the plasma membrane. Immunoprecipitated 72-5ptase from adipocytes hydrolyzed PtdIns(3,5)P2, forming PtdIns(3)P. Overexpression of the 72-5ptase was used to functionally dissect the role of endogenous PtdIns(3)P in GLUT4 translocation and/or plasma membrane insertion. In unstimulated adipocytes wild type, but not catalytically inactive, 72-5ptase, promoted GLUT4 translocation and insertion into the plasma membrane but not glucose uptake. Overexpression of FLAG-2xFYVE/Hrs, which binds and sequesters PtdIns(3)P, blocked 72-5ptase-induced GLUT4 translocation. Actin monomer binding, using latrunculin A treatment, also blocked 72-5ptase-stimulated GLUT4 translocation. 72-5ptase expression promoted GLUT4 trafficking via a Rab11-dependent pathway but not by Rab5-mediated endocytosis. Therefore, endogenous PtdIns(3)P at the plasma membrane promotes GLUT4 translocation.
Collapse
Affiliation(s)
- Anne M Kong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shetty S, Eckhardt ERM, Post SR, van der Westhuyzen DR. Phosphatidylinositol-3-kinase regulates scavenger receptor class B type I subcellular localization and selective lipid uptake in hepatocytes. Arterioscler Thromb Vasc Biol 2006; 26:2125-31. [PMID: 16794223 DOI: 10.1161/01.atv.0000233335.26362.37] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The high-density lipoprotein (HDL) receptor scavenger receptor Class B type I (SR-BI) plays a key role in mediating the final step of reverse cholesterol transport. This study examined the possible regulation of hepatic SR-BI by phosphatidylinositol-3-kinase (PI3K), a well known regulator of endocytosis and membrane protein trafficking. METHODS AND RESULTS SR-BI-dependent HDL selective cholesterol ester uptake in human HepG2 hepatoma cells was decreased (approximately 50%) by the PI3K inhibitors wortmannin and LY294002. Insulin increased selective uptake (approximately 30%), and this increase was blocked by PI3K inhibitors. Changes in SR-BI activity could be accounted for by pronounced changes in the subcellular localization and cell surface expression of SR-BI as determined by HDL cell surface binding, receptor biotinylation studies, and confocal fluorescence microscopy of HepG2 cells expressing green fluorescent protein-tagged SR-BI. Thus, under conditions of PI3K activation by insulin, and to a lesser extent by the SR-BI ligand HDL, cell surface expression of SR-BI was promoted, resulting in increased SR-BI-mediated HDL selective lipid uptake. CONCLUSIONS Our data indicate that PI3K activation stimulates hepatic SR-BI function post-translationally by regulating the subcellular localization of SR-BI in a P13K-dependent manner. Decreased hepatocyte PI3K activity in insulin-resistant states, such as type 2 diabetes, obesity, or metabolic syndrome, may impair reverse cholesterol transport by reducing cell surface expression of SR-BI.
Collapse
Affiliation(s)
- Shoba Shetty
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
19
|
Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2006; 2:2006.0015. [PMID: 16738560 PMCID: PMC1681489 DOI: 10.1038/msb4100057] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/23/2006] [Indexed: 12/18/2022] Open
Abstract
Recognition of pathogen-associated molecular signatures is critically important in proper activation of the immune system. The toll-like receptor (TLR) signaling network is responsible for innate immune response. In mammalians, there are 11 TLRs that recognize a variety of ligands from pathogens to trigger immunological responses. In this paper, we present a comprehensive map of TLRs and interleukin 1 receptor signaling networks based on papers published so far. The map illustrates the possible existence of a main network subsystem that has a bow-tie structure in which myeloid differentiation primary response gene 88 (MyD88) is a nonredundant core element, two collateral subsystems with small GTPase and phosphatidylinositol signaling, and MyD88-independent pathway. There is extensive crosstalk between the main bow-tie network and subsystems, as well as feedback and feedforward controls. One obvious feature of this network is the fragility against removal of the nonredundant core element, which is MyD88, and involvement of collateral subsystems for generating different reactions and gene expressions for different stimuli.
Collapse
Affiliation(s)
- Kanae Oda
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
- Sony Computer Science Laboratories Inc., Tokyo, Japan
- The Systems Biology Institute, Suite 6A, M31 6-31-15 Jingumae, Shibuya, Tokyo 150-0001, Japan. Tel.: +81 3 5468 1661; Fax: +81 3 5468 1664; E-mail:
| |
Collapse
|
20
|
Yamamoto A, Cremona ML, Rothman JE. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. ACTA ACUST UNITED AC 2006; 172:719-31. [PMID: 16505167 PMCID: PMC2063704 DOI: 10.1083/jcb.200510065] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conditional mouse models of polyglutamine diseases, such as Huntington's disease (HD), have revealed that cells can clear accumulated pathogenic proteins if the continuous production of the mutant transgene is halted. Invariably, the clearance of the protein leads to regression of the disease symptoms in mice. In light of these findings, it is critical to determine the pathway responsible for alleviating this protein accumulation to define targets to fight these diseases. In a functional genetic screen of HD, we found that activation of insulin receptor substrate-2, which mediates the signaling cascades of insulin and insulin-like growth factor 1, leads to a macroautophagy-mediated clearance of the accumulated proteins. The macroautophagy is triggered despite activation of Akt, mammalian target of rapamycin (mTOR), and S6 kinase, but still requires proteins previously implicated in macroautophagy, such as Beclin1 and hVps34. These findings indicate that the accumulation of mutant protein can lead to mTOR-independent macroautophagy and that lysosome-mediated degradation of accumulated protein differs from degradation under conditions of starvation.
Collapse
Affiliation(s)
- Ai Yamamoto
- The Judith P. Sulzberger Columbia Genome Center, Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
21
|
Lundberg P, Langel Ü. Uptake Mechanisms of Cell-Penetrating Peptides Derived from the Alzheimer’s Disease Associated Gamma-Secretase Complex. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-005-9007-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Tondu AL, Robichon C, Yvan-Charvet L, Donne N, Le Liepvre X, Hajduch E, Ferré P, Dugail I, Dagher G. Insulin and angiotensin II induce the translocation of scavenger receptor class B, type I from intracellular sites to the plasma membrane of adipocytes. J Biol Chem 2005; 280:33536-40. [PMID: 16033765 DOI: 10.1074/jbc.m502392200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI) mediates the selective uptake of lipids from high density lipoproteins and is expressed in several types of tissues. However, to date little is known about its role in adipocytes. In this study, we investigated the cellular distribution of SR-BI in 3T3-L1 adipocytes and its regulation by hormones known to increase lipid storage such as angiotensin II (Ang II) and insulin. SR-BI was mainly distributed in the cytoplasm as determined by laser-scanning confocal analysis of the immunofluorescence labeling of SR-BI or the study of an enhanced green fluorescent protein-tagged SR-BI fusion protein. Exposure of cells to either insulin or Ang II (1-2 h) induced the mobilization of SR-BI from intracellular pools to the plasma membrane. This was further confirmed by Western blotting on purified plasma membrane and by fluorescence-activated cell sorter analysis of the SR-BI receptor. Similar results were also observed in primary adipocytes. We also demonstrated that, in the presence of either insulin or Ang II, SR-BI translocation to the cell membrane is functional, because insulin and Ang II induced a significant increase in the high density lipoprotein-delivered 22-(N-7-nitrobenz-2-oxa-1,3-diazo-4-yl)-amino-23,24-bisnor-5-cholen-3-ol uptake and in total cholesterol content. These data demonstrate that SR-BI can be acutely mobilized from intracellular stores to the cell surface by insulin or Ang II, two hormones that exert lipogenic effects in adipocytes. This suggests that SR-BI might participate in the storage of lipids in the adipose tissue.
Collapse
Affiliation(s)
- Anne-Laure Tondu
- INSERM U671, Université Pierre et Marie Curie, Institut Biomédical des Cordeliers, 15 Rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Itakura M, Yamamori S, Kuwahara R, Sekiguchi M, Takahashi M. Two distinct regulatory mechanisms of neurotransmitter release by phosphatidylinositol 3-kinase. J Neurochem 2005; 94:502-9. [PMID: 15998300 DOI: 10.1111/j.1471-4159.2005.03242.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies have indicated that various growth factors are involved in synaptic functions; however, the precise mechanisms remain unclear. In order to elucidate the molecular mechanisms of the growth factor-mediated regulation of presynaptic functions, the effects of epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) on neurotransmitter release were studied in rat PC12 cells. Brief treatment with EGF and IGF-1 enhanced Ca2+-dependent dopamine release in a concentration-dependent manner. EGF activated both mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-kinase) pathways, and the EGF-dependent enhancement of DA release was suppressed by a MAPK kinase inhibitor as well as by PI3-kinase inhibitors. In striking contrast, IGF-1 activated the PI3-kinase pathway but not the MAPK pathway, and IGF-1-dependent enhancement was suppressed by a PI3-kinase inhibitor but not by a MAPK kinase inhibitor. The enhanced green fluorescent protein-tagged pleckstrin homology (PH) domain of protein kinase B, which selectively binds to phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate, was translocated to the plasma membrane after treatment with either EGF or NGF. By contrast, no significant redistribution was induced by IGF-1. These results indicate that PI3-kinase participates in the enhancement of neurotransmitter release by two distinct mechanisms: EGF and NGF activate PI3-kinase in the plasma membrane, whereas IGF-1 activates PI3-kinase possibly in the intracellular membrane, leading to enhancement of neurotransmitter release in a MAPK-dependent and -independent manner respectively.
Collapse
|
24
|
Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC, Jones AT, Sugiura Y, Futaki S. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 2005; 10:1011-22. [PMID: 15564133 DOI: 10.1016/j.ymthe.2004.08.010] [Citation(s) in RCA: 596] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022] Open
Abstract
The use of membrane-permeable peptides as carrier vectors for the intracellular delivery of various proteins and macromolecules for modifying cellular function is well documented. Arginine-rich peptides, including those derived from human immunodeficiency virus 1 Tat protein, are among the representative classes of these vectors. The internalization mechanism of these vector peptides and their protein conjugates was previously regarded as separate from endocytosis, but more recent reevaluations have concluded that endocytosis is involved in their internalization. In this report, we show that the uptake of octa-arginine (R8) peptide by HeLa cells was significantly suppressed by the macropinocytosis inhibitor ethylisopropylamiloride (EIPA) and the F-actin polymerization inhibitor cytochalasin D, suggesting a role for macropinocytosis in the uptake of the peptide. In agreement with this we observed that treatment of the cells with R8 peptide induced significant rearrangement of the actin cytoskeleton. The internalization efficiency and contribution of macropinocytosis were also observed to have a dependency on the chain length of the oligoarginine peptides. Uptake of penetratin, another representative peptide carrier, was less sensitive to EIPA and penetratin did not have such distinct effects on actin localization. The above observations suggest that penetratin and R8 peptides have distinct internalization mechanisms.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Link W, Rosado A, Fominaya J, Thomas JE, Carnero A. Membrane localization of all class I PI 3-kinase isoforms suppresses c-Myc-induced apoptosis in Rat1 fibroblasts via Akt. J Cell Biochem 2005; 95:979-89. [PMID: 15838873 DOI: 10.1002/jcb.20479] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated. To address this issue, we generated Rat1 fibroblasts that co-express c-Myc and membrane targeted derivates of the different p110 isoforms. Here we present data for the first time showing that activation of PI3-kinase signaling through membrane localization of p110beta, p110gamma, and p110delta protects c-Myc overexpressing Rat1 fibroblasts from apoptosis caused by serum deprivation like it has been described for p110alpha. Expression of each p110 isoform reduces significantly caspase-3 like activity in this apoptosis model. Decreased caspase-3 activity correlates with the increase in Akt phosphorylation in cells that contain one of the myristoylated p110 isoforms. p110 isoform-mediated protection from cell death was abrogated upon expression of a kinase-negative version of Akt.
Collapse
Affiliation(s)
- Wolfgang Link
- Experimental Therapeutics Program, Centro Nacional de Investigaciones Oncologicas, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Abstract
The hVps34 phosphatidylinositol (PI) 3-kinase plays an important role in the regulation of vesicular trafficking in the endosomal system. hVps34 associates with a myristylated protein kinase, hVps15. The two proteins are targeting to early endosomal membranes by interactions between hVps15 and activated (GTP-bound) Rab5. This leads to the production of the hVps34 product, PI(3)P, in the endosomal membrane, and subsequent recruitment of FYVE and PX domain-containing effector proteins. This chapter describes the analysis of hVps34/hVps15 interactions with Rab5 in tissue culture cells and in vitro.
Collapse
|
27
|
Lucocq JM, Habermann A, Watt S, Backer JM, Mayhew TM, Griffiths G. A rapid method for assessing the distribution of gold labeling on thin sections. J Histochem Cytochem 2004; 52:991-1000. [PMID: 15258174 DOI: 10.1369/jhc.3a6178.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Particulate gold labeling on ultrathin sections is in widespread use for antigen localization at the EM level. To extend the usefulness of gold labeling technology, we are evaluating different methods for sampling and estimating quantities of gold labeling. Here we present a simple, rapid, and unbiased method for assessing the relative pool sizes of immunogold labeling distributed over different cell compartments. The method uses a sampling approach developed for stereology in which a regular array of microscopic fields or linear scans is positioned randomly on labeled sections. From these readouts, gold particles are counted and assigned to identifiable cell structures to construct a gold labeling frequency distribution of those labeled compartments. Here we use ultrathin cryosections labeled for a range of different proteins and for a signaling lipid. We show by scanning labeled sections at the electron microscope that counting 100-200 particles on each of two grids is sufficient to obtain a reproducible and rapid assessment of the pattern of labeling proportions over 10-16 compartments. If more precise estimates of labeling proportions over individual compartments are required (e.g., to achieve coefficients of error of 10-20%), then 100-200 particles need to be counted over each compartment of interest.
Collapse
Affiliation(s)
- John Milton Lucocq
- School of Life Sciences, WTB/MSI Complex, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Du L, Post SR. Macrophage colony-stimulating factor differentially regulates low density lipoprotein and transferrin receptors. J Lipid Res 2004; 45:1733-40. [PMID: 15210846 DOI: 10.1194/jlr.m400140-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endocytosis mediated by both LDL receptors (LDLRs) and transferrin receptors (TfRs) occurs in clathrin-coated pits and requires specific tyrosine-based internalization sequences located in the cytoplasmic domain of these receptors. Internalization of these receptors is mediated by endocytic proteins that interact with the internalization domains. We previously showed that macrophage colony-stimulating factor (M-CSF) rapidly increases LDLR-dependent uptake and metabolism of LDL. To study the mechanism by which M-CSF regulates LDL uptake, we compared the effect of M-CSF on the internalization of LDL and transferrin (Tf). Our results show that M-CSF substantially increased the rate of LDLR internalization without increasing LDLR localization on the cell surface. In contrast, M-CSF treatment of macrophages rapidly increased the localization of TfR to the cell surface but did not alter the relative rate of Tf internalization. Moreover, M-CSF regulated TfR and LDLR via the activation of distinct signaling pathways. Recruitment of TfR to the cell surface was attenuated by phosphatidylinositol 3-kinase inhibitors, whereas stimulated LDL uptake was inhibited by the serine/threonine phosphatase inhibitor okadaic acid. Taken together, our results indicate that M-CSF differentially regulates receptors that undergo endocytosis and that increased LDL uptake results from a selective increase in the rate of LDLR internalization.
Collapse
Affiliation(s)
- Liqin Du
- Graduate Program in Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
29
|
Abstract
Endocytosis and the subsequent intracellular trafficking of the endocytosed material are important determinants of cellular function. Osteoclasts, cells of the monocyte/macrophage family, are specialized for the internalization and processing of bone matrix. Transcytosis of endocytosed material has been observed in osteoclasts but the precise mechanism controlling this process is unclear. Here, we investigate the regulation of these trafficking events. To establish the directionality and kinetics of trafficking events in resorbing osteoclasts, we devised a system using fluorescent low-molecular-weight markers as probes to follow the route taken by the digested bone matrix. We demonstrate that this route is largely distinct from the pathway followed by proteins taken up by receptor-mediated endocytosis at the basolateral plasma membrane. Endocytosis and transcytosis from the ruffled border are fast processes, with a half-life of the endocytosed material inside the cells of 22 minutes. We demonstrate the crucial role of the microtubule network in transport from the ruffled-border area and provide evidence for a role of the cytoskeleton in the overall efficacy of trafficking. Moreover, we analyse the effect of the V-ATPase inhibitor bafilomycin A1 on endocytic uptake, which gives insight into the pH-dependent regulation of membrane trafficking and resorption in osteoclasts.
Collapse
Affiliation(s)
- Gudrun Stenbeck
- Bone and Mineral Centre, University College London, 5 University Street, London WC1E 6JJ, UK.
| | | |
Collapse
|
30
|
Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin Immunol 2004; 16:17-22. [PMID: 14751759 DOI: 10.1016/j.smim.2003.10.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthetic oligodeoxynucleotides (ODN) expressing non-methylated "CpG motifs" patterned after those present in bacterial DNA have characteristic immunomodulatory effects. CpG DNA is recognized as a pathogen-associated molecular pattern, and triggers a rapid innate immune response. CpG ODN are being harnessed for a variety of therapeutic uses, including as immune adjuvants, for cancer therapy, as anti-allergens, and as immunoprotective agents. The signal transduction pathway mediated by the engagement of CpG DNA with Toll-like receptor 9 (TLR9) is shared with other members of the TLR family. Recent studies demonstrate that formation and maturation of CpG DNA-containing endosomes are regulated by phosphatidylinositol 3 kinases and the Ras-associated GTP-binding protein, Rab5, which are essential for the initiation of TLR9-mediated signaling.
Collapse
Affiliation(s)
- Fumihiko Takeshita
- Center for Biologics Evaluation and Research/Food and Drug Administration, Bldg 29A, Rm 3D10, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
31
|
Calcium, Calmodulin, and Phospholipids. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Wu H, Windmiller DA, Wang L, Backer JM. YXXM motifs in the PDGF-beta receptor serve dual roles as phosphoinositide 3-kinase binding motifs and tyrosine-based endocytic sorting signals. J Biol Chem 2003; 278:40425-8. [PMID: 12941951 DOI: 10.1074/jbc.c300225200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide 3-kinases (PI 3-kinases) are important regulators of endocytic trafficking. Previous studies have shown that mutant human platelet-derived growth factor-beta receptors (PDGFR), which contain Phe in place of Tyr at the two p85/p110 PI 3-kinase binding sites (PDGFR-F/F), are defective for both p85 binding and ligand-stimulated degradation. This suggested that p85/p110 regulates PDGFR trafficking. However, more recent work has identified hVPS34, and not p85/p110, as the major PI 3-kinase regulating the movement of receptors through the endosomal system. To reconcile this discrepancy, we hypothesized that YXXM motifs in the PDGFR might play a second role as Tyr-based lysosomal sorting motifs (YXXPhi). To test this, we replaced both YXXM motifs with a motif from LAMP-1, YQTI. This mutant PDGFR (PDGFR-YQTI) still underwent PDGF-stimulated autophosphorylation but did not bind p85. In CHO cells, both wild-type and YQTI receptors showed PDGF-stimulated turnover, whereas F/F receptors did not. In addition, uptake and degradation of cell surface-labeled YXXM and YQTI receptors was fast relative to F/F receptors. We also constructed chimeras containing extracellular and membrane-spanning domains from CD25 (Tac) and cytoplasmic tails containing the YQTI motif, two YXXM motifs, or two mutant FXXM motifs. The YXXM and YQTI chimeras mediated lysosomal delivery of fluorescein isothiocyanate-labeled anti-CD25 antibodies, whereas the F/F chimera was defective. Thus, YQTI motifs can target PDGFR for degradation in the absence of p85/p110 binding, and the p85/p110 binding motifs from PDGFR are sufficient to target Tac chimeras to the lysosome. These data suggest that the YXXM motifs in the PDGFR serve two distinct functions: PI 3-kinase recruitment and lysosomal targeting.
Collapse
Affiliation(s)
- Haiyan Wu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R. Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 2003; 14:1074-84. [PMID: 12631724 PMCID: PMC151580 DOI: 10.1091/mbc.e02-05-0308] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The degradation of extracellular matrix (ECM) by matrix metalloproteases is crucial in physiological and pathological cell invasion alike. Degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Herein, we show that the dynamin 2 (Dyn2), a GTPase implicated in the control of actin-driven cytoskeletal remodeling events and membrane transport, is necessary for focalized matrix degradation at invadopodia. Dynamin was inhibited by using two approaches: 1) expression of dominant negative GTPase-impaired or proline-rich domain-deleted Dyn2 mutants; and 2) inhibition of the dynamin regulator calcineurin by cyclosporin A. In both cases, the number and extension of ECM degradation foci were drastically reduced. To understand the site and mechanism of dynamin action, the cellular structures devoted to ECM degradation were analyzed by correlative confocal light-electron microscopy. Invadopodia were found to be organized into a previously undescribed ECM-degradation structure consisting of a large invagination of the ventral plasma membrane surface in close spatial relationship with the Golgi complex. Dyn2 seemed to be concentrated at invadopodia.
Collapse
Affiliation(s)
- Massimiliano Baldassarre
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, S. Maria Imbaro (Chieti), 66030 Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Vieira OV, Botelho RJ, Grinstein S. Phagosome maturation: aging gracefully. Biochem J 2002; 366:689-704. [PMID: 12061891 PMCID: PMC1222826 DOI: 10.1042/bj20020691] [Citation(s) in RCA: 491] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Revised: 06/05/2002] [Accepted: 06/13/2002] [Indexed: 11/17/2022]
Abstract
Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.
Collapse
Affiliation(s)
- Otilia V Vieira
- Programme in Cell Biology, Hospital for Sick Children and Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
36
|
Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 2002; 3:416-27. [PMID: 12010460 DOI: 10.1034/j.1600-0854.2002.30605.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PI 3-kinases are important regulators of endocytic trafficking. We have previously proposed a model in which the Rab5 GTPase recruits EEA1 to the early endosome both directly, by binding to EEA1, and indirectly, through the recruitment of the p150/hVps34 PI 3-kinase and the production of PI[3]P in the endosomal membrane. In this study we have examined this model in vivo. We find that both endogenous hVps34 and p150 are targeted to enlarged endosomal structures in cells expressing constitutively activated Rab5, where they are significantly colocalized with EEA1. Recombinant fragments of p150 disrupt the endosomal localization of EEA1, showing that p150 is required for EEA1 targeting. We further analyzed the mechanism of GTP-dependent Rab5-p150 binding, and showed the p150 HEAT and WD40 domains are required for binding, whereas deletion of the protein kinase domain increases binding to Rab5. Overexpression of constitutively active Rab5 caused a redistribution of epitope-tagged hVps34 and p150 to Rab5-positive endosomes. However, subcellular fractionation showed that this was not due to a significant recruitment of hVps34 or p150 from the cytosolic to the particulate fraction. These data suggest that the binding of Rab5 to the HEAT/WD40 domains of p150 is important in regulating the localization of hVps34/p150. However, Rab5 does not appear to act by directly recruiting p150/hVps34 complexes from the cytosol to the endosomal membrane.
Collapse
Affiliation(s)
- James T Murray
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
37
|
Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2002; 70:535-602. [PMID: 11395417 DOI: 10.1146/annurev.biochem.70.1.535] [Citation(s) in RCA: 1211] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 3-phosphorylated inositol lipids fulfill roles as second messengers by interacting with the lipid binding domains of a variety of cellular proteins. Such interactions can affect the subcellular localization and aggregation of target proteins, and through allosteric effects, their activity. Generation of 3-phosphoinositides has been documented to influence diverse cellular pathways and hence alter a spectrum of fundamental cellular activities. This review is focused on the 3-phosphoinositide lipids, the synthesis of which is acutely triggered by extracellular stimuli, the enzymes responsible for their synthesis and metabolism, and their cell biological roles. Much knowledge has recently been gained through structural insights into the lipid kinases, their interaction with inhibitors, and the way their 3-phosphoinositide products interact with protein targets. This field is now moving toward a genetic dissection of 3-phosphoinositide action in a variety of model organisms. Such approaches will reveal the true role of the 3-phosphoinositides at the organismal level in health and disease.
Collapse
Affiliation(s)
- B Vanhaesebroeck
- Ludwig Institute for Cancer Research, Riding House Street, London W1W 7BS.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tuma PL, Nyasae LK, Backer JM, Hubbard AL. Vps34p differentially regulates endocytosis from the apical and basolateral domains in polarized hepatic cells. J Cell Biol 2001; 154:1197-208. [PMID: 11564757 PMCID: PMC2150819 DOI: 10.1083/jcb.200105138] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Using a microinjection approach to study apical plasma membrane protein trafficking in hepatic cells, we found that specific inhibition of Vps34p, a class III phosphoinositide 3 (PI-3) kinase, nearly perfectly recapitulated the defects we reported for wortmannin-treated cells (Tuma, P.L., C.M. Finnegan, J.-H Yi, and A.L. Hubbard. 1999. J. Cell Biol. 145:1089-1102). Both wortmannin and injection of inhibitory Vps34p antibodies led to the accumulation of resident apical proteins in enlarged prelysosomes, whereas transcytosing apical proteins and recycling basolateral receptors transiently accumulated in basolateral early endosomes. To understand how the Vps34p catalytic product, PI3P, was differentially regulating endocytosis from the two domains, we examined the PI3P binding protein early endosomal antigen 1 (EEA1). We determined that EEA1 distributed to two biochemically distinct endosomal populations: basolateral early endosomes and subapical endosomes. Both contained rab5, although the latter also contained late endosomal markers but was distinct from the transcytotic intermediate, the subapical compartment. When PI3P was depleted, EEA1 dissociated from basolateral endosomes, whereas it remained on subapical endosomes. From these results, we conclude that PI3P, via EEA1, regulates early steps in endocytosis from the basolateral surface in polarized WIF-B cells. However, PI3P must use different machinery in its regulation of the apical endocytic pathway, since later steps are affected by Vps34p inhibition.
Collapse
Affiliation(s)
- P L Tuma
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
39
|
Fares H, Greenwald I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 2001; 159:133-45. [PMID: 11560892 PMCID: PMC1461804 DOI: 10.1093/genetics/159.1.133] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The coelomocytes of Caenorhabditis elegans are scavenger cells that continuously and nonspecifically endocytose fluid from the pseudocoelom (body cavity). Green fluorescent protein (GFP) secreted into the pseudocoelom from body wall muscle cells is endocytosed and degraded by coelomocytes. We show that toxin-mediated ablation of coelomocytes results in viable animals that fail to endocytose pseudocoelomic GFP, indicating that endocytosis by coelomocytes is not essential for growth or survival of C. elegans under normal laboratory conditions. We examined known viable endocytosis mutants, and performed RNAi for other known endocytosis genes, for coelomocyte uptake defective (Cup) phenotypes. We also screened for new genes involved in endocytosis by isolating viable mutants with Cup defects; this screen identified 14 different genes, many with multiple alleles. A variety of Cup terminal phenotypes were observed, consistent with defects at various steps in the endocytic pathway. Available molecular information indicates that the Cup mutant screen has identified novel components of the endocytosis machinery that are conserved in mammals but not in Saccharomyces cerevisiae, the only other organism for which large-scale genetic screens for endocytosis mutants have been performed.
Collapse
Affiliation(s)
- H Fares
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
40
|
Gottlieb KA, Villarreal LP. Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev 2001; 65:288-318 ; second and third pages, table of contents. [PMID: 11381103 PMCID: PMC99028 DOI: 10.1128/mmbr.65.2.288-318.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"It has been commented by someone that 'polyoma' is an adjective composed of a prefix and suffix, with no root between--a meatless linguistic sandwich" (C. J. Dawe). The very name "polyomavirus" is a vague mantel: a name given before our understanding of these viral agents was clear but implying a clear tumor life-style, as noted by the late C. J. Dawe. However, polyomavirus are not by nature tumor-inducing agents. Since it is the purpose of this review to consider the natural function of middle T antigen (MT), encoded by one of the seemingly crucial transforming genes of polyomavirus, we will reconsider and redefine the virus and its MT gene in the context of its natural biology and function. This review was motivated by our recent in vivo analysis of MT function. Using intranasal inoculation of adult SCID mice, we have shown that polyomavirus can replicate with an MT lacking all functions associated with transformation to similar levels to wild-type virus. These observations, along with an almost indistinguishable replication of all MT mutants with respect to wild-type viruses in adult competent mice, illustrate that MT can have a play subtle role in acute replication and persistence. The most notable effect of MT mutants was in infections of newborns, indicating that polyomavirus may be highly adapted to replication in newborn lungs. It is from this context that our current understanding of this well-studied virus and gene is presented.
Collapse
Affiliation(s)
- K A Gottlieb
- Department of Molecular Biology and Biochemistry, Biological Sciences II, University of California-Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|