1
|
Papin C, Ibrahim A, Sabir JSM, Le Gras S, Stoll I, Albiheyri RS, Zari AT, Bahieldin A, Bellacosa A, Bronner C, Hamiche A. MBD4 loss results in global reactivation of promoters and retroelements with low methylated CpG density. J Exp Clin Cancer Res 2023; 42:301. [PMID: 37957685 PMCID: PMC10644448 DOI: 10.1186/s13046-023-02882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Inherited defects in the base-excision repair gene MBD4 predispose individuals to adenomatous polyposis and colorectal cancer, which is characterized by an accumulation of C > T transitions resulting from spontaneous deamination of 5'-methylcytosine. METHODS Here, we have investigated the potential role of MBD4 in regulating DNA methylation levels using genome-wide transcriptome and methylome analyses. Additionally, we have elucidated its function through a series of in vitro experiments. RESULTS Here we show that the protein MBD4 is required for DNA methylation maintenance and G/T mismatch repair. Transcriptome and methylome analyses reveal a genome-wide hypomethylation of promoters, gene bodies and repetitive elements in the absence of MBD4 in vivo. Methylation mark loss is accompanied by a broad transcriptional derepression phenotype affecting promoters and retroelements with low methylated CpG density. MBD4 in vivo forms a complex with the mismatch repair proteins (MMR), which exhibits high bi-functional glycosylase/AP-lyase endonuclease specific activity towards methylated DNA substrates containing a G/T mismatch. Experiments using recombinant proteins reveal that the association of MBD4 with the MMR protein MLH1 is required for this activity. CONCLUSIONS Our data identify MBD4 as an enzyme specifically designed to repair deaminated 5-methylcytosines and underscores its critical role in safeguarding against methylation damage. Furthermore, it illustrates how MBD4 functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Christophe Papin
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France
| | - Abdulkhaleg Ibrahim
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France
- National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan, 99316, Libya
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stéphanie Le Gras
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France
| | - Isabelle Stoll
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France
| | - Raed S Albiheyri
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alfonso Bellacosa
- Cancer Biology Program, Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Christian Bronner
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France.
| | - Ali Hamiche
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France.
| |
Collapse
|
2
|
Hoffmann A, Erber L, Betat H, Stadler PF, Mörl M, Fallmann J. Changes of the tRNA Modification Pattern during the Development of Dictyostelium discoideum. Noncoding RNA 2021; 7:32. [PMID: 34071416 PMCID: PMC8163159 DOI: 10.3390/ncrna7020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Dictyostelium discoideum is a social amoeba, which on starvation develops from a single-cell state to a multicellular fruiting body. This developmental process is accompanied by massive changes in gene expression, which also affect non-coding RNAs. Here, we investigate how tRNAs as key regulators of the translation process are affected by this transition. To this end, we used LOTTE-seq to sequence the tRNA pool of D. discoideum at different developmental time points and analyzed both tRNA composition and tRNA modification patterns. We developed a workflow for the specific detection of modifications from reverse transcriptase signatures in chemically untreated RNA-seq data at single-nucleotide resolution. It avoids the comparison of treated and untreated RNA-seq data using reverse transcription arrest patterns at nucleotides in the neighborhood of a putative modification site as internal control. We find that nucleotide modification sites in D. discoideum tRNAs largely conform to the modification patterns observed throughout the eukaroytes. However, there are also previously undescribed modification sites. We observe substantial dynamic changes of both expression levels and modification patterns of certain tRNA types during fruiting body development. Beyond the specific application to D. discoideum our results demonstrate that the developmental variability of tRNA expression and modification can be traced efficiently with LOTTE-seq.
Collapse
Affiliation(s)
- Anne Hoffmann
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at Leipzig University and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, D-04103 Leipzig, Germany
| | - Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, 111321 Bogotá, D.C., Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
| |
Collapse
|
3
|
Bhattacharjee R, Moriam S, Umer M, Nguyen NT, Shiddiky MJA. DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst 2018; 143:4802-4818. [PMID: 30226502 DOI: 10.1039/c8an01348a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is one of the significant epigenetic modifications involved in mammalian development as well as in the initiation and progression of various diseases like cancer. Over the past few decades, an enormous amount of research has been carried out for the quantification of DNA methylation in the mammalian genome. Earlier, most of these methodologies used bisulfite treatment. However, the low conversion, false reading, longer assay time and complex chemical reaction are the common limitations of this method that hinder their application in routine clinical screening. Thus, as an alternative to bisulfite conversion-based DNA methylation detection, numerous bisulfite-free methods have been proposed. In this regard, electrochemical biosensors have gained much attention in recent years for being highly sensitive yet cost-effective, portable, and simple to operate. On the other hand, biosensors with optical readouts enable direct real time detection of biological molecules and are easily adaptable to multiplexing. Incorporation of electrochemical and optical readouts into bisulfite free DNA methylation analysis is paving the way for the translation of this important biomarker into standard patient care. In this review, we provide a critical overview of recent advances in the development of electrochemical and optical readout based bisulfite free DNA methylation assays.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| | | | | | | | | |
Collapse
|
4
|
Bhattacharjee R, Moriam S, Nguyen NT, Shiddiky MJA. A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement. Biosens Bioelectron 2018; 126:102-107. [PMID: 30396016 DOI: 10.1016/j.bios.2018.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/09/2023]
Abstract
In this paper we report on a bisulfite treatment and PCR amplification-free method for sensitive and selective quantifying of global DNA methylation. Our method utilizes a three-step strategy that involves (i) initial isolation and denaturation of global DNA using the standard isolation protocol and direct adsorption onto a bare gold electrode via gold-DNA affinity interaction, (ii) selective interrogation of methylation sites in adsorbed DNA via methylation-specific 5mC antibody, and (iii) subsequent signal enhancement using an electrochemical-enzymatic redox cycling reaction. In the redox cycling reaction, glucose oxidase (GOx) is used as an enzyme label, glucose as a substrate and ruthenium complex as a redox mediator. We initially investigated the enzymatic properties of GOx by varying glucose and ruthenium concentration to delineate the redox cyclic mechanism of our assay. Because of the fast electron transfer by ruthenium (Ru) complex and intrinsic signal amplification from GOx label, this method could detect as low as 5% methylation level in 50 ng of total DNA input. Moreover, the use of methylation-specific 5mC antibody conjugated GOx makes this assay relatively highly selective for DNA methylation analysis. The data obtained from the electrochemical response for different levels of methylation showed excellent interassay reproducibility of RSD (relative standard deviation) < 5% for n = 3. We believe that this inexpensive, rapid, and sensitive assay will find high relevance as an alternative method for DNA methylation analysis both in research and clinical platforms.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Sofia Moriam
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| |
Collapse
|
5
|
Sun Y, Sun Y, Tian W, Liu C, Gao K, Li Z. A novel restriction endonuclease GlaI for rapid and highly sensitive detection of DNA methylation coupled with isothermal exponential amplification reaction. Chem Sci 2017; 9:1344-1351. [PMID: 29675182 PMCID: PMC5887237 DOI: 10.1039/c7sc04975g] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sensitive and accurate detection of site-specific DNA methylation is of critical significance for early diagnosis of human diseases, especially cancers. Herein, for the first time we employ a novel methylation-dependent restriction endonuclease GlaI to detect site-specific DNA methylation in a highly specific and sensitive way by coupling with isothermal exponential amplification reaction (EXPAR). GlaI can only cut the methylated target site with excellent selectivity but leave the unmethylated DNA intact. Then the newly exposed end fragments of methylated DNA can trigger EXPAR for highly efficient signal amplification while the intact unmethylated DNA will not initiate EXPAR at all. As such, only the methylated DNA is quantitatively and faithfully reflected by the real-time fluorescence signal of the GlaI-EXPAR system, and the potential false positive interference from unmethylated DNA can be effectively eliminated. Therefore, by integrating the unique features of GlaI for highly specific methylation discrimination and EXPAR for rapid and powerful signal amplification, the elegant GlaI-EXPAR assay allows the direct quantification of methylated DNA with ultrahigh sensitivity and accuracy. The detection limit of methylated DNA target has been pushed down to the aM level and the whole detection process of GlaI-EXPAR can be accomplished within a short time of 2 h. More importantly, ultrahigh specificity is achieved and as low as 0.01% methylated DNA can be clearly identified in the presence of a large excess of unmethylated DNA. This GlaI-EXPAR is also demonstrated to be capable of determining site-specific DNA methylations in real genomic DNA samples. Sharing the distinct advantages of ultrahigh sensitivity, outstanding specificity and facile operation, this new GlaI-EXPAR strategy may provide a robust and reliable platform for the detection of site-specific DNA methylations with low abundances.
Collapse
Affiliation(s)
- Yueying Sun
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China . ;
| | - Yuanyuan Sun
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China . ;
| | - Weimin Tian
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China . ;
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China . ;
| | - Kejian Gao
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China . ;
| | - Zhengping Li
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China . ;
| |
Collapse
|
6
|
Philibert R, Glatt SJ. Optimizing the chances of success in the search for epigenetic biomarkers: Embracing genetic variation. Am J Med Genet B Neuropsychiatr Genet 2017; 174:589-594. [PMID: 28696057 PMCID: PMC5562041 DOI: 10.1002/ajmg.b.32569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/21/2023]
Abstract
The emphasis on clinical translation in biomedical research continues to grow. This focus has been particularly notable in those investigators using epigenetic approaches to decipher the biology of complex behavioral disorders. As a result of these efforts, reproducible findings for several disorders, such as smoking, have been generated, giving rise to hopes that biomarkers for other behavioral illnesses would be forthcoming. Unfortunately, that biomedical cornucopia has not yet materialized. In this editorial, we review progress to date and discuss barriers to generating epigenetic biomarkers for complex behavioral disorders. We highlight the need to incorporate information on genetic variation and develop more powerful bioinformatics tools in order to optimize the likelihood of success. We emphasize that searches should focus on clearly defined, readily distinguishable behavioral constructs and suggest that some well-intentioned methods, such as correction for cellular heterogeneity, may actually impede the identification of clinically relevant biomarkers in peripheral blood. Finally, we describe how the understanding created by the development of these biomarkers may lead to more valid animal models of neuropsychiatric illness. We conclude that the prospects for epigenetic biomarkers for complex disorders are bright, but emphasize that the journey to the clinical implementation of these findings will be a slow, iterative process.
Collapse
Affiliation(s)
- Robert Philibert
- Behavioral Diagnostics, Coralville, Iowa
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology and Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
7
|
Abstract
Leukemia is a disease that develops as a result of changes in the genomes of hematopoietic cells, a fact first appreciated by microscopic examination of the bone marrow cell chromosomes of affected patients. These studies revealed that specific subtypes of leukemia diagnoses correlated with specific chromosomal abnormalities, such as the t(15;17) of acute promyelocytic leukemia and the t(9;22) of chronic myeloid leukemia. Over time, our genomic characterization of hematologic malignancies has moved beyond the resolution of the microscope to that of individual nucleotides in the analysis of whole-genome sequencing (WGS) data using state-of-the-art massively parallel sequencing (MPS) instruments and algorithmic analyses of the resulting data. In addition to studying the genomic sequence alterations that occur in patients' genomes, these same instruments can decode the methylation landscape of the leukemia genome and the resulting RNA expression landscape of the leukemia transcriptome. Broad correlative analyses can then integrate these 3 data types to better inform researchers and clinicians about the biology of individual acute myeloid leukemia (AML) cases, facilitating improvements in care and prognosis.
Collapse
Affiliation(s)
- Elaine R Mardis
- The Genome Institute, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
8
|
Philibert RA, Beach S, Brody GH. The DNA methylation signature of smoking: an archetype for the identification of biomarkers for behavioral illness. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2014; 61:109-27. [PMID: 25306781 PMCID: PMC4543297 DOI: 10.1007/978-1-4939-0653-6_6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smoking is perhaps the foremost public health challenge in the United States and in the world. In a series of rapidly emerging studies, we and others have demonstrated that cigarette smoking is associated with changes in the DNA methylation signature of peripheral blood cells. The changes associated with this type of substance use are both dose and time dependent. These changes in DNA methylation are also accompanied by changes in gene transcription and protein expression whose patterns are furthermore indicative of increased vulnerability to other forms of complex illness. In the past, our efforts to translate this knowledge into actionable information has been stymied by a lack of methods through which to systematically to assess these changes. The rapid advance of DNA methylation assessment technologies changes that dynamic and presents the possibility that methylation-based clinical tools to aid the ascertainment of smoking status or effectiveness of treatment can be developed. In this chapter, we will review the latest advances in this field and discuss how these advances allow us insight as to methods through which to prevent smoking and shed insight into optimizing strategies through which to identify biomarkers for other behavioral illnesses which share similar contributions from environmental and gene- environmental interaction effects.
Collapse
Affiliation(s)
| | - S.R.H. Beach
- The Center for Family Research, University of Georgia, Athens, GA
| | - Gene H. Brody
- The Center for Family Research, University of Georgia, Athens, GA
| |
Collapse
|
9
|
Squires JE, Preiss T. Function and detection of 5-methylcytosine in eukaryotic RNA. Epigenomics 2012; 2:709-15. [PMID: 22122054 DOI: 10.2217/epi.10.47] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Modified nucleosides play an important role in RNA function and have been identified in multiple RNA types, including tRNAs, rRNAs, mRNAs and small regulatory RNAs. Among these, 5-methylcytosine (m(5)C) has been detected in rRNAs and tRNAs, and early reports suggested its presence in mRNAs. Known and well studied as an epigenetic mark in DNA, the prevalence and function of m(5)C in RNA is either incompletely explored (i.e., in tRNA and rRNA) or virtually unknown (i.e., in mRNA and other noncoding RNA). Two eukaryotic methyltransferases have been demonstrated to place m(5)C in RNA; however, their substrate specificity and cellular functions are not completely understood. With the recent development of m(5)C detection in RNA by bisulfite sequencing, comprehensive analyses to determine its occurrence and biological roles are now feasible. In this article we review the occurrence, function and biochemical detection of m(5)C in eukaryotic RNA, and provide perspectives on the biological roles of this modification in the transcriptome.
Collapse
Affiliation(s)
- Jeffrey E Squires
- Victor Chang Cardiac Research Institute, Molecular Genetics Division, Darlinghurst, NSW 2010, Australia
| | | |
Collapse
|
10
|
Philibert RA, Wernett P, Plume J, Packer H, Brody GH, Beach SRH. Gene environment interactions with a novel variable Monoamine Oxidase A transcriptional enhancer are associated with antisocial personality disorder. Biol Psychol 2011; 87:366-71. [PMID: 21554924 DOI: 10.1016/j.biopsycho.2011.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/16/2022]
Abstract
Monoamine Oxidase A (MAOA) is a critical enzyme in the catabolism of monoaminergic neurotransmitters. MAOA transcriptional activity is thought to be regulated by a well characterized 30 base pair (bp) variable nucleotide repeat (VNTR) that lies approximately ∼1000 bp upstream of the transcriptional start site (TSS). However, clinical associations between this VNTR genotype and behavioral states have been inconsistent. Herein, we describe a second, 10 bp VNTR that lies ∼1500 bp upstream of the TSS. We provide in vitro and in silico evidence that this new VNTR region may be more influential in regulating MAOA transcription than the more proximal VNTR and that methylation of this CpG-rich VNTR is genotype dependent in females. Finally, we demonstrate that genotype at this new VNTR interacts significantly with history of child abuse to predict antisocial personality disorder (ASPD) in women and accounts for variance in addition to that explained by the prior VNTR.
Collapse
|
11
|
Methylation at 5HTT mediates the impact of child sex abuse on women's antisocial behavior: an examination of the Iowa adoptee sample. Psychosom Med 2011; 73:83-7. [PMID: 20947778 PMCID: PMC3016449 DOI: 10.1097/psy.0b013e3181fdd074] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine epigenetic processes linking childhood sex abuse to symptoms of antisocial personality disorder (ASPD) in adulthood and to investigate the possibility that the link between childhood sex abuse and deoxyribonucleic acid methylation at the 5HTT promoter might represent a pathway of long-term impact on symptoms of ASPD. METHOD Deoxyribonucleic acid was prepared from lymphoblast cell lines derived from 155 female participants in the latest wave of the Iowa Adoptee Study. Methylation at 71 CpG residues was determined by quantitative mass spectroscopy, and the resulting values were averaged to produce an average CpG ratio for each participant. Simple associations and path analyses within an Mplus framework were examined to characterize the relationships among childhood sex abuse, overall level of methylation among women, and subsequent antisocial behavior in adulthood. Direct effects of biological parent psychopathology and 5HTT genotype were controlled. RESULTS Replicating prior work, we found that a significant effect of childhood sex abuse on methylation of the 5HTT promoter region emerged for women. In addition, a significant effect of methylation at 5HTT on symptoms of ASPD emerged. CONCLUSIONS Child sex abuse may create long-lasting changes in methylation of the promoter region of 5HTT in women. Furthermore, hypermethylation may be one mechanism linking childhood sex abuse to changes in risk for adult antisocial behavior in women. Better understanding of the methylome may prove critical in understanding the role of childhood environments on long-term psychiatric sequelae.
Collapse
|
12
|
Beach SRH, Brody GH, Todorov AA, Gunter TD, Philibert RA. Methylation at SLC6A4 is linked to family history of child abuse: an examination of the Iowa Adoptee sample. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:710-713. [PMID: 19739105 PMCID: PMC2909112 DOI: 10.1002/ajmg.b.31028] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven R. H. Beach
- University of Georgia,Correspondence to Steven R. H. Beach, 510 Boyd GSRC, University of Georgia, Athens, GA. 30602 TEL 706-542-1806, FAX 706-542-6064,
| | | | | | - Tracy D. Gunter
- Department of Psychiatry, The University of Iowa, Iowa City, IA 522424
| | - Robert A. Philibert
- Department of Psychiatry, The University of Iowa, Iowa City, IA 522424,Neuroscience and Genetics Programs, The University of Iowa, Iowa City, IA 522424
| |
Collapse
|
13
|
Morandi L, Franceschi E, de Biase D, Marucci G, Tosoni A, Ermani M, Pession A, Tallini G, Brandes A. Promoter methylation analysis of O6-methylguanine-DNA methyltransferase in glioblastoma: detection by locked nucleic acid based quantitative PCR using an imprinted gene (SNURF) as a reference. BMC Cancer 2010; 10:48. [PMID: 20167086 PMCID: PMC2843669 DOI: 10.1186/1471-2407-10-48] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 02/18/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetic silencing of the MGMT gene by promoter methylation is associated with loss of MGMT expression, diminished DNA-repair activity and longer overall survival in patients with glioblastoma who, in addition to radiotherapy, received alkylating chemotherapy with carmustine or temozolomide. We describe and validate a rapid methylation sensitive quantitative PCR assay (MS-qLNAPCR) using Locked Nucleic Acid (LNA) modified primers and an imprinted gene as a reference. METHODS An analysis was made of a database of 159 GBM patients followed between April 2004 and October 2008. After bisulfite treatment, methylated and unmethylated CpGs were recognized by LNA primers and molecular beacon probes. The SNURF promoter of an imprinted gene mapped on 15q12, was used as a reference. This approach was used because imprinted genes have a balanced copy number of methylated and unmethylated alleles, and this feature allows an easy and a precise normalization. RESULTS Concordance between already described nested MS-PCR and MS-qLNAPCR was found in 158 of 159 samples (99.4%). The MS-qLNAPCR assay showed a PCR efficiency of 102% and a sensitivity of 0.01% for LNA modified primers, while unmodified primers revealed lower efficiency (69%) and lower sensitivity (0.1%). MGMT promoter was found to be methylated using MS-qLNAPCR in 70 patients (44.02%), and completely unmethylated in 89 samples (55.97%). Median overall survival was of 24 months, being 20 months and 36 months, in patients with MGMT unmethylated and methylated, respectively. Considering MGMT methylation data provided by MS-qLNAPCR as a binary variable, overall survival was different between patients with GBM samples harboring MGMT promoter unmethylated and other patients with any percentage of MGMT methylation (p = 0.003). This difference was retained using other cut off values for MGMT methylation rate (i.e. 10% and 20% of methylated allele), while the difference was lost when 50% of MGMT methylated allele was used as cut-off. CONCLUSIONS We report and clinically validate an accurate, robust, and cost effective MS-qLNAPCR protocol for the detection and quantification of methylated MGMT alleles in GBM samples. Using MS-qLNAPCR we demonstrate that even low levels of MGMT promoter methylation have to be taken into account to predict response to temozolomide-chemotherapy.
Collapse
Affiliation(s)
- Luca Morandi
- Department of Haemathology and Oncological Sciences Section of Pathology, Bellaria Hospital, University of Bologna, Italy
| | - Enrico Franceschi
- Medical Oncology and Radiotherapy Departments, Bellaria-Maggiore Hospital, Azienda Unità Sanitaria Locale of Bologna, Italy
| | - Dario de Biase
- Department of Haemathology and Oncological Sciences Section of Pathology, Bellaria Hospital, University of Bologna, Italy
| | - Gianluca Marucci
- Department of Haemathology and Oncological Sciences Section of Pathology, Bellaria Hospital, University of Bologna, Italy
| | - Alicia Tosoni
- Medical Oncology and Radiotherapy Departments, Bellaria-Maggiore Hospital, Azienda Unità Sanitaria Locale of Bologna, Italy
| | - Mario Ermani
- Neurosciences Department, Statistic and Informatic Unit, Azienda Ospedale-Universita' of Padova, Italy
| | - Annalisa Pession
- Department of Experimental Pathology, University of Bologna, Italy
| | - Giovanni Tallini
- Department of Haemathology and Oncological Sciences Section of Pathology, Bellaria Hospital, University of Bologna, Italy
| | - Alba Brandes
- Medical Oncology and Radiotherapy Departments, Bellaria-Maggiore Hospital, Azienda Unità Sanitaria Locale of Bologna, Italy
| |
Collapse
|
14
|
|
15
|
Guo Y, Li Y, Mu S, Zhang J, Yan Z. Evidence that methylation of hepatitis B virus covalently closed circular DNA in liver tissues of patients with chronic hepatitis B modulates HBV replication. J Med Virol 2009; 81:1177-83. [PMID: 19475606 DOI: 10.1002/jmv.21525] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic factors may modulate chronic Hepatitis B viral infection by affecting virion gene transcription. The aim of this study was to compare the methylation status of the intrahepatic covalently closed circular DNA (cccDNA) CpG island 2 and HBV replication capability. HBV cccDNA was extracted from liver biopsies of 55 HBsAg-positive patients with chronic hepatitis B (32 HBeAg-positive and 23 HBeAg-negative), and was analyzed for methylation status and quantity. The two Hpa II recognition sequences CCpGG in the CpG island 2 were methylated in infected liver tissues from 24 (43.6%) of 55 patients. Positive ratios of cccDNA methylation were significantly higher in HBeAg-negative patients (15/23, 65.2%) than HBeAg-positive patients (9/32, 28.1%) (P < 0.05). The percentage of methylated-cccDNA/total-cccDNA of HBeAg-negative samples (a median of 48%, ranging from 5% to 83%) was significantly higher (P < 0.001) than HBeAg-positive samples (a median of 14%, ranging from 0.26% to 35%). Ratios of relaxed circular DNA (rcDNA) to cccDNA molecules revealed that cccDNA methylation correlated with impaired virion productivity in HBeAg-positive individuals (P < 0.05). The bisulfite DNA sequencing showed that methylation density was significantly higher in HBeAg-negative than in HBeAg-positive patients (P < 0.05). The methylation level of the CpG island 2 of the cccDNA in HBeAg-negative patients was higher than that in HBeAg-positive patients, suggesting that HBV cccDNA methylation may be relevant to replication capability of HBV.
Collapse
Affiliation(s)
- Yanhai Guo
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | |
Collapse
|
16
|
Dugast-Darzacq C, Grange T. MethylQuant: a real-time PCR-based method to quantify DNA methylation at single specific cytosines. Methods Mol Biol 2009; 507:281-303. [PMID: 18987822 DOI: 10.1007/978-1-59745-522-0_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
MethylQuant is a cost-effective and relatively simple technique which enables quantitative analysis of the methylation status of a single cytosine at specific positions in DNA that can be assimilated to the quantitative detection of a single nucleotide polymorphism (SNP). After bisulfite conversion of DNA and PCR amplification of the region of interest, the methylation status is quantified by methylation-specific real-time PCR with one of the primers harboring the methylation status-specific nucleotide at the most 3' end. In parallel, the amount of amplifiable DNA is quantified by a methylation-independent real-time PCR. In this protocol, we describe in detail the different stages of the MethylQuant procedure and discuss the parameters of DNA bisulfite conversion and quantitative PCR analysis with SYBR green that are crucial to achieve an accurate quantification of the methylation status of a particular cytosine. The practical aspects of DNA bisulfite conversion, primer design, and quantitative PCR analysis, discussed hereafter, should be of general interest even outside the context of the MethylQuant technique.
Collapse
|
17
|
Schaefer M, Pollex T, Hanna K, Lyko F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 2008; 37:e12. [PMID: 19059995 PMCID: PMC2632927 DOI: 10.1093/nar/gkn954] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Covalent modifications of nucleic acids play an important role in regulating their functions. Among these modifications, (cytosine-5) DNA methylation is best known for its role in the epigenetic regulation of gene expression. Post-transcriptional RNA modification is a characteristic feature of noncoding RNAs, and has been described for rRNAs, tRNAs and miRNAs. (Cytosine-5) RNA methylation has been detected in stable and long-lived RNA molecules, but its function is still unclear, mainly due to technical limitations. In order to facilitate the analysis of RNA methylation patterns we have established a protocol for the chemical deamination of cytosines in RNA, followed by PCR-based amplification of cDNA and DNA sequencing. Using tRNAs and rRNAs as examples we show that cytosine methylation can be reproducibly and quantitatively detected by bisulfite sequencing. The combination of this method with deep sequencing allowed the analysis of a large number of RNA molecules. These results establish a versatile method for the identification and characterization of RNA methylation patterns, which will be useful for defining the biological function of RNA methylation.
Collapse
Affiliation(s)
- Matthias Schaefer
- Division of Epigenetics, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
18
|
Motorin Y, Muller S, Behm-Ansmant I, Branlant C. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol 2007; 425:21-53. [PMID: 17673078 DOI: 10.1016/s0076-6879(07)25002-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Naturally occurring modified residues derived from canonical RNA nucleotides are present in most cellular RNAs. Their detection in RNA represents a difficult task because of their great diversity and their irregular distribution within RNA molecules. Over the decades, multiple experimental techniques were developed for the identification and localization of RNA modifications. Most of them are quite laborious and require purification of individual RNA to a homogeneous state. An alternative to these techniques is the use of reverse transcription (RT)-based approaches. In these approaches, purification of RNA to homogeneity is not necessary, because the selection of the analyzed RNA species is done by specific annealing of oligonucleotide DNA primers. However, results from primer extension analysis are difficult to interpret because of the unpredictable nature of RT pauses. They depend not only on the properties of nucleotides but also on the RNA primary and secondary structure. In addition, the degradation of cellular RNA during extraction, even at a very low level, may complicate the analysis of the data. RT-based techniques for the identification of modified residues were considerably improved by the development of selected chemical reagents specifically reacting with a given modified nucleotide. The RT profile obtained after such chemical modifications generally allows unambiguous identification of the chemical nature of the modified residues and their exact location in the RNA sequence. Here, we provide experimental protocols for selective chemical modification and identification of several modified residues: pseudouridine, inosine, 5-methylcytosine, 2'-O-methylations, 7-methylguanosine, and dihydrouridine. Advice for an optimized use of these methods and for correct interpretation of the data is also given. We also provide some helpful information on the ability of other naturally occurring modified nucleotides to generate RT pauses.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, Faculté des Sciences et Techniques, Nancy Université, Vandouevre-les-Nancy, France
| | | | | | | |
Collapse
|
19
|
Ghosh I, Stains CI, Ooi AT, Segal DJ. Direct detection of double-stranded DNA: Molecular methods and applications for DNA diagnostics. MOLECULAR BIOSYSTEMS 2006; 2:551-60. [PMID: 17216036 DOI: 10.1039/b611169f] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methodologies to detect DNA sequences with high sensitivity and specificity have tremendous potential as molecular diagnostic agents. Most current methods exploit the ability of single-stranded DNA (ssDNA) to base pair with high specificity to a complementary molecule. However, recent advances in robust techniques for recognition of DNA in the major and minor groove have made possible the direct detection of double-stranded DNA (dsDNA), without the need for denaturation, renaturation, or hybridization. This review will describe the progress in adapting polyamides, triplex DNA, and engineered zinc finger DNA-binding proteins as dsDNA diagnostic systems. In particular, the sequence-enabled reassembly (SEER) method, involving the use of custom zinc finger proteins, offers the potential for direct detection of dsDNA in cells, with implications for cell-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Indraneel Ghosh
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | |
Collapse
|
20
|
Schumacher A, Petronis A. Epigenetics of Complex Diseases: From General Theory to Laboratory Experiments. Curr Top Microbiol Immunol 2006; 310:81-115. [PMID: 16909908 DOI: 10.1007/3-540-31181-5_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of "genes plus environment" is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases.
Collapse
Affiliation(s)
- A Schumacher
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, ON, Toronto, Canada
| | | |
Collapse
|
21
|
Kress C, Thomassin H, Grange T. Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proc Natl Acad Sci U S A 2006; 103:11112-7. [PMID: 16840560 PMCID: PMC1544051 DOI: 10.1073/pnas.0601793103] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation at CpG dinucleotides contributes to the epigenetic maintenance of gene silencing. Dynamic reprogramming of DNA methylation patterns is believed to play a key role during development and differentiation in vertebrates. The mechanisms of DNA demethylation remain unclear and controversial. Here, we present a detailed characterization of the demethylation of an endogenous gene in cultured cells. This demethylation is triggered in a regulatory region by a transcriptional activator, the glucocorticoid receptor. We show that DNA demethylation is an active process, occurring independently of DNA replication, and in a distributive manner without concerted demethylation of cytosines on both strands. We demonstrate that the DNA backbone is cleaved 3' to the methyl cytidine during demethylation, and we suggest that a DNA repair pathway may therefore be involved in this demethylation.
Collapse
Affiliation(s)
- Clémence Kress
- Institut Jacques Monod du Centre National de la Recherche Scientifique, Universités Paris 6-7, Tour 43, 2, Place Jussieu, 75251 Paris Cedex 05, France
| | - Hélène Thomassin
- Institut Jacques Monod du Centre National de la Recherche Scientifique, Universités Paris 6-7, Tour 43, 2, Place Jussieu, 75251 Paris Cedex 05, France
| | - Thierry Grange
- Institut Jacques Monod du Centre National de la Recherche Scientifique, Universités Paris 6-7, Tour 43, 2, Place Jussieu, 75251 Paris Cedex 05, France
| |
Collapse
|
22
|
Pringle IA, Raman S, Sharp WW, Cheng SH, Hyde SC, Gill DR. Detection of plasmid DNA vectors following gene transfer to the murine airways. Gene Ther 2005; 12:1206-14. [PMID: 15800657 DOI: 10.1038/sj.gt.3302518] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Non-viral gene therapy is being considered as a treatment for cystic fibrosis. In clinical studies and in studies using the mouse airways as a model, current formulations result in only transient transgene expression. A number of reasons for this have been proposed including the loss of plasmid DNA from cells. The aim of these studies was to investigate why transgene expression from non-viral vectors is transient in the mouse lung. Plasmid DNA encoding the luciferase reporter gene was complexed with the cationic lipid GL67 and delivered to the mouse airways. The persistence of plasmid DNA in the mouse lungs was investigated using quantitative PCR and Southern hybridization. Results showed that intact plasmid DNA persisted in the mouse lung in the absence of any detectable luciferase activity. The de novo methylation of plasmid DNA in vivo was investigated as a potential cause of this transient gene expression but results suggested that plasmid DNA does not become de novo methylated in the mouse lung. Therefore processes other than the loss of plasmid DNA from the lung or the de novo methylation of plasmid DNA vectors must be responsible for the transient transgene expression.
Collapse
Affiliation(s)
- I A Pringle
- GeneMedicine Research Group, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
While different markers for cancer diagnosis have been known for at least a decade, the systematic search for biomarkers emerged only several years ago. In this article, I will concentrate on DNA methylation as a dynamic and robust platform for the development of cancer-specific biomarkers. Simultaneous analysis of a growing number of independent methylation events can create increasingly more precise and individualized diagnostics. The differential detection of methylated and unmethylated DNA can be accomplished through either chemical modification or digestion with methylation-sensitive restriction enzyme(s). The benefits and potential pitfalls of both these approaches for clinical sample analysis will be addressed.
Collapse
Affiliation(s)
- Victor V Levenson
- Northwestern University, 710 N. Fairbanks Ct, Olson 8-424, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Thomassin H, Kress C, Grange T. MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res 2004; 32:e168. [PMID: 15576675 PMCID: PMC535695 DOI: 10.1093/nar/gnh166] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Here we present MethylQuant, a novel method that allows accurate quantification of the methylation level of a specific cytosine within a complex genome. This method relies on the well-established treatment of genomic DNA with sodium bisulfite, which converts cytosine into uracil without modifying 5-methyl cytosine. The region of interest is then PCR-amplified and quantification of the methylation status of a specific cytosine is performed by methylation-specific real-time PCR with SYBR Green I using one of the primers whose 3' end discriminates between the methylation states of this cytosine. The presence of a locked nucleic acid at the 3' end of the discriminative primer provides the specificity necessary for accurate and sensitive quantification, even when one of the methylation states is present at a level as low as 1% of the overall population. We demonstrate that accurate quantification of the methylation status of specific cytosines can be achieved in biological samples. The method is high-throughput, cost-effective, relatively simple and does not require any specific equipment other than a real-time PCR instrument.
Collapse
Affiliation(s)
- Hélène Thomassin
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
25
|
Tagoh H, Melnik S, Lefevre P, Chong S, Riggs AD, Bonifer C. Dynamic reorganization of chromatin structure and selective DNA demethylation prior to stable enhancer complex formation during differentiation of primary hematopoietic cells in vitro. Blood 2003; 103:2950-5. [PMID: 15070670 DOI: 10.1182/blood-2003-09-3323] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to gain insights in the true molecular mechanisms involved in cell fate decisions, it is important to study the molecular details of gene activation where such decisions occur, which is at the level of the chromatin structure of individual genes. In the study presented here we addressed this issue and examined the dynamic development of an active chromatin structure at the chicken lysozyme locus during the differentiation of primary myeloid cells from transgenic mouse bone marrow. Using in vivo footprinting we found that stable enhancer complex assembly and high-level gene expression are late events in cell differentiation. However, even before the onset of gene expression and stable transcription factor binding, specific chromatin alterations are observed. This includes changes in DNA topology and the selective demethylation of CpG dinucleotides located in the cores of critical transcription factor binding sites, but not in flanking DNA. These results firmly support the idea that epigenetic programs guiding blood cell differentiation are engraved into the chromatin of lineage-specific genes and that such chromatin changes are implemented before cell lineage specification.
Collapse
Affiliation(s)
- Hiromi Tagoh
- Molecular Medicine Unit, University of Leeds, St James's University Hospital, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Lefevre P, Melnik S, Wilson N, Riggs AD, Bonifer C. Developmentally regulated recruitment of transcription factors and chromatin modification activities to chicken lysozyme cis-regulatory elements in vivo. Mol Cell Biol 2003; 23:4386-400. [PMID: 12773578 PMCID: PMC156125 DOI: 10.1128/mcb.23.12.4386-4400.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the chicken lysozyme gene is upregulated during macrophage differentiation and reaches its highest level in bacterial lipopolysaccharide (LPS)-stimulated macrophages. This is accompanied by complex alterations in chromatin structure. We have previously shown that chromatin fine-structure alterations precede the onset of gene expression in macrophage precursor cells and mark the lysozyme chromatin domain for expression later in development. To further examine this phenomenon and to investigate the basis for the differentiation-dependent alterations of lysozyme chromatin, we studied the recruitment of transcription factors to the lysozyme locus in vivo at different stages of myeloid differentiation. Factor recruitment occurred in several steps. First, early-acting transcription factors such as NF1 and Fli-1 bound to a subset of enhancer elements and recruited CREB-binding protein. LPS stimulation led to an additional recruitment of C/EBPbeta and a significant change in enhancer and promoter structure. Transcription factor recruitment was accompanied by specific changes in histone modification within the lysozyme chromatin domain. Interestingly, we present evidence for a transient interaction of transcription factors with lysozyme chromatin in lysozyme-nonexpressing macrophage precursors, which was accompanied by a partial demethylation of CpG sites. This indicates that a partially accessible chromatin structure of lineage-specific genes is a hallmark of hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Pascal Lefevre
- Molecular Medicine Unit, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Havlis J, Trbusek M. 5-Methylcytosine as a marker for the monitoring of DNA methylation. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:373-92. [PMID: 12450670 DOI: 10.1016/s1570-0232(02)00499-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The extent of the DNA methylation of genomic DNA as well as the methylation pattern of many gene-regulatory areas are important aspects with regard to the state of genetic information, especially their expression. There is growing evidence that aberrant methylation is associated with many serious pathological consequences. As genetic research advances, many different approaches have been employed to determine the overall level of DNA methylation in a genome or to reveal the methylation state of particular nucleotide residues, starting from semiquantitative methods up to new and powerful techniques. In this paper, the currently employed techniques are reviewed both from the point of view of their relevance in genomic research and of their analytical application. The methods discussed include approaches based on chromatographic separation (thin-layer chromatography, high-performance liquid chromatography, affinity chromatography), separation in an electric field (capillary electrophoresis, gel electrophoresis in combination with methylation-sensitive restriction enzymes and/or specific sequencing protocols), and some other methodological procedures (mass spectrometry, methyl accepting capacity assay and immunoassays).
Collapse
Affiliation(s)
- Jan Havlis
- Masaryk University, Faculty of Science, Department of Analytical Chemistry, Kotlárská 2, CZ-611 37 Brno, Czech Republic
| | | |
Collapse
|
28
|
Shiraishi M, Oates AJ, Sekiya T. An overview of the analysis of DNA methylation in mammalian genomes. Biol Chem 2002; 383:893-906. [PMID: 12222679 DOI: 10.1515/bc.2002.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
DNA methylation at position C5 of the pyrimidine ring of cytosine in mammalian genomes has received a great deal of research interest due to its importance in many biological phenomena. It is associated with events such as epigenetic gene silencing and the maintenance of genome integrity. Aberrant DNA methylation, particularly that of chromosomal regions called CpG islands, is an important step in carcinogenesis. In order to elucidate methylation profiling of complex genomes, various methods have been developed. Many of these methods are based on the differential reactivity of cytosine and 5-methylcytosine to various chemicals. The combined use of these chemical reactions and other preexisting methods has enabled the discrimination of cytosine and 5-methylcytosine in complex genomes. The use of proteins that preferentially bind to methylated DNA has also successfully been used to discriminate between methylated and unmethylated sites. The chemical and structural dissection of the in vivo processes of enzymatic methylation and the binding of methyl-CpG binding proteins provides evidence for the complex mechanisms that nature has acquired. In this review we summarize the methods available for the discrimination between cytosine and 5-methylcytosine in complex genomes.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Tompa R, McCallum CM, Delrow J, Henikoff JG, van Steensel B, Henikoff S. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Curr Biol 2002; 12:65-8. [PMID: 11790305 DOI: 10.1016/s0960-9822(01)00622-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA methylation has been implicated in a variety of epigenetic processes, and abnormal methylation patterns have been seen in tumors. Analysis of methylation patterns has traditionally been conducted either by using Southern analysis after cleavage with methyl-sensitive restriction endonucleases or by bisulfite sequencing. However, neither method is practical for analyzing more than a few genes. Here, we describe a simple technique for genome-wide mapping of DNA methylation patterns. Fragmentation by a methyl-sensitive restriction endonuclease is followed by size fractionation and hybridization to microarrays. We demonstrate the utility of this method by characterizing methylation patterns in Arabidopsis methylation mutants. This analysis reveals that CHROMOMETHYLASE3 (CMT3), which was previously shown to maintain CpXpG methylation, preferentially methylates transposons, even when they are present as single copies within the genome. Methylation profiling has potential applications in disease research and diagnostic screening.
Collapse
Affiliation(s)
- Rachel Tompa
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ro S, Rannala B. Methylation patterns and mathematical models reveal dynamics of stem cell turnover in the human colon. Proc Natl Acad Sci U S A 2001; 98:10519-21. [PMID: 11553798 PMCID: PMC58493 DOI: 10.1073/pnas.201405498] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- S Ro
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | |
Collapse
|
31
|
Thomassin H, Flavin M, Espinás ML, Grange T. Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 2001; 20:1974-83. [PMID: 11296230 PMCID: PMC125428 DOI: 10.1093/emboj/20.8.1974] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glucocorticoid hormones were found to regulate DNA demethylation within a key enhancer of the rat liver-specific tyrosine aminotransferase (Tat) gene. Genomic footprinting analysis shows that the glucocorticoid receptor uses local DNA demethylation as one of several steps to recruit transcription factors in hepatoma cells. Demethylation occurs within 2-3 days following rapid (< 1 h) chromatin remodeling and recruitment of a first transcription factor, HNF-3. Upon demethylation, two additional transcription factors are recruited when chromatin is remodeled. In contrast to chromatin remodeling, the demethylation is stable following hormone withdrawal. As a stronger subsequent glucocorticoid response is observed, demethylation appears to provide memory of the first stimulation. During development, this demethylation occurs before birth, at a stage where the Tat gene is not yet inducible, and it could thus prepare the enhancer for subsequent stimulation by hypoglycemia at birth. In vitro cultures of fetal hepatocytes recapitulate the regulation analyzed in hepatoma cells. There fore, demethylation appears to contribute to the fine-tuning of the enhancer and to the memorization of a regulatory event during development.
Collapse
Affiliation(s)
- Hélène Thomassin
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France Present address: Centre d’investigació i desenvolupament, Jordi Girona 18-26, Barcelona, Spain Corresponding author e-mail:
| | - Michèle Flavin
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France Present address: Centre d’investigació i desenvolupament, Jordi Girona 18-26, Barcelona, Spain Corresponding author e-mail:
| | - Maria-Luisa Espinás
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France Present address: Centre d’investigació i desenvolupament, Jordi Girona 18-26, Barcelona, Spain Corresponding author e-mail:
| | - Thierry Grange
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France Present address: Centre d’investigació i desenvolupament, Jordi Girona 18-26, Barcelona, Spain Corresponding author e-mail:
| |
Collapse
|