1
|
Andretto V, Dusi S, Zilio S, Repellin M, Kryza D, Ugel S, Lollo G. Tackling TNF-α in autoinflammatory disorders and autoimmune diseases: From conventional to cutting edge in biologics and RNA- based nanomedicines. Adv Drug Deliv Rev 2023; 201:115080. [PMID: 37660747 DOI: 10.1016/j.addr.2023.115080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Autoinflammatory disorders and autoimmune diseases result from abnormal deviations of innate and adaptive immunity that heterogeneously affect organs and clinical phenotypes. Despite having etiologic and phenotypic differences, these two conditions share the onset of an aberrant inflammatory process. Targeting the main drivers controlling inflammation is useful to treat both autoimmune and autoinflammatory syndromes. TNF-α is a major player in the inflammatory immune response, and anti-TNF-α antibodies have been a revolutionary treatment in many autoimmune disorders. However, production difficulties and high development costs hinder their implementation, and accessibility to their use is still limited. Innovative strategies aimed at overcoming the limitations associated with anti-TNF-α antibodies are being explored, including RNA-based therapies. Here we summarize the central role of TNF-α in immune disorders and how anti-TNF-based immunotherapies changed the therapeutic landscape, albeit with important limitations related to side effects, tolerance, and resistance to therapies. We then outline how nanotechnology has provided the final momentum for the use of nucleic acids in the treatment of autoimmune and autoinflammatory diseases, with a focus on inflammatory bowel diseases (IBDs). The example of IBDs allows the evaluation and discussion of the nucleic acids-based treatments that have been developed, to identify the role that innovative approaches possess in view of the treatment of autoinflammatory disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Silvia Dusi
- Istituto Oncologico Veneto IRCCS, Padova 35128, Italy
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; SATT Ouest Valorisation, 14C Rue du Patis Tatelin 35708, Rennes, France
| | - Mathieu Repellin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; PULSALYS SATT Lyon-Saint Etienne, 47 Boulevard du 11 Novembre 1918, 69625 Villeurbanne, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; Hospices Civils de Lyon, 69437 Lyon, France
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|
2
|
|
3
|
Wu L, Xie J, Li T, Mai Z, Wang L, Wang X, Chen T. Gene delivery ability of polyethylenimine and polyethylene glycol dual-functionalized nanographene oxide in 11 different cell lines. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170822. [PMID: 29134085 PMCID: PMC5666268 DOI: 10.1098/rsos.170822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/22/2017] [Indexed: 05/03/2023]
Abstract
We recently developed a polyethylenimine (PEI) and polyethylene glycol (PEG) dual-functionalized reduced graphene oxide (GO) (PEG-nrGO-PEI, RGPP) for high-efficient gene delivery in HepG2 and Hela cell lines. To evaluate the feasibility and applicability of RGPP as a gene delivery carrier, we here assessed the transfection efficiency of RGPP on gene plasmids and siRNA in 11 different cell lines. Commercial polyalkyleneimine cation transfection reagent (TR) was used as comparison. In HepG2 cells, RGPP exhibited much stronger delivery ability for siRNA and large size plasmids than TR. For green fluorescent protein (GFP) plasmid, RGPP showed about 47.1% of transfection efficiency in primary rabbit articular chondrocytes, and about 27% of transfection efficiency in both SH-SY5Y and A549 cell lines. RGPP exhibited about 37.2% of GFP plasmid transfection efficiency in EMT6 cells and about 26.0% of GFP plasmid transfection efficiency in LO2 cells, but induced about 33% of cytotoxicity in both cell lines. In 4T1 and H9C2 cell lines, RGPP had less than 10% of GFP plasmid transfection efficiency. Collectively, RGPP is a potential nano-carrier for high-efficiency gene delivery, and needs to be further optimized for different cell lines.
Collapse
Affiliation(s)
- Liping Wu
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| | - Jinshan Xie
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, People's Republic of China
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Tan Li
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| | - Zihao Mai
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| | - Lu Wang
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Lee D, Lee YM, Jeong C, Lee J, Kim WJ. Bioreducible guanidinylated polyethylenimine for efficient gene delivery. ChemMedChem 2014; 9:2718-24. [PMID: 25287668 DOI: 10.1002/cmdc.201402293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 11/06/2022]
Abstract
Cationic polymers are known to afford efficient gene transfection. However, cytotoxicity remains a problem at the molecular weight for optimal DNA delivery. As such, optimized polymeric gene delivery systems are still a sought-after research goal. A guanidinylated bioreducible branched polyethylenimine (GBPEI-SS) was synthesized by using a disulfide bond to crosslink the guanidinylated BPEI (GBPEI). GBPEI-SS showed sufficient plasmid DNA (pDNA) condensation ability. The physicochemical properties of GBPEI-SS demonstrate that it has the appropriate size (~200 nm) and surface potential (~30 mV) at a nitrogen-to-phosphorus ratio of 10. No significant toxicity was observed, possibly due to bioreducibility and to the guanidine group delocalizing the positive charge of the primary amine in BPEI. Compared with the nonguanidinylated analogue, BPEI-SS, GBPEI-SS showed enhanced transfection efficiency owing to increased cellular uptake and efficient pDNA release by cleavage of disulfide bonds. This system is very efficient for delivering pDNA into cells, thereby achieving high transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Duhwan Lee
- Center for Self-assembly and Complexity, Institute for Basic Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Republic of Korea)
| | | | | | | | | |
Collapse
|
5
|
Kim H, Kim WJ. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:117-26. [PMID: 23696272 DOI: 10.1002/smll.201202636] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/08/2013] [Indexed: 05/19/2023]
Abstract
Externally stimuli-triggered spatially and temporally controlled gene delivery can play a pivotal role in achieving targeted gene delivery with maximized therapeutic efficacy. In this study, a photothermally controlled gene delivery carrier is developed by conjugating low molecular-weight branched polyethylenimine (BPEI) and reduced graphene oxide (rGO) via a hydrophilic polyethylene glycol (PEG) spacer. This PEG-BPEI-rGO nanocomposite forms a stable nano-sized complex with plasmid DNA (pDNA), as confirmed by physicochemical studies. For the in vitro gene transfection study, PEG-BPEI-rGO shows a higher gene transfection efficiency without observable cytotoxicity compared to unmodified controls in PC-3 and NIH/3T3 cells. Moreover, the PEG-BPEI-rGO nanocomposite demonstrates an enhanced gene transfection efficiency upon NIR irradiation, which is attributed to accelerated endosomal escape of polyplexes augmented by locally induced heat. The endosomal escaping effect of the nanocomposite is investigated using Bafilomycin A1, a proton sponge effect inhibitor. The developed photothermally controlled gene carrier has the potential for spatial and temporal site-specific gene delivery.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea; Center for Self-assembly and Complexity, Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yusung-gu, Daejeon, 305-811, Korea
| | | |
Collapse
|
6
|
Pleger ST, Brinks H, Ritterhoff J, Raake P, Koch WJ, Katus HA, Most P. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113:792-809. [PMID: 23989720 DOI: 10.1161/circresaha.113.300269] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Collapse
Affiliation(s)
- Sven T Pleger
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Xiang J, Munegowda MA, Deng Y. Transgene expression of alpha tumor necrosis factor with mutations D142N and A144R under control of human telomerase reverse transcriptase promoter eradicates well-established tumors and induces long-term antitumor immunity. Cancer Gene Ther 2008; 16:430-8. [PMID: 19096444 DOI: 10.1038/cgt.2008.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant adenoviral vectors (AdVTNF-alpha) expressing alpha tumor necrosis factor (TNF-alpha) under control of cytomegalovirus (CMV) promoter have been used in cancer gene therapy. To reduce its cytotoxicity, we constructed a recombinant AdV(TERT)mTNF-alpha expressing a mutant TNF-alpha (mTNF-alpha) with mutations at D142N and A144R under control of human telomerase reverse transcriptase (hTERT) promoter for treatment of well-established ovalbumin (OVA)-expressing murine B16 melanoma (BL6-10(OVA)) (6 mm in diameter). We demonstrated that the mTNF-alpha with mutations at D142N and A144R has less in vitro cytotoxicity, but maintains its functional effect in the stimulation of T-cell proliferation. The in vitro and in vivo transgene expressions under control of hTERT promoter are highly restricted in tumor cells compared with those under the control of the CMV promoter. AdV(TERT)mTNF-alpha gene therapy by intratumoral injection of AdV(TERT)mTNF-alpha vector (2 x 10(9) PFU) expressing the mutant mTNF-alpha under control of hTERT promoter reduces its in vivo toxicity, eradicates well-established BL6-10(OVA) tumors in 4/10 tumor-bearing mice, and induces OVA-specific CD8(+) T-cell-mediated long-term antitumor immunity. Therefore, AdV(TERT)mTNF-alpha gene therapy may be very useful in the immunotherapy of cancer.
Collapse
Affiliation(s)
- J Xiang
- Cancer Research Unit, Saskatchewan Cancer Agency, Departments of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | | | |
Collapse
|
8
|
Abstract
This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood-brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list "elementary" phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach.
Collapse
Affiliation(s)
- Ales Prokop
- Department of Chemical Engineering, 24th Avenue & Garland Avenues, 107 Olin Hall, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | |
Collapse
|
9
|
Vaccination of fiber-modified adenovirus-transfected dendritic cells to express HER-2/neu stimulates efficient HER-2/neu-specific humoral and CTL responses and reduces breast carcinogenesis in transgenic mice. Cancer Gene Ther 2008; 15:655-66. [PMID: 18421311 DOI: 10.1038/cgt.2008.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HER-2/neu transgene-modified dendritic cell (DC)-based vaccines are potent at eliciting HER-2/neu-specific antitumor immunity. In this study, we constructed a recombinant adenovirus (RGD)AdVneu with fiber gene modified by RGD insertion into the viral knob's H1 loop. We transfected DCs with (RGD)AdVneu, and assessed/compared HER-2/neu-specific humoral and cytotoxic T lymphocyte (CTL) responses and antitumor immunity derived from the original AdVneu-transfected DCs (DCneu1) and (RGD)AdVneu-transfected DCs (DCneu2). We demonstrated that DCneu2 displayed increased HER-2/neu expression by 8.3-fold compared to DCneu1. We also demonstrated that DCneu2 vaccination induced stronger HER-2/neu-specific humoral and CTL immune responses than DCneu1 vaccination. DCneu2 vaccination protected all the mice from HER-2/neu-expressing Tg1-1 tumor cell challenge in wild-type FVB/NJ mice, compared to a partial protection in DCneu1-immunized mice. In addition, DCneu2 vaccination also significantly delayed tumor growth than DCneu1 immunization (P<0.05) in Tg FVBneuN mice. Three immunizations of DCneu2 starting at the mouse age of 2 months also significantly delayed breast cancer development in Tg mice compared to DCneu2 vaccine (P<0.05). Importantly, DCneu2 vaccine reduced breast carcinogenesis by 9% in Tg mice with self HER-2/neu tolerance. Therefore, vaccination of fiber-modified adenovirus-transfected DCs to enhance expression of tumor antigens such as HER-2/neu is likely representative of a new direction in DC-based vaccine of breast cancer.
Collapse
|
10
|
Ye Z, Shi M, Chan T, Sas S, Xu S, Xiang J. Engineered CD8+ cytotoxic T cells with fiber-modified adenovirus-mediated TNF-alpha gene transfection counteract immunosuppressive interleukin-10-secreting lung metastasis and solid tumors. Cancer Gene Ther 2007; 14:661-75. [PMID: 17479109 DOI: 10.1038/sj.cgt.7701039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T-cell suppression derived from tumor-secreted immunosuppressive interleukin (IL)-10 becomes a major barrier to CD8+ T-cell immunotherapy of tumors. Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine capable of activating T and dendritic cells (DCs) and counteracting IL-10-mediated DC inhibition and regulatory T-cell-mediated immune suppression. In this study, we constructed a recombinant adenovirus (MF)AdVTNF with fiber-gene modified by RGD insertion into the viral knob's H1 loop and a melanoma cell line B16(OVA/IL-10) engineered to express ovalbumin (OVA) and to secrete IL-10 (2.2 ng/ml/10(6) cells/24 h). We transfected OVA-specific CD8+ T cells with (MF)AdVTNF, and found a fivefold increase in transgene human TNF-alpha secretion (4.3 ng/ml/10(6) cells/24 h) by the engineered CD8+ T(TNF) cells transfected with (MF)AdVTNF, compared to that (0.8 ng/ml/10(6) cells/24 h) by CD8+ T cells transfected with the original AdVTNF without viral fiber modification. The engineered CD8+ T(TNF) cells exhibited enhanced cytotoxicity and elongated survival in vivo after adoptive transfer. TNF-alpha derived from both the donor CD8+ T cells and the host cells plays an important role in donor CD8+ T-cell survival in vivo after adoptive transfer. We also demonstrated that the transfected B16(OVA/IL-10) tumor cells secreting IL-10 are more resistant to in vivo CD8+ T-cell therapy than the original B16(OVA) tumor cells without IL-10 expression. Interestingly, the engineered CD8+ T(TNF) cells secreting transgene-coded TNF-alpha, but not the control CD8+ T(control) cells without any transgene expression eradicated IL-10-secreting 12-day lung micrometastasis in all 10/10 mice and IL-10-secreting solid tumors ( approximately 5 mm in diameter) in 6/10 mice. Transfer of the engineered CD8+ T(TNF) cells further induced both donor- and host-derived memory CD8+ T cells, leading to a stronger long-term antitumor immunity against the IL-10-secreting B16(OVA/IL-10) tumor cell challenges. Therefore, CD8+ T cells engineered to secrete TNF-alpha may be useful when designing strategies for adoptive T-cell therapy of solid tumors.
Collapse
Affiliation(s)
- Z Ye
- Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Vijay A, Santhanam R, Katusic ZS. Genetic modification of cerebral arterial wall: implications for prevention and treatment of cerebral vasospasm. Neurol Res 2007; 28:759-68. [PMID: 17164039 DOI: 10.1179/016164106x152034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Genetic modification of cerebral vessels represents a promising and novel approach for prevention and/or treatment of various cerebral vascular disorders, including cerebral vasospasm. In this review, we focus on the current understanding of the use of gene transfer to the cerebral arteries for prevention and/or treatment of cerebral vasospasm following subarachnoid hemorrhage (SAH). We also discuss the recent developments in vascular therapeutics, involving the autologous use of progenitor cells for repair of damaged vessels, as well as a cell-based gene delivery approach for the prevention and treatment of cerebral vasospasm.
Collapse
Affiliation(s)
- Anantha Vijay
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
12
|
Michaels J, Levine JP, Hazen A, Ceradini DJ, Galiano RD, Soltanian H, Gurtner GC. Biologic Brachytherapy: Ex Vivo Transduction of Microvascular Beds for Efficient, Targeted Gene Therapy. Plast Reconstr Surg 2006; 118:54-65; discussion 66-8. [PMID: 16816674 DOI: 10.1097/01.prs.0000220466.27521.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gene therapy for cancer holds enormous therapeutic promise, but its clinical application has been limited by the inability to achieve targeted, high-level transgene expression with limited systemic toxicity. The authors have developed a novel method for delivering genes to microvascular free flaps (commonly used during reconstructive surgery) to avoid these problems. METHODS During the finite period in which a free flap is separated from the host (ex vivo), it can be perfused with extremely high titers of genetic material through the afferent artery, resulting in efficient transduction of the tissue. Before reanastomosis, unincorporated genetic material is flushed from the flap, minimizing systemic toxicity. RESULTS In a rodent model using an adenoviral vector containing the lacZ reporter gene, high regional expression of beta-galactosidase was achieved in all the different cells in a microvascular free flap. Moreover, no beta-galactosidase staining was observed outside of the transduced flap, and viral sequence was undetectable by polymerase chain reaction analysis in other tissues. Further analysis confirmed that high-level transgene expression was precisely localized to the explanted tissue, with no collateral transduction. CONCLUSIONS Targeting gene delivery with minimal systemic toxicity is essential for successful gene therapy. This form of "biological brachytherapy" provides a new opportunity to deliver targeted therapeutic transgenes to patients undergoing reconstructive surgery and allows microvascular free flaps to perform therapeutic and reconstructive functions.
Collapse
Affiliation(s)
- Joseph Michaels
- Laboratory of Microvascular Research and Vascular Tissue Engineering, Institute of Reconstructive Plastic Surgery, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Boucher PD, Im MM, Freytag SO, Shewach DS. A novel mechanism of synergistic cytotoxicity with 5-fluorocytosine and ganciclovir in double suicide gene therapy. Cancer Res 2006; 66:3230-7. [PMID: 16540675 DOI: 10.1158/0008-5472.can-05-3033] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of cytosine deaminase (CD) and herpes simplex virus thymidine kinase (HSV-TK) suicide gene protocols has resulted in enhanced antitumor activity in cultured tumor cells and animal models. In this study, we show that concurrent addition of prodrugs 5-fluorocytosine (5-FC) and ganciclovir (GCV) was less efficacious than sequential treatment in human DU145 prostate carcinoma cells infected with an adenovirus containing a CD/HSV-TK fusion gene. If cells were incubated for 24 hours with 5-FC followed by a 24-hour GCV treatment, GCV triphosphate levels were 2-fold higher, incorporation of GCV monophosphate into DNA was 2.5-fold higher, and growth inhibition was increased 4-fold compared with simultaneous treatment. As expected, cellular dTTP levels were reduced during the 5-FC preincubation. However, dGTP pools also declined parallel to the dTTP decrease. Similar results were obtained when 5-fluorouracil or 5-fluoro-2'-deoxyuridine was used instead of CD/5-FC. These data allowed us to propose a novel hypothesis for the synergistic interaction between CD/5-FC and HSV-TK/GCV treatments. We suggest that the CD/5-FC-mediated reduction of dTTP results in a concurrent decrease of dGTP due to allosteric regulation of ribonucleotide reductase. Because dGTP is the endogenous competitor of GCV triphosphate, depleted dGTP at the time of GCV addition results in increased GCV in DNA and cell kill. In fact, addition of deoxyguanosine during the 5-FC incubation reverses the dGTP depletion, reduces the amount of GCV monophosphate incorporated into DNA, and prevents the CD/5-FC-mediated enhancement of HSV-TK/GCV cytotoxicity. Understanding this mechanistic interaction may help recognize better strategies for creating more efficacious clinical protocols.
Collapse
Affiliation(s)
- Paul D Boucher
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0504, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
For the minority of patients with hepatocellular carcinoma (HCC), surgical or locally ablative therapies may offer the prospect of cure. However, the majority of patients present with advanced disease, such that treatment with curative intent is no longer possible. For some of these patients, with good hepatic reserve and a patent portal venous system, chemoembolisation may afford a modest survival benefit. The remainder of patients are frequently treated with systemic therapies with palliative intent. However, no drug treatment has yet clearly demonstrated a significant beneficial effect on survival or quality of life. Thus, there is an urgent need for novel approaches. Gene- and immunotherapy approaches using a variety of strategies are in development at present. HCC possesses several characteristics that make it an attractive target for these therapies. This review aims to summarise the approaches to gene- and immunotherapy for HCC, with particular reference to strategies that are entering clinical trials. It will then describe some of the obstacles to the success of these new approaches and provide opinion regarding ongoing and future developments. The challenge remains to design clinical trials to optimally evaluate these agents and allow feedback to the laboratory for their ongoing development.
Collapse
Affiliation(s)
- Daniel H Palmer
- CR UK Institute for Cancer Studies, Clinical Research Block, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
15
|
Xia D, Moyana T, Xiang J. Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res 2006; 16:241-59. [PMID: 16541123 DOI: 10.1038/sj.cr.7310032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC-based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.
Collapse
Affiliation(s)
- Dajing Xia
- Research Unit, Health Research Division, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, 20 Campus Drive, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | |
Collapse
|
16
|
Boucher PD, Shewach DS. In Vitro and in Vivo Enhancement of Ganciclovir-Mediated Bystander Cytotoxicity with Gemcitabine. Mol Ther 2005; 12:1064-71. [PMID: 16107324 DOI: 10.1016/j.ymthe.2005.07.643] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 11/29/2022] Open
Abstract
To improve bystander cell killing with HSV-TK/GCV, we have utilized dFdCyd to reduce endogenous dGTP, which competes with GCVTP for incorporation into DNA. In this study we demonstrate the ability of dFdCyd to enhance GCV-mediated bystander cytotoxicity in cultured SW620 human colon carcinoma cells as well as in a murine xenograft model. In vitro, dFdCyd reduced cellular dGTP levels and produced a fourfold increase in the GCVTP:dGTP ratio. This elevated GCVTP:dGTP ratio resulted in a twofold increase in GCVMP incorporation into DNA in bystander cells cocultured with HSV-TK-expressing cells. The combination of GCV and dFdCyd was determined to be synergistic by isobologram analysis of bystander cytotoxicity. Tumors in mice treated with GCV and dFdCyd exhibited a significant growth delay requiring 40 days to obtain approximately 10 times their initial size compared to tumors in PBS- or single-drug-treated animals, which grew rapidly, increasing to a similar size in just 19 to 24 days. In addition, complete tumor regression was observed only in animals treated with both drugs. Furthermore, dFdCyd alone or in combination with GCV produced no evidence of toxicity or significant weight loss. These data suggest that dFdCyd may improve the clinical efficacy of HSV-TK/GCV gene therapies.
Collapse
Affiliation(s)
- Paul D Boucher
- Department of Pharmacology, University of Michigan Medical Center, 1310 East Catherine, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
17
|
Ugai H, Murata T, Nagamura Y, Ugawa Y, Suzuki E, Nakata H, Kujime Y, Inamoto S, Hirose M, Inabe K, Terashima M, Yamasaki T, Liu B, Nakade K, Pan J, Kimura M, Saito I, Hamada H, Obata Y, Yokoyama KK. A database of recombinant viruses and recombinant viral vectors available from the RIKEN DNA bank. J Gene Med 2005; 7:1148-57. [PMID: 15945121 DOI: 10.1002/jgm.786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Viral vectors are required as gene-delivery systems for gene therapy and basic research. Recombinant adenoviruses (rAds) expressing genes of interest are being developed as research tools and many studies in vitro and in vivo have already been performed with such rAds. METHODS Shuttle vectors for rAds were constructed with full-length cDNAs and rAds were generated in HEK293 cells by the COS-TPC method. The rAds and shuttle vectors were developed by the Japanese research community and deposited in the RIKEN DNA Bank (RDB; http://www.brc.riken.jp/lab/dna/en/) for distribution to the scientific community. The Recombinant Virus Database (RVD; http://www.brc.riken.jp/lab/dna/rvd/) was established at the RIKEN BioResource Center (BRC) in Japan as the source of information about and distribution of the various resources. RESULTS The RIKEN BRC is releasing more than 300 recombinant viruses (RVs) and 500 shuttle vectors, as well as all related information, which is included in a newly established database, the RVD. The RVD consists of (i) information about the RVs, the inserted cDNAs and the shuttle vectors; (ii) data about sequence-tagged sites (STSs) that are markers of viral DNAs; and (iii) experimental protocols for the use of RVs. CONCLUSIONS The new database and available resources should be very useful to scientists who are studying human gene therapy and performing related basic research. It is a web-interfaced flat-file database that can be accessed through the internet. Moreover, all of the resources deposited in the RDB, which is a public facility in Japan, are available to researchers around the world.
Collapse
Affiliation(s)
- Hideyo Ugai
- Gene Engineering Division, RIKEN BioResource Center, RIKEN (The Institute of Physical & Chemical Research), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boulis NM, Noordmans AJ, Song DK, Imperiale MJ, Rubin A, Leone P, During M, Feldman EL. Adeno-associated viral vector gene expression in the adult rat spinal cord following remote vector delivery. Neurobiol Dis 2004; 14:535-41. [PMID: 14678769 DOI: 10.1016/j.nbd.2003.08.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current investigation tests whether adeno-associated viral vectors (rAAV) undergo remote delivery to the spinal cord via peripheral nerve injection as previously demonstrated with adenoviral vectors. The sciatic nerves of adult rats (n = 10) were injected with either an rAAV (rAAVCMV-lacZ) or adenoviral (AdCMV-lacZ) vector (1.4 x 10(7) particles/ml). After 21 days, the rAAV group demonstrated significantly higher spinal cord viral expression than the adenoviral group (P < 0.024). A second group of rats was injected with rAAV expressing the green fluorescence protein (GFP) reporter gene. GFP was detected 21 days after unilateral sciatic nerve injection in the neurons of the dorsal root ganglion and spinal cord. The codistribution of the viral genome and transgene in CNS neurons was confirmed with in situ hybridization. In summary, rAAV genes are expressed in CNS neurons following peripheral nerve injection at levels exceeding those seen following remote adenovirus injection.
Collapse
Affiliation(s)
- Nicholas M Boulis
- Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bachmann MF, Dyer MR. Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat Rev Drug Discov 2004; 3:81-8. [PMID: 14666113 DOI: 10.1038/nrd1284] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Abstract
Gene transfer involves the use of an engineered biologic vehicle known as a vector to introduce a gene encoding a protein of interest into a particular tissue. In diseases with known defects at a genetic level, gene transfer offers a potential means of restoring a normal molecular environment via vector-mediated entry (transduction) and expression of genes encoding potentially therapeutic proteins selectively in diseased tissues. The technology of gene transfer therefore underlies the concept of gene therapy and falls under the umbrella of the current genomics revolution. Particularly since 1995, numerous attempts have been made to introduce genes into intracranial blood vessels to demonstrate and characterize viable transduction. More recently, in attempting to translate cerebrovascular gene transfer technology closer to the clinical arena, successful transductions of normal human cerebral arteries ex vivo and diseased animal cerebral arteries in vivo have been reported using vasomodulatory vectors. Considering the emerging importance of gene-based strategies for the treatment of the spectrum of human disease, the goals of the present report are to overview the fundamentals of gene transfer and review experimental studies germane to the clinical translation of a technology that can facilitate genetic modification of cerebral blood vessels.
Collapse
Affiliation(s)
- Vini G Khurana
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
21
|
Smythe GM, Lai MC, Grounds MD, Rakoczy PE. Adeno-associated virus-mediated vascular endothelial growth factor gene therapy in skeletal muscle before transplantation promotes revascularization of regenerating muscle. TISSUE ENGINEERING 2002; 8:879-91. [PMID: 12459067 DOI: 10.1089/10763270260424240] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Successful clinical transplantation of whole skeletal muscles can be limited by impaired muscle revascularization and regeneration. The aim of this study was to enhance the revascularization (and hence speed of regeneration) of transplanted whole muscles by transducing muscles with the vascular endothelial growth factor (VEGF) gene before transplantation, using a recombinant adeno-associated virus (rAAV). The rAAV encoding VEGF and green fluorescent protein (GFP) (rAAV.VEGF.GFP) was injected into the tibialis anterior muscles of adult BALB/c mice. One month after injection whole muscle autotransplantation was performed. Muscles were sampled 7 days after autografting. GFP expression was examined as an indicator of persistent transgene expression after grafting, and immunohistochemistry was used to identify VEGF, blood vessels, and newly formed myotubes. After grafting, GFP expression persisted only in a few surviving myofibers in the periphery of rAAV.VEGF.GFP-pretreated muscles, although abundant VEGF expression was seen in myogenic cells in all grafted muscles. Quantitative analysis demonstrated that, although only small numbers of rAAV.VEGF.GFP-transduced myofibers were present, whole muscle grafts preinjected with rAAV.VEGF.GFP were significantly more vascular than saline-injected and uninjected control muscle grafts. Furthermore, rAAV.VEGF.GFP-injected whole muscle transplants were further advanced in terms of regeneration (myotube formation) compared with the uninjected control muscle transplants. This study clearly shows that rAAV-mediated VEGF expression persists only in myofibers that survive the necrosis induced by muscle transplantation; however, this amount of VEGF results in significantly increased revascularization and regeneration of whole muscle transplants.
Collapse
Affiliation(s)
- Gayle M Smythe
- Department of Anatomy and Human Biology, University of Western Australia, Crawley, Perth, Australia 6009
| | | | | | | |
Collapse
|
22
|
Li LH, Shivakumar R, Feller S, Allen C, Weiss JM, Dzekunov S, Singh V, Holaday J, Fratantoni J, Liu LN. Highly efficient, large volume flow electroporation. Technol Cancer Res Treat 2002; 1:341-50. [PMID: 12625759 DOI: 10.1177/153303460200100504] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Electroporation is widely used to transfect and load cells with various molecules. Traditional electroporation using a static mode is typically restricted to volumes less than 1 mL, which limits its use in clinical and industrial bioprocessing applications. Here we report efficient, large volume transfection results by using a scalable-volume electroporation system. Suspended (Jurkat) and adherent cells (10T1/2 and Huh-7) were tested. A large macromolecule, FITC-conjugated dextran (MW=500 kD) was used to measure cell uptake, while a plasmid carrying the gene coding for enhanced green fluorescence protein (eGFP) was used to quantitate the flow electrotransfection efficiency as determined by flow cytometry. The flow electroloading efficiency of FITC-dextran was >90%, while the cell viability was highly maintained (>90%). High flow electrotransfection efficiency (up to 75%) and cell viability (up to 90%) were obtained with processing volumes ranging from 1.5 to 50 mL. No significant difference of electrotransfection efficiency was observed between flow and static electrotransfection. When 50 mL of cell volume was processed and samples collected at different time points during electroporation, the transgene expression and cell viability results were identical. We also demonstrated that DNA plasmid containing EBNA1-OriP elements from Epstein-Barr virus were more efficient in transgene expression than standard plasmid without the elements (at least 500 too 1000-fold increase in expression level). Finally, to examine the feasibility of utilizing flow electrotransfected cells as a gene delivery vehicle, 10T1/2 cells were transfected with a DNA plasmid containing the gene coding for mIL12. mIL12 transfected cells were injected subcutaneously into mice, and produced functional mIL12, as demonstrated by anti-angiogenic activity. This is the first demonstration of efficient, large volume, flow electroporation and the in vivo efficacy of flow electrotransfected cells. This technology may be useful for clinical gene therapy and large-scale bioprocesses.
Collapse
Affiliation(s)
- Lin-Hong Li
- MaxCyte, Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang H, Fu S, Busch A, Chen F, Qin L, Bromberg JS. Identification of TNF-alpha-sensitive sites in HCMVie1 promoter. Exp Mol Pathol 2001; 71:106-14. [PMID: 11599916 DOI: 10.1006/exmp.2001.2391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral vectors using the human cytomegalovirus immediate-early promoter (HCMVie1 promoter) are potentially efficient tools for gene delivery in vivo to diverse cell types. We previously demonstrated that two cytokines, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (INF-gamma), inhibited transgene expression from this promoter in skeletal and cardiac myocytes. In this study, electrophoretic mobility shift assays (EMSAs) were performed to identify the TNF-alpha response elements from the HCMVie1 promoter. The results show that TNF-alpha enhances the interaction of nuclear proteins from the C2C12 myocyte line with a single restricted segment of the HCMVie1 promoter. In vitro DNase I footprinting defined precisely the sites of interaction to two elements: nucleotides -1 to 0 and +24 to +36 relative to a transcription initiation cap homologous in the HCMVie1 promoter. These sites contain homologous sequences for cap initiation site (82%) and NFkappaB (62%) sites, respectively. Specificity was further ascertained by competitive EMSAs with wild-type and mutant oligonucleotide probes. Southwestern blotting showed that three proteins (45, 30, and 20 kDa) bound to this TNF-alpha-sensitive element, separately. However, EMSAs failed to prove a role for Yin Yang-1 (YY-1), NFkappaB (p65), or NFkappaB (p50) in binding to these sites. Our results provide evidence for two novel sites in the HCMVie1 promoter that are targets for TNF-alpha enhanced binding of transcription factors.
Collapse
Affiliation(s)
- H Zhang
- The Institute for Gene Therapy and Molecular Medicine and the Recanati/Miller Transplant Institute, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hense M, Domann E, Krusch S, Wachholz P, Dittmar KE, Rohde M, Wehland J, Chakraborty T, Weiss S. Eukaryotic expression plasmid transfer from the intracellular bacterium Listeria monocytogenes to host cells. Cell Microbiol 2001; 3:599-609. [PMID: 11553012 DOI: 10.1046/j.1462-5822.2001.00138.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The facultative intracellular, Gram-positive bacterium Listeria monocytogenes invades phagocytic and non-phagocytic cells from the tissues and organs of a wide variety of animals and humans. Here, we report the use of these bacteria as vehicles for gene transfer. Eukaryotic expression plasmids were introduced into the nucleus of host cells following lysis of the intracytosolic, plasmid-carrying bacteria with antibiotics. Cell lines of different tissues and species could be transfected in this way. We examined bacterial properties required for delivery of the expression plasmids and found that this was strictly dependent on the ability of these bacteria to both invade eukaryotic cells and egress from the vacuole into the cytosol of the infected host cells. Macrophage-like cell lines or primary, peritoneal macrophages proved to be almost refractory to Listeria-mediated gene transfer. Thus, attenuated L. monocytogenes represents a serious candidate for consideration as a DNA-transfer vehicle for in vivo somatic gene therapy. The potential for oral administration of L. monocytogenes and the ease in producing and cultivating recombinant strains are further attributes that make its use as a gene transfer vehicle attractive.
Collapse
Affiliation(s)
- M Hense
- Department of Cell Biology and Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fischer S, Liu M, MacLean AA, de Perrot M, Ho M, Cardella JA, Zhang XM, Bai XH, Suga M, Imai Y, Keshavjee S. In vivo transtracheal adenovirus-mediated transfer of human interleukin-10 gene to donor lungs ameliorates ischemia-reperfusion injury and improves early posttransplant graft function in the rat. Hum Gene Ther 2001; 12:1513-26. [PMID: 11506694 DOI: 10.1089/10430340152480249] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the effect of adenovirus-mediated transtracheal transfer of the human interleukin 10 (hIL-10) gene on lung ischemia-reperfusion (IR) injury, which is the insult due to hypothermic preservation plus graft reperfusion, and posttransplant lung function in Lewis rat lungs. Thirty rats were divided into 6 groups (n = 5). Groups 1 and 4 received 5 x 10(9) PFU of Ad5E1RSVhIL-10, groups 2 and 5 received 5 x 10(9) PFU of Ad5BGL2 ("empty" vector), and groups 3 and 6 received 3% sucrose (diluent). After 24 hr of in vivo transfection, lungs were stored at 4 degrees C (cold ischemic time, CIT) for 6 hr (groups 1-3) or 24 hr (groups 4-6) before transplantation. After 2 hr of reperfusion, lung function was assessed by oxygenation (FIO2, 1.0), airway pressure (AwP), and wet-to-dry (W/D) weight ratios. Rat tumor necrosis factor alpha (rTNF-alpha), interferon gamma (IFN-gamma), IL-10, and hIL-10 were measured in graft tissue and recipient plasma by ELISA and detected by immunohistochemistry (IHC). Partial pressure of oxygen (PaO2) levels in the hIL-10 group (6 hr of CIT) were higher than in empty vector and diluent groups (PaO2, 530 +/- 23 vs. 387 +/- 31 and 439 +/- 27 mmHg, respectively, p < 0.05). IL-10 rats after 24 hr of CIT showed higher PaO2 levels (260 +/- 29 mmHg) than empty vector (96 +/- 24 mmHg) or diluent (133 +/- 10 mmHg) lungs (p < 0.05). AwP and W/D ratios were reduced in hIL10 lungs (p < 0.05) compared with the other groups. rTNF-alpha and INF-gamma were reduced in tissue and plasma in groups 1 and 4 (p < 0.05). rIL-10 was reduced in the tissue of hIL-10 lungs (p < 0.05). IHC showed equal distribution of cytokines in tissue and abundant transgene expression in large and small airway epithelium in hIL-10 lungs.
Collapse
Affiliation(s)
- S Fischer
- Thoracic Surgery Research Laboratory, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Human gene therapy (HGT) is defined as the transfer of nucleic acids (DNA) to somatic cells of a patient which results in a therapeutic effect, by either correcting genetic defects or by overexpressing proteins that are therapeutically useful. In the past, both the professional and the lay community had high (sometimes unreasonably high) expectations from HGT because of the early promise of treating or preventing diseases effectively and safely by this new technology. Although the theoretical advantages of HGT are undisputable, so far HGT has not delivered the promised results: convincing clinical efficacy could not be demonstrated yet in most of the trials conducted so far, while safety concerns were raised recently as the consequence of the "Gelsinger Case" in Philadelphia. This situation resulted from the by now well-recognized disparity between theory and practice. In other words, the existing technologies could not meet the practical needs of clinically successful HGT so far. However, over the past years, significant progress was made in various enabling technologies, in the molecular understanding of diseases and the manufacturing of vectors. HGT is a complex process, involving multiple steps in the human body (delivery to organs, tissue targeting, cellular trafficking, regulation of gene expression level and duration, biological activity of therapeutic protein, safety of the vector and gene product, to name just a few) most of which are not completely understood. The prerequisite of successful HGT include therapeutically suitable genes (with a proven role in pathophysiology of the disease), appropriate gene delivery systems (e.g., viral and non-viral vectors), proof of principle of efficacy and safety in appropriate preclinical models and suitable manufacturing and analytical processes to provide well-defined HGT products for clinical investigations. The most promising areas for gene therapy today are hemophilias, for monogenic diseases, and cardiovascular diseases (more specifically, therapeutic angiogenesis for myocardial ischemia and peripheral vascular disease, restenosis, stent stenosis and bypass graft failure) among multigenic diseases. This is based on the relative ease of access of blood vessels for HGT, and also because existing gene delivery technologies may be sufficient to achieve effective and safe therapeutic benefits for some of these indications (transient gene expression in some but not all affected cells is required to achieve a therapeutic effect at relatively low [safe] dose of vectors). For other diseases (including cancer) further developments in gene delivery vectors and gene expression systems will be required. It is important to note, that there will not be a "universal vector" and each clinical indication may require a specific set of technical hurdles to overcome. These will include modification of viral vectors (to reduce immunogenicity, change tropism and increase cloning capacity), engineering of non-viral vectors by mimicking the beneficial properties of viruses, cell-based gene delivery technologies, and development of innovative gene expression regulation systems. The technical advances together with the ever increasing knowledge and experience in the field will undoubtedly lead to the realization of the full potential of HGT in the future.
Collapse
Affiliation(s)
- G M Rubanyi
- Gene Therapy Department, Berlex Biosciences, 15049 San Pablo Avenue, Richmond, CA 94804-0099, USA.
| |
Collapse
|
27
|
Abstract
Gene transfer is a powerful, evolving technique that uses a biologic vehicle (eg, an engineered adenovirus) to introduce a specific gene of interest (ie, a recombinant gene) into a target tissue. This approach, which has considerable therapeutic potential, underlies the concept of gene therapy. Several studies have characterized the morphologic, biochemical, and functional effects of recombinant gene expression in animal and human cerebral arteries, and support the possibility of gene therapy for cerebrovascular disease. However, for successful integration into future clinical practice, key issues concerning vector safety, delivery methods, and transduction specificity need to be addressed. Alongside completion of the Human Genome Project, transfer of novel genes into the central nervous system is likely to impact greatly on our ability to favorably modify diseased human tissue. Knowledge of the fundamental concepts of cerebrovascular gene transfer is therefore useful to understanding both its molecular basis and potential clinical utility.
Collapse
Affiliation(s)
- V G Khurana
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
28
|
|