1
|
Markouli M, Papachristou A, Politis A, Boviatsis E, Piperi C. Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options. Biomolecules 2024; 14:1231. [PMID: 39456164 PMCID: PMC11506736 DOI: 10.3390/biom14101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Gliomas represent the most common primary Central Nervous System (CNS) tumors, characterized by increased heterogeneity, dysregulated intracellular signaling, extremely invasive properties, and a dismal prognosis. They are generally resistant to existing therapies and only a few molecular targeting options are currently available. In search of signal transduction pathways with a potential impact in glioma growth and immunotherapy, the Slit guidance ligands (Slits) and their Roundabout (Robo) family of receptors have been revealed as key regulators of tumor cells and their microenvironment. Recent evidence indicates the implication of the Slit/Robo signaling pathway in inflammation, cell migration, angiogenesis, and immune cell infiltration of gliomas, suppressing or promoting the expression of pivotal proteins, such as cell adhesion molecules, matrix metalloproteinases, interleukins, angiogenic growth factors, and immune checkpoints. Herein, we discuss recent data on the significant implication of the Slit/Robo signaling pathway in glioma pathology along with the respective targeting options, including immunotherapy, monoclonal antibody therapy, and protein expression modifiers.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Athina Papachristou
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
| | - Anastasios Politis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
- Second Department of Neurosurgery, “Attikon” University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, “Attikon” University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
| |
Collapse
|
2
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Cho HJ, Kim H, Lee YS, Moon SA, Kim JM, Kim H, Kim MJ, Yu J, Kim K, Baek IJ, Lee SH, Ahn KH, Kim S, Kang JS, Koh JM. SLIT3 promotes myogenic differentiation as a novel therapeutic factor against muscle loss. J Cachexia Sarcopenia Muscle 2021; 12:1724-1740. [PMID: 34423586 PMCID: PMC8718016 DOI: 10.1002/jcsm.12769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Sarcopenia and osteoporosis frequently co-occur in the elderly and have common pathophysiological determinants. Slit guidance ligand 3 (SLIT3) has been recently discovered as a novel therapeutic factor against osteoporosis, and a SLIT3 fragment containing the second leucine-rich repeat domain (LRRD2) had a therapeutic efficacy against osteoporosis. However, a role of SLIT3 in the skeletal muscle is unknown. METHODS Skeletal muscle mass, strength, and/or physical activity were evaluated in Slit3-/- , ovariectomized, and aged mice, based on the measurements of muscle weight and grip strength, Kondziella's inverted hanging test, and/or wheel-running test. Skeletal muscles were also histologically evaluated by haematoxylin and eosin staining and/or immunofluorescence. The ovariectomized and aged mice were intravenously injected with recombinant SLIT3 LRRD2 for 4 weeks. C2C12 cells were used to know cellular effects of SLIT3, such as in vitro myogenesis, fusion, cell viability, and proliferation, and also used to evaluate its molecular mechanisms by immunocytochemistry, immunoprecipitation, western blotting, real-time PCR, siRNA transfection, and receptor-ligand binding ELISA. RESULTS Slit3-deficient mice exhibited decreased skeletal muscle mass, muscle strength, and physical activity. The relative masses of gastrocnemius and soleus were lower in the Slit3-/- mice (0.580 ± 0.039% and 0.033 ± 0.003%, respectively) than those in the WT littermates (0.622 ± 0.043% and 0.038 ± 0.003%, respectively) (all, P < 0.05). Gastrocnemius of Slit3-/- mice showed the reduced number of Type I and Type IIa fibres (all, P < 0.05), but not of Type IIb and Type IIx fibres. SLIT3 activated β-catenin signalling by promoting its release from M-cadherin, thereby increasing myogenin expression to stimulate myoblast differentiation. In vitro experiments involving ROBO2 expression, knockdown, and interaction with SLIT3 indicated that ROBO2 functions as a SLIT3 receptor to aid myoblast differentiation. SLIT3 LRRD2 dissociated M-cadherin-bound β-catenin and up-regulated myogenin expression to increase myoblast differentiation, in a manner similar to full-length SLIT3. Systemic treatment with SLIT3 LRRD2 increased skeletal muscle mass in both ovariectomized and aged mice (all, P < 0.05). The relative masses of gastrocnemius and soleus were higher in the treated aged mice (0.548 ± 0.045% and 0.033 ± 0.005%, respectively) than in the untreated aged mice (0.508 ± 0.016% and 0.028 ± 0.003%, respectively) (all, P < 0.05). SLIT3 LRRD2 treatment increased the hanging duration of the aged mice by approximately 1.7-fold (P < 0.05). CONCLUSIONS SLIT3 plays a sarcoprotective role by activating β-catenin signalling. SLIT3 LRRD2 can potentially be used as a therapeutic agent against muscle loss.
Collapse
Affiliation(s)
- Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonmok Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Sung Ah Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jin-Man Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hanjun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Min Ji Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Sungsub Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, South Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020; 8:607415. [PMID: 33425915 PMCID: PMC7785817 DOI: 10.3389/fcell.2020.607415] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.
Collapse
Affiliation(s)
- Yuko Gonda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Neuroscience Center, HiLIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
5
|
Alvarez S, Varadarajan SG, Butler SJ. Dorsal commissural axon guidance in the developing spinal cord. Curr Top Dev Biol 2020; 142:197-231. [PMID: 33706918 DOI: 10.1016/bs.ctdb.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Commissural axons have been a key model system for identifying axon guidance signals in vertebrates. This review summarizes the current thinking about the molecular and cellular mechanisms that establish a specific commissural neural circuit: the dI1 neurons in the developing spinal cord. We assess the contribution of long- and short-range signaling while sequentially following the developmental timeline from the birth of dI1 neurons, to the extension of commissural axons first circumferentially and then contralaterally into the ventral funiculus.
Collapse
Affiliation(s)
- Sandy Alvarez
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, CA, United States
| | | | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
6
|
Sasaki T, Komatsu Y, Yamamori T. Expression patterns of SLIT/ROBO mRNAs reveal a characteristic feature in the entorhinal-hippocampal area of macaque monkeys. BMC Res Notes 2020; 13:262. [PMID: 32460877 PMCID: PMC7251749 DOI: 10.1186/s13104-020-05100-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE SLITs are secreted glycoproteins that bind to Roundabouts (ROBOs) which are a family member of transmembrane receptors. SLIT signaling has well-conserved roles in mediating axon repulsion in a developing nervous system. We previously reported that SLIT1 mRNA is enriched in middle layers of the prefrontal cortex of macaque monkeys in a developmentally regulated manner. Other SLIT (SLIT2 and SLIT3) mRNAs showed preferential expressions in the prefrontal cortex with a distinct laminar pattern. To obtain further clues to the role of SLIT signaling in the organization of the primate brain, we performed ISH analysis of SLIT and ROBO mRNAs using adult macaque brain tissues. RESULTS In this study, we examined the expression patterns of SLITs and ROBOs (ROBO1 and ROBO2) in other brain regions, and found intense and characteristic expression patterns of these genes in the entorhinal-hippocampal area. In situ hybridization analysis revealed that SLIT1 and SLIT2 mRNAs showed marked complementary distribution in the entorhinal cortex. SLIT and ROBO mRNAs were widely expressed in the hippocampus with modest regional preference. These findings suggest that each SLIT gene has a specialized role that is particularly important for prefrontal as well as hippocampal connectivity in the primate cortex.
Collapse
Affiliation(s)
- Tetsuya Sasaki
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan.
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Ph.D Program of Neurosciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Yusuke Komatsu
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0816, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan.
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
7
|
Pak JS, DeLoughery ZJ, Wang J, Acharya N, Park Y, Jaworski A, Özkan E. NELL2-Robo3 complex structure reveals mechanisms of receptor activation for axon guidance. Nat Commun 2020; 11:1489. [PMID: 32198364 PMCID: PMC7083938 DOI: 10.1038/s41467-020-15211-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
Axon pathfinding is critical for nervous system development, and it is orchestrated by molecular cues that activate receptors on the axonal growth cone. Robo family receptors bind Slit guidance cues to mediate axon repulsion. In mammals, the divergent family member Robo3 does not bind Slits, but instead signals axon repulsion from its own ligand, NELL2. Conversely, canonical Robos do not mediate NELL2 signaling. Here, we present the structures of NELL-Robo3 complexes, identifying a mode of ligand engagement for Robos that is orthogonal to Slit binding. We elucidate the structural basis for differential binding between NELL and Robo family members and show that NELL2 repulsive activity is a function of its Robo3 affinity and is enhanced by ligand trimerization. Our results reveal a mechanism of oligomerization-induced Robo activation for axon guidance and shed light on Robo family member ligand binding specificity, conformational variability, divergent modes of signaling, and evolution.
Collapse
Affiliation(s)
- Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Zachary J DeLoughery
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Nischal Acharya
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA
| | - Yeonwoo Park
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Alexander Jaworski
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Xia Y, Wang L, Xu Z, Kong R, Wang F, Yin K, Xu J, Li B, He Z, Wang L, Xu H, Zhang D, Yang L, Wu JY, Xu Z. Reduced USP33 expression in gastric cancer decreases inhibitory effects of Slit2-Robo1 signalling on cell migration and EMT. Cell Prolif 2019; 52:e12606. [PMID: 30896071 PMCID: PMC6536419 DOI: 10.1111/cpr.12606] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/26/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Gastric cancer (GC) is one of the most common cancers in the world, causing a large number of deaths every year. The Slit-Robo signalling pathway, initially discovered for its critical role in neuronal guidance, has recently been shown to modulate tumour invasion and metastasis in several human cancers. However, the role of Slit-Robo signalling and the molecular mechanisms underlying its role in the pathogenesis of gastric cancer remains to be elucidated. MATERIALS AND METHODS Slit2, Robo1 and USP33 expressions were analysed in datasets obtained from the Oncomine database and measured in human gastric cancer specimens. The function of Slit2-Robo1-USP33 signalling on gastric cancer cells migration and epithelial-mesenchymal transition (EMT) was studied both in vitro and in vivo. The mechanism of the interaction between Robo1 and USP33 was explored by co-IP and ubiquitination protein analysis. RESULTS The mRNA and protein levels of Slit2 and Robo1 are lower in GC tissues relative to those in adjacent healthy tissues. Importantly, Slit2 inhibits GC cell migration and suppresses EMT process in a Robo-dependent manner. The inhibitory function of Slit2-Robo1 is mediated by ubiquitin-specific protease 33 (USP33) via deubiquitinating and stabilizing Robo1. USP33 expression is decreased in GC tissues, and reduced USP33 level is correlated with poor patient survival. CONCLUSIONS Our study reveals the inhibitory function of Slit-Robo signalling in GC and uncovers a role of USP33 in suppressing cancer cell migration and EMT by enhancing Slit2-Robo1 signalling. USP33 represents a feasible choice as a prognostic biomarker for GC.
Collapse
MESH Headings
- Aged
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Movement
- Down-Regulation
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic
- Heterografts
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Models, Biological
- Neoplasm Transplantation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Prognosis
- Protein Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Ubiquitin Thiolesterase/antagonists & inhibitors
- Ubiquitin Thiolesterase/genetics
- Ubiquitin Thiolesterase/metabolism
- Ubiquitination
- Roundabout Proteins
Collapse
Affiliation(s)
- Yiwen Xia
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Linjun Wang
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhipeng Xu
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Fei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Kai Yin
- Department of General SurgeryAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Jianghao Xu
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Bowen Li
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhongyuan He
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Wang
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao Xu
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Diancai Zhang
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Li Yang
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jane Y. Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- Department of Neurology, Center for Genetic MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
- Department of NeurologyCenter for Genetic MedicineLurie Cancer CenterChicagoIllinois
| | - Zekuan Xu
- Department of Gastric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentJiangsu Collaborative Innovation Center for Cancer Personalized MedicineSchool of Publich HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
9
|
Diao H, Wang L, Huang J, Jiang M, Zhou H, Li X, Chen Q, Jiang Z, Feng H. BRCA1-mediated inflammation and growth activated & inhibited transition mechanisms between no-tumor hepatitis/cirrhotic tissues and HCC. J Cell Biochem 2014; 115:641-50. [PMID: 24151232 DOI: 10.1002/jcb.24699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022]
Abstract
To understand breast cancer 1 early onset (BRCA1)-mediated inflammation and growth activated and inhibited transition mechanisms between no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) and human hepatocellular carcinoma (HCC), BRCA1-activated different complete (all no positive correlation, Pearson correlation coefficient <0.25) and uncomplete (partly no positive correlation except BRCA1, Pearson <0.25) networks were identified in higher HCC compared with lower no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) from the corresponding BRCA1-stimulated (Pearson ≥0.25) or inhibited (Pearson ≤-0.25) overlapping molecules of Pearson and GRNInfer, respectively. This result was verified by the corresponding scatter matrix. As visualized by GO, KEGG, GenMAPP, BioCarta, and disease database integration, we proposed mainly that BRCA1-stimulated different complete network was involved in BRCA1 activation with integral to membrane killer cell lectin-like receptor C to nucleus interferon regulatory factor 5-induced inflammation, whereas the corresponding inhibited network participated in BRCA1 repression with matrix roundabout axon guidance receptor homolog 1 to plasma membrane versican-induced growth in lower no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection). However, BRCA1-stimulated network contained BRCA1 activation with endothelium-specific to lysosomal transmembrane and carbamoyl synthetase to tastin, histone cluster and cyclin-induced growth, whereas the corresponding inhibited different complete network included BRCA1 repression with ovalbumin, thyroid stimulating hormone beta and Hu antigen C to cytochrome P450 to transducin-induced inflammation in higher HCC. Our BRCA1 different networks were verified by BRCA1-activated or -inhibited complete and uncomplete networks within and between no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) or (and) HCC.
Collapse
Affiliation(s)
- Haizhen Diao
- Bioinformatics Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China; State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 2014; 156:195-207. [PMID: 24439376 DOI: 10.1016/j.cell.2013.11.048] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin-nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here, we have identified a large family of potential WRC ligands, consisting of ∼120 diverse membrane proteins, including protocadherins, ROBOs, netrin receptors, neuroligins, GPCRs, and channels. Structural, biochemical, and cellular studies reveal that a sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton and have broad physiological and pathological ramifications in metazoans.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | - Zhucheng Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chi W Pak
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yuxing Liao
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shuoyong Shi
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Abstract
Roundabout receptors (Robo) and their Slit ligands were discovered in the 1990s and found to be key players in axon guidance. Slit was initially described s an extracellular matrix protein that was expressed by midline glia in Drosophila. A few years later, it was shown that, in vertebrates and invertebrates, Slits acted as chemorepellents for axons crossing the midline. Robo proteins were originally discovered in Drosophila in a mutant screen for genes involved in the regulation of midline crossing. This ligand-receptor pair has since been implicated in a variety of other neuronal and non-neuronal processes ranging from cell migration to angiogenesis, tumourigenesis and even organogenesis of tissues such as kidneys, lungs and breasts.
Collapse
|
12
|
Cariboni A, Andrews WD, Memi F, Ypsilanti AR, Zelina P, Chedotal A, Parnavelas JG. Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development 2012; 139:3326-31. [PMID: 22912413 PMCID: PMC3424043 DOI: 10.1242/dev.079418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.
Collapse
Affiliation(s)
- Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ismail HMS, Medhat AM, Karim AM, Zakhary NI. FHIT gene and flanking region on chromosome 3p are subjected to extensive allelic loss in Egyptian breast cancer patients. Mol Carcinog 2011; 50:625-34. [PMID: 21557333 DOI: 10.1002/mc.20797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/15/2011] [Accepted: 04/17/2011] [Indexed: 11/05/2022]
Abstract
The fragile histidine triad gene (FHIT) is a candidate tumor suppressor gene at chromosome 3p14.2. Deletions in FHIT gene were reported in different types of cancer including breast cancer. In this study, we investigated the loss of heterozygosity (LOH) incidence that target FHIT genomic structure and chromosome 3p in cancerous and pre-neoplastic lesions of Egyptian breast patients. Genomic DNA was isolated from tumor tissues and their normal counterparts of 55 Egyptian patients diagnosed with breast cancer and 11 patients diagnosed with preneoplastic breast lesions. LOH was detected in 51% of breast cancer cases in at least one microsatellite marker of the four investigated markers. While, none of the markers showed LOH among the pre-neoplastic breast lesions. We also observed a significant association between LOH and invasive ductal carcinoma (IDC) histopathological type while no association observed between LOH and patients' age, tumor grade, or lymph node involvement. We also investigated FHIT gene expression profiles in breast cancer using Oncomine database. We found that FHIT is significantly reduced in all investigated studies. We conclude that, FHIT is underexpressed in breast cancer tissues compared to their normal counterparts due to the extensive allelic loss that is observed in its gene structure.
Collapse
Affiliation(s)
- Heba M S Ismail
- Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | | | | | | |
Collapse
|
14
|
Hernández-Miranda LR, Cariboni A, Faux C, Ruhrberg C, Cho JH, Cloutier JF, Eickholt BJ, Parnavelas JG, Andrews WD. Robo1 regulates semaphorin signaling to guide the migration of cortical interneurons through the ventral forebrain. J Neurosci 2011; 31:6174-87. [PMID: 21508241 PMCID: PMC3088089 DOI: 10.1523/jneurosci.5464-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 12/24/2022] Open
Abstract
Cortical interneurons, generated predominantly in the medial ganglionic eminence, migrate around and avoid the developing striatum in the subpallium en route to the cortex. This is attributable to the chemorepulsive cues of class 3 semaphorins expressed in the striatal mantle and acting through neuropilin (Nrp1 and Nrp2) receptors expressed in these cells. Cortical interneurons also express Robo receptors, and we show here that in mice lacking Robo1, but not Robo2, these cells migrate aberrantly through the striatum. In vitro experiments demonstrated that interneurons lacking Robo1 function are significantly less responsive to the effects of semaphorins. Failure to respond to semaphorin appears to be attributable to a reduction in Nrp1 and PlexinA1 receptors within these cells. Biochemical studies further demonstrated that Robo1 binds directly to Nrp1, but not to semaphorins, and this interaction is mediated by a region contained within its first two Ig domains. Thus, we show for the first time that Robo1 interacts with Nrp1 to modulate semaphorin signaling in the developing forebrain and direct the migration of interneurons through the subpallium and into the cortex.
Collapse
Affiliation(s)
- Luis R. Hernández-Miranda
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Clare Faux
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Christiana Ruhrberg
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Jin Hyung Cho
- Montreal Neurological Institute, Centre for Neuronal Survival and
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival and
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Britta J. Eickholt
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Lin YY, Yang CH, Sheu GT, Huang CYF, Wu YC, Chuang SM, Fann MJ, Chang H, Lee H, Chang JT. A novel exon 15-deleted, splicing variant of Slit2 shows potential for growth inhibition in addition to invasion inhibition in lung cancer. Cancer 2011; 117:3404-15. [PMID: 21264840 DOI: 10.1002/cncr.25890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 11/08/2022]
Abstract
BACKGROUND The axon guidance cue molecule Slit2 has been shown to suppress cancer cell invasion. However, the role of Slit2 in growth inhibition is still controversial. The authors identified a novel exon 15 (AKEQYFIP)-deleted slit2, located at the end of the second leucine-rich repeat (LRR2). Because LRR2 interacts with Robo1 receptor to inhibit invasion, they hypothesized that exon 15 plays an important role in modulating Slit2 function. METHODS Slit2 expression was assessed via microarray analysis in 27 lung adenocarcinomas. Exon 15-deleted slit2 (slit2-ΔE15) and exon 15-containing slit2 (slit2-WT) were cloned and expressed in the CL1-5 lung cancer cell line. The effect of exon 15 on Slit2-mediated cell growth was evaluated by a xenografted model and in vitro cell growth assays. The effect of exon 15 on Slit2-mediated invasion was analyzed with a modified Boyden chamber in vitro. RESULTS Tumor growth from CL1-5/Slit2-WT cells was comparable to that from CL1-5 cells bearing empty vector. However, tumor size from CL1-5/Slit2-ΔE15 cells was much smaller than that from Slit2-WT cells or vector control cells in the xenografted model. In vitro analyses demonstrated that Slit2-WT inhibits invasion of CL1-5 cells. In addition to inhibiting invasion, Slit2-ΔE15 greatly suppresses cell growth. CONCLUSIONS The data demonstrated that exon 15 modulates Slit2 function in growth inhibition of lung cancer cells. Because slit2-ΔE15 splice variant is present in low invasive cancer cells and nontumor lung tissues, loss of this splice variant is an important event in tumor progression and invasion.
Collapse
Affiliation(s)
- Yu-Ying Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sasaki T, Komatsu Y, Watakabe A, Sawada K, Yamamori T. Prefrontal-enriched SLIT1 expression in Old World monkey cortex established during the postnatal development. Cereb Cortex 2010; 20:2496-510. [PMID: 20123755 PMCID: PMC2936805 DOI: 10.1093/cercor/bhp319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To elucidate the molecular basis of the specialization of cortical architectures, we searched for genes differentially expressed among neocortical areas of Old World monkeys by restriction landmark cDNA scanning . We found that mRNA of SLIT1, an axon guidance molecule, was enriched in the prefrontal cortex but with developmentally related changes. In situ hybridization analysis revealed that SLIT1 mRNA was mainly distributed in the middle layers of most cortical areas, robustly in the prefrontal cortex and faintly in primary sensory areas. The lowest expression was in the primary visual area. Analyses of other SLIT (SLIT2 and SLIT3) mRNAs showed preferential expression in the prefrontal cortex with a distinct laminar pattern. By contrast, the receptor Roundabout (ROBO1 and ROBO2) mRNAs were widely distributed throughout the cortex. Perinatally, SLIT1 mRNA was abundantly expressed in the cortex with modest area specificity. Downregulation of expression initially occurred in early sensory areas around postnatal day 60 and followed in the association areas. The prefrontal area-enriched SLIT1 mRNA expression results from a relatively greater attenuation of this expression in the other areas. These results suggest that its role is altered postnatally and that this is particularly important for prefrontal connectivity in the Old World monkey cortex.
Collapse
Affiliation(s)
- Tetsuya Sasaki
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Yusuke Komatsu
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Present address: Section of Primate Model Development for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Kaoru Sawada
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Present address: Center for Radioisotope Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
17
|
Ypsilanti AR, Zagar Y, Chédotal A. Moving away from the midline: new developments for Slit and Robo. Development 2010; 137:1939-52. [DOI: 10.1242/dev.044511] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most tissues, the precise control of cell migration and cell-cell interaction is of paramount importance to the development of a functional structure. Several families of secreted molecules have been implicated in regulating these aspects of development, including the Slits and their Robo receptors. These proteins have well described roles in axon guidance but by influencing cell polarity and adhesion, they participate in many developmental processes in diverse cell types. We review recent progress in understanding both the molecular mechanisms that modulate Slit/Robo expression and their functions in neural and non-neural tissue.
Collapse
Affiliation(s)
- Athena R. Ypsilanti
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| | - Yvrick Zagar
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| | - Alain Chédotal
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| |
Collapse
|
18
|
Cody NAL, Shen Z, Ripeau JS, Provencher DM, Mes-Masson AM, Chevrette M, Tonin PN. Characterization of the 3p12.3-pcen region associated with tumor suppression in a novel ovarian cancer cell line model genetically modified by chromosome 3 fragment transfer. Mol Carcinog 2009; 48:1077-92. [PMID: 19347865 DOI: 10.1002/mc.20535] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genetic analysis of nontumorigenic radiation hybrids generated by transfer of chromosome 3 fragments into the tumorigenic OV-90 ovarian cancer cell line identified the 3p12.3-pcen region as a candidate tumor suppressor gene (TSG) locus. In the present study, polymorphic microsatellite repeat analysis of the hybrids further defined the 3p12.3-pcen interval to a 16.1 Mb common region containing 12 known or hypothetical genes: 3ptel-ROBO2-ROBO1-GBE1-CADM2-VGLL3-CHMP2B-POU1F1-HTR1F-CGGBP1-ZNF654-C3orf38-EPHA3-3pcen. Seven of these genes, ROBO1, GBE1, VGLL3, CHMP2B, CGGBP1, ZNF654, and C3orf38, exhibited gene expression in the hybrids, placing them as top TSG candidates for further analysis. The expression of all but one (VGLL3) of these genes was also detected in the parental OV-90 cell line. Mutations were not identified in a comparative sequence analysis of the predicted protein coding regions of these candidates in OV-90 and donor normal chromosome 3 contig. However, the nondeleterious sequence variants identified in the transcribed regions distinguished parent of origin alleles for ROBO1, VGLL3, CHMP2B, and CGGBP1 and cDNA sequencing of the hybrids revealed biallelic expression of these genes. Interestingly, underexpression of VGLL3 and ZNF654 were observed in malignant ovarian tumor samples as compared with primary cultures of normal ovarian surface epithelial cells or benign ovarian tumors, and this occurred regardless of allelic content of 3p12.3-pcen. The results taken together suggest that dysregulation of VGLL3 and/or ZNF654 expression may have affected pathways important in ovarian tumorigenesis which was offset by the transfer of chromosome 3 fragments in OV-90, a cell line hemizygous for 3p.
Collapse
Affiliation(s)
- Neal A L Cody
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1A4
| | | | | | | | | | | | | |
Collapse
|
19
|
Juhl K, Sarkar SA, Wong R, Jensen J, Hutton JC. Mouse pancreatic endocrine cell transcriptome defined in the embryonic Ngn3-null mouse. Diabetes 2008; 57:2755-61. [PMID: 18599526 PMCID: PMC2551686 DOI: 10.2337/db07-1126] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To document the transcriptome of the pancreatic islet during the early and late development of the mouse pancreas and highlight the qualitative and quantitative features of gene expression that contribute to the specification, growth, and differentiation of the major endocrine cell types. A further objective was to identify endocrine cell biomarkers, targets of diabetic autoimmunity, and regulatory pathways underlying islet responses to physiological and pathological stimuli. RESEARCH DESIGN AND METHODS mRNA expression profiling was performed by microarray analysis of e12.5-18.5 embryonic pancreas from neurogenin 3 (Ngn3)-null mice, a background that abrogates endocrine pancreatic differentiation. The intersection of this data with mRNA expression in isolated adult pancreatic islets and pancreatic endocrine tumor cell lines was determined to compile lists of genes that are specifically expressed in endocrine cells. RESULTS The data provided insight into the transcriptional and morphogenetic factors that may play major roles in patterning and differentiation of the endocrine lineage before and during the secondary transition of endocrine development, as well as genes that control the glucose responsiveness of the beta-cells and candidate diabetes autoantigens, such as insulin, IA-2 and Slc30a8 (ZnT8). The results are presented as downloadable gene lists, available at https://www.cbil.upenn.edu/RADQuerier/php/displayStudy.php?study_id=1330, stratified by predictive scores of relative cell-type specificity. CONCLUSIONS The deposited data provide a rich resource that can be used to address diverse questions related to islet developmental and cell biology and the pathogenesis of type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Kirstine Juhl
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
20
|
Plachez C, Andrews W, Liapi A, Knoell B, Drescher U, Mankoo B, Zhe L, Mambetisaeva E, Annan A, Bannister L, Parnavelas JG, Richards LJ, Sundaresan V. Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain. Mol Cell Neurosci 2008; 37:719-30. [PMID: 18272390 DOI: 10.1016/j.mcn.2007.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/24/2007] [Accepted: 12/12/2007] [Indexed: 11/26/2022] Open
Abstract
Axonal projections from the retina to the brain are regulated by molecules including the Slit family of ligands [Thompson, H., Barker, D., Camand, O., Erskine, L., 2006a. Slits contribute to the guidance of retinal ganglion cell axons in the mammalian optic tract. Dev. Biol. 296, 476-484, Thompson, H., Camand, O., Barker, D., Erskine, L., 2006b. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina. J. Neurosci. 26, 8082-8091]. However, the roles of Slit receptors in mammals, (termed Robos), have not been investigated in visual system development. Here we examined Robo1 and 2 mutant mice and found that Robos regulate the correct targeting of retinal ganglion cell (RGC) axons along the entire visual projection. We noted aberrant projections of RGC axons into the cerebral cortex, an area not normally targeted by RGC axons. The optic chiasm was expanded along the rostro-caudal axis (similar to Slit mutant mice, Plump, A.S., Erskine, L., Sabatier, C., Brose, K., Epstein, C.J., Goodman, C.S., Mason, C.A., Tessier-Lavigne, M., 2002. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219-232), with ectopic crossing points, and some axons projecting caudally toward the corticospinal tract. Further, we found that axons exuberantly projected into the diencephalon. These defects were more pronounced in Robo2 than Robo1 knockout animals, implicating Robo2 as the predominant Robo receptor in visual system development.
Collapse
Affiliation(s)
- Céline Plachez
- The University of Maryland, Baltimore, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, Polito C, Grassia C, Nobili B, Rambaldi PF, Oostra BA, Perrotta S. ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol 2008; 19:825-31. [PMID: 18235093 DOI: 10.1681/asn.2007060692] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The SLIT2 receptor ROBO2 plays a key role in the formation of the ureteric bud, and its inactivation in mice leads to supernumerary ureteric bud development, lack of ureter remodeling, and improper insertion of the ureters into the bladder. Recently, two heterozygous ROBO2 missense mutations were identified in two families with primary vesicoureteral reflux occurring in combination with congenital anomalies of the kidney and urinary tract (VUR/CAKUT). This study investigated a possible causal role of ROBO2 gene variants in 95 unrelated patients with primary VUR (n = 78) or VUR/CAKUT. Eighty-two percent of all patients had a family history of genitourinary anomalies. Twenty-four ROBO2 gene variants were identified by direct sequencing of all 26 exons and the exon-intron boundaries. Of these, four led to amino acid substitutions: Gly328Ser, Asn515Ile, Asp766Gly, and Arg797Gln. When the families were examined, the missense variants co-segregated with VUR (three families) or VUR/CAKUT (one family). These variants were not found in 190 control subjects, and the affected amino acids have been conserved through evolution. In conclusion, a relatively high frequency of ROBO2 variants (5.1%) was found in familial cases; however, functional studies and validation in other cohorts are warranted.
Collapse
Affiliation(s)
- Aida M Bertoli-Avella
- Department of Clinical Genetics, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nural HF, Todd Farmer W, Mastick GS. The Slit receptor Robo1 is predominantly expressed via the Dutt1 alternative promoter in pioneer neurons in the embryonic mouse brain and spinal cord. Gene Expr Patterns 2007; 7:837-45. [PMID: 17826360 PMCID: PMC2080859 DOI: 10.1016/j.modgep.2007.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 10/23/2022]
Abstract
Robo1 is a member of the Roundabout (Robo) family of receptors for the Slit axon guidance cues. In mice (and humans), the Robo1 locus has alternative promoters producing two transcript isoforms, Robo1 and Dutt1. These isoforms have unique 5' termini, predicted to encode distinct N-terminal amino acids, but share the rest of their 3' exons. To determine the spatial expression of the Robo1 and Dutt1 isoforms, we generated isoform-specific RNA probes, and carried out in situ hybridization on E10.5 mouse embryos, the stage in early neuron differentiation when many major axon pathways are established. The two isoforms had distinct expression patterns that partially overlapped. Dutt1 was the predominant isoform, with widespread expression in regions of post-mitotic neurons and neuroepithelial cells. The Robo1 isoform had a distinct expression pattern restricted to subsets of neurons, many of which were Dutt1-negative. Dutt1 was the main isoform expressed in spinal cord commissural neurons. For both probes, the main hybridization signal was limited to two spots in the nuclei of individual cells. This study shows distinct expression patterns for the Dutt1 and Robo1 alternative promoters in the embryonic nervous system.
Collapse
|
23
|
Morlot C, Thielens NM, Ravelli RBG, Hemrika W, Romijn RA, Gros P, Cusack S, McCarthy AA. Structural insights into the Slit-Robo complex. Proc Natl Acad Sci U S A 2007; 104:14923-8. [PMID: 17848514 PMCID: PMC1975871 DOI: 10.1073/pnas.0705310104] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Indexed: 01/27/2023] Open
Abstract
Slits are large multidomain leucine-rich repeat (LRR)-containing proteins that provide crucial guidance cues in neuronal and vascular development. More recently, Slits have been implicated in heart morphogenesis, angiogenesis, and tumor metastasis. Slits are ligands for the Robo (Roundabout) receptors, which belong to the Ig superfamily of transmembrane signaling molecules. The Slit-Robo interaction is mediated by the second LRR domain of Slit and the two N-terminal Ig domains of Robo, but the molecular details of this interaction and how it induces signaling remain unclear. Here we describe the crystal structures of the second LRR domain of human Slit2 (Slit2 D2), the first two Ig domains of its receptor Robo1 (Ig1-2), and the minimal complex between these proteins (Slit2 D2-Robo1 Ig1). Slit2 D2 binds with its concave surface to the side of Ig1 with electrostatic and hydrophobic contact regions mediated by residues that are conserved in other family members. Surface plasmon resonance experiments and a mutational analysis of the interface confirm that Ig1 is the primary domain for binding Slit2. These structures provide molecular insight into Slit-Robo complex formation and will be important for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Cecile Morlot
- *European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France
| | - Nicole M. Thielens
- Laboratoire d'Enzymologie Moleculaire, Institut de Biologie Structurale J. P. Ebel, 38027 Grenoble Cedex 1, France; and
| | - Raimond B. G. Ravelli
- *European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France
| | | | | | - Piet Gros
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Stephen Cusack
- *European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France
| | - Andrew A. McCarthy
- *European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France
| |
Collapse
|
24
|
Abstract
Interneurons are an integral part of cortical neuronal circuits. During the past decade, numerous studies have shown that these cells, unlike their pyramidal counterparts that are derived from the neuroepithelium along the lumen of the lateral ventricles, are generated in the ganglionic eminences in the subpallium. They use tangential migratory paths to reach the cortex, guided by intrinsic and extrinsic cues. Evidence is now emerging which suggests that the family of Slit proteins, acting through Robo receptors, play a role not only in axon guidance in the developing forebrain, but also as guiding signals in the migration of cortical interneurons. Here we describe the patterns of expression of Slit and Robo at different stages of forebrain development and review the evidence in support of their role in cortical interneuron migration. Slit-Robo signal transduction mechanisms are also important during normal development in a number of systems in the body and in disease states, making them potential therapeutic targets for the treatment of neurological disorders and certain types of cancer.
Collapse
Affiliation(s)
- William D Andrews
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
25
|
Multipoint interphase FISH in childhood T-acute lymphoblastic leukemia detects subpopulations that carry different chromosome 3 aberrations. ACTA ACUST UNITED AC 2007; 172:54-60. [DOI: 10.1016/j.cancergencyto.2006.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/07/2006] [Accepted: 08/09/2006] [Indexed: 11/17/2022]
|
26
|
Fischer M, Oberthuer A, Brors B, Kahlert Y, Skowron M, Voth H, Warnat P, Ernestus K, Hero B, Berthold F. Differential Expression of Neuronal Genes Defines Subtypes of Disseminated Neuroblastoma with Favorable and Unfavorable Outcome. Clin Cancer Res 2006; 12:5118-28. [PMID: 16951229 DOI: 10.1158/1078-0432.ccr-06-0985] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of molecular characteristics of spontaneously regressing stage IVS and progressing stage IV neuroblastoma to improve discrimination of patients with metastatic disease following favorable and unfavorable clinical courses. EXPERIMENTAL DESIGN Serial analysis of gene expression profiles were generated from five stage IVS and three stage IV neuroblastoma. Differential expression of candidate genes was evaluated by real-time quantitative reverse transcription-PCR in 76 pretreatment tumor samples (stage IVS n=27 and stage IV n=49). Gene expression-based outcome prediction was determined by Prediction Analysis for Microarrays using 38 tumors as a training set and 38 tumors as a test set. RESULTS Comparison of serial analysis of gene expression profiles from stage IV and IVS neuroblastoma revealed approximately 500 differentially expressed transcripts. Genes related to neuronal differentiation were observed more frequently in stage IVS tumors as determined by associating transcripts to Gene Ontology annotations. Forty-one candidate genes were evaluated by quantitative reverse transcription-PCR and 18 were confirmed to be differentially expressed (P<or=0.001). Classification of patients according to expression patterns of these 18 genes using Prediction Analysis for Microarrays discriminated two subgroups with significantly differing event-free survival (96+/-6% versus 40+/-8% at 3 years; P<0.0001) and overall survival (100% versus 72+/-7% at 3 years; P=0.0003). This classifier was the only independent covariate marker in a multivariate analysis considering the variables stage, age, MYCN amplification, and gene signature. CONCLUSIONS Spontaneously regressing and progressing metastatic neuroblastoma differ by specific gene expression patterns, indicating distinct levels of neuronal differentiation and allowing for an improved risk estimation of children with disseminated disease.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Pediatric Oncology and Hematology and Center of Molecular Medicine Cologne, University Children's Hospital, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Angeloni D, ter Elst A, Wei MH, van der Veen AY, Braga EA, Klimov EA, Timmer T, Korobeinikova L, Lerman MI, Buys CHCM. Analysis of a new homozygous deletion in the tumor suppressor region at 3p12.3 reveals two novel intronic noncoding RNA genes. Genes Chromosomes Cancer 2006; 45:676-91. [PMID: 16607615 DOI: 10.1002/gcc.20332] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Homozygous deletions or loss of heterozygosity (LOH) at human chromosome band 3p12 are consistent features of lung and other malignancies, suggesting the presence of a tumor suppressor gene(s) (TSG) at this location. Only one gene has been cloned thus far from the overlapping region deleted in lung and breast cancer cell lines U2020, NCI H2198, and HCC38. It is DUTT1 (Deleted in U Twenty Twenty), also known as ROBO1, FLJ21882, and SAX3, according to HUGO. DUTT1, the human ortholog of the fly gene ROBO, has homology with NCAM proteins. Extensive analyses of DUTT1 in lung cancer have not revealed any mutations, suggesting that another gene(s) at this location could be of importance in lung cancer initiation and progression. Here, we report the discovery of a new, small, homozygous deletion in the small cell lung cancer (SCLC) cell line GLC20, nested in the overlapping, critical region. The deletion was delineated using several polymorphic markers and three overlapping P1 phage clones. Fiber-FISH experiments revealed the deletion was approximately 130 kb. Comparative genomic sequence analysis uncovered short sequence elements highly conserved among mammalian genomes and the chicken genome. The discovery of two EST clusters within the deleted region led to the isolation of two noncoding RNA (ncRNA) genes. These were subsequently found differentially expressed in various tumors when compared to their normal tissues. The ncRNA and other highly conserved sequence elements in the deleted region may represent miRNA targets of importance in cancer initiation or progression.
Collapse
Affiliation(s)
- Debora Angeloni
- Laboratory of Immunobiology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Camurri L, Mambetisaeva E, Davies D, Parnavelas J, Sundaresan V, Andrews W. Evidence for the existence of two Robo3 isoforms with divergent biochemical properties. Mol Cell Neurosci 2005; 30:485-93. [PMID: 16226035 DOI: 10.1016/j.mcn.2005.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 11/18/2022] Open
Abstract
Robo3 is a member of the roundabout (Robo) family of proteins that plays a key role in axon guidance and cell migration in the developing nervous system. Recent studies have shown that Robo3 plays a crucial role in controlling axon guidance at the midline of the CNS. Here we describe and compare two human Robo3 isoforms, Robo3A and Robo3B, which differ by the insertion of 26 amino acids at the N-terminus, and these forms appear to be evolutionary conserved. We investigated the bioactivity of these isoforms and show that they have different binding properties to Slit, and that orthologs of these forms are expressed in the mouse embryo. In addition, we show that, like other members of the Robo family, Robo3 can bind homophilically, but it is also capable of binding heterophilically to Robo1 and NCAM. We propose that these properties of Robo3 may contribute to its function at the midline of the CNS.
Collapse
Affiliation(s)
- Laura Camurri
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College, London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
29
|
Mambetisaeva ET, Andrews W, Camurri L, Annan A, Sundaresan V. Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord. Dev Dyn 2005; 233:41-51. [PMID: 15768400 DOI: 10.1002/dvdy.20324] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ventral midline of the central nervous system is an important intermediate target where growing commissural axons either cross and project contralaterally or remain on the same side of the body. New studies on mice and humans show that this decision by commissural axons is largely dependent on Slits, extracellular matrix proteins that are widely expressed in the midline of the nervous system, and their receptors, Robos (Long et al. [2004] Neuron 42:213-223; Sabatier et al. [2004] Cell 117:157-169; Jen et al. [2004] Science 304:1509-1513). Here, we show that the Robo family proteins Robo1 and Rig-1 exhibit differential expression patterns on commissural axons as they approach, cross, and leave the midline of the developing mouse spinal cord and demonstrate that Robo1 and Robo2 bind Slit1 and Slit2, but Rig-1 does not. In addition, we show that cultured chick commissural axons are repelled by a source of Slit protein, and the soluble Robo-Fc proteins are capable of neutralizing this repulsion. Finally, we exploit the large size and accessibility of the early chick embryo to analyze the function of Slit/Robo signaling in midline commissural axon guidance, and we demonstrate that the in vivo perturbation of Robo-Slit interaction at the floor plate causes consistent guidance defects of commissural axons during midline crossing. These findings demonstrate the evolutionarily conserved role for Robo-Slit interaction in the control of midline crossing axons in vertebrates.
Collapse
Affiliation(s)
- Elvira T Mambetisaeva
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
30
|
Miyasaka N, Sato Y, Yeo SY, Hutson LD, Chien CB, Okamoto H, Yoshihara Y. Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system. Development 2005; 132:1283-93. [PMID: 15716341 DOI: 10.1242/dev.01698] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafish. robo2 is transiently expressed in the olfactory placode during the initial phase of olfactory axon pathfinding. In the robo2 mutant, astray (ast), early growing olfactory axons misroute ventromedially or posteriorly, and often penetrate into the diencephalon without reaching the OB primordium. Four zebrafish Slit homologs are expressed in regions adjacent to the olfactory axon trajectory,consistent with their role as repulsive ligands for Robo2. Masking of endogenous Slit gradients by ubiquitous misexpression of Slit2 in transgenic fish causes posterior pathfinding errors that resemble the astphenotype. We also found that the spatial arrangement of glomeruli in OB is perturbed in ast adults, suggesting an essential role for the initial olfactory axon scaffold in determining a topographic glomerular map. These data provide functional evidence for Robo2/Slit signaling in the establishment of olfactory neural circuitry in zebrafish.
Collapse
Affiliation(s)
- Nobuhiko Miyasaka
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Xian J, Aitchison A, Bobrow L, Corbett G, Pannell R, Rabbitts T, Rabbitts P. Targeted disruption of the 3p12 gene, Dutt1/Robo1, predisposes mice to lung adenocarcinomas and lymphomas with methylation of the gene promoter. Cancer Res 2004; 64:6432-7. [PMID: 15374951 DOI: 10.1158/0008-5472.can-04-2561] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The DUTT1 gene is located on human chromosome 3, band p12, within a region of nested homozygous deletions in breast and lung tumors. It is therefore a candidate tumor suppressor gene in humans and is the homologue (ROBO1) of the Drosophila axonal guidance receptor gene, Roundabout. We have shown previously that mice with a targeted homozygous deletion within the Dutt1/Robo1 gene generally die at birth due to incomplete lung development: survivors die within the first year of life with epithelial bronchial hyperplasia as a common feature. Because Dutt1/Robo1 heterozygous mice develop normally, we have determined their tumor susceptibility. Mice with a targeted deletion within one Dutt1/Robo1 allele spontaneously develop lymphomas and carcinomas in their second year of life with a 3-fold increase in incidence compared with controls: invasive lung adenocarcinomas are by far the predominant carcinoma. In addition to the mutant allele, loss of heterozygosity analysis indicates that these tumors retain the structurally normal allele but with substantial methylation of the gene's promoter. Substantial reduction of Dutt1/Robo1 protein expression in tumors is observed by Western blotting and immunohistochemistry. This suggests that Dutt1/Robo1 is a classic tumor suppressor gene requiring inactivation of both alleles to elicit tumorigenesis in these mice.
Collapse
Affiliation(s)
- Jian Xian
- Department of Oncology, University of Cambridge, Medical Research Council Centre, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Tsujiuchi T, Sasaki Y, Oka Y, Kuniyasu H, Tsutsumi M. Alterations of the Dutt1/Robo1 gene in lung adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine in rats. Mol Carcinog 2004; 40:241-6. [PMID: 15264215 DOI: 10.1002/mc.20037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abnormalities of tumor suppressor genes (TSGs) on chromosome 3p are known to be important for the development of human lung cancers. In the present study, we investigated alterations of the Dutt1/Robo1 gene, as a possible tumor suppressor in this region, in rat lung adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine (BHP). Male Wistar rats, 6-wk-old, were given 2000 ppm BHP in their drinking water for 12 wk and maintained without further treatment until killed at wk 25. A total of 12 lung adenocarcinomas were obtained and total RNAs were extracted from each for assessment of aberrant transcripts of the Dutt1/Robo1 gene by reverse transcription (RT)-polymerase chain reaction (PCR) analysis. Aberrant transcripts bearing deletions of nucleotides (nt) 55-4318, 89-4346, 605-4221, and 929-4318 were detected in four of 12 adenocarcinomas (33.3%). Loss or reduced expression of the Dutt1/Robo1 gene was not found in any of the adenocarcinomas. Genomic DNAs extracted from six adenocarcinomas for Southern blot analysis did not show any evidence of deletion or gross rearrangement of the Dutt1/Robo1 gene. These results suggest that alterations of the Dutt1/Robo1 gene may be involved in the development of some lung adenocarcinomas induced by BHP in rats.
Collapse
Affiliation(s)
- Toshifumi Tsujiuchi
- Department of Oncological Pathology, Cancer Center, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | |
Collapse
|
33
|
Liu Z, Patel K, Schmidt H, Andrews W, Pini A, Sundaresan V. Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding. Mol Cell Neurosci 2004; 26:232-40. [PMID: 15207848 DOI: 10.1016/j.mcn.2004.01.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 12/23/2003] [Accepted: 01/05/2004] [Indexed: 11/27/2022] Open
Abstract
Robo, the receptor for the midline repellent Slit, is a member of the cell adhesion molecule (CAM) Ig superfamily. We have recently demonstrated that members of the Robo family (Robo1 and Robo2) interact homophilically and heterophilically, thereby functioning to promote neurite outgrowth. Here, we describe a series of in vitro experiments to dissect the Robo ligand-interacting domains by deleting specific extracellular regions of the Robo1 molecule, generating a series of mutant proteins. Using these, we demonstrate that Ig domains 1 and 2 of Robo1 are important for Robo-Slit interaction and provide functional data using the Slit-mediated olfactory bulb repulsion assay. To investigate whether homophilic binding properties of Robo are domain specific, we used Robo1-Fc mutant deletion proteins in an aggregation assay and observed a reduction in homophilic binding when any one Ig or all the fibronectin domains were deleted, although homophilic binding was never completely abolished.
Collapse
Affiliation(s)
- Zhe Liu
- MRC Centre for Developmental Neurobiology, Guy's Hospital Campus, Kings College, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
34
|
Sundaresan V, Mambetisaeva E, Andrews W, Annan A, Knöll B, Tear G, Bannister L. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system. J Comp Neurol 2004; 468:467-81. [PMID: 14689480 DOI: 10.1002/cne.10984] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Robo family of molecules is important for axon guidance across the midline during central nervous system (CNS) development in invertebrates and vertebrates. Here we describe the patterns of Robo protein expression in the developing mouse CNS from embryonic day (E) 9.5 to postnatal day (P) 4, as determined by immunohistochemical labeling with an antibody (S3) raised against a common epitope present in the Robo ectodomain of Robos 1 and 2. In the spinal cord, midline-crossing axons are initially (at E11) S3-positive. At later times, midline Robo expression disappears, but is strongly upregulated in longitudinally running postcrossing axons. It is also strongly expressed in noncrossing longitudinal axons. Differential expression of Robo along axons was also found in axons cultured from E14 spinal cord. These findings resemble those from the Drosophila ventral nerve cord and indicate that in vertebrates a low level of Robo expression occurs in the initial crossing of the midline, while a high level of expression in the postcrossing fibers prevents recrossing. Likewise, Robo-positive ipsilateral axons are prevented from crossing at all. However, in the brain different rules appear to apply. Most commissural axons including those of the corpus callosum are strongly S3-positive along their whole length from their time of formation to postnatal life, but some have more complex age-dependent expression patterns. S3 labeling of the optic pathway is also complex, being initially strong in the retinal ganglion cells, optic tract, and chiasma but thereafter being lost except in a proportion of postchiasmal axons. The corticospinal tract is strongly positive throughout its course at all stages examined, including its decussation, formed at about P2 in the central part of the medulla oblongata.
Collapse
Affiliation(s)
- Vasi Sundaresan
- Medical Research Council Centre for Developmental Neurobiology, Guys Hospital Campus, Kings College London, London Bridge, SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
35
|
Camurri L, Mambetisaeva E, Sundaresan V. Rig-1 a new member of Robo family genes exhibits distinct pattern of expression during mouse development. Gene Expr Patterns 2004; 4:99-103. [PMID: 14678835 DOI: 10.1016/s1567-133x(03)00142-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Robo genes encode a family of proteins that are the receptors for the midline repellent Slits and play a role in axon guidance. In addition to Robo1 and Robo2, Rig-1 has been recently identified in mouse as a novel member of the Robo family of proteins. As a first step in elucidating the role of Rig-1 during vertebrate development, we characterised the expression of Rig-1 by in situ hybridisation together with Robo1 and Robo2 in the spinal cord and other tissues of the mouse embryo. Our results show that Rig-1 has a dynamic pattern of expression in the developing CNS. In the spinal cord Rig-1 shows overlapping but distinct pattern of expression with Robo1 and Robo2.
Collapse
Affiliation(s)
- Laura Camurri
- MRC Centre for Developmental Neurobiology, Molecular Neurobiology Department, 4th floor South Wing, New Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | |
Collapse
|
36
|
Knöll B, Schmidt H, Andrews W, Guthrie S, Pini A, Sundaresan V, Drescher U. On the topographic targeting of basal vomeronasal axons through Slit-mediated chemorepulsion. Development 2003; 130:5073-82. [PMID: 12954717 DOI: 10.1242/dev.00726] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vomeronasal projection conveys information provided by pheromones and detected by neurones in the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) and thence to other regions of the brain such as the amygdala. The VNO-AOB projection is topographically organised such that axons from apical and basal parts of the VNO terminate in the anterior and posterior AOB respectively. We provide evidence that the Slit family of axon guidance molecules and their Robo receptors contribute to the topographic targeting of basal vomeronasal axons. Robo receptor expression is confined largely to basal VNO axons, while Slits are differentially expressed in the AOB with a higher concentration in the anterior part, which basal axons do not invade. Immunohistochemistry using a Robo-specific antibody reveals a zone-specific targeting of VNO axons in the AOB well before cell bodies of these neurones in the VNO acquire their final zonal position. In vitro assays show that Slit1-Slit3 chemorepel VNO axons, suggesting that basal axons are guided to the posterior AOB due to chemorepulsive activity of Slits in the anterior AOB. These data in combination with recently obtained other data suggest a model for the topographic targeting in the vomeronasal projection where ephrin-As and neuropilins guide apical VNO axons, while Robo/Slit interactions are important components in the targeting of basal VNO axons.
Collapse
Affiliation(s)
- Bernd Knöll
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 2003; 261:251-67. [PMID: 12941633 DOI: 10.1016/s0012-1606(03)00258-6] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.
Collapse
MESH Headings
- Activin Receptors, Type I/deficiency
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Movement
- Chromosome Mapping
- Endothelium, Vascular/embryology
- Gene Expression Regulation, Developmental
- Humans
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins
- Ligands
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Nerve Tissue Proteins/metabolism
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Sequence Homology, Amino Acid
- Signal Transduction
- Zebrafish
- Roundabout Proteins
Collapse
Affiliation(s)
- Kye Won Park
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Roche J, Drabkin H, Brambilla E. Neuropilin and its ligands in normal lung and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 515:103-14. [PMID: 12613547 DOI: 10.1007/978-1-4615-0119-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropilins (NRPs) are receptors for class 3 Semaphorins and function as co-receptors for Vascular endothelial growth factor isoforms, VEGF165 and VEGF145 and related molecules. NRPs are expressed in a variety of neural and non-neural tissues and are required for normal development. Interestingly, class 3 Semaphorins and VEGF compete for common NRP binding. As a consequence, Semaphorins and VEGF appear to be mutually antagonistic. In the lung, NRP levels increase during development and NRPs and Semaphorins are involved in lung branching, probably by altering cell morphology or by regulating cell motility and migration. During lung tumorigenesis, both NRP and VEGF expression increase on dysplastic lung epithelial cells; SEMA3F expression is reduced and SEMA3F protein is delocalized from the membrane to the cytoplasm. In lung cancers, SEMA3F staining correlates inversely with tumor stage with high SEMA3F associated with less aggressive tumors. Conversely, more aggressive tumors are associated with increased VEGF staining and a corresponding loss in membranous SEMA3F.
Collapse
Affiliation(s)
- Joëlle Roche
- IBMIG, Université de Poitiers, 40 Av du Recteur Pineau, 86022 Poitiers Cédex France.
| | | | | |
Collapse
|
39
|
Zabarovsky ER, Lerman MI, Minna JD. Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 2002; 21:6915-35. [PMID: 12362274 DOI: 10.1038/sj.onc.1205835] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of heterozygosity (LOH) involving several chromosome 3p regions accompanied by chromosome 3p deletions are detected in almost 100% of small (SCLCs) and more than 90% of non-small (NSCLCs) cell lung cancers. In addition, these changes appear early in the pathogenesis of lung cancer and are found as clonal lesions in the smoking damaged respiratory epithelium including histologically normal epithelium as well as in epithelium showing histologic changes of preneoplasia. These 3p genetic alterations lead to the conclusion that the short arm of human chromosome 3 contains several tumor suppressor gene(s) (TSG(s)). Although the first data suggesting that 3p alterations were involved in lung carcinogenesis were published more than 10 years ago, only recently has significant progress been achieved in identifying the candidate TSGs and beginning to demonstrate their functional role in tumor pathogenesis. Some of the striking results of these findings has been the discovery of multiple 3p TSGs and the importance of tumor acquired promoter DNA methylation as an epigenetic mechanism for inactivating the expression of these genes in lung cancer. This progress, combined with the well known role of smoking as an environmental causative risk factor in lung cancer pathogenesis, is leading to the development of new diagnostic and therapeutic strategies which can be translated into the clinic to combat and prevent the lung cancer epidemic. It is clear now that genetic and epigenetic abnormalities of several genes residing in chromosome region 3p are important for the development of lung cancers but it is still obscure how many of them exist and which of the numerous candidate TSGs are the key players in lung cancer pathogenesis. We review herein our current knowledge and describe the most credible candidate genes.
Collapse
Affiliation(s)
- Eugene R Zabarovsky
- Microbiology and Tumor Biology Center, Center for Genomics and Bioinformatics, Karolinska Institutet S-171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
40
|
Abstract
The receptor Roundabout-1 (Robo1) and its ligand Slit are known to influence axon guidance and central nervous system (CNS) patterning in both vertebrate and nonvertebrate systems. Although Robo-Slit interactions mediate axon guidance in the Drosophila CNS, their role in establishing the early axon scaffold in the embryonic vertebrate brain remains unclear. We report here the identification and expression of a Xenopus Robo1 orthologue that is highly homologous to mammalian Robo1. By using overexpression studies and immunohistochemical and in situ hybridization techniques, we have investigated the role of Robo1 in the development of a subset of neurons and axon tracts in the Xenopus forebrain. Robo1 is expressed in forebrain nuclei and in neuroepithelial cells underlying the main axon tracts. Misexpression of Robo1 led to aberrant development of axon tracts as well as the ectopic differentiation of forebrain neurons. These results implicate Robo1 in both neuronal differentiation and axon guidance in embryonic vertebrate forebrain.
Collapse
Affiliation(s)
- R M Connor
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
41
|
Clark K, Hammond E, Rabbitts P. Temporal and spatial expression of two isoforms of the Dutt1/Robo1 gene in mouse development. FEBS Lett 2002; 523:12-6. [PMID: 12123796 DOI: 10.1016/s0014-5793(02)02904-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mammalian homologue of the Drosophila axonal guidance receptor roundabout is expressed in a wide range of tissues. Here we show that alternative splicing of the Dutt1/Robo1 gene results in two mRNA transcripts with different signal peptides, which are differentially expressed throughout mouse embryogenesis. Since mice with a targeted deletion in the Dutt1/Robo1 gene have abnormal lung pathology, immunohistochemistry was used to identify the cellular expression pattern of Dutt1/Robo1 during lung development. Dutt1/Robo1 expression was widespread and diffuse in the lung at embryonic day 17.5 but became increasingly localised to the bronchial epithelium in newborn and adult mice.
Collapse
Affiliation(s)
- Katherine Clark
- Department of Oncology, University of Cambridge, MRC Centre, Hills Road, CB2 2QH, Cambridge, UK.
| | | | | |
Collapse
|
42
|
Dallol A, Forgacs E, Martinez A, Sekido Y, Walker R, Kishida T, Rabbitts P, Maher ER, Minna JD, Latif F. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 2002; 21:3020-8. [PMID: 12082532 DOI: 10.1038/sj.onc.1205421] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 02/01/2002] [Accepted: 02/19/2002] [Indexed: 11/08/2022]
Abstract
The human homologue of the Drosophila Roundabout gene DUTT1 (Deleted in U Twenty Twenty) or ROBO1 (Locus Link ID 6091), a member of the NCAM family of receptors, was recently cloned from the lung cancer tumour suppressor gene region 2 (LCTSGR2 or U2020 region) at 3p12. DUTT1 maps within a region of overlapping homozygous deletions characterized in both small cell lung cancer lines (SCLC) and in a breast cancer line. In this report we (a) defined the genomic organization of the DUTT1 gene, (b) performed mutation and expression analysis of DUTT1 in lung, breast and kidney cancers, (c) identified tumour specific promoter region methylation of DUTT1 in human cancers. The gene was found to contain 29 exons and spans at least 240 kb of genomic sequence. The 5' region contains a CpG island, and the poly(A)(+) tail has an atypical 5'-GATAAA-3' signal. We analysed DUTT1 for mutations in lung, breast and kidney cancers, no inactivating mutations were detected by PCR-SSCP. However, seven germline missense changes were found and characterized. DUTT1 expression was not detectable in one out of 18 breast tumour lines analysed by RT-PCR. Bisulfite sequencing of the promoter region of DUTT1 gene in the HTB-19 breast tumour cell line (not expressing DUTT1) showed complete hypermethylation of CpG sites within the promoter region of the DUTT1 gene (-244 to +27 relative to the translation start site). The expression of DUTT1 gene was reactivated in HTB-19 after treatment with the demethylating agent 5-aza-2'-deoxycytidine. The same region was also found to be hypermethylated in six out of 32 (19%) primary invasive breast carcinomas and eight out of 44 (18%) primary clear cell renal cell carcinomas (CC-RCC) and in one out of 26 (4%) primary NSCLC tumours. Furthermore 80% of breast and 75% of CC-RCC tumours showing DUTT1 methylation had allelic losses for 3p12 markers hence obeying Knudson's two hit hypothesis. Our findings suggest that DUTT1 warrants further analysis as a candidate for the tumour suppressor gene (TSG) at 3p12, a region defined by hemi and homozygous deletions and functional analysis.
Collapse
MESH Headings
- Animals
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Chromosomes, Human, Pair 3/genetics
- CpG Islands
- DNA Methylation
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Decitabine
- Drosophila Proteins/genetics
- Drosophila melanogaster/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Tumor Suppressor
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Loss of Heterozygosity
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mutation, Missense
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Promoter Regions, Genetic/genetics
- Receptors, Immunologic
- Sequence Homology, Nucleic Acid
- Tumor Cells, Cultured
- Roundabout Proteins
Collapse
Affiliation(s)
- Ashraf Dallol
- Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, University of Birmingham, The Medical School, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xian J, Clark KJ, Fordham R, Pannell R, Rabbitts TH, Rabbitts PH. Inadequate lung development and bronchial hyperplasia in mice with a targeted deletion in the Dutt1/Robo1 gene. Proc Natl Acad Sci U S A 2001; 98:15062-6. [PMID: 11734623 PMCID: PMC64983 DOI: 10.1073/pnas.251407098] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2001] [Indexed: 11/18/2022] Open
Abstract
Chromosome 3 allele loss in preinvasive bronchial abnormalities and carcinogen-exposed, histologically normal bronchial epithelium indicates that it is an early, possibly the first, somatic genetic change in lung tumor development. Candidate tumor suppressor genes have been isolated from within distinct 3p regions implicated by heterozygous and homozygous allele loss. We have proposed that DUTT1, nested within homozygously deleted regions at 3p12-13, is the tumor suppressor gene that deletion-mapping and tumor suppression assays indicate is located in proximal 3p. The same gene, ROBO1 (accession number ), was independently isolated as the human homologue of the Drosophila gene, Roundabout. The gene, coding for a receptor with a domain structure of the neural-cell adhesion molecule family, is widely expressed and has been implicated in the guidance and migration of axons, myoblasts, and leukocytes in vertebrates. A deleted form of the gene, which mimics a naturally occurring, tumor-associated human homozygous deletion of exon 2 of DUTT1/ROBO1, was introduced into the mouse germ line. Mice homozygous for this targeted mutation, which eliminates the first Ig domain of Dutt1/Robo1, frequently die at birth of respiratory failure because of delayed lung maturation. Lungs from these mice have reduced air spaces and increased mesenchyme, features that are present some days before birth. Survivors acquire extensive bronchial epithelial abnormalities including hyperplasia, providing evidence of a functional relationship between a 3p gene and the development of bronchial abnormalities associated with early lung cancer.
Collapse
Affiliation(s)
- J Xian
- Medical Research Council (MRC) Molecular Oncology Group, Department of Oncology, University of Cambridge, MRC Centre, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Patel K, Nash JA, Itoh A, Liu Z, Sundaresan V, Pini A. Slit proteins are not dominant chemorepellents for olfactory tract and spinal motor axons. Development 2001; 128:5031-7. [PMID: 11748139 DOI: 10.1242/dev.128.24.5031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Slit family are large extracellular glycoproteins that may function as chemorepellents in axon guidance and neuronal cell migration. Their actions are mediated through members of the Robo family that act as their receptors. In vertebrates, Slit causes chemorepulsion of embryonic olfactory tract, spinal motor, hippocampal and retinal ganglion cell axons. Since Slits are expressed in the septum and floor plate during the period when these tissues cause chemorepulsion of olfactory tract and spinal motor axons respectively, it has been proposed that Slits function as guidance cues. We have tested this hypothesis in collagen gel co-cultures using soluble Robo/Fc chimeras, as competitive inhibitors, to disrupt Slit interactions. We find that the addition of soluble Robo/Fc has no effect on chemorepulsion of olfactory tract and spinal motor axons when co-cultured with septum or floor plate respectively. Thus, we conclude that although Slits are expressed in the septum and floor plate, their proteins do not contribute to the major chemorepulsive activities emanating from these tissues which cause repulsion of olfactory tract and spinal motor axons.
Collapse
Affiliation(s)
- K Patel
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Hospital, King's College London, London Bridge, London SE1 1UL, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Martinez A, Walker RA, Shaw JA, Dearing SJ, Maher ER, Latif F. Chromosome 3p allele loss in early invasive breast cancer: detailed mapping and association with clinicopathological features. Mol Pathol 2001; 54:300-6. [PMID: 11577171 PMCID: PMC1187086 DOI: 10.1136/mp.54.5.300] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Chromosome 3p allele loss is a frequent event in many common sporadic cancers including lung, breast, kidney, ovarian, and head and neck cancer. To analyse the extent and frequency of 3p allelic losses in T1N0 and T1N1 invasive sporadic breast cancer, 19 microsatellite markers spread along 3p were analysed in 40 such breast carcinomas with known clinicopathological parameters. METHODS Loss of heterozygosity analysis was carried out using 3p microsatellite markers that were non-randomly distributed and chosen to represent regions that show hemizygous and/or homozygous losses in lung cancer (lung cancer tumour suppressor gene region 1 ( LCTSGR1) at 3p21.3 and LCTSGR2 at 3p12), and regions demonstrating suppression of tumorigenicity in breast, kidney, lung, and ovarian cancer. RESULTS Allelic loss was seen at one or more loci in 22 of these clinically early stage sporadic breast tumours, but none had complete 3p allele loss. Several regions with non-overlapping deletions were defined, namely: (1) 18 tumours showed loss at 3p21-22, a physical distance of 12 Mb; (2) 11 tumours showed loss at 3p12 within a physical distance of 1 Mb, this region is contained within LCTSGR2; (3) six tumours showed loss at 3p25-24, including the von Hippel-Lindau (VHL) locus; (4) five tumours showed loss at 3p14.2, including the fragile histidine triad (FHIT) locus. CONCLUSIONS This is the largest study to date defining the extent and range of 3p allelic losses in early stage invasive breast cancer and the results indicate that region 3p21-22 containing LCTSGR1 and a region at 3p12 within LCTSGR2 are the most frequent sites of 3p allelic loss in these breast carcinomas. This suggests that tumour suppressor genes located in these regions may play important roles in the development of breast cancer. There was an association between increasing 3p allelic loss and increasing tumour grade and loss of progesterone (p = 0.0098) and oestrogen (p = 0.0472) receptor expression, indicating a link between 3p allelic loss and the regulation of differentiation.
Collapse
Affiliation(s)
- A Martinez
- Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, University of Birmingham, The Medical School, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
46
|
A novel member of the Ig superfamily, turtle, is a CNS-specific protein required for coordinated motor control. J Neurosci 2001. [PMID: 11312296 DOI: 10.1523/jneurosci.21-09-03113.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe here the cloning and functional characterization of a neural-specific novel member of the Ig superfamily, turtle (tutl), with a structure of five Ig C2-type domains, two fibronectin type III domains, and one transmembrane region. Alternative splicing of the tutl gene produces at least four Tutl isoforms, including two transmembrane proteins and two secreted proteins, with primary structures closely related to a human brain protein (KIAA1355), the Deleted in Colorectal Cancer/Neogenin/Frazzled receptor family, and the Roundabout/Dutt1 receptor family. An allelic series of tutl gene mutations resulted in recessive lethality to semilethality, indicating that the gene is essential. In contrast to other family members, tutl does not play a detectable role in axon pathfinding or nervous system morphogenesis. Likewise, basal synaptic transmission and locomotory movement are unaffected. However, tutl mutations cause striking movement defects exhibited in specific types of highly coordinated behavior. Specifically, tutl mutants display an abnormal response to tactile stimulation, the inability to regain an upright position from an inverted position (hence, "turtle"), and the inability to fly in adulthood. These phenotypes demonstrate that tutl plays an essential role in establishing a nervous system capable of executing coordinated motor output in complex behaviors.
Collapse
|
47
|
Lee JS, Ray R, Chien CB. Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration. Dev Dyn 2001; 221:216-30. [PMID: 11376489 DOI: 10.1002/dvdy.1136] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and expression patterns of three novel zebrafish Roundabout homologs. The Roundabout (robo) gene encodes a transmembrane receptor that is essential for axon guidance in Drosophila and Robo family members have been implicated in cell migration. Analysis of extracellular domains and conserved cytoplasmic motifs shows that zebrafish Robo1 and Robo2 are orthologs of mammalian Robo1 and Robo2, respectively, while zebrafish Robo3 is likely to be an ortholog of mouse Rig-1. The three zebrafish robos are expressed in distinct but overlapping patterns during embryogenesis. They are highly expressed in the developing nervous system, including the olfactory system, visual system, hindbrain, cranial ganglia, spinal cord, and posterior lateral line primordium. They are also expressed in several nonneuronal tissues, including somites and fin buds. The timing and patterns of expression suggest roles for zebrafish robos in axon guidance and cell migration. Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J S Lee
- Department of Neurobiology and Anatomy, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
48
|
Abstract
A central feature of the developing nervous system is the midline region, which guides growing axons with both short- and long-range signals. New research shows that a trio of receptors, the Robos, are crucial in allowing axons to interpret these signals, ensuring correct route-finding within the emerging axon scaffold.
Collapse
Affiliation(s)
- S Guthrie
- MRC Centre for Developmental Neurobiology, 4th Floor, New Hunt's House, King's College, Guy's Campus, SE1 1UL, London, UK
| |
Collapse
|
49
|
|
50
|
Forgacs E, Zöchbauer-Müller S, Oláh E, Minna JD. Molecular genetic abnormalities in the pathogenesis of human lung cancer. Pathol Oncol Res 2001; 7:6-13. [PMID: 11349214 DOI: 10.1007/bf03032598] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the past few years our knowledge of the molecular pathogenesis of lung cancer has significantly increased. There are several molecular mechanisms involved in the multistage carcinogenesis through which respiratory epithelial cells become preneoplastic and then invasive cancer. In this review we summarize some of these changes including, genomic alterations such as loss of heterozygosity and microsatellite alterations, autocrine-paracrine loops, alterations in oncogenes and tumor suppressor genes, tumor angiogenesis, aberrant promoter methylation and inherited predisposition to lung cancer. Translation of these findings to the clinic is also discussed.
Collapse
Affiliation(s)
- E Forgacs
- University of Texas Southwestern Medical Center at Dallas, Hamon Center for Therapeutic Oncology Research, 6000 Harry Hines Blvd, Dallas 75390-8593, USA
| | | | | | | |
Collapse
|