1
|
Giannini A, D'Oria O, Corrado G, Bruno V, Sperduti I, Bogani G, Laganà AS, Chiantera V, Caserta D, Vizza E. The role of L1CAM as predictor of poor prognosis in stage I endometrial cancer: a systematic review and meta-analysis. Arch Gynecol Obstet 2024; 309:789-799. [PMID: 37454351 DOI: 10.1007/s00404-023-07149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Molecular and genomic profiling in endometrial cancer is increasing popularity. L1 cell adhesion molecule (L1CAM) is frequently mutated in endometrial cancer. In this paper, we aim to evaluate the prognostic role of L1CAM in patients with stage I endometrial cancer. METHODS We performed a systematic review and meta-analysis searching in PubMed (MEDLINE), EMBASE, and Web of Science database to identify studies reporting the expression of L1CAM in endometrial cancer. The primary endpoint measure was to assess and evaluate the impact of L1CAM on survival outcomes. This study was performed according to the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) statement. RESULTS Five studies were included. The pooled results suggested that L1CAM expression influences survival outcomes in stage I endometrial cancer. High L1CAM expression correlated with worse disease-free survival (HR 4.11, 95% CI 1.02-16.59, p = 0.047) and overall survival (HR 3.62, 95% CI 1.32-9.31, p = 0.012). High L1CAM level was also associated with a more aggressive FIGO grade and with older age. CONCLUSION This systematic review supported that L1CAM have a prognostic role in stage I endometrial cancer, thus providing a potential useful tool for tailoring the need of adjuvant therapy.
Collapse
Affiliation(s)
- Andrea Giannini
- Department of Medical and Surgical Sciences and Translational Medicine, PhD Course in "Translational Medicine and Oncology", Sapienza University, Rome, Italy.
| | - Ottavia D'Oria
- Department of Medical and Surgical Sciences and Translational Medicine, PhD Course in "Translational Medicine and Oncology", Sapienza University, Rome, Italy
| | - Giacomo Corrado
- Dipartimento Scienze della Salute della Donna, del Bambino, e di Sanità Pubblica, Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Bruno
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCSS-Regina Elena National Cancer Unit Institute, Rome, Italy
| | - Isabella Sperduti
- Scientific Direction, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Giorgio Bogani
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS "Civico - Di Cristina - Benfratelli", Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Vito Chiantera
- Unit of Gynecologic Oncology, ARNAS "Civico - Di Cristina - Benfratelli", Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Donatella Caserta
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCSS-Regina Elena National Cancer Unit Institute, Rome, Italy
| |
Collapse
|
2
|
Yang W, Chen SC, Wang TE, Tsai PS, Chen JC, Chen PL. L1cam alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Gene 2023; 881:147643. [PMID: 37453721 DOI: 10.1016/j.gene.2023.147643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taiwan; Departments of Medical Genetics, National Taiwan University Hospital, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Serra R, Simard JM. Adherens, tight, and gap junctions in ependymal cells: A systematic review of their contribution to CSF-brain barrier. Front Neurol 2023; 14:1092205. [PMID: 37034077 PMCID: PMC10079940 DOI: 10.3389/fneur.2023.1092205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The movement of fluids and solutes across the ependymal barrier, and their changes in physiologic and disease states are poorly understood. This gap in knowledge contributes strongly to treatment failures and complications in various neurological disorders. Methods We systematically searched and reviewed original research articles treating ependymal intercellular junctions on PubMed. Reviews, opinion papers, and abstracts were excluded. Research conducted on tissue samples, cell lines, CSF, and animal models was considered. Results A total of 45 novel articles treating tight, adherens and gap junctions of the ependyma were included in our review, spanning from 1960 to 2022. The findings of this review point toward a central and not yet fully characterized role of the ependymal lining ultrastructure in fluid flow interactions in the brain. In particular, tight junctions circumferentially line the apical equator of ependymal cells, changing between embryonal and adult life in several rodent models, shaping fluid and solute transit in this location. Further, adherens and gap junctions appear to have a pivotal role in several forms of congenital hydrocephalus. Conclusions These findings may provide an opportunity for medical management of CSF disorders, potentially allowing for tuning of CSF secretion and absorption. Beyond hydrocephalus, stroke, trauma, this information has relevance for metabolite clearance and drug delivery, with potential to affect many patients with a variety of neurological disorders. This critical look at intercellular junctions in ependyma and the surrounding interstitial spaces is meant to inspire future research on a central and rather unknown component of the CSF-brain interface.
Collapse
Affiliation(s)
- Riccardo Serra
- Department of Neurosurgery, University of Maryland, Baltimore, MD, United States
- *Correspondence: Riccardo Serra
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland, Baltimore, MD, United States
- Department of Pathology, University of Maryland, Baltimore, MD, United States
- Department of Physiology, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
4
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
5
|
Increased plasmin-mediated proteolysis of L1CAM in a mouse model of idiopathic normal pressure hydrocephalus. Proc Natl Acad Sci U S A 2021; 118:2010528118. [PMID: 34380733 PMCID: PMC8379912 DOI: 10.1073/pnas.2010528118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is the most common form of adult-onset hydrocephalus, but its etiology is poorly understood. Symptoms develop in previously normal individuals and include gait difficulty, incontinence, and dementia. We recently reported that 15% of iNPH patients harbor heterozygous loss-of-function deletions in CWH43, which encodes a protein that modifies other cell membrane proteins. Mice harboring CWH43 deletions develop hydrocephalus and gait dysfunction. Mutations affecting the L1CAM adhesion protein cause developmental brain abnormalities and hydrocephalus from birth. Here, we show that CWH43 deletion leads to L1CAM hypoglycosylation, decreased L1CAM association with lipid microdomains, increased plasmin-mediated L1CAM cleavage, and decreased L1CAM expression. Thus, decreased L1CAM expression appears to occur in adult-onset iNPH and congenital hydrocephalus. Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder that is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and dementia. iNPH usually develops after the sixth decade of life in previously asymptomatic individuals. We recently reported that loss-of-function deletions in CWH43 lead to the development of iNPH in a subgroup of patients, but how this occurs is poorly understood. Here, we show that deletions in CWH43 decrease expression of the cell adhesion molecule, L1CAM, in the brains of CWH43 mutant mice and in human HeLa cells harboring a CWH43 deletion. Loss-of-function mutations in L1CAM are a common cause of severe neurodevelopmental defects that include congenital X-linked hydrocephalus. Mechanistically, we find that CWH43 deletion leads to decreased N-glycosylation of L1CAM, decreased association of L1CAM with cell membrane lipid microdomains, increased L1CAM cleavage by plasmin, and increased shedding of cleaved L1CAM in the cerebrospinal fluid. CWH43 deletion also decreased L1CAM nuclear translocation, suggesting decreased L1CAM intracellular signaling. Importantly, the increase in L1CAM cleavage occurred primarily in the ventricular and subventricular zones where brain CWH43 is most highly expressed. Thus, CWH43 deletions may contribute to adult-onset iNPH by selectively downregulating L1CAM in the ventricular and subventricular zone.
Collapse
|
6
|
Srinivasamurthy M, Kakanahalli N, Benakanal SV. A truncation mutation in the <i>L1CAM</i> gene in a child with hydrocephalus. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Hydrocephalus is a neurodevelopmental, X-linked recessive disorder caused by mutations in the <italic>L1CAM</italic> gene. The <italic>L1CAM</italic> gene encodes for L1CAM protein which is essential for the nervous system development including adhesion between neurons, Myelination, Synaptogenesis etc. Herein, the present study has reported mutations in L1 syndrome patient with Hydrocephalus and Adducted thumb. Genomic DNA was extracted from patients whole blood (n = 18). The 11 exons of the <italic>L1CAM</italic> gene were amplified using specific PCR primers. The sequenced data was analysed and the pathogenicity of the mutation was predicted using the various bioinformatics programs: PROVEAN, PolyPhen2, and MUpro. The results revealed that the proband described here had nonsense mutation G1120→T at position 1120 in exon 9 which is in extracellular immunoglobulin domain (Ig4) of the <italic>L1CAM</italic> gene. This nonsense mutation is found to be truncated with a deleterious effect on developing brain of the child, and this is the first report of this novel mutation in patient with X-linked Hydrocephalus in India.</p>
</abstract>
Collapse
|
7
|
Cheriyamundath S, Ben-Ze’ev A. Wnt/β-Catenin Target Genes in Colon Cancer Metastasis: The Special Case of L1CAM. Cancers (Basel) 2020; 12:cancers12113444. [PMID: 33228199 PMCID: PMC7699470 DOI: 10.3390/cancers12113444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Wnt/β-catenin cell–cell signaling pathway is one of the most basic and highly conserved pathways for intercellular communications regulating key steps during development, differentiation, and cancer. In colorectal cancer (CRC), in particular, aberrant activation of the Wnt/β-catenin pathway is believed to be responsible for perpetuating the disease from the very early stages of cancer development. A large number of downstream target genes of β-catenin-T-cell factor (TCF), including oncogenes, were detected as regulators of CRC development. In this review, we will summarize studies mainly on one such target gene, the L1CAM (L1) cell adhesion receptor, that is selectively induced in invasive and metastatic CRC cells and in regenerating cells of the intestine following injury. We will describe studies on the genes activated when the levels of L1 are increased in CRC cells and their effectiveness in propagating CRC development. These downstream targets of L1-signaling can serve in diagnosis and may provide additional targets for CRC therapy. Abstract Cell adhesion to neighboring cells is a fundamental biological process in multicellular organisms that is required for tissue morphogenesis. A tight coordination between cell–cell adhesion, signaling, and gene expression is a characteristic feature of normal tissues. Changes, and often disruption of this coordination, are common during invasive and metastatic cancer development. The Wnt/β-catenin signaling pathway is an excellent model for studying the role of adhesion-mediated signaling in colorectal cancer (CRC) invasion and metastasis, because β-catenin has a dual role in the cell; it is a major adhesion linker of cadherin transmembrane receptors to the cytoskeleton and, in addition, it is also a key transducer of Wnt signaling to the nucleus, where it acts as a co-transcriptional activator of Wnt target genes. Hyperactivation of Wnt/β-catenin signaling is a common feature in the majority of CRC patients. We found that the neural cell adhesion receptor L1CAM (L1) is a target gene of β-catenin signaling and is induced in carcinoma cells of CRC patients, where it plays an important role in CRC metastasis. In this review, we will discuss studies on β-catenin target genes activated during CRC development (in particular, L1), the signaling pathways affected by L1, and the role of downstream target genes activated by L1 overexpression, especially those that are also part of the intestinal stem cell gene signature. As intestinal stem cells are highly regulated by Wnt signaling and are believed to also play major roles in CRC progression, unravelling the mechanisms underlying the regulation of these genes will shed light on both normal intestinal homeostasis and the development of invasive and metastatic CRC.
Collapse
|
8
|
L1CAM High Expression Associates with Poor Prognosis in Glioma but Does Not Correlate with C11orf95-RELA Fusion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1353284. [PMID: 32509846 PMCID: PMC7251433 DOI: 10.1155/2020/1353284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
The latest WHO guideline of CNS tumor defined a RELA fusion-positive ependymoma type with extremely poor prognosis, and the expression of L1CAM was correlated well with the presence of RELA fusion. However, the L1CAM protein expression in large sample gliomas other than ependymoma, its relationship with the RELA gene and its prognostic significance remained unknown. We examined the expression of L1CAM in 565 glioma cases (WHO grade I-IV). The L1CAM IHC-positive cases were selected to test RELA fusion with FISH break-apart probes. L1CAM was positive in 109 cases (19.29%) of all 565 glioma cases, with 18.27% in low-grade gliomas and 19.84% in high-grade gliomas, respectively. Unlike ependymoma, L1CAM protein expression was not correlated with the C11orf95-RELA fusion gene in other gliomas, but it had correction with the patient age (older than 45-year-old, p = 0.006), ATRX mutation (p = 0.003) and Ki67 (p = 0.007). High expression of L1CAM was an independent prognostic factor in our cohort. Further analysis demonstrated that L1CAM strong positive expression was significantly associated with poor prognosis in gliomas, both in our cohort (p < 0.001) and TCGA (p < 0.009) dataset. Although uncorrelated with C11orf95-RELA fusion, L1CAM was a significant poor prognostic marker in glioma patients. More aggressive treatment should be taken for these patients and L1CAM might be a promising therapeutic target in glioma.
Collapse
|
9
|
Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M. Adhesion Molecule L1 Agonist Mimetics Protect Against the Pesticide Paraquat-Induced Locomotor Deficits and Biochemical Alterations in Zebrafish. Front Neurosci 2020; 14:458. [PMID: 32547358 DOI: 10.3389/fnins.2020.00458.ecollection2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 04/04/2023] Open
Abstract
Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.
Collapse
Affiliation(s)
| | - Nataraj Jagadeesan
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Sudhanshu Sahu
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
10
|
Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M. Adhesion Molecule L1 Agonist Mimetics Protect Against the Pesticide Paraquat-Induced Locomotor Deficits and Biochemical Alterations in Zebrafish. Front Neurosci 2020; 14:458. [PMID: 32547358 PMCID: PMC7270331 DOI: 10.3389/fnins.2020.00458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.
Collapse
Affiliation(s)
| | - Nataraj Jagadeesan
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Sudhanshu Sahu
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner, ;
| |
Collapse
|
11
|
Clinical significance and biological role of L1 cell adhesion molecule in gastric cancer. Br J Cancer 2019; 121:1058-1068. [PMID: 31754264 PMCID: PMC6964673 DOI: 10.1038/s41416-019-0646-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background L1 cell adhesion molecule (L1CAM) is highly expressed in malignant tumours and might play a pivotal role in tumour progression. Methods We analysed by immunohistochemistry L1CAM protein expression in formalin-fixed, paraffin-embedded specimens from 309 GC patients. We performed propensity score matching (PSM) analysis to clarify the prognostic impact of L1CAM in GC patients. We evaluated L1CAM gene expression in fresh frozen specimens from another group of 131 GC patients to establish its clinical relevance. The effects of changes in L1CAM were investigated in vitro and in vivo. Results L1CAM was mainly expressed in tumour cells of GC tissues. Elevated L1CAM expression was an independent prognostic factor for overall and disease-free survival, and an independent risk factor for distant metastasis in GC patients. PSM analysis showed that high L1CAM expression was significantly associated with poor prognosis. L1CAM gene expression using fresh frozen specimens successfully validated all of these findings in an independent cohort. Inhibition of L1CAM suppressed cell proliferation, cycle progress, invasion, migration and anoikis resistance in GC cells. Furthermore, L1CAM inhibition suppressed the growth of peritoneal metastasis. Conclusion L1CAM may serve as a feasible biomarker for identification of patients who have a high risk of recurrence of GC.
Collapse
|
12
|
Espiritu EB, Jiang H, Moreau-Marquis S, Sullivan M, Yan K, Beer Stolz D, Sampson MG, Hukriede NA, Swiatecka-Urban A. The human nephrin Y 1139RSL motif is essential for podocyte foot process organization and slit diaphragm formation during glomerular development. J Biol Chem 2019; 294:10773-10788. [PMID: 31152064 DOI: 10.1074/jbc.ra119.008235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/16/2019] [Indexed: 11/06/2022] Open
Abstract
Nephrin is an immunoglobulin-type cell-adhesion molecule with a key role in the glomerular interpodocyte slit diaphragm. Mutations in the nephrin gene are associated with defects in the slit diaphragm, leading to early-onset nephrotic syndrome, typically resistant to treatment. Although the endocytic trafficking of nephrin is essential for the assembly of the slit diaphragm, nephrin's specific endocytic motifs remain unknown. To search for endocytic motifs, here we performed a multisequence alignment of nephrin and identified a canonical YXXØ-type motif, Y1139RSL, in the nephrin cytoplasmic tail, expressed only in primates. Using site-directed mutagenesis, various biochemical methods, single-plane illumination microscopy, a human podocyte line, and a human nephrin-expressing zebrafish model, we found that Y1139RSL is a novel endocytic motif and a structural element for clathrin-mediated nephrin endocytosis that functions as a phosphorylation-sensitive signal. We observed that Y1139RSL motif-mediated endocytosis helps to localize nephrin to specialized plasma membrane domains in podocytes and is essential for normal foot process organization into a functional slit diaphragm between neighboring foot processes in zebrafish. The importance of nephrin Y1139RSL for healthy podocyte development was supported by population-level analyses of genetic variations at this motif, revealing that such variations are very rare, suggesting that mutations in this motif have autosomal-recessive negative effects on kidney health. These findings expand our understanding of the mechanism underlying nephrin endocytosis and may lead to improved diagnostic tools or therapeutic strategies for managing early-onset, treatment-resistant nephrotic syndrome.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Huajun Jiang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sophie Moreau-Marquis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Mara Sullivan
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan, and
| | - Donna Beer Stolz
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Matthew G Sampson
- Department of Pediatrics-Nephrology University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,.
| |
Collapse
|
13
|
Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 2019; 197:327-344. [DOI: 10.1016/j.biomaterials.2019.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/08/2018] [Accepted: 01/20/2019] [Indexed: 12/21/2022]
|
14
|
Kraus K, Kleene R, Henis M, Braren I, Kataria H, Sharaf A, Loers G, Schachner M, Lutz D. A Fragment of Adhesion Molecule L1 Binds to Nuclear Receptors to Regulate Synaptic Plasticity and Motor Coordination. Mol Neurobiol 2018; 55:7164-7178. [PMID: 29383692 DOI: 10.1007/s12035-018-0901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and β (ERβ), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor β (RXRβ). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood. These impairments are similar to those observed in the L1-deficient mouse. Our findings suggest that the interplay of nuclear L1 and distinct nuclear receptors is associated with synaptic contact formation and plasticity.
Collapse
Affiliation(s)
- Kristina Kraus
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralf Kleene
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melad Henis
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hardeep Kataria
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gabriele Loers
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| | - David Lutz
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
15
|
Kraus K, Kleene R, Braren I, Loers G, Lutz D, Schachner M. A fragment of adhesion molecule L1 is imported into mitochondria, and regulates mitochondrial metabolism and trafficking. J Cell Sci 2018; 131:jcs.210500. [PMID: 29632241 DOI: 10.1242/jcs.210500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
The cell adhesion molecule L1 (also known as L1CAM) plays important roles in the mammalian nervous system under physiological and pathological conditions. We have previously reported that proteolytic cleavage of L1 by myelin basic protein leads to the generation of a 70 kDa transmembrane L1 fragment (L1-70) that promotes neuronal migration and neuritogenesis. Here, we provide evidence that L1-70 is imported from the cytoplasm into mitochondria. Genetic ablation of L1, inhibition of mitochondrial import of L1-70 or prevention of myelin basic protein-mediated generation of L1-70 all lead to reduced mitochondrial complex I activity, and impaired mitochondrial membrane potential, fusion, fission and motility, as well as increased retrograde transport. We identified NADH dehydrogenase ubiquinone flavoprotein 2 as a binding partner for L1, suggesting that L1-70 interacts with this complex I subunit to regulate complex I activity. The results of our study provide insights into novel functions of L1 in mitochondrial metabolism and cellular dynamics. These functions are likely to ameliorate the consequences of acute nervous system injuries and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Kristina Kraus
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - David Lutz
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| |
Collapse
|
16
|
Hua T, Liu S, Xin X, Jin Z, Liu Q, Chi S, Wang X, Wang H. Prognostic significance of L1 cell adhesion molecule in cancer patients: A systematic review and meta-analysis. Oncotarget 2018; 7:85196-85207. [PMID: 27833079 PMCID: PMC5356729 DOI: 10.18632/oncotarget.13236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/24/2016] [Indexed: 01/24/2023] Open
Abstract
The L1 cell adhesion molecule (L1CAM) extensively participates in nervous system development and the malignant progression of human tumours. The prognostic value of L1CAM for the survival of patients with solid tumours remains controversial. The present meta-analysis was thus performed to highlight the relationship between L1CAM expression and prognosis in cancer patients. Relevant publications were identified after searching several widely used databases, including PubMed, EMBASE and the ISI Web of Science. A fixed-effect or random-effect meta-analytical model was employed to correlate L1CAM expression with different outcome measures in both entire tumours and stratified subgroups. 37 studies in total with 8552 patients were eligible for the final analysis. Combined hazard ratios (HRs) and 95% confidence intervals (CIs) suggested that high L1CAM expression had an unfavourable impact on overall survival (HR=2.06, 95%CI 1.65-2.57, P<0.001), disease-specific survival (HR=2.45, 95%CI 1.48-4.05, P<0.001), disease-free survival (HR=2.42, 95%CI 1.4-4.19, P=0.002) and progression-free survival/recurrence-free survival (HR=2.07, 95%CI 1.41-3.05, P<0.001). Subgroup analysis revealed a similar correlation in most tumour types. Overall, L1CAM might be an effective poor prognostic factor for patients with various tumour types.
Collapse
Affiliation(s)
- Teng Hua
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shuangge Liu
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyan Xin
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Zhishan Jin
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Qibin Liu
- Department of Surgery, Wuhan Pulmonary Hospital, Wuhan 430000, PR China
| | - Shuqi Chi
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoxiao Wang
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Hongbo Wang
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| |
Collapse
|
17
|
Abdel Azim S, Duggan-Peer M, Sprung S, Reimer D, Fiegl H, Soleiman A, Marth C, Zeimet AG. Clinical impact of L1CAM expression measured on the transcriptome level in ovarian cancer. Oncotarget 2018; 7:37205-37214. [PMID: 27174921 PMCID: PMC5095069 DOI: 10.18632/oncotarget.9291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/18/2016] [Indexed: 01/14/2023] Open
Abstract
Background High expression of L1 cell adhesion molecules (L1CAM) has been repeatedly shown to be associated with aggressive disease behavior, which translates in poor clinical outcome in various cancer entities. However, in ovarian cancer results based either on immunohistochemistry or cytosolic protein quantifications remained conflicting regarding clinical behavior. In the present work we assessed L1CAM expression on the transcriptome level with the highly sensitive quantitative real-time PCR (qRT-PCR) to define its relevance in ovarian cancer biology. Results There was a significant difference in L1CAM high and low mRNA expressing cancers with regard to disease-free (p=0.002) and overall survival (p=0.008). L1CAM proofed to be an independent predictor for disease progression (HR 1.8, p=0.01) and overall survival (HR 1.6, p=0.04). Furthermore, a significant positive correlation between the level of L1CAM and the grade of tumor differentiation (p=0.04), the FIGO stage (p=0.025) as well as the histological subtype (p= 0.002) was found. Methods This study included fresh frozen tissue samples of 138 patients with FIGO I-IV stage ovarian cancer. L1CAM mRNA expression was determined using qRT-PCR. In the calculations special attention was put on the various histological subtypes. In survival analysis median L1CAM mRNA expression obtained in the entire cohort of ovarian cancer samples was used as a cut-off to distinguish between high and low L1CAM mRNA expression. Conclusion L1CAM mRNA expression appears to play a substantial role in the pathophysiology of ovarian cancer that is translated into poor clinical outcome. Additionally humanized L1CAM antibodies, which can serve as potential future treatment options are under testing.
Collapse
Affiliation(s)
- Samira Abdel Azim
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Duggan-Peer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Susanne Sprung
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Heidi Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Department of Obstetrics and Gynecology, Laboratory for Clinical Biochemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Afschin Soleiman
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
|
19
|
Soovares P, Pasanen A, Bützow R, Lassus H. L1CAM expression associates with poor outcome in endometrioid, but not in clear cell ovarian carcinoma. Gynecol Oncol 2017. [PMID: 28625395 DOI: 10.1016/j.ygyno.2017.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Our aim was to study the expression of L1CAM in endometrioid and clear cell ovarian carcinomas and to evaluate its correlation with clinical parameters and patient prognosis. METHODS Tissue microarray -based immunohistochemical analysis of L1CAM expression was performed in 249 endometrioid and 140 clear cell ovarian carcinomas. Concurrent endometrial carcinoma was found in 57 of these patients. RESULTS L1CAM expression was found in 15% of endometrioid and 23% of clear cell ovarian carcinomas. L1CAM expression was strongly associated with poor disease-specific overall survival and poor disease-free survival in endometrioid (p<0.0001, p=0.0005), but not in clear cell ovarian carcinomas. Significant association of L1CAM expression with poor overall survival was observed in grade 1-2 carcinomas (p<0.0001), but not in grade 3 tumors. In endometrioid ovarian carcinomas, L1CAM expression was associated with aggressive tumor characteristics, such as higher grade and stage, and incomplete response to primary therapy. However, L1CAM expression was not an independent prognostic factor for overall or disease-free survival. Of the 57 patients with concurrent endometrial carcinoma L1CAM positivity was found in 4 cases both in the ovarian and endometrial tumors, and in 3 cases only in the endometrial tumor. All these seven patients with L1CAM positive tumors had poor outcome. CONCLUSIONS L1CAM expression could serve as a biomarker for predicting clinical outcome and response to therapy in patients with endometrioid ovarian carcinoma, but not in clear cell carcinomas. L1CAM positivity also predicts poor outcome in patients with concurrent endometrioid ovarian and endometrial carcinomas.
Collapse
Affiliation(s)
- Piret Soovares
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 2, PO Box 140, 00290 Helsinki, Finland.
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Ralf Bützow
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Heini Lassus
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 2, PO Box 140, 00290 Helsinki, Finland.
| |
Collapse
|
20
|
Mestres I, Sung CH. Nervous system development relies on endosomal trafficking. NEUROGENESIS 2017; 4:e1316887. [PMID: 28573151 DOI: 10.1080/23262133.2017.1316887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/06/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022]
Abstract
Accumulating findings have begun to unveil the important role of the endosomal machinery in the nervous system development. Endosomes have been linked to the differential segregation of cell fate determining molecules in asymmetrically dividing progenitors during neurogenesis. Additionally, the precise removal and reinsertion of membrane components through endocytic trafficking regulates the spatial and temporal distribution of signaling receptors and adhesion molecules, which determine the morphology and motility of migrating neurons. Emerging evidence suggests that the role of the endosomal sorting adaptors is dependent upon cell type and developmental stage. The repertoire of the signaling receptors and/or adhesion molecules sorted by the endosome during these processes remains to be explored. In this commentary, we will briefly address the progress in this research field.
Collapse
Affiliation(s)
- Ivan Mestres
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU Dresden, Dresden, Germany
| | - Ching-Hwa Sung
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY, USA.,Departments of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
21
|
Haase G, Gavert N, Brabletz T, Ben-Ze'ev A. A point mutation in the extracellular domain of L1 blocks its capacity to confer metastasis in colon cancer cells via CD10. Oncogene 2016; 36:1597-1606. [PMID: 27641335 DOI: 10.1038/onc.2016.329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
The neural L1 transmembrane cell adhesion receptor of the immunoglobulin-like family is a target gene of Wnt-β-catenin signaling in human colorectal cancer (CRC) cells and is expressed at the invasive edge of the tumor tissue. L1 overexpression in cultured CRC cells confers enhanced proliferation, motility and liver metastasis. We have analyzed the mechanisms of L1-mediated signaling in CRC cells by using various point mutations in the L1 ectodomain that are known to cause severe genetically inherited mental retardation disorders in patients. We found that all such L1 ectodomain mutations abolish the ability of L1 to confer metastatic properties in CRC cells. Using gene array analysis, we identified L1-mutation-specific gene expression signatures for the L1/H210Q and L1/D598N mutations. We identified CD10, a metalloprotease (neprilysin, neutral endopeptidase) and a gene that is specifically induced in CRC cells by L1 in an L1/H210Q mutation-specific manner. CD10 expression was required for the L1-mediated induction of cell proliferation, motility and metastasis, as suppression of CD10 levels in L1-expressing CRC cells abolished the L1 effects on CRC progression. The signaling from L1 to CD10 was mediated through the L1-ezrin-NF-κB pathway. In human CRC tissue L1 and CD10 were localized in partially overlapping regions in the more invasive areas of the tumor tissue. The results suggest that CD10 is a necessary component conferring the L1 effects in CRC cells. The identification of gene expression patterns of L1-domain-specific point mutations may provide novel markers and targets for interfering with L1-mediated CRC progression.
Collapse
Affiliation(s)
- G Haase
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - N Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - T Brabletz
- Department of Experimental Medicine I, University of Erlangen-Nuernberg, Erlangen, Germany
| | - A Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Mestres I, Chuang JZ, Calegari F, Conde C, Sung CH. SARA regulates neuronal migration during neocortical development through L1 trafficking. Development 2016; 143:3143-53. [PMID: 27471254 DOI: 10.1242/dev.129338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that endocytic trafficking of adhesion proteins plays a crucial role in neuronal migration during neocortical development. However, molecular insights into these processes remain elusive. Here, we study the early endosomal protein Smad anchor for receptor activation (SARA) in the developing mouse brain. SARA is enriched at the apical endfeet of radial glia of the neocortex. Although SARA knockdown did not lead to detectable neurogenic phenotypes, SARA-suppressed neurons exhibited impaired orientation and migration across the intermediate zone. Mechanistically, we show that SARA knockdown neurons exhibit increased surface expression of the L1 cell adhesion molecule. Neurons ectopically expressing L1 phenocopy the migration and orientation defects caused by SARA knockdown and display increased contact with neighboring neurites. L1 knockdown effectively rescues SARA suppression-induced phenotypes. SARA knockdown neurons eventually overcome their migration defect and enter later into the cortical plate. Nevertheless, these neurons localize at more superficial cortical layers than their control counterparts. These results suggest that SARA regulates the orientation, multipolar-to-bipolar transition and the positioning of cortical neurons via modulating surface L1 expression.
Collapse
Affiliation(s)
- Iván Mestres
- INIMEC, Instituto de Investigación Médica Mercedes y Martín Ferreyra, CONICET, Universidad Nacional de Córdoba UNC, Friuli 2434-5016, Córdoba, Argentina DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Jen-Zen Chuang
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Federico Calegari
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Cecilia Conde
- INIMEC, Instituto de Investigación Médica Mercedes y Martín Ferreyra, CONICET, Universidad Nacional de Córdoba UNC, Friuli 2434-5016, Córdoba, Argentina Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Ching-Hwa Sung
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA Departments of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
23
|
Haase G, Gavert N, Brabletz T, Ben-Ze'ev A. The Wnt Target Gene L1 in Colon Cancer Invasion and Metastasis. Cancers (Basel) 2016; 8:cancers8050048. [PMID: 27187476 PMCID: PMC4880865 DOI: 10.3390/cancers8050048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022] Open
Abstract
The Wnt-β-catenin signaling pathway is highly conserved during evolution and determines normal tissue homeostasis. Hyperactivation of Wnt-β-catenin signaling is a characteristic feature of colorectal cancer (CRC) development. β-catenin is a major transducer of the Wnt signal from the cytoplasm into the nucleus where it acts as a co-transcriptional activator of β-catenin-TCF target genes. β-catenin is also required for linking cadherin type cell-cell adhesion receptors to the cytoskeleton, and consequently Wnt-β-catenin signaling is an attractive system for investigating the role of adhesion-mediated signaling in both normal intestinal tissue homeostasis and CRC development. In this review, we summarize our studies on one Wnt-β-catenin target gene, L1, a member of the immunoglobulin-like cell adhesion transmembrane receptor family. We describe the mechanisms of L1-mediated signaling in CRC cells, its exclusive localization in invasive areas of CRC tissue, and its ability to increase cell motility and confer metastasis to the liver. We discuss the activation (by L1) of genes via an ezrin-NF-κB pathway and the induction of genes also found in the intestinal stem cell signature. By studying L1 (adhesion)-mediated signaling, we expect to learn about mechanisms regulating both normal intestinal homeostasis and CRC development.
Collapse
Affiliation(s)
- Gal Haase
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nuerenberg, Erlangen, 91054, Germany.
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
24
|
Valente P, Lignani G, Medrihan L, Bosco F, Contestabile A, Lippiello P, Ferrea E, Schachner M, Benfenati F, Giovedì S, Baldelli P. Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated Na+ channels. J Cell Sci 2016; 129:1878-91. [PMID: 26985064 DOI: 10.1242/jcs.182089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/08/2016] [Indexed: 02/05/2023] Open
Abstract
L1 (also known as L1CAM) is a trans-membrane glycoprotein mediating neuron-neuron adhesion through homophilic and heterophilic interactions. Although experimental evidence has implicated L1 in axonal outgrowth, fasciculation and pathfinding, its contribution to voltage-gated Na(+) channel function and membrane excitability has remained unknown. Here, we show that firing rate, single cell spiking frequency and Na(+) current density are all reduced in hippocampal excitatory neurons from L1-deficient mice both in culture and in slices owing to an overall reduced membrane expression of Na(+) channels. Remarkably, normal firing activity was restored when L1 was reintroduced into L1-deficient excitatory neurons, indicating that abnormal firing patterns are not related to developmental abnormalities, but are a direct consequence of L1 deletion. Moreover, L1 deficiency leads to impairment of action potential initiation, most likely due to the loss of the interaction of L1 with ankyrin G that produces the delocalization of Na(+) channels at the axonal initial segment. We conclude that L1 contributes to functional expression and localization of Na(+) channels to the neuronal plasma membrane, ensuring correct initiation of action potential and normal firing activity.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Lucian Medrihan
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Federica Bosco
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Andrea Contestabile
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Pellegrino Lippiello
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Enrico Ferrea
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
25
|
The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle. Neurochem Res 2015; 41:156-82. [DOI: 10.1007/s11064-015-1752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|
26
|
An urgent need for experimental animal model of autism in drug development. Ann Neurosci 2015; 22:44-9. [PMID: 26124551 PMCID: PMC4410529 DOI: 10.5214/ans.0972.7531.220210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/19/2015] [Accepted: 03/04/2015] [Indexed: 12/16/2022] Open
Abstract
Construct, face and predictive validities are necessary for any disease model. Although rodent models are used to investigate the neurobiology of autism, however, till date there is no such ideal animal model which can fulfill all the above said validities. Available drug therapy to treat autism is very limited and less effective. In this review, we summarize the work done with rodent models of autism and highlight different validities. We found that, very few studies have studied all the validities in a single study and none of the study fulfilled all the validities. We also reviewed the drugs used in the treatment of autism. Here we propose the limitations of available animal models. We also propose the urgent need of additional models to fulfill all the validities and to understand autism in a better way.
Collapse
|
27
|
A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord. Biochem J 2014; 460:437-46. [DOI: 10.1042/bj20131677] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recombinant monovalent Fab fragment recognizing a functional epitope within the third fibronectin type III domain of murine cell adhesion molecule L1 induces neurite outgrowth and neuronal survival in vitro and enhances functional recovery after spinal cord injury in mice.
Collapse
|
28
|
Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation. Neurosci Bull 2013; 29:402-10. [PMID: 23893428 DOI: 10.1007/s12264-013-1361-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022] Open
Abstract
Spinal cord injury (SCI) in mammals results in functional deficits that are mostly permanent due in part to the inability of severed axons to regenerate. Several types of growth-inhibitory molecules expressed at the injury site contribute to this regeneration failure. The responses of axons to these inhibitors vary greatly within and between organisms, reflecting axons' characteristic intrinsic propensity for regeneration. In the zebrafish (Danio rerio) many but not all axons exhibit successful regeneration after SCI. This review presents and compares the intrinsic and extrinsic determinants of axonal regeneration in the injured spinal cord in mammals and zebrafish. A better understanding of the molecules and molecular pathways underlying the remarkable individualism among neurons in mature zebrafish may support the development of therapies for SCI and their translation to the clinic.
Collapse
|
29
|
Abstract
Commissural circuits are brain and spinal cord connections which interconnect the two sides of the central nervous system (CNS). They play essential roles in brain and spinal cord processing, ensuring left-right coordination and synchronization of information and commands. During the formation of neuronal circuits, all commissural neurons of the central nervous system must accomplish a common task, which is to project their axon onto the other side of the nervous system, across the midline that delineates the two halves of the CNS. How this task is accomplished has been the topic of extensive studies over the last past 20 years and remains one of the best models to investigate axon guidance mechanisms. In the first part of this review, I will introduce the commissural circuits, their general role in the physiology of the nervous system, and their recognized or suspected pathogenic properties in human diseases. In the second part of the review, I will concentrate on two commissural circuits, the spinal commissures and the corpus callosum, to detail the cellular and molecular mechanisms governing their formation, mostly during their navigation at the midline.
Collapse
|
30
|
|
31
|
Kishimoto T, Itoh K, Umekage M, Tonosaki M, Yaoi T, Fukui K, Lemmon VP, Fushiki S. Downregulation of L1 perturbs neuronal migration and alters the expression of transcription factors in murine neocortex. J Neurosci Res 2012; 91:42-50. [PMID: 23073969 PMCID: PMC3533181 DOI: 10.1002/jnr.23141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/15/2012] [Accepted: 08/21/2012] [Indexed: 01/12/2023]
Abstract
L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. L1 knockout (L1-KO) mice have revealed a variety of functions of L1 that were crucial in brain development in different brain regions. However; the function of L1 in neuronal migration during cortical histogenesis remains to be clarified. We therefore investigated the corticogenesis of mouse embryos in which L1 molecules were knocked down in selected neurons, by employing in utero electroporation with shRNAs targeting L1 (L1 shRNA). Although more than 50% of the cells transfected with no small hairpin RNA (shRNA; monster green fluorescent protein: MGFP only) vector at embryonic day 13 (E13) reached the cortical plate at E16, significantly fewer (27%) cells transfected with L1 shRNA migrated to the same extent. At E17, 22% of cells transfected with the MGFP-only vector were found in the intermediate zone, and significantly more (34%) cells transfected with L1 shRNA remained in the same zone. Furthermore, the directions of the leading process of neurons transfected with L1 shRNA became more dispersed compared with cells with the MGFP-only vector. In addition, two transcription factors expressed in the neurons, Satb2 and Tbr1, were shown to be reduced or aberrantly expressed in neurons transfected with L1 shRNA. These observations suggest that L1 plays an important role in regulating the locomotion and orientation of migrating neurons and the expression of transcription factors during neocortical development that might partially be responsible for the abnormal tract formation seen in L1-KO mice. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomokazu Kishimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The pathophysiology of congenital and neonatal hydrocephalus is not well understood although the prognosis for patients with this disorder is far from optimal. A major obstacle to advancing our knowledge of the causes of this disorder and the cellular responses that accompany it is the multifactorial nature of hydrocephalus. Not only is the epidemiology varied and complex, but the injury mechanisms are numerous and overlapping. Nevertheless, several conclusions can be made with certainty: the age of onset strongly influences the degree of impairment; injury severity is dependent on the magnitude and duration of ventriculomegaly; the primary targets are periventricular axons, myelin, and microvessels; cerebrovascular injury mechanisms are prominent; gliosis and neuroinflammation play major roles; some but not all changes are preventable by draining cerebrospinal fluid with shunts and third ventriculostomies; cellular plasticity and physiological compensation probably occur but this is a major under-studied area; and pharmacologic interventions are promising. Rat and mouse models have provided important insights into the pathogenesis of congenital and neonatal hydrocephalus. Ependymal denudation of the ventricular lining appears to affect the development of neural progenitors exposed to cerebrospinal fluid, and alterations of the subcommissural organ influence the patency of the cerebral aqueduct. Recently these impairments have been observed in patients with fetal-onset hydrocephalus, so experimental findings are beginning to be corroborated in humans. These correlations, coupled with advanced genetic manipulations in animals and successful pharmacologic interventions, support the view that improved treatments for congenital and neonatal hydrocephalus are on the horizon.
Collapse
Affiliation(s)
- James P McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah and Primary Children's Medical Center, Salt Lake City, UT 84132, USA.
| |
Collapse
|
33
|
Mikulak J, Negrini S, Klajn A, D'Alessandro R, Mavilio D, Meldolesi J. Dual REST-dependence of L1CAM: from gene expression to alternative splicing governed by Nova2 in neural cells. J Neurochem 2012; 120:699-709. [PMID: 22176577 DOI: 10.1111/j.1471-4159.2011.07626.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
L1 cell adhesion molecule (L1CAM), an adhesion/signaling protein encoded by a gene target of the transcription repressor RE-1-Silencing Transcription factor (REST), is expressed in two alternatively spliced isoforms. The full-length isoform, typical of low-REST neural cells, plays key roles in survival/migration, outgrowth/fasciculation/regeneration of axons, synaptic plasticity; the isoform missing two mini-exons, abundant in a few high-REST non-neural cells, maintains some effect on migration and proliferation. To investigate whether and how L1CAM alternative splicing depends on REST we used neural cell models expressing low or high levels of REST (PC12, SH-SY5Y, differentiated NT2/D1 and primary neurons transduced or not with REST). The short isoform was found to rise when the low-REST levels of neural cells were experimentally increased, while the full-length isoform increased in high-REST cells when the repressor tone was attenuated. These results were due to Nova2, a neural cell-specific splicing factor shown here to be repressed by REST. REST control of L1CAM occurs therefore by two mechanisms, transcription and alternative splicing. The splicing mechanism, affecting not only L1CAM but all Nova2 targets (∼7% of brain-specific splicing, including the mRNAs of other adhesion and synaptic proteins) is expected to be critical during development and important also for the structure and function of mature neural cells.
Collapse
|
34
|
Sival DA, Guerra M, den Dunnen WFA, Bátiz LF, Alvial G, Castañeyra-Perdomo A, Rodríguez EM. Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 2011; 21:163-79. [PMID: 21269337 DOI: 10.1111/j.1750-3639.2010.00432.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In human spina bifida aperta (SBA), cerebral pathogenesis [hydrocephalus, Sylvius aqueduct (SA) stenosis and heterotopias] is poorly understood. In animal models, loss of ventricular lining (ependymal denudation) causes SA stenosis and hydrocephalus. We aimed to investigate whether ependymal denudation also takes place in human foetal SBA. Considering that ependymal denudation would be related to alterations in junction proteins, sections through SA of five SBA and six control foetuses (gestational ages ranged between 37 and 40 weeks) were immunostained for markers of ependyma (caveolin 1, βIV-tubulin, S100), junction proteins (N-cadherin, connexin-43, neural cell adhesion molecule (NCAM), blood vessels (Glut-1) and astrocytes [glial fibrillary acidic protein (GFAP)]. In control foetuses, ependymal denudation was absent. In SBA foetuses different stages of ependymal denudation were observed: (i) intact ependyma/neuroepithelium; (ii) imminent ependymal denudation (with abnormal subcellular location of junction proteins); (iii) ependymal denudation (with protrusion of neuropile into SA, formation of rosettes and macrophage invasion); (iv) astroglial reaction. It is suggested that abnormalities in the formation of gap and adherent junctions result in defective ependymal coupling, desynchronized ciliary beating and ependymal denudation, leading to hydrocephalus. The presence of various stages of ependymal denudation within the same full-term SBA foetuses suggests continuation of the process after birth.
Collapse
Affiliation(s)
- Deborah A Sival
- Departments of Pediatrics Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Li Y, Galileo DS. Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion. Cancer Cell Int 2010; 10:34. [PMID: 20840789 PMCID: PMC2949617 DOI: 10.1186/1475-2867-10-34] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 09/15/2010] [Indexed: 11/17/2022] Open
Abstract
Background Neural recognition molecule L1CAM, which is a key protein involved in early nervous system development, is known to be abnormally expressed and shed in several types of cancers where it participates in metastasis and progression. The distinction of L1CAM presence in cancerous vs. normal tissues has suggested it to be a new target for cancer treatment. Our current study focused on the potential role of soluble L1CAM in breast cancer cell adhesion to extracellular matrix proteins, migration, and invasion. Results We found L1 expression levels were correlated with breast cancer stage of progression in established data sets of clinical samples, and also were high in more metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-435, but low in less migratory MDA-MB-468 cells. Proteolysis of L1 into its soluble form (sL1) was detected in cell culture medium from all three above cell lines, and can be induced by PMA activation. Over-expression of the L1 ectodomain in MDA-MB-468 cells by using a lentiviral vector greatly increased the amount of sL1 released by those cells. Concomitantly, cell adhesion to extracellular matrix and cell transmigration ability were significantly promoted, while cell invasion ability through Matrigel™ remained unaffected. On the other hand, attenuating L1 expression in MDA-MB-231 cells by using a shRNA lentiviral vector resulted in reduced cell-matrix adhesion and transmigration. Similar effects were also shown by monoclonal antibody blocking of the L1 extracellular region. Moreover, sL1 in conditioned cell culture medium induced a directional migration of MDA-MB-468 cells, which could be neutralized by antibody treatment. Conclusions Our data provides new evidence for the function of L1CAM and its soluble form in promoting cancer cell adhesion to ECM and cell migration. Thus, L1CAM is validated further to be a potential early diagnostic marker in breast cancer progression and a target for breast cancer therapy.
Collapse
Affiliation(s)
- Yupei Li
- Department of Biological Sciences, University of Delaware, Wolf Hall, Newark, DE 19716 USA.
| | | |
Collapse
|
36
|
Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D'Hooge R, Dierks T. Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity. J Cell Mol Med 2010; 13:4505-21. [PMID: 20394677 PMCID: PMC4515066 DOI: 10.1111/j.1582-4934.2008.00558.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The extracellular sulfatases Sulf1 and Sulf2 remove specific 6-O-sulfate groups from heparan sulfate, thereby modulating numerous signalling pathways underlying development and homeostasis. In vitro data have suggested that the two enzymes show functional redundancy. To elucidate their in vivo functions and to further address the question of a putative redundancy, we have generated Sulf1- and Sulf2-deficient mice. Phenotypic analysis of these animals revealed higher embryonic lethality of Sulf2 knockout mice, which can be associated with neuroanatomical malformations during embryogenesis. Sulf1 seems not to be essential for developmental or postnatal viability, as mice deficient in this sulfatase show no overt phenotype. However, neurite outgrowth deficits were observed in hippocampal and cerebellar neurons of both mutant mouse lines, suggesting that not only Sulf2 but also Sulf1 function plays a role in the developing nervous system. Behavioural analysis revealed differential deficits with regard to cage activity and spatial learning for Sulf1- and Sulf2-deficient mouse lines. In addition, Sulf1-specific deficits were shown for synaptic plasticity in the CA1 region of the hippocampus, associated with a reduced spine density. These results reveal that Sulf1 and Sulf2 fulfil non-redundant functions in vivo in the development and maintenance of the murine nervous system.
Collapse
Affiliation(s)
- Ina Kalus
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Bertolin C, Boaretto F, Barbon G, Salviati L, Lapi E, Divizia MT, Garavelli L, Occhi G, Vazza G, Mostacciuolo ML. Novel mutations in the L1CAM gene support the complexity of L1 syndrome. J Neurol Sci 2010; 294:124-6. [DOI: 10.1016/j.jns.2010.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
|
38
|
Abstract
Wiring of the brain relies initially on the correct outgrowth of axons to reach the appropriate target area for innervation. A large number of guidance receptors present in the plasma membrane of axonal growth cones and elsewhere on the neuron read and execute directional cues present in the extracellular environment of the navigating growth cone. The exact timing, levels, and localization of expression of the guidance receptors in the plasma membrane therefore determine the outcome of guidance decisions. Many guidance receptors are localized in exquisitely precise spatial and temporal patterns. The cellular mechanisms ensuring these localization patterns include spatially accurate sorting after synthesis in the secretory pathway, retrieval of inappropriately expressed receptors by endocytosis followed by degradation or recycling, and restriction of diffusion. This article will discuss the machinery and regulation underlying the restricted distribution of membrane receptors, focusing on the currently best-studied example, the L1 cell adhesion molecule. In addition to the long-range mechanisms ensuring appropriate localization, the same mechanisms can act locally to adjust levels and localization of receptors. These local mechanisms are regulated by ligand binding and subsequent activation of local signaling cascades. It is likely that the localization of all guidance receptors is regulated by a combination of sorting, retrieval, recycling and retention, similar to the ones we discuss here for L1.
Collapse
Affiliation(s)
- Bettina Winckler
- University of Virginia, Department of Neuroscience, Charlottesville, Virgina 22908, USA
| | | |
Collapse
|
39
|
Nakamura Y, Lee S, Haddox CL, Weaver EJ, Lemmon VP. Role of the cytoplasmic domain of the L1 cell adhesion molecule in brain development. J Comp Neurol 2010; 518:1113-32. [PMID: 20127821 DOI: 10.1002/cne.22267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mutations in the human L1CAM gene cause X-linked hydrocephalus and MASA (Mental retardation, Aphasia, Shuffling gait, Adducted thumbs) syndrome. In vitro studies have shown that the L1 cytoplasmic domain (L1CD) is involved in L1 trafficking, neurite branching, signaling, and interactions with the cytoskeleton. L1cam knockout (L1(KO)) mice have hydrocephalus, a small cerebellum, hyperfasciculation of corticothalamic tracts, and abnormal peripheral nerves. To explore the function of the L1CD, we made three new mice lines in which different parts of the L1CD have been altered. In all mutant lines L1 protein is expressed and transported into the axon. Interestingly, these new L1CD mutant lines display normal brain morphology. However, the expression of L1 protein in the adult is dramatically reduced in the two L1CD mutant lines that lack the ankyrin-binding region and they show defects in motor function. Therefore, the L1CD is not responsible for the major defects observed in L1(KO) mice, yet it is required for continued L1 protein expression and motor function in the adult.
Collapse
Affiliation(s)
- Yukiko Nakamura
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
40
|
Sano S, Takashima S, Niwa H, Yokoi H, Shimada A, Arenz A, Wittbrodt J, Takeda H. Characterization of teleost Mdga1 using a gene-trap approach in medaka (Oryzias latipes). Genesis 2009; 47:505-13. [PMID: 19422017 DOI: 10.1002/dvg.20528] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MAM domain containing glycosilphosphatidilinositol anchor 1 (MDGA1) is an IgCAM protein present in many vertebrate species including humans. In mammals, MDGA1 is expressed by a subset of neurons in the developing brain and thought to function in neural cell migration. We identified a fish ortholog of mdga1 by a gene-trap screen utilizing the Frog Prince transposon in medaka (Japanese killifish, Oryzias latipes). The gene-trap vector was inserted into an intronic region of mdga1 to form a chimeric protein with green fluorescent protein, allowing us to monitor mdga1 expression in vivo. Expression of medaka mdga1 was seen in various types of embryonic brain neurons, and specifically in neurons migrating toward their target sites, supporting the proposed function of MDGA1. We also isolated the closely related mdga2 gene, whose expression partially overlapped with that of mdga1. Despite the fact that the gene-trap event eliminated most of the functional domains of the Mdga1 protein, homozygous embryos developed normally without any morphological abnormality, suggesting a functional redundancy of Mdga1 with other related proteins. High sequential homology of MDGA proteins between medaka and other vertebrate species suggests an essential role of the MDGA gene family in brain development among the vertebrate phylum.
Collapse
Affiliation(s)
- Shinya Sano
- Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Raveh S, Gavert N, Spiegel I, Ben-Ze'ev A. The cell adhesion nectin-like molecules (Necl) 1 and 4 suppress the growth and tumorigenic ability of colon cancer cells. J Cell Biochem 2009; 108:326-36. [DOI: 10.1002/jcb.22258] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Wilson PL, Kattman BB, Mulvihill JJ, Li S, Wilkins J, Wagner AF, Goodman JR. Prenatal Identification of a Novel R937P L1CAM Missense Mutation. Genet Test Mol Biomarkers 2009; 13:515-9. [DOI: 10.1089/gtmb.2009.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patrick L. Wilson
- Section of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Prenatal Diagnostic Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - John J. Mulvihill
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shibo Li
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jesse Wilkins
- Section of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Prenatal Diagnostic Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew F. Wagner
- Section of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Prenatal Diagnostic Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jean R. Goodman
- Section of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Prenatal Diagnostic Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
43
|
Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, Yin S, Zecevic N, Schachner M, Irintchev A. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol 2009; 513:496-510. [PMID: 19226508 DOI: 10.1002/cne.21981] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several L1-related adhesion molecules, expressed in a well-coordinated temporospatial pattern during development, are important for fine tuning of specific cerebellar circuitries. We tested the hypothesis that CHL1, the close homologue of L1, abundantly expressed in the developing and adult cerebellum, is also required for normal cerebellar histogenesis. We found that constitutive ablation of CHL1 in mice caused significant loss (20-23%) of Purkinje and granule cells in the mature 2-month-old cerebellum. The ratio of stellate/basket interneurons to Purkinje cells was abnormally high (+38%) in CHL1-deficient (CHL1-/-) mice compared with wild-type (CHL1+/+) littermates, but the gamma-aminobutyric acid (GABA)ergic synaptic inputs to Purkinje cell bodies and dendrites were normal, as were numbers of Golgi interneurons, microglia, astrocytes, and Bergmann glia. Purkinje cell loss occurred before the first postnatal week and was associated with enhanced apoptosis, presumably as a consequence of CHL1 deficiency in afferent axons. In contrast, generation of granule cells, as indicated by in vivo analyses of cell proliferation and death, was unaffected in 1-week-old CHL1-/- mice, but numbers of migrating granule cells in the molecular layer were increased. This increase was likely related to retarded cell migration because CHL1-/- granule cells migrated more slowly than CHL1+/+ cells in vitro, and Bergmann glial processes guiding migration in vivo expressed CHL1 in wild-type mice. Granule cell deficiency in adult CHL1-/- mice appeared to result from decreased precursor cell proliferation after the first postnatal week. Our results indicate that CHL1 promotes Purkinje and granule cell survival and granule cell migration during cerebellar development.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Katidou M, Vidaki M, Strigini M, Karagogeos D. The immunoglobulin superfamily of neuronal cell adhesion molecules: lessons from animal models and correlation with human disease. Biotechnol J 2009; 3:1564-80. [PMID: 19072911 DOI: 10.1002/biot.200800281] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuronal cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in the formation of neural circuits at different levels: cell migration, axonal and dendritic targeting as well as synapse formation. Furthermore, in perinatal and adult life, neuronal IgCAMs are required for the formation and maintenance of specialized axonal membrane domains, synaptic plasticity and neurogenesis. Mutations in the corresponding human genes have been correlated to several human neuronal disorders. Perturbing neuronal IgCAMs in animal models provides powerful means to understand the molecular and cellular basis of such human disorders. In this review, we concentrate on the NCAM, L1 and contactin subfamilies of neuronal IgCAMs summarizing recent functional studies from model systems and highlighting their links to disease pathogenesis.
Collapse
Affiliation(s)
- Markella Katidou
- University of Crete, Faculty of Medicine, Vassilika Vouton, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
45
|
Rünker AE, Little GE, Suto F, Fujisawa H, Mitchell KJ. Semaphorin-6A controls guidance of corticospinal tract axons at multiple choice points. Neural Dev 2008; 3:34. [PMID: 19063725 PMCID: PMC2647909 DOI: 10.1186/1749-8104-3-34] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 12/08/2008] [Indexed: 11/30/2022] Open
Abstract
Background The trajectory of corticospinal tract (CST) axons from cortex to spinal cord involves a succession of choice points, each of which is controlled by multiple guidance molecules. To assess the involvement of transmembrane semaphorins and their plexin receptors in the guidance of CST axons, we have examined this tract in mutants of Semaphorin-6A (Sema6A), Plexin-A2 (PlxnA2) and Plexin-A4 (PlxnA4). Results We describe defects in CST guidance in Sema6A mutants at choice points at the mid-hindbrain boundary (MHB) and in navigation through the pons that dramatically affect how many axons arrive to the hindbrain and spinal cord and result in hypoplasia of the CST. We also observe defects in guidance within the hindbrain where a proportion of axons aberrantly adopt a ventrolateral position and fail to decussate. This function in the hindbrain seems to be mediated by the known Sema6A receptor PlxnA4, which is expressed by CST axons. Guidance at the MHB, however, appears independent of this and of the other known receptor, PlxnA2, and may depend instead on Sema6A expression on CST axons themselves at embryonic stages. Conclusion These data identify Sema6A as a major contributor to the guidance of CST axons at multiple choice points. They highlight the active control of guidance at the MHB and also implicate the inferior olive as an important structure in the guidance of CST axons within the hindbrain. They also suggest that Sema6A, which is strongly expressed by oligodendrocytes, may affect CST regeneration in adults.
Collapse
Affiliation(s)
- Annette E Rünker
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
46
|
Optical Tweezers and Fluorescence Recovery After Photo-Bleaching to Measure Molecular Interactions at the Cell Surface. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
47
|
Fre S, Vignjevic D, Schoumacher M, Duffy SL, Janssen KP, Robine S, Louvard D. Epithelial morphogenesis and intestinal cancer: new insights in signaling mechanisms. Adv Cancer Res 2008; 100:85-111. [PMID: 18620093 DOI: 10.1016/s0065-230x(08)00003-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this review, the major signal transduction pathways that have been shown to play an important role in intestinal homeostasis are highlighted. Each of them, the Wnt, Notch, Hedgehog, and Bone Morphogenetic Protein, as well as growth-factor regulated Receptor Tyrosine Kinases are depicted with a special emphasis through their involvement in stem cell maintenance and their role in intestinal tumorigenesis. Finally, we discuss recent data on the final steps of tumor progression, notably the formation of distant metastases. This multistep process is highly complex and still far from being understood while being of major importance for the survival of patients with digestive cancer.
Collapse
Affiliation(s)
- Silvia Fre
- UMR144 Curie/CNRS, Institut Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Thoumine O, Ewers H, Heine M, Groc L, Frischknecht R, Giannone G, Poujol C, Legros P, Lounis B, Cognet L, Choquet D. Probing the dynamics of protein-protein interactions at neuronal contacts by optical imaging. Chem Rev 2008; 108:1565-87. [PMID: 18447398 DOI: 10.1021/cr078204m] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olivier Thoumine
- CNRS UMR 5091, Institut Magendie, Université Bordeaux 2, 33077 Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Osterfield M, Egelund R, Young LM, Flanagan JG. Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system. Development 2008; 135:1189-99. [PMID: 18272596 DOI: 10.1242/dev.007401] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease, but its actions in normal development are not well understood. Here, a tagged APP ectodomain was used to identify extracellular binding partners in developing chick brain. Prominent binding sites were seen in the olfactory bulb and on retinal axons growing into the optic tectum. Co-precipitation from these tissues and tandem mass spectrometry led to the identification of two associated proteins: contactin 4 and NgCAM. In vitro binding studies revealed direct interactions among multiple members of the APP and contactin protein families. Levels of the APP processing fragment, CTFalpha, were modulated by both contactin 4 and NgCAM. In the developing retinotectal system, APP, contactin 4 and NgCAM are expressed in the retina and tectum in suitable locations to interact. Functional assays revealed regulatory effects of both APP and contactin 4 on NgCAM-dependent growth of cultured retinal axons, demonstrating specific functional interactions among these proteins. These studies identify novel binding and functional interactions among proteins of the APP, contactin and L1CAM families, with general implications for mechanisms of APP action in neural development and disease.
Collapse
Affiliation(s)
- Miriam Osterfield
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
50
|
Baculovirus expression and bioactivity of a soluble 140kDa extracellular cleavage fragment of L1 neural cell adhesion molecule. Protein Expr Purif 2008; 57:172-9. [DOI: 10.1016/j.pep.2007.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/08/2007] [Accepted: 10/11/2007] [Indexed: 11/21/2022]
|