1
|
Franklin KP, Smith TD, DeLeon VB. "Ontogenetic Scaling of the Primate Middle Ear". Am J Primatol 2025; 87:e23710. [PMID: 39704092 DOI: 10.1002/ajp.23710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The study of primate auditory morphology is a significant area of interest for comparative anatomists, given the phylogenetic relationships that link primate hearing and the morphology of these auditory structures. Extensive literature addresses the form-to-function relationship of the auditory system (outer, middle, and inner ear) in primates and, by extension, provides insight into the auditory system of extinct primates and even modern humans. We add to this literature by describing the ontogenetic trajectory of the middle ear cavity and ossicular chain (malleus, incus, and stapes) due to their critical role in relaying auditory stimuli for interpretation. We examined middle ear morphology in neonatal primates and adult primates using a taxonomically broad sample. We focused primarily on nocturnal primate taxa (Daubentonia, Loris, Galago, Aotus, and Tarsier), which are underrepresented in the literature. However, we also included three diurnal taxa (Macaca, Lemur, and Saguinus). Using 3D Slicer, we visualized middle ear structures in three dimensions using conventional micro CT data informed by diffusible iodine-based contrast-enhanced CT (diceCT) data. We illustrated how spatial relationships between otic elements, such as the various epitympanic sinuses of the middle ear and the auditory ossicles, vary throughout ontogeny. Our major findings include that the central tympanic cavity scaled with negative allometry in all taxa and that the accessory cavities scaled with isometry or positive allometry in most taxa. Despite these changes in chamber size, the size of the ear ossicles remained relatively consistent through ontogeny in most taxa. We confirmed our expectation that anthropoids exhibit an increase in the complexity of accessory cavities throughout ontogeny, mirroring the exponential pneumatization of the face in anthropoids. These findings provide an ontogenetic perspective and reveal further functional complexities of the middle ear as a conduit for sound proliferation and as a pressure regulator.
Collapse
Affiliation(s)
| | - Timothy D Smith
- Department of Health and Rehabilitation Sciences, Slippery Rock University, School of Physical Therapy, Slippery Rock, Pennsylvania, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerie B DeLeon
- Anthropology Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Chen M, Yang C, Zhai X, Wang C, Liu M, Zhang B, Guo X, Wang Y, Li H, Liu Y, Han J, Wang X, Li J, Jia L, Li L. Comprehensive Identification and Characterization of HML-9 Group in Chimpanzee Genome. Viruses 2024; 16:892. [PMID: 38932184 PMCID: PMC11209481 DOI: 10.3390/v16060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Endogenous retroviruses (ERVs) are related to long terminal repeat (LTR) retrotransposons, comprising gene sequences of exogenous retroviruses integrated into the host genome and inherited according to Mendelian law. They are considered to have contributed greatly to the evolution of host genome structure and function. We previously characterized HERV-K HML-9 in the human genome. However, the biological function of this type of element in the genome of the chimpanzee, which is the closest living relative of humans, largely remains elusive. Therefore, the current study aims to characterize HML-9 in the chimpanzee genome and to compare the results with those in the human genome. Firstly, we report the distribution and genetic structural characterization of the 26 proviral elements and 38 solo LTR elements of HML-9 in the chimpanzee genome. The results showed that the distribution of these elements displayed a non-random integration pattern, and only six elements maintained a relatively complete structure. Then, we analyze their phylogeny and reveal that the identified elements all cluster together with HML-9 references and with those identified in the human genome. The HML-9 integration time was estimated based on the 2-LTR approach, and the results showed that HML-9 elements were integrated into the chimpanzee genome between 14 and 36 million years ago and into the human genome between 18 and 49 mya. In addition, conserved motifs, cis-regulatory regions, and enriched PBS sequence features in the chimpanzee genome were predicted based on bioinformatics. The results show that pathways significantly enriched for ERV LTR-regulated genes found in the chimpanzee genome are closely associated with disease development, including neurological and neurodevelopmental psychiatric disorders. In summary, the identification, characterization, and genomics of HML-9 presented here not only contribute to our understanding of the role of ERVs in primate evolution but also to our understanding of their biofunctional significance.
Collapse
Affiliation(s)
- Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Caiqin Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chunlei Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Mengying Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bohan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xing Guo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yanglan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| |
Collapse
|
3
|
Bretas R, Freitas-Ferreira E, Souto Maior R, Tomaz C, Gonçalves-Mendes MT, Aversi-Ferreira TA. Comparative anatomy of the Sapajus sp. (bearded capuchin) hand with comments on tool use in a parallel evolution with the hominid pathway. Front Physiol 2024; 15:1292035. [PMID: 38405122 PMCID: PMC10884321 DOI: 10.3389/fphys.2024.1292035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction: Bearded capuchins display a wide variety of manipulatory skills and make routine use of tools in both captivity and the wild. The efficient handling of objects in this genus has led several investigators to assume near-human thumb movements, despite a lack of anatomical studies. Methods: Here, we performed an anatomical analysis of muscles and bones in the capuchin hand. Sapajus morphological traits were quantitatively compared with those of humans, chimpanzees, gorillas, and baboons. Results: The comparative analysis indicated that the Sapajus hand is more similar to that of baboons and least similar to that of humans according to the muscles, bones, and three-dimensional data. Furthermore, these findings suggest that bearded capuchins lack true thumb opponency. Regarding manipulatory skills, they display rather primitive hand traits, with limited resources for precision grasping using the opponens pollicis. Discussion: These findings suggest that bearded capuchins' complex use of tools depends more heavily on their high cognitive abilities than on a versatile hand apparatus. These findings offer crucial insights into the evolution of primate cognition.
Collapse
Affiliation(s)
| | | | - Rafael Souto Maior
- Laboratory of Physiological Sciences, Department of Structural Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Carlos Tomaz
- Postgraduate Program in Environment, University CEUMA, São Luís, Brazil
| | | | | |
Collapse
|
4
|
Liang X, Heath LS. Towards understanding paleoclimate impacts on primate de novo genes. G3 (BETHESDA, MD.) 2023; 13:jkad135. [PMID: 37313728 PMCID: PMC10468307 DOI: 10.1093/g3journal/jkad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
De novo genes are genes that emerge as new genes in some species, such as primate de novo genes that emerge in certain primate species. Over the past decade, a great deal of research has been conducted regarding their emergence, origins, functions, and various attributes in different species, some of which have involved estimating the ages of de novo genes. However, limited by the number of species available for whole-genome sequencing, relatively few studies have focused specifically on the emergence time of primate de novo genes. Among those, even fewer investigate the association between primate gene emergence with environmental factors, such as paleoclimate (ancient climate) conditions. This study investigates the relationship between paleoclimate and human gene emergence at primate species divergence. Based on 32 available primate genome sequences, this study has revealed possible associations between temperature changes and the emergence of de novo primate genes. Overall, findings in this study are that de novo genes tended to emerge in the recent 13 MY when the temperature continues cooling, which is consistent with past findings. Furthermore, in the context of an overall trend of cooling temperature, new primate genes were more likely to emerge during local warming periods, where the warm temperature more closely resembled the environmental condition that preceded the cooling trend. Results also indicate that both primate de novo genes and human cancer-associated genes have later origins in comparison to random human genes. Future studies can be in-depth on understanding human de novo gene emergence from an environmental perspective as well as understanding species divergence from a gene emergence perspective.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Goldstein DM, Sylvester AD. Carpal allometry of African apes among mammals. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:10-28. [PMID: 36808858 DOI: 10.1002/ajpa.24716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
OBJECTIVES Morphological variation in African ape carpals has been used to support the idea that Pan and Gorilla evolved knuckle-walking independently. Little work, however, has focused on the effect of body mass on carpal morphology. Here, we compare carpal allometry in Pan and Gorilla to that of other quadrupedal mammals with similar body mass differences. If allometric trends in Pan and Gorilla carpals mirror those of other mammals with similar body mass variation, then body mass differences may provide a more parsimonious explanation for African ape carpal variation than the independent evolution of knuckle-walking. MATERIALS AND METHODS Three linear measurements were collected on the capitate, hamate, lunate, and scaphoid (or scapholunate) of 39 quadrupedal species from six mammalian families/subfamilies. Relationships between linear measurements and estimated body mass were analyzed using reduced major axis regression. Slopes were compared to 0.33 for isometry. RESULTS Within Hominidae, higher body mass taxa (Gorilla) have relatively anteroposteriorly wider, mediolaterally wider, and/or proximodistally shorter capitates, hamates, and scaphoids than low body mass taxa (Pan). These allometric relationships are mirrored in most, but not all, mammalian families/subfamilies included in the analysis. CONCLUSIONS Within most mammalian families/subfamilies, carpals of high body mass taxa are proximodistally shorter, anteroposteriorly wider, and mediolaterally wider than those of low body mass taxa. These distinctions may be caused by the need to accommodate relatively higher forelimb loading associated with greater body mass. Because these trends occur within multiple mammalian families/subfamilies, some carpal variation in Pan and Gorilla is consistent with body mass differences.
Collapse
Affiliation(s)
- Deanna M Goldstein
- Department of Anatomical Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Urciuoli A, Alba DM. Systematics of Miocene apes: State of the art of a neverending controversy. J Hum Evol 2023; 175:103309. [PMID: 36716680 DOI: 10.1016/j.jhevol.2022.103309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/29/2023]
Abstract
Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene onward, the geographic range of hominoids progressively shrank, except for hominins, which dispersed out of Africa during the Pleistocene. Although the overall picture of hominoid evolution is clear based on available fossil evidence, many uncertainties persist regarding the phylogeny and paleobiogeography of Miocene apes (nonhominin hominoids), owing to their sparse record, pervasive homoplasy, and the decimated current diversity of this group. We review Miocene ape systematics and evolution by focusing on the most parsimonious cladograms published during the last decade. First, we provide a historical account of the progress made in Miocene ape phylogeny and paleobiogeography, report an updated classification of Miocene apes, and provide a list of Miocene ape species-locality occurrences together with an analysis of their paleobiodiversity dynamics. Second, we discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly divergent results obtained from cladistic analyses of craniodental and postcranial characters separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are potentially biased by a long-branch attraction problem caused by the numerous postcranial similarities shared between hylobatids and hominids-despite the increasingly held view that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and Pierolapithecus-and further aggravated by abundant missing data owing to incomplete preservation. Finally, we argue that-besides the recovery of additional fossils, the retrieval of paleoproteomic data, and a better integration between cladistics and geometric morphometrics-Miocene ape phylogenetics should take advantage of total-evidence (tip-dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence was more basal than currently supported.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
8
|
Rangel SC, da Silva MD, da Silva AL, dos Santos JDMB, Neves LM, Pedrosa A, Rodrigues FM, Trettel CDS, Furtado GE, de Barros MP, Bachi ALL, Romano CM, Nali LHDS. Human endogenous retroviruses and the inflammatory response: A vicious circle associated with health and illness. Front Immunol 2022; 13:1057791. [PMID: 36518758 PMCID: PMC9744114 DOI: 10.3389/fimmu.2022.1057791] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are derived from ancient exogenous retroviral infections that have infected our ancestors' germline cells, underwent endogenization process, and were passed throughout the generations by retrotransposition and hereditary transmission. HERVs comprise 8% of the human genome and are critical for several physiological activities. Yet, HERVs reactivation is involved in pathological process as cancer and autoimmune diseases. In this review, we summarize the multiple aspects of HERVs' role within the human genome, as well as virological and molecular aspects, and their fusogenic property. We also discuss possibilities of how the HERVs are possibly transactivated and participate in modulating the inflammatory response in health conditions. An update on their role in several autoimmune, inflammatory, and aging-related diseases is also presented.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Amanda Lopes da Silva
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucas Melo Neves
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Ana Pedrosa
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, (3004-504), Coimbra, Portugal
| | | | - Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços – S. Martinho do Bispo, Coimbra, Portugal
| | - Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clínicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
Congdon JV, Hosseini M, Gading EF, Masousi M, Franke M, MacDonald SE. The Future of Artificial Intelligence in Monitoring Animal Identification, Health, and Behaviour. Animals (Basel) 2022; 12:ani12131711. [PMID: 35804610 PMCID: PMC9265132 DOI: 10.3390/ani12131711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Due to climate change and human interference, many species are now without habitats and on the brink of extinction. Zoos and other conservation spaces allow for non-human animal preservation and public education about endangered species and ecosystems. Monitoring the health and well-being of animals in care, while providing species-specific environments, is critical for zoo and conservation staff. In order to best provide such care, keepers and researchers need to gather as much information as possible about individual animals and species as a whole. This paper focuses on existing technology to monitor animals, providing a review on the history of technology, including recent technological advancements and current limitations. Subsequently, we provide a brief introduction to our proposed novel computer software: an artificial intelligence software capable of unobtrusively and non-invasively tracking individuals’ location, estimating position, and analyzing behaviour. This innovative technology is currently being trained with orangutans at the Toronto Zoo and will allow for mass data collection, permitting keepers and researchers to closely monitor individual animal welfare, learn about the variables impacting behaviour and provide additional enrichment or interventions accordingly. Abstract With many advancements, technologies are now capable of recording non-human animals’ location, heart rate, and movement, often using a device that is physically attached to the monitored animals. However, to our knowledge, there is currently no technology that is able to do this unobtrusively and non-invasively. Here, we review the history of technology for use with animals, recent technological advancements, current limitations, and a brief introduction to our proposed novel software. Canadian tech mogul EAIGLE Inc. has developed an artificial intelligence (AI) software solution capable of determining where people and assets are within public places or attractions for operational intelligence, security, and health and safety applications. The solution also monitors individual temperatures to reduce the potential spread of COVID-19. This technology has been adapted for use at the Toronto Zoo, initiated with a focus on Sumatran orangutans (Pongo abelii) given the close physical similarity between orangutans and humans as great ape species. This technology will be capable of mass data collection, individual identification, pose estimation, behaviour monitoring and tracking orangutans’ locations, in real time on a 24/7 basis, benefitting both zookeepers and researchers looking to review this information.
Collapse
Affiliation(s)
- Jenna V. Congdon
- Department of Psychology, Faculty of Health, York University, Toronto, ON M3J 1P3, Canada; (M.H.); (E.F.G.); (S.E.M.)
- Toronto Zoo Wildlife Conservancy, Toronto Zoo, Toronto, ON M1B 5K7, Canada
- Correspondence: ; Tel.: +1-587-873-9605
| | - Mina Hosseini
- Department of Psychology, Faculty of Health, York University, Toronto, ON M3J 1P3, Canada; (M.H.); (E.F.G.); (S.E.M.)
- EAIGLE, Markham, ON L3R 9Z7, Canada;
| | - Ezekiel F. Gading
- Department of Psychology, Faculty of Health, York University, Toronto, ON M3J 1P3, Canada; (M.H.); (E.F.G.); (S.E.M.)
| | | | | | - Suzanne E. MacDonald
- Department of Psychology, Faculty of Health, York University, Toronto, ON M3J 1P3, Canada; (M.H.); (E.F.G.); (S.E.M.)
| |
Collapse
|
10
|
Phylogenetics and an updated taxonomic status of the Tamarins (Callitrichinae, Cebidae). Mol Phylogenet Evol 2022; 173:107504. [DOI: 10.1016/j.ympev.2022.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
|
11
|
Iwasaki SI, Yoshimura K, Asami T, Erdoğan S. Comparative morphology and physiology of the vocal production apparatus and the brain in the extant primates. Ann Anat 2022; 240:151887. [PMID: 35032565 DOI: 10.1016/j.aanat.2022.151887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/04/2023]
Abstract
Objective data mainly from the comparative anatomy of various organs related to human speech and language is considered to unearth clues about the mechanisms behind language development. The two organs of the larynx and hyoid bone are considered to have evolved towards suitable positions and forms in preparation for the occurrence of the large repertoire of vocalization necessary for human speech. However, some researchers have asserted that there is no significant difference of these organs between humans and non-human primates. Speech production is dependent on the voluntary control of the respiratory, laryngeal, and vocal tract musculature. Such control is fully present in humans but only partially so in non-human primates, which appear to be able to voluntarily control only supralaryngeal articulators. Both humans and non-human primates have direct cortical innervation of motor neurons controlling the supralaryngeal vocal tract but only human appear to have direct cortical innervation of motor neurons controlling the larynx. In this review, we investigate the comparative morphology and function of the wide range of components involved in vocal production, including the larynx, the hyoid bone, the tongue, and the vocal brain. We would like to emphasize the importance of the tongue in the primary development of human speech and language. It is now time to reconsider the possibility of the tongue playing a definitive role in the emergence of human speech.
Collapse
Affiliation(s)
- Shin-Ichi Iwasaki
- Faculty of Health Science, Gunma PAZ University, Takasaki, Japan; The Nippon Dental University, Tokyo and Niigata, Japan
| | - Ken Yoshimura
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Tomoichiro Asami
- Faculty of Rehabilitation, Gunma Paz University, Takasaki, Japan
| | - Serkan Erdoğan
- Department of Anatomy, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| |
Collapse
|
12
|
F. Soliman N, M. Abd Alhalem S, El-Shafai W, Eldin S. E. Abdulrahman S, Ismaiel N, M. El-Rabaie ES, D. Algarni A, Algarni F, E. Abd El-Samie F. Bidirectional Long Short-Term Memory Network for Taxonomic Classification. INTELLIGENT AUTOMATION & SOFT COMPUTING 2022; 33:103-116. [DOI: 10.32604/iasc.2022.017691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/23/2021] [Indexed: 09/01/2023]
|
13
|
Abstract
We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.
Collapse
Affiliation(s)
- Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA; .,Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ivan A Alexandrov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; .,Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199004, Russia.,Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
14
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
15
|
Roca-Rada X, Politis G, Messineo PG, Scheifler N, Scabuzzo C, González M, Harkins KM, Reich D, Souilmi Y, Teixeira JC, Llamas B, Fehren-Schmitz L. Ancient mitochondrial genomes from the Argentinian Pampas inform the early peopling of the Southern Cone of South America. iScience 2021; 24:102553. [PMID: 34142055 PMCID: PMC8188552 DOI: 10.1016/j.isci.2021.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
The Southern Cone of South America (SCSA) is a key region for investigations about the peopling of the Americas. However, little is known about the eastern sector, the Argentinian Pampas. We analyzed 18 mitochondrial genomes-7 of which are novel-from human skeletal remains from 3 Early to Late Holocene archaeological sites. The Pampas present a distinctive genetic makeup compared to other Middle to Late Holocene pre-Columbian SCSA populations. We also report the earliest individuals carrying SCSA-specific mitochondrial haplogroups D1j and D1g from Early and Middle Holocene, respectively. Using these deep calibration time points in Bayesian phylogenetic reconstructions, we suggest that the first settlers of the Pampas were part of a single and rapid dispersal ∼15,600 years ago. Finally, we propose that present-day genetic differences between the Pampas and the rest of the SCSA are due to founder effects, genetic drift, and a partial population replacement ∼9,000 years ago.
Collapse
Affiliation(s)
- Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gustavo Politis
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Pablo G. Messineo
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Nahuel Scheifler
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Clara Scabuzzo
- CICYTTP-CONICET, Provincia de Entre Ríos-UADER-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Dr. Materi y España (3105), Diamante, Entre Ríos Argentina
| | - Mariela González
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Kelly M. Harkins
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Bergeron LA, Besenbacher S, Bakker J, Zheng J, Li P, Pacheco G, Sinding MHS, Kamilari M, Gilbert MTP, Schierup MH, Zhang G. The germline mutational process in rhesus macaque and its implications for phylogenetic dating. Gigascience 2021; 10:giab029. [PMID: 33954793 PMCID: PMC8099771 DOI: 10.1093/gigascience/giab029] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Understanding the rate and pattern of germline mutations is of fundamental importance for understanding evolutionary processes. RESULTS Here we analyzed 19 parent-offspring trios of rhesus macaques (Macaca mulatta) at high sequencing coverage of ∼76× per individual and estimated a mean rate of 0.77 × 10-8de novo mutations per site per generation (95% CI: 0.69 × 10-8 to 0.85 × 10-8). By phasing 50% of the mutations to parental origins, we found that the mutation rate is positively correlated with the paternal age. The paternal lineage contributed a mean of 81% of the de novo mutations, with a trend of an increasing male contribution for older fathers. Approximately 3.5% of de novo mutations were shared between siblings, with no parental bias, suggesting that they arose from early development (postzygotic) stages. Finally, the divergence times between closely related primates calculated on the basis of the yearly mutation rate of rhesus macaque generally reconcile with divergence estimated with molecular clock methods, except for the Cercopithecoidea/Hominoidea molecular divergence dated at 58 Mya using our new estimate of the yearly mutation rate. CONCLUSIONS When compared to the traditional molecular clock methods, new estimated rates from pedigree samples can provide insights into the evolution of well-studied groups such as primates.
Collapse
Affiliation(s)
- Lucie A Bergeron
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Søren Besenbacher
- Department of Molecular Medicine, Aarhus University, Brendstrupgårdsvej 21A, 8200 Aarhus N, Denmark
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, Netherlands
| | - Jiao Zheng
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China
| | - Panyi Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - George Pacheco
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Mikkel-Holger S Sinding
- Department of genetics, Trinity College Dublin, 2 college green, D02 VF25, Dublin, Ireland
- Greenland Institute of Natural Resources, Kivioq 2, 3900 Nuuk, Greenland
| | - Maria Kamilari
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, C.F.Møllers Allé 8, 8000, Aarhus C, Denmark
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
17
|
Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. PLoS Biol 2020; 18:e3000954. [PMID: 33270638 PMCID: PMC7738166 DOI: 10.1371/journal.pbio.3000954] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/15/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the evolutionary history of primates is undergoing continual revision due to ongoing genome sequencing efforts. Bolstered by growing fossil evidence, these data have led to increased acceptance of once controversial hypotheses regarding phylogenetic relationships, hybridization and introgression, and the biogeographical history of primate groups. Among these findings is a pattern of recent introgression between species within all major primate groups examined to date, though little is known about introgression deeper in time. To address this and other phylogenetic questions, here, we present new reference genome assemblies for 3 Old World monkey (OWM) species: Colobus angolensis ssp. palliatus (the black and white colobus), Macaca nemestrina (southern pig-tailed macaque), and Mandrillus leucophaeus (the drill). We combine these data with 23 additional primate genomes to estimate both the species tree and individual gene trees using thousands of loci. While our species tree is largely consistent with previous phylogenetic hypotheses, the gene trees reveal high levels of genealogical discordance associated with multiple primate radiations. We use strongly asymmetric patterns of gene tree discordance around specific branches to identify multiple instances of introgression between ancestral primate lineages. In addition, we exploit recent fossil evidence to perform fossil-calibrated molecular dating analyses across the tree. Taken together, our genome-wide data help to resolve multiple contentious sets of relationships among primates, while also providing insight into the biological processes and technical artifacts that led to the disagreements in the first place. Combining three newly sequenced primate genomes with other published genomes, this study adapts a little-known method for detecting ancient introgression to genome-scale data, revealing multiple previously unknown examples of hybridization between primate species.
Collapse
|
18
|
Mantovani V, Hauzman E, Corredor VH, Goulart PRK, Galvão O, Talebi M, Pessoa DMA, Soares JGM, Fiorani M, Gattass R, Fix Ventura D, Bonci DMO. Genetic variability of the sws1 cone opsin gene among New World monkeys. Am J Primatol 2020; 82:e23199. [PMID: 32990997 DOI: 10.1002/ajp.23199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.
Collapse
Affiliation(s)
- Viviani Mantovani
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Vitor H Corredor
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Paulo R K Goulart
- Núcleo de Teoria de Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Olavo Galvão
- Núcleo de Teoria de Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Mauricio Talebi
- Departamento de Ciências Ambientais, Universidade Federal de São Paulo, Campus Diadema, São Paulo, São Paulo, Brazil
| | - Daniel M A Pessoa
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Juliana G M Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Fiorani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Gattass
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Daniela M O Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Spontaneous color preferences in rhesus monkeys: What is the advantage of primate trichromacy? Behav Processes 2020; 174:104084. [PMID: 32061913 DOI: 10.1016/j.beproc.2020.104084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/02/2023]
Abstract
Color perception and color signaling play an important role in various aspects of animal behavior. However, in mammals, trichromatic vision characterized by three retinal photopigments tuned to peak short, middle and long wavelengths is limited only to some primate species. In Old and New World primates a second photopigment has appeared repeatedly during phylogeny, allowing red colors to be distinguished from yellows and greens. Several hypotheses aspire to explain the adaptive benefits of trichromatic vision for primates. The predominant one is foraging adaptation for facilitation visual detection of fruits or young leaves. Alternative explanations are based on the function of red color in aposematic signaling or its role in socio-sexual communication. We tested spontaneous color preference in macaque monkeys (Macaca mulatta) for both food and non-food objects in a laboratory environment. We hypothesized that preference for or avoidance of red color together with the context of such behavior may help us to understand what the adaptive advantage leading to a rapid expansion of a gene for a second pigment in the long-wavelength region was. We found neither preference nor avoidance toward red color in non-food objects, but we found a significant preference for red color in food; therefore, we suggest that the results support the foraging hypothesis in macaque monkeys.
Collapse
|
20
|
Simian Foamy Viruses in Central and South America: A New World of Discovery. Viruses 2019; 11:v11100967. [PMID: 31635161 PMCID: PMC6832937 DOI: 10.3390/v11100967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Foamy viruses (FVs) are the only exogenous retrovirus to date known to infect neotropical primates (NPs). In the last decade, an increasing number of strains have been completely or partially sequenced, and molecular evolution analyses have identified an ancient co-speciation with their hosts. In this review, the improvement of diagnostic techniques that allowed the determination of a more accurate prevalence of simian FVs (SFVs) in captive and free-living NPs is discussed. Determination of DNA viral load in American primates indicates that oral tissues are the viral replicative site and that buccal swab collection can be an alternative to diagnose SFV infection in NPs. Finally, the transmission potential of NP SFVs to primate workers in zoos and primate centers of the Americas is examined.
Collapse
|
21
|
Comparative morphology of the primate tongue. Ann Anat 2019; 223:19-31. [DOI: 10.1016/j.aanat.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
22
|
Reis MD, Gunnell GF, Barba-Montoya J, Wilkins A, Yang Z, Yoder AD. Using Phylogenomic Data to Explore the Effects of Relaxed Clocks and Calibration Strategies on Divergence Time Estimation: Primates as a Test Case. Syst Biol 2018; 67:594-615. [PMID: 29342307 PMCID: PMC6005039 DOI: 10.1093/sysbio/syy001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
Primates have long been a test case for the development of phylogenetic methods for divergence time estimation. Despite a large number of studies, however, the timing of origination of crown Primates relative to the Cretaceous-Paleogene (K-Pg) boundary and the timing of diversification of the main crown groups remain controversial. Here, we analysed a data set of 372 taxa (367 Primates and 5 outgroups, 3.4 million aligned base pairs) that includes nine primate genomes. We systematically explore the effect of different interpretations of fossil calibrations and molecular clock models on primate divergence time estimates. We find that even small differences in the construction of fossil calibrations can have a noticeable impact on estimated divergence times, especially for the oldest nodes in the tree. Notably, choice of molecular rate model (autocorrelated or independently distributed rates) has an especially strong effect on estimated times, with the independent rates model producing considerably more ancient age estimates for the deeper nodes in the phylogeny. We implement thermodynamic integration, combined with Gaussian quadrature, in the program MCMCTree, and use it to calculate Bayes factors for clock models. Bayesian model selection indicates that the autocorrelated rates model fits the primate data substantially better, and we conclude that time estimates under this model should be preferred. We show that for eight core nodes in the phylogeny, uncertainty in time estimates is close to the theoretical limit imposed by fossil uncertainties. Thus, these estimates are unlikely to be improved by collecting additional molecular sequence data. All analyses place the origin of Primates close to the K-Pg boundary, either in the Cretaceous or straddling the boundary into the Palaeogene.
Collapse
Affiliation(s)
- Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Gregg F Gunnell
- Division of Fossil Primates, Duke University Lemur Center, Durham, 1013 Broad Street, NC 27705, USA
| | - Jose Barba-Montoya
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Alex Wilkins
- Division of Fossil Primates, Duke University Lemur Center, Durham, 1013 Broad Street, NC 27705, USA
- Department of Anthropology, The Ohio State University, Columbus, OH 43210, USA
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
23
|
Groves C. An Overview of the Primates. Primates 2018. [DOI: 10.5772/intechopen.70264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
24
|
Munds RA, Titus CL, Eggert LS, Blomquist GE. Using a multi-gene approach to infer the complicated phylogeny and evolutionary history of lorises (Order Primates: Family Lorisidae). Mol Phylogenet Evol 2018; 127:556-567. [PMID: 29807155 DOI: 10.1016/j.ympev.2018.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/19/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022]
Abstract
Extensive phylogenetic studies have found robust phylogenies are modeled by using a multi-gene approach and sampling from the majority of the taxa of interest. Yet, molecular studies focused on the lorises, a cryptic primate family, have often relied on one gene, or just mitochondrial DNA, and many were unable to include all four genera in the analyses, resulting in inconclusive phylogenies. Past phylogenetic loris studies resulted in lorises being monophyletic, paraphyletic, or an unresolvable trichotomy with the closely related galagos. The purpose of our study is to improve our understanding of loris phylogeny and evolutionary history by using a multi-gene approach. We used the mitochondrial genes cytochrome b, and cytochrome c oxidase subunit 1, along with a nuclear intron (recombination activating gene 2) and nuclear exon (the melanocortin 1 receptor). Maximum Likelihood and Bayesian phylogenetic analyses were conducted based on data from each locus, as well as on the concatenated sequences. The robust, concatenated results found lorises to be a monophyletic family (Lorisidae) (PP ≥ 0.99) with two distinct subfamilies: the African Perodictinae (PP ≥ 0.99) and the Asian Lorisinae (PP ≥ 0.99). Additionally, from these analyses all four genera were all recovered as monophyletic (PP ≥ 0.99). Some of our single-gene analyses recovered monophyly, but many had discordances, with some showing paraphyly or a deep-trichotomy. Bayesian partitioned analyses inferred the most recent common ancestors of lorises emerged ∼42 ± 6 million years ago (mya), the Asian Lorisinae separated ∼30 ± 9 mya, and Perodictinae arose ∼26 ± 10 mya. These times fit well with known historical tectonic shifts of the area, as well as with the sparse loris fossil record. Additionally, our results agree with previous multi-gene studies on Lorisidae which found lorises to be monophyletic and arising ∼40 mya (Perelman et al., 2011; Pozzi et al., 2014). By taking a multi-gene approach, we were able to recover a well-supported, monophyletic loris phylogeny and inferred the evolutionary history of this cryptic family.
Collapse
Affiliation(s)
- Rachel A Munds
- Department of Anthropology, University of Missouri, Columbia, MO 65211, United States; Nocturnal Primate Research Group, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - Chelsea L Titus
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Lori S Eggert
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Gregory E Blomquist
- Department of Anthropology, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
25
|
Forbanka DN. Microhabitat utilization by fork-marked dwarf lemurs (Phaner spp.) and needle-clawed galagos (Euoticus spp.) in primary and secondary forests. Am J Primatol 2018; 80:e22864. [PMID: 29717507 DOI: 10.1002/ajp.22864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/06/2018] [Accepted: 03/30/2018] [Indexed: 11/10/2022]
Abstract
Needle-clawed galagos (Euoticus spp.) and fork-marked dwarf lemurs (Phaner spp.) are specialist gummivores inhabiting the forests of Cameroon and Madagascar, respectively. They share a suite of adaptations related to their foraging behavior, but are distantly related. I compared structural characteristics of the natural vegetation in which these strepsirrhines occurred using 10 m × 10 m (100 m2 ) quadrats established in forest areas selected on the grounds of observations of animals during nocturnal surveys. I established a total of 27 quadrats (13 in Madagascar and 14 in Cameroon). In each quadrat, trees potentially used by the animals (i.e., with a circumference at breast height ≥10 cm) were assessed for diameter at breast height (DBH), total height, and maximum crown diameter (MCD) as well as tree density. The nature of the bark, and presence of exudates and flowers were also assessed, together with habitat characteristics such as percentage canopy cover and herbaceous cover. Primary and secondary forest types studied in Madagascar showed significant differences in DBH, MCD, and tree density, whereas only tree density was significantly different for the two forest types in Cameroon. Most of the trees in the quadrats had rough bark, but few had either exudates or flowers. Both Phaner and Euoticus show some degree of plasticity in their use of both primary and secondary forests, although they specialize in habitats with tall, large diameter trees. They can adjust to using trees in human modified habitats. Both taxa can survive in areas where a reasonably continuous canopy is not lacking.
Collapse
Affiliation(s)
- Derick N Forbanka
- Department of Zoology and Entomology, African Primate Initiative for Ecology and Speciation, University of Fort Hare, Alice, South Africa
| |
Collapse
|
26
|
Silva FE, Costa‐Araújo R, Boubli JP, Santana MI, Franco CLB, Bertuol F, Nunes H, Silva‐Júnior J, Farias I, Hrbek T. In search of a meaningful classification for Amazonian marmosets: Should dwarf marmosets be considered
Mico
congenerics? ZOOL SCR 2018. [DOI: 10.1111/zsc.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Felipe E. Silva
- School of Environment and Life Sciences University of Salford Salford UK
- Instituto de Desenvolvimento Sustentável Mamirauá Tefé Brazil
| | - Rodrigo Costa‐Araújo
- Programa de pós‐graduação em Ecologia Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
- Laboratório de Evolução e Genética Animal (LEGAL) Universidade Federal do Amazonas Manaus Brazil
| | - Jean P. Boubli
- School of Environment and Life Sciences University of Salford Salford UK
| | - Marcelo I. Santana
- Faculdade de Agronomia e Medicina Veterinária Universidade de Brasília, Campus Universitário Darcy Ribeiro Brasília Brazil
| | | | - Fabrício Bertuol
- Laboratório de Evolução e Genética Animal (LEGAL) Universidade Federal do Amazonas Manaus Brazil
| | - Hermano Nunes
- Escola Estadual de Ensino Medio Prof. Olivina Olivia Carneiro da Cunha Joao Pessoa Brazil
| | | | - Izeni Farias
- Laboratório de Evolução e Genética Animal (LEGAL) Universidade Federal do Amazonas Manaus Brazil
| | - Tomas Hrbek
- Laboratório de Evolução e Genética Animal (LEGAL) Universidade Federal do Amazonas Manaus Brazil
| |
Collapse
|
27
|
Phylogeny mandalas for illustrating the Tree of Life. Mol Phylogenet Evol 2017; 117:168-178. [DOI: 10.1016/j.ympev.2016.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
|
28
|
Khawaldeh S, Pervaiz U, Elsharnoby M, Alchalabi AE, Al-Zubi N. Taxonomic Classification for Living Organisms Using Convolutional Neural Networks. Genes (Basel) 2017; 8:genes8110326. [PMID: 29149087 PMCID: PMC5704239 DOI: 10.3390/genes8110326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential for using it in many other applications in genome analysis.
Collapse
Affiliation(s)
- Saed Khawaldeh
- Erasmus+ Joint Master Program in Medical Imaging and Applications, University of Burgundy, 21000 Dijon, France.
- Erasmus+ Joint Master Program in Medical Imaging and Applications, UNICLAM, 03043 Cassino FR, Italy.
- Erasmus+ Joint Master Program in Medical Imaging and Applications, University of Girona, 17004 Girona, Spain.
- Graduate School of Natural and Applied Sciences, Istanbul Sehir University, 34865 Kartal/İstanbul, Turkey.
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland.
| | - Usama Pervaiz
- Erasmus+ Joint Master Program in Medical Imaging and Applications, University of Burgundy, 21000 Dijon, France.
- Erasmus+ Joint Master Program in Medical Imaging and Applications, UNICLAM, 03043 Cassino FR, Italy.
- Erasmus+ Joint Master Program in Medical Imaging and Applications, University of Girona, 17004 Girona, Spain.
| | - Mohammed Elsharnoby
- Graduate School of Natural and Applied Sciences, Istanbul Sehir University, 34865 Kartal/İstanbul, Turkey.
| | - Alaa Eddin Alchalabi
- Graduate School of Natural and Applied Sciences, Istanbul Sehir University, 34865 Kartal/İstanbul, Turkey.
| | - Nayel Al-Zubi
- Department of Computer Engineering, Al-Balqa' Applied University, 19117 Al-Salt, Jordan.
| |
Collapse
|
29
|
Baker JN, Walker JA, Vanchiere JA, Phillippe KR, St. Romain CP, Gonzalez-Quiroga P, Denham MW, Mierl JR, Konkel MK, Batzer MA. Evolution of Alu Subfamily Structure in the Saimiri Lineage of New World Monkeys. Genome Biol Evol 2017; 9:2365-2376. [PMID: 28957461 PMCID: PMC5622375 DOI: 10.1093/gbe/evx172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
Squirrel monkeys, Saimiri, are commonly found in zoological parks and used in biomedical research. S. boliviensis is the most common species for research; however, there is little information about genome evolution within this primate lineage. Here, we reconstruct the Alu element sequence amplification and evolution in the genus Saimiri at the time of divergence within the family Cebidae lineage. Alu elements are the most successful SINE (Short Interspersed Element) in primates. Here, we report 46 Saimiri lineage specific Alu subfamilies. Retrotransposition activity involved subfamilies related to AluS, AluTa10, and AluTa15. Many subfamilies are simultaneously active within the Saimiri lineage, a finding which supports the stealth model of Alu amplification. We also report a high resolution analysis of Alu subfamilies within the S. boliviensis genome [saiBol1].
Collapse
Affiliation(s)
- Jasmine N. Baker
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - John A. Vanchiere
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport
| | - Kacie R. Phillippe
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | | | | | - Michael W. Denham
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Jackson R. Mierl
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Miriam K. Konkel
- Department of Biological Sciences, Louisiana State University, Baton Rouge
- Department of Biological Sciences, Clemson University, South Carolina
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| |
Collapse
|
30
|
|
31
|
Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions. Nat Commun 2016; 7:12997. [PMID: 27708261 PMCID: PMC5059674 DOI: 10.1038/ncomms12997] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/17/2016] [Indexed: 12/28/2022] Open
Abstract
Tarsiers are phylogenetically located between the most basal strepsirrhines and the most derived anthropoid primates. While they share morphological features with both groups, they also possess uncommon primate characteristics, rendering their evolutionary history somewhat obscure. To investigate the molecular basis of such attributes, we present here a new genome assembly of the Philippine tarsier (Tarsius syrichta), and provide extended analyses of the genome and detailed history of transposable element insertion events. We describe the silencing of Alu monomers on the lineage leading to anthropoids, and recognize an unexpected abundance of long terminal repeat-derived and LINE1-mobilized transposed elements (Tarsius interspersed elements; TINEs). For the first time in mammals, we identify a complete mitochondrial genome insertion within the nuclear genome, then reveal tarsier-specific, positive gene selection and posit population size changes over time. The genomic resources and analyses presented here will aid efforts to more fully understand the ancient characteristics of primate genomes. Tarsiers occupy a key node between strepsirrhines and anthropoids in the primate phylogeny. Here, Warren and colleagues present the genome of Tarsius syrichta, including a survey of transposable elements, an unusual mitochondrial insertion, and evidence for positive gene selection.
Collapse
|
32
|
Nova Delgado M, Galbany J, Pérez-Pérez A. Molar shape variability in platyrrhine primates. J Hum Evol 2016; 99:79-92. [PMID: 27650581 DOI: 10.1016/j.jhevol.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 11/26/2022]
Abstract
Recent phylogenetic analyses suggest that platyrrhines constitute a monophyletic group represented by three families: Cebidae, Atelidae, and Pitheciidae. Morphological variability between and within these three families, however, is widely discussed and debated. The aim of this study was to assess molar shape variability in platyrrhines, to explore patterns of interspecific variation among extant species, and to evaluate how molar shape can be used as a taxonomic indicator. The analyses were conducted using standard multivariate analyses of geometric morphometric data from 802 platyrrhine lower molars. The results indicated that the interspecific variation exhibited a highly homoplastic pattern related to functional adaptation of some taxa. However, phylogeny was also an important factor in shaping molar morphological traits, given that some phenotypic similarities were consistent with current phylogenetic positions. Our results show that the phylogenetic and functional signals of lower molar shape vary depending on the taxa and the tooth considered. Based on molar shape, Aotus showed closer similarities to Callicebus, as well as to some Cebidae and Ateles-Lagothrix, due to convergent evolutionary trends caused by similar dietary habits, or due to fast-evolving branches in the Aotus lineage, somewhat similar to the shape of Callicebus and Cebidae.
Collapse
Affiliation(s)
- Mónica Nova Delgado
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Jordi Galbany
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, 800 22nd Street NW, Ste 6000, Washington, D.C. 20052, USA
| | - Alejandro Pérez-Pérez
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
33
|
Costa IR, Prosdocimi F, Jennings WB. In silico phylogenomics using complete genomes: a case study on the evolution of hominoids. Genome Res 2016; 26:1257-67. [PMID: 27435933 PMCID: PMC5052044 DOI: 10.1101/gr.203950.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/14/2016] [Indexed: 01/30/2023]
Abstract
The increasing availability of complete genome data is facilitating the acquisition of phylogenomic data sets, but the process of obtaining orthologous sequences from other genomes and assembling multiple sequence alignments remains piecemeal and arduous. We designed software that performs these tasks and outputs anonymous loci (AL) or anchored enrichment/ultraconserved element loci (AE/UCE) data sets in ready-to-analyze formats. We demonstrate our program by applying it to the hominoids. Starting with human, chimpanzee, gorilla, and orangutan genomes, our software generated an exhaustive data set of 292 ALs (∼1 kb each) in ∼3 h. Not only did analyses of our AL data set validate the program by yielding a portrait of hominoid evolution in agreement with previous studies, but the accuracy and precision of our estimated ancestral effective population sizes and speciation times represent improvements. We also used our program with a published set of 512 vertebrate-wide AE "probe" sequences to generate data sets consisting of 171 and 242 independent loci (∼1 kb each) in 11 and 13 min, respectively. The former data set consisted of flanking sequences 500 bp from adjacent AEs, while the latter contained sequences bordering AEs. Although our AE data sets produced the expected hominoid species tree, coalescent-based estimates of ancestral population sizes and speciation times based on these data were considerably lower than estimates from our AL data set and previous studies. Accordingly, we suggest that loci subjected to direct or indirect selection may not be appropriate for coalescent-based methods. Complete in silico approaches, combined with the burgeoning genome databases, will accelerate the pace of phylogenomics.
Collapse
Affiliation(s)
- Igor Rodrigues Costa
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - W Bryan Jennings
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 20940-040, Brazil
| |
Collapse
|
34
|
Hoyos M, Bloor P, Defler T, Vermeer J, Röhe F, Farias I. Phylogenetic relationships within the Callicebus cupreus species group (Pitheciidae: Primates): Biogeographic and taxonomic implications. Mol Phylogenet Evol 2016; 102:208-19. [PMID: 27235549 DOI: 10.1016/j.ympev.2016.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
The genus Callicebus (Thomas, 1903) is one of the most diverse of Neotropical primate genera and the only extant member of the Callicebinae subfamily. It has a widespread distribution from Colombia to Brazil, Bolivia, Peru and northern Paraguay. Coat colouring and colour pattern vary substantially within the genus, and this has led to the description of numerous species and subspecies, as well as numerous species groups. However, a lack of molecular phylogenetic analyses on the genus means that phylogenetic relationships and biogeographic history of species are poorly understood. Here, we examined phylogenetic relationships and patterns of diversification within the Callicebus cupreus species Group (sensu Kobayashi, 1995) using complete mitochondrial DNA cytochrome b gene sequence. Analyses indicate that the Callicebus cupreus Group underwent recent and extensive diversification. The common ancestor appears to have emerged some 2.3 million years ago (Ma) from a centre of origin in the western Amazon region, followed by diversification of the group between about 1.5 and 1.2Ma. Phylogenetic analyses were able to recover most previously described species (including the recently described Colombian endemic Callicebus caquetensis). However, there are some notable inconsistences between the obtained phylogeny and current taxonomy. Some previously recognized taxa were not separated by our data (e.g., Callicebus caligatus and Callicebus dubius), while currently unrecognized species diversity was uncovered within C. cupreus in the form of two divergent lineages: one of which exhibited greater phylogenetic similarity to species from the C. moloch Group. Based on the present study, we challenge current taxonomic arrangements for the C. cupreus species Group and call for a thorough taxonomic revision within the genus Callicebus.
Collapse
Affiliation(s)
- Manuel Hoyos
- Instituto de Genética, Universidad Nacional de Colombia, Edificio 426, Bogotá D.C., Colombia.
| | - Paul Bloor
- Instituto de Genética, Universidad Nacional de Colombia, Edificio 426, Bogotá D.C., Colombia
| | - Thomas Defler
- Departamento de Biología, Universidad Nacional de Colombia, Edificio 421, Bogotá D.C., Colombia
| | - Jan Vermeer
- Le Conservatoire pour la Protection des Primates. La Vallée des Singes, 86700 Romagne, France
| | - Fabio Röhe
- Wildlife Conservation Society, Manaus, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas UFAM, Manaus, AM, Brazil
| |
Collapse
|
35
|
Nova Delgado M, Galbany J, Pérez-Pérez A. Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines. PeerJ 2016; 4:e1967. [PMID: 27190704 PMCID: PMC4867715 DOI: 10.7717/peerj.1967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/04/2016] [Indexed: 12/25/2022] Open
Abstract
The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrrhines' first and second lower molars suggest that morphological stasis may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation of the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus-like and Saguinus-like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, Alouatta-like and Pitheciinae-like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene.
Collapse
Affiliation(s)
- Mónica Nova Delgado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Zoology and Physical Anthropology Section, Universitat de Barcelona , Barcelona , Spain
| | - Jordi Galbany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Zoology and Physical Anthropology Section, Universitat de Barcelona, Barcelona, Spain; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington DC, United States of America
| | - Alejandro Pérez-Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Zoology and Physical Anthropology Section, Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
36
|
Byrne H, Rylands AB, Carneiro JC, Alfaro JWL, Bertuol F, da Silva MNF, Messias M, Groves CP, Mittermeier RA, Farias I, Hrbek T, Schneider H, Sampaio I, Boubli JP. Phylogenetic relationships of the New World titi monkeys (Callicebus): first appraisal of taxonomy based on molecular evidence. Front Zool 2016; 13:10. [PMID: 26937245 PMCID: PMC4774130 DOI: 10.1186/s12983-016-0142-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/15/2016] [Indexed: 11/10/2022] Open
Abstract
Background Titi monkeys, Callicebus, comprise the most species-rich primate genus—34 species are currently recognised, five of them described since 2005. The lack of molecular data for titi monkeys has meant that little is known of their phylogenetic relationships and divergence times. To clarify their evolutionary history, we assembled a large molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, including representatives from all recognised species groups. Phylogenetic relationships were inferred using concatenated maximum likelihood and Bayesian analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. Results Our results show four distinct Callicebus clades, for the most part concordant with the currently recognised morphological species-groups—the torquatus group, the personatus group, the donacophilus group, and the moloch group. The cupreus and moloch groups are not monophyletic, and all species of the formerly recognized cupreus group are reassigned to the moloch group. Two of the major divergence events are dated to the Miocene. The torquatus group, the oldest radiation, diverged c. 11 Ma; and the Atlantic forest personatus group split from the ancestor of all donacophilus and moloch species at 9–8 Ma. There is little molecular evidence for the separation of Callicebus caligatus and C. dubius, and we suggest that C. dubius should be considered a junior synonym of a polymorphic C. caligatus. Conclusions Considering molecular, morphological and biogeographic evidence, we propose a new genus level taxonomy for titi monkeys: Cheracebus n. gen. in the Orinoco, Negro and upper Amazon basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus group), and Plecturocebus n. gen. in the Amazon basin and Chaco region (donacophilus and moloch groups). Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0142-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hazel Byrne
- School of Environment and Life Sciences, University of Salford, Room 315, Peel Building, Salford, UK
| | | | - Jeferson C Carneiro
- Universidade Federal do Pará, Campus Universitário de Bragança, Bragança, Pará Brazil
| | - Jessica W Lynch Alfaro
- Department of Anthropology, Institute for Society and Genetics, University of California, Los Angeles, CA USA
| | - Fabricio Bertuol
- Evolution and Animal Genetics Laboratory, Universidade Federal do Amazonas, Manaus, Amazonas Brazil
| | - Maria N F da Silva
- Coleções Zoológicas, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas Brazil
| | | | - Colin P Groves
- School of Archaeology & Anthropology, Australian National University, Canberra, Australia
| | | | - Izeni Farias
- Evolution and Animal Genetics Laboratory, Universidade Federal do Amazonas, Manaus, Amazonas Brazil
| | - Tomas Hrbek
- Evolution and Animal Genetics Laboratory, Universidade Federal do Amazonas, Manaus, Amazonas Brazil
| | - Horacio Schneider
- Universidade Federal do Pará, Campus Universitário de Bragança, Bragança, Pará Brazil
| | - Iracilda Sampaio
- Universidade Federal do Pará, Campus Universitário de Bragança, Bragança, Pará Brazil
| | - Jean P Boubli
- School of Environment and Life Sciences, University of Salford, Room 315, Peel Building, Salford, UK ; Coleções Zoológicas, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas Brazil
| |
Collapse
|
37
|
Rylands AB, Heymann EW, Lynch Alfaro J, Buckner JC, Roos C, Matauschek C, Boubli JP, Sampaio R, Mittermeier RA. Taxonomic review of the New World tamarins (Primates: Callitrichidae). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12386] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Eckhard W. Heymann
- Department of Behavioral Ecology and Sociobiology; German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Jessica Lynch Alfaro
- Institute for Society and Genetics and Department of Anthropology; University of California; Los Angeles CA USA
| | - Janet C. Buckner
- Department of Ecology and Evolutionary Biology; University of California; Los Angeles CA USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory; German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Christian Matauschek
- Department of Behavioral Ecology and Sociobiology; German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Jean P. Boubli
- School of Environment and Life Sciences; University of Salford; Manchester UK
| | - Ricardo Sampaio
- National Research Center for Carnivore Conservation (CENAP/ICMBio); Atibaia SP Brazil
| | | |
Collapse
|
38
|
Adaptive evolution of interleukin-3 (IL3), a gene associated with brain volume variation in general human populations. Hum Genet 2016; 135:377-392. [PMID: 26875095 DOI: 10.1007/s00439-016-1644-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Greatly expanded brain volume is one of the most characteristic traits that distinguish humans from other primates. Recent studies have revealed genes responsible for the dramatically enlarged human brain size (i.e., the microcephaly genes), and it has been well documented that many microcephaly genes have undergone accelerated evolution along the human lineage. In addition to being far larger than other primates, human brain volume is also highly variable in general populations. However, the genetic basis underlying human brain volume variation remains elusive and it is not known whether genes regulating human brain volume variation also have experienced positive selection. We have previously shown that genetic variants (near the IL3 gene) on 5q33 were significantly associated with brain volume in Chinese population. Here, we provide further evidence that support the significant association of genetic variants on 5q33 with brain volume. Bioinformatic analyses suggested that rs31480 is likely to be the causal variant among the studied SNPs. Molecular evolutionary analyses suggested that IL3 might have undergone positive selection in primates and humans. Neutrality tests further revealed signatures of positive selection of IL3 in Han Chinese and Europeans. Finally, extended haplotype homozygosity (EHH) and relative EHH analyses showed that the C allele of SNP rs31480 might have experienced recent positive selection in Han Chinese. Our results suggest that IL3 is an important genetic regulator for human brain volume variation and implied that IL3 might have experienced weak or modest positive selection in the evolutionary history of humans, which may be due to its contribution to human brain volume.
Collapse
|
39
|
Roos C. Phylogeny and Classification of Gibbons (Hylobatidae). DEVELOPMENTS IN PRIMATOLOGY: PROGRESS AND PROSPECTS 2016. [DOI: 10.1007/978-1-4939-5614-2_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
|
41
|
Suzuki W, Banno T, Miyakawa N, Abe H, Goda N, Ichinohe N. Mirror Neurons in a New World Monkey, Common Marmoset. Front Neurosci 2015; 9:459. [PMID: 26696817 PMCID: PMC4674550 DOI: 10.3389/fnins.2015.00459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/18/2015] [Indexed: 11/13/2022] Open
Abstract
Mirror neurons respond when executing a motor act and when observing others' similar act. So far, mirror neurons have been found only in macaques, humans, and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus). The ventral premotor cortex (PMv), where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using "in vivo" connection imaging methods. That is, we first identified cells responsive to others' grasping action in a clear landmark, the superior temporal sulcus (STS), under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labeled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic "mirror" properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution.
Collapse
Affiliation(s)
- Wataru Suzuki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
- Ichinohe Neural System Group, Lab for Molecular Analysis of Higher Brain Functions, RIKEN Brain Science InstituteSaitama, Japan
| | - Taku Banno
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Naohisa Miyakawa
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Hiroshi Abe
- Ichinohe Neural System Group, Lab for Molecular Analysis of Higher Brain Functions, RIKEN Brain Science InstituteSaitama, Japan
| | - Naokazu Goda
- Division of Sensory and Cognitive Information, National Institute for Physiological SciencesAichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (Sokendai)Aichi, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
- Ichinohe Neural System Group, Lab for Molecular Analysis of Higher Brain Functions, RIKEN Brain Science InstituteSaitama, Japan
| |
Collapse
|
42
|
Kim YJ, Ahn K, Gim JA, Oh MH, Han K, Kim HS. Gene structure variation in segmental duplication block C of human chromosome 7q 11.23 during primate evolution. Gene 2015. [PMID: 26196062 DOI: 10.1016/j.gene.2015.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Segmental duplication, or low-copy repeat (LCR) event, occurs during primate evolution and is an important source of genomic diversity, including gain or loss of gene function. The human chromosome 7q 11.23 is related to the William-Beuren syndrome and contains large region-specific LCRs composed of blocks A, B, and C that have different copy numbers in humans and different primates. We analyzed the structure of POM121, NSUN5, FKBP6, and TRIM50 genes in the LCRs of block C. Based on computational analysis, POM121B created by a segmental duplication acquired a new exonic region, whereas NSUN5B (NSUN5C) showed structural variation by integration of HERV-K LTR after duplication from the original NSUN5 gene. The TRIM50 gene originally consists of seven exons, whereas the duplicated TRIM73 and TRIM74 genes present five exons because of homologous recombination-mediated deletion. In addition, independent duplication events of the FKBP6 gene generated two pseudogenes at different genomic locations. In summary, these clustered genes are created by segmental duplication, indicating that they show dynamic evolutionary events, leading to structure variation in the primate genome.
Collapse
Affiliation(s)
- Yun-Ji Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea
| | - Kung Ahn
- TBI, Theragen BiO Institute, TheragenEtex, Suwon 443-270, Republic of Korea
| | - Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
43
|
Defining Genera of New World Monkeys: The Need for a Critical View in a Necessarily Arbitrary Task. INT J PRIMATOL 2015. [DOI: 10.1007/s10764-015-9882-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Lipovich L, Hou ZC, Jia H, Sinkler C, McGowen M, Sterner KN, Weckle A, Sugalski AB, Pipes L, Gatti DL, Mason CE, Sherwood CC, Hof PR, Kuzawa CW, Grossman LI, Goodman M, Wildman DE. High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans. J Comp Neurol 2015; 524:288-308. [PMID: 26132897 DOI: 10.1002/cne.23843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes.
Collapse
Affiliation(s)
- Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Zhuo-Cheng Hou
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Department of Animal Genetics, China Agricultural University, Beijing, China
| | - Hui Jia
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201
| | - Christopher Sinkler
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201
| | - Michael McGowen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, Oregon, 97403
| | - Amy Weckle
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, 61801.,Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois, 61801
| | - Amara B Sugalski
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201
| | - Lenore Pipes
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10021
| | - Domenico L Gatti
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan, 48201.,Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10021
| | - Chet C Sherwood
- Department of Anthropology and the Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029.,New York Consortium in Evolutionary Primatology, New York, New York, 10024
| | | | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Derek E Wildman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, 61801.,Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois, 61801
| |
Collapse
|
45
|
High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci Rep 2015; 5:10950. [PMID: 26091254 PMCID: PMC4473644 DOI: 10.1038/srep10950] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/29/2015] [Indexed: 11/17/2022] Open
Abstract
Vocalizations are behaviorally critical sounds, and this behavioral importance is reflected in the ascending auditory system, where conspecific vocalizations are increasingly over-represented at higher processing stages. Recent evidence suggests that, in macaques, this increasing selectivity for vocalizations might culminate in a cortical region that is densely populated by vocalization-preferring neurons. Such a region might be a critical node in the representation of vocal communication sounds, underlying the recognition of vocalization type, caller and social context. These results raise the questions of whether cortical specializations for vocalization processing exist in other species, their cortical location, and their relationship to the auditory processing hierarchy. To explore cortical specializations for vocalizations in another species, we performed high-field fMRI of the auditory cortex of a vocal New World primate, the common marmoset (Callithrix jacchus). Using a sparse imaging paradigm, we discovered a caudal-rostral gradient for the processing of conspecific vocalizations in marmoset auditory cortex, with regions of the anterior temporal lobe close to the temporal pole exhibiting the highest preference for vocalizations. These results demonstrate similar cortical specializations for vocalization processing in macaques and marmosets, suggesting that cortical specializations for vocal processing might have evolved before the lineages of these species diverged.
Collapse
|
46
|
Pozzi L, Nekaris KAI, Perkin A, Bearder SK, Pimley ER, Schulze H, Streicher U, Nadler T, Kitchener A, Zischler H, Zinner D, Roos C. Remarkable ancient divergences amongst neglected lorisiform primates. Zool J Linn Soc 2015; 175:661-674. [PMID: 26900177 PMCID: PMC4744660 DOI: 10.1111/zoj.12286] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 11/29/2022]
Abstract
Lorisiform primates (Primates: Strepsirrhini: Lorisiformes) represent almost 10% of the living primate species and are widely distributed in sub-Saharan Africa and South/South-East Asia; however, their taxonomy, evolutionary history, and biogeography are still poorly understood. In this study we report the largest molecular phylogeny in terms of the number of represented taxa. We sequenced the complete mitochondrial cytochrome b gene for 86 lorisiform specimens, including ∼80% of all the species currently recognized. Our results support the monophyly of the Galagidae, but a common ancestry of the Lorisinae and Perodicticinae (family Lorisidae) was not recovered. These three lineages have early origins, with the Galagidae and the Lorisinae diverging in the Oligocene at about 30 Mya and the Perodicticinae emerging in the early Miocene. Our mitochondrial phylogeny agrees with recent studies based on nuclear data, and supports Euoticus as the oldest galagid lineage and the polyphyletic status of Galagoides. Moreover, we have elucidated phylogenetic relationships for several species never included before in a molecular phylogeny. The results obtained in this study suggest that lorisiform diversity remains substantially underestimated and that previously unnoticed cryptic diversity might be present within many lineages, thus urgently requiring a comprehensive taxonomic revision of this primate group.
Collapse
Affiliation(s)
- Luca Pozzi
- Behavioral Ecology and Sociobiology Unit German Primate Center, Leibniz Institute for Primate Research Kellnerweg 4 37077 Göttingen Germany
| | | | - Andrew Perkin
- Nocturnal Primate Research Group, Oxford Brookes UniversityOxfordOX3 0BPUK; Tanzania Forest Conservation GroupPO Box 23410Dar es SalaamTanzania
| | - Simon K Bearder
- Nocturnal Primate Research Group, Oxford Brookes University Oxford OX3 0BP UK
| | - Elizabeth R Pimley
- Nocturnal Primate Research Group, Oxford Brookes UniversityOxfordOX3 0BPUK; School of Natural & Social SciencesUniversity of GloucestershireFrancis Close HallSwindon RoadCheltenhamGloucestershireGL50 4AZUK
| | - Helga Schulze
- Department of Neuroanatomy MA 01/43 Ruhr University 44780 Bochum Germany
| | | | - Tilo Nadler
- Endangered Primate Rescue Center, Cuc Phuong National Park Nho Quan District, Ninh Binh Province Vietnam
| | - Andrew Kitchener
- Department of Natural SciencesNational Museums ScotlandChambers StreetEdinburghEH1 1JFUK; Institute of GeographySchool of GeoSciencesUniversity of EdinburghDrummond StreetEdinburghEH8 9XPUK
| | - Hans Zischler
- Institute of Anthropology University of Mainz Anselm-Franz-von-Bentzel-Weg 7 55128 Mainz Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory German Primate Center, Leibniz Institute for Primate Research Kellnerweg 4 37077 Göttingen Germany
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory German Primate Center, Leibniz Institute for Primate Research Kellnerweg 4 37077 Göttingen Germany
| |
Collapse
|
47
|
Moraes-Barros N, Arteaga MC. Genetic diversity in Xenarthra and its relevance to patterns of neotropical biodiversity. J Mammal 2015. [DOI: 10.1093/jmammal/gyv077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Schwartz JH, Maresca B. Do Molecular Clocks Run at All? A Critique of Molecular Systematics. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot.2006.1.4.357] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Sarkar A, Saha A, Roy S, Pathak S, Mandal S. A glimpse towards the vestigiality and fate of human vermiform appendix-a histomorphometric study. J Clin Diagn Res 2015; 9:AC11-5. [PMID: 25859439 DOI: 10.7860/jcdr/2015/11178.5581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/12/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The vermiform appendix in human is considered to be a vestigial organ by most of the authors. Absence of appendix is already reported in Indian population. Whether the human appendix is performing any function is debatable but when present it can create trouble. So if there is no appendix we can escape the ill-effects of the organ. With this hope the study has been done to see whether the appendix is really going to be rudimentary or absent or not. Marerials and Methods: Length, external diameter, number of lymphoid follicles, maximum diameter of the follicle or submucous coat, thickening of the muscle coat and seromucosal thickening of freshly removed appendix from human cadavers were seen. After fixation in 10% formal saline tissues were stained with haematoxylin-eosin stain and photographs were taken. The results had been tabulated and statistically correlated. RESULT The parameters like number of lymphoid follicles, length and diameter all are changed as per the age advancement which is strictly indicating some functional activities of the organ which is against the idea of vestigiality of the appendix. CONCLUSION Human appendix cannot be called a vestigial organ unless the functional inactivity is proved. Lymphoid changes which occur after birth to provide the gut immunity is needed to be proved by further studies. There might be incidental absence or rudimentary appendix in human body, but that does not indicate that we would not have any appendix in future.
Collapse
Affiliation(s)
- Aniruddha Sarkar
- Associate Professor, Department of Anatomy, Midnapore Medical College, Midnapore , West Bengal, India
| | - Anubha Saha
- Assistant Professor, Department of Anatomy, Institute of Post-Graduate Medical Education & Research , Kolkata, West Bengal, India
| | - Sanchita Roy
- Assistant Professor, Department of Anatomy, Institute of Post-Graduate Medical Education & Research , Kolkata, West Bengal, India
| | - Santanu Pathak
- Post- Graduate Student, Department of Pathology, Nilratan Sirkar Medical College & Hospital , Kolkata, West Bengal, India
| | - Shyamash Mandal
- Post- Graduate Student, Department of Pathology, Nilratan Sirkar Medical College & Hospital , Kolkata, West Bengal, India
| |
Collapse
|
50
|
Hecht EE, Gutman DA, Bradley BA, Preuss TM, Stout D. Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage 2015; 108:124-37. [PMID: 25534109 PMCID: PMC4324003 DOI: 10.1016/j.neuroimage.2014.12.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022] Open
Abstract
Many of the behavioral capacities that distinguish humans from other primates rely on fronto-parietal circuits. The superior longitudinal fasciculus (SLF) is the primary white matter tract connecting lateral frontal with lateral parietal regions; it is distinct from the arcuate fasciculus, which interconnects the frontal and temporal lobes. Here we report a direct, quantitative comparison of SLF connectivity using virtual in vivo dissection of the SLF in chimpanzees and humans. SLF I, the superior-most branch of the SLF, showed similar patterns of connectivity between humans and chimpanzees, and was proportionally volumetrically larger in chimpanzees. SLF II, the middle branch, and SLF III, the inferior-most branch, showed species differences in frontal connectivity. In humans, SLF II showed greater connectivity with dorsolateral prefrontal cortex, whereas in chimps SLF II showed greater connectivity with the inferior frontal gyrus. SLF III was right-lateralized and proportionally volumetrically larger in humans, and human SLF III showed relatively reduced connectivity with dorsal premotor cortex and greater extension into the anterior inferior frontal gyrus, especially in the right hemisphere. These results have implications for the evolution of fronto-parietal functions including spatial attention to observed actions, social learning, and tool use, and are in line with previous research suggesting a unique role for the right anterior inferior frontal gyrus in the evolution of human fronto-parietal network architecture.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Anthropology, Emory University, 1557 Dickey Drive, Rm 114, Atlanta, GA 30322, USA.
| | - David A Gutman
- Department of Biomedical Informatics, Emory University School of Medicine, 36 Eagle Row, PAIS Building, 5th Floor South, Atlanta, GA 30322, USA.
| | - Bruce A Bradley
- Department of Archaeology, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK.
| | - Todd M Preuss
- Yerkes National Primate Research Center, Div. Neuropharmacology & Neurologic Diseases & Center for Translational Social Neuroscience, Emory University, 954 Gatewood Rd., Atlanta, GA 30329, USA.
| | - Dietrich Stout
- Department of Anthropology, Emory University, 1557 Dickey Drive, Rm 114, Atlanta, GA 30322, USA.
| |
Collapse
|