1
|
Choice of vector and surgical approach enables efficient cochlear gene transfer in nonhuman primate. Nat Commun 2022; 13:1359. [PMID: 35292639 PMCID: PMC8924271 DOI: 10.1038/s41467-022-28969-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Inner ear gene therapy using adeno-associated viral vectors (AAV) promises to alleviate hearing and balance disorders. We previously established the benefits of Anc80L65 in targeting inner and outer hair cells in newborn mice. To accelerate translation to humans, we now report the feasibility and efficiency of the surgical approach and vector delivery in a nonhuman primate model. Five rhesus macaques were injected with AAV1 or Anc80L65 expressing eGFP using a transmastoid posterior tympanotomy approach to access the round window membrane after making a small fenestra in the oval window. The procedure was well tolerated. All but one animal showed cochlear eGFP expression 7–14 days following injection. Anc80L65 in 2 animals transduced up to 90% of apical inner hair cells; AAV1 was markedly less efficient at equal dose. Transduction for both vectors declined from apex to base. These data motivate future translational studies to evaluate gene therapy for human hearing disorders. Gene therapy using Adeno-associated viral vectors (AAV) rescues hearing and balance deficits in mouse models of human disorders. Here, the authors show that AAVAnc80L65 allows efficient cochlear gene transfer in nonhuman primates, and motivate future studies to evaluate gene therapy for hearing and balance disorders.
Collapse
|
2
|
Febles NK, Bauer MA, Ding B, Zhu X, Gallant ND, Frisina RD. A combinatorial approach to protect sensory tissue against cisplatin-induced ototoxicity. Hear Res 2022; 415:108430. [PMID: 35051751 PMCID: PMC8810742 DOI: 10.1016/j.heares.2022.108430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
Sensorineural Hearing Loss (SNHL) is a highly prevalent disorder involving permanent damage or loss to the inner ear's mechano-sensory hair cells and nerve fibers. Major contributing causes are ototoxic drugs, loud noises, and aging. Drug-induced hearing loss (DIHL), affects over 25% of patients treated with common therapeutics such as aminoglycoside antibiotics, loop diuretics or chemotherapeutics. A commonly used chemotherapeutic agent, cisplatin, is very effective for treating malignant tumors, but results in a majority of patients experiencing irreversible hearing loss and/or tinnitus. Additionally, since there is currently no FDA-approved treatments for SNHL, attenuation of ototoxicity is a major area of investigation in oncology, otolaryngology and hearing research. Several potential otoprotective agents have been investigated at the clinical trial stage, but none have progressed to a full FDA-approval. In this study, we investigated a combinatorial approach comprised of an antioxidant, a p53 inhibitor and a neurotrophin, as a multifactorial otoprotective treatment for cisplatin exposure. In vitro, HEI-OC1 cells, an immortalized organ of Corti epithelial cell line, pre-treated with this biotherapeutic cocktail had significantly reduced cisplatin-induced cell death, DNA fragmentation, and apoptotic activation. In an ex vivo study, rat pup D2-D3 organ of Corti explants, significant protection against cisplatin-based hair cell and neuronal loss was achieved by delivery of the same combinatorial pretreatment. Interestingly, the hair cell protection was localized to the basal and middle regions of the organ of Corti. Together, these findings highlight a novel approach to attenuate cisplatin ototoxicity and potentially prevent DIHL by addressing biological mechanisms of cisplatin ototoxicity.
Collapse
Affiliation(s)
- Nicole K Febles
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Mark A Bauer
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Bo Ding
- Department of Communicative Sciences and Disorders, University of South Florida, Tampa, FL 33602, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Xiaoxia Zhu
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Nathan D Gallant
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33602, USA.
| | - Robert D Frisina
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Department of Communicative Sciences and Disorders, University of South Florida, Tampa, FL 33602, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA.
| |
Collapse
|
3
|
Abstract
Biologic therapies have the ability to fundamentally change the management of hearing loss; clinicians need to familiarize themselves with their prospective applications in practice. This article reviews the current application of 4 categories of biological therapeutics-growth factors, apoptosis inhibitors, monoclonal antibodies, and gene therapy-in otology and their potential future directions and applications.
Collapse
Affiliation(s)
- Steven A Gordon
- Otolaryngology-Head & Neck Surgery, University of Utah Health, 50 North Medical Drive 3C120 SOM, Salt Lake City, UT 84132, USA
| | - Richard K Gurgel
- Otolaryngology-Head & Neck Surgery, University of Utah Health, 50 North Medical Drive 3C120 SOM, Salt Lake City, UT 84132, USA.
| |
Collapse
|
4
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Valentini C, Szeto B, Kysar JW, Lalwani AK. Inner Ear Gene Delivery: Vectors and Routes. HEARING BALANCE AND COMMUNICATION 2020; 18:278-285. [PMID: 33604229 DOI: 10.1080/21695717.2020.1807261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives Current treatments for hearing loss offer some functional improvements in hearing, but do not restore normal hearing. The aim of this review is to highlight recent advances in viral and non-viral vectors for gene therapy and to discuss approaches for overcoming barriers inherent to inner ear delivery of gene products. Data Sources The databases used were Medline, EMBASE, Web of Science, and Google Scholar. Search terms were [("cochlea*" or "inner ear" or "transtympanic" or "intratympanic" or "intracochlear" or "hair cells" or "spiral ganglia" or "Organ of Corti") and ("gene therapy" or "gene delivery")]. The references section of resulting articles was also used to identify relevant studies. Results Both viral and non-viral vectors play important roles in advancing gene delivery to the inner ear. The round window membrane is one significant barrier to gene delivery that intratympanic delivery methods attempt to overcome through diffusion and intracochlear delivery methods bypass completely. Conclusions Gene therapy for hearing loss is a promising treatment for restoring hearing function by addressing innate defects. Recent technological advances in inner ear drug delivery techniques pose exciting opportunities for progress in gene therapy.
Collapse
Affiliation(s)
- Chris Valentini
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Betsy Szeto
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Jeffrey W Kysar
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.,Department of Mechanical Engineering, School of Engineering, Columbia University, New York, New York
| | - Anil K Lalwani
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.,Department of Mechanical Engineering, School of Engineering, Columbia University, New York, New York
| |
Collapse
|
6
|
Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020; 9:jcm9072309. [PMID: 32708116 PMCID: PMC7408650 DOI: 10.3390/jcm9072309] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans of all age groups, from children (1/500) to the elderly (more than 50% of the over-75 s). Over 50% of congenital deafness are hereditary in nature. The other major causes of deafness, which also may have genetic predisposition, are aging, acoustic trauma, ototoxic drugs such as aminoglycosides, and noise exposure. Over the last two decades, the study of inherited deafness forms and related animal models has been instrumental in deciphering the molecular, cellular, and physiological mechanisms of disease. However, there is still no curative treatment for sensorineural deafness. Hearing loss is currently palliated by rehabilitation methods: conventional hearing aids, and for more severe forms, cochlear implants. Efforts are continuing to improve these devices to help users to understand speech in noisy environments and to appreciate music. However, neither approach can mediate a full recovery of hearing sensitivity and/or restoration of the native inner ear sensory epithelia. New therapeutic approaches based on gene transfer and gene editing tools are being developed in animal models. In this review, we focus on the successful restoration of auditory and vestibular functions in certain inner ear conditions, paving the way for future clinical applications.
Collapse
|
7
|
Zhao X, Jin C, Dong T, Sun Z, Zheng X, Feng B, Cheng Z, Li X, Tao Y, Wu H. Characterization of promoters for adeno-associated virus mediated efficient Cas9 activation in adult Cas9 knock-in murine cochleae. Hear Res 2020; 394:107999. [PMID: 32611519 DOI: 10.1016/j.heares.2020.107999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 11/27/2022]
Abstract
CRISPR/Cas9 gene editing enables the treatment of hearing loss in congenitally deaf neonatal mice via both viral and non-viral delivery. While adeno-associated virus (AAV)-mediated gene delivery systems have been shown to be effective tools for gene replacement in the inner ear, application of the AAV-mediated CRISPR/Cas9 gene-editing approach for this purpose is yet to be documented. Based on our previous findings, we focused on the effects of several AAVs delivered via canalostomy injection in adult mice. Among the AAVs examined, AAV8 showed the greatest efficiency and specificity in transducing inner hair cells (IHC). The ability of Cre-expressing AAV8 to activate Cas9 in floxed-Cas9 knock-in (Cas9 KI) mice was further evaluated. We compared the effects of six different promoters (CMV, CAG, hSyn, CaMKIIa, GFAP, and ALB) of AAV8 delivered to the inner ear of adult Cas9 KI mice. Our findings showed that three AAV groups (CMV, CAG and hSyn promoters) infected the inner ear efficiently with different tropisms. Notably, AAVs with CMV, CAG, and hSyn promoters infected diverse cell types in mature murine cochleae, including IHCs. In particular, AAV8-hSyn showed high affinity to IHCs and spiral ganglion neurons (SGN). Neither the AAV8 virus itself (except AAV8-CAG) nor the surgical procedures used caused damage to HCs or impaired normal hearing. Our findings indicated that injection of AAV-Cre into mature inner ear efficiently induces Cas9 activation to achieve safe and efficient gene editing and different constituent promoters confer diverse infection patterns in cochlea, expanding the repertoire of gene-editing tools for regulating gene expression in target cells of the inner ear as part of the collective effort to rescue genetic hearing loss and develop effective gene therapy techniques.
Collapse
Affiliation(s)
- Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Tingting Dong
- Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China; Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Zhuoer Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Xiang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China.
| |
Collapse
|
8
|
Géléoc GGS, El-Amraoui A. Disease mechanisms and gene therapy for Usher syndrome. Hear Res 2020; 394:107932. [PMID: 32199721 DOI: 10.1016/j.heares.2020.107932] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Usher syndrome (USH) is a major cause of deaf-blindness in humans, affecting ∼400 000 patients worldwide. Three clinical subtypes, USH1-3, have been defined, with 10 USH genes identified so far. In recent years, in addition to identification of new Usher genes and diagnostic tools, major progress has been made in understanding the role of Usher proteins and how they cooperate through interaction networks to ensure proper development, architecture and function of the stereociliary bundle at the apex of sensory hair cells in the inner ear. Several Usher mouse models of known human Usher genes have been characterized. These mice faithfully reproduce the auditory phenotype associated with Usher syndrome and the vestibular phenotype associated with some mutations in USH genes, particularly USH1. Interestingly, very few mouse models of Usher syndrome recapitulate the retinal phenotype associated with the disease in human. Usher patients can benefit from hearing aids or cochlear implants, which partially alleviate auditory sensory deprivation. However, there are currently no biological treatments available for auditory or visual dysfunction in Usher patients. Development of novel therapies for Usher syndrome has sprouted over the past decade, building on recent progress in gene transfer and new gene editing tools. Promising success demonstrating recovery of hearing and balance functions have been obtained via distinct therapeutic strategies in animal models. Clinical translation to Usher patients, however, calls for further improvements and concerted efforts to overcome the challenges ahead.
Collapse
Affiliation(s)
- Gwenaelle G S Géléoc
- Boston Children's Hospital and Harvard Medical School, 3, Blackfan circle, Center for Life Science, 03001, Boston, MA, 02115, United States.
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Institut Pasteur, INSERM-UMRS1120, Sorbonne Université, 25 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
9
|
Adeno-associated virus vector enables safe and efficient Cas9 activation in neonatal and adult Cas9 knockin murine cochleae. Gene Ther 2020; 27:392-405. [PMID: 32005950 DOI: 10.1038/s41434-020-0124-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/30/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV)-mediated gene delivery systems have been shown to be effective tools for gene manipulation in the inner ear. For example, hair cells (HCs) and multiple other cell types can be transduced by the local injection of AAVs into the inner ear. However, application of the AAV-mediated CRISPR/Cas9 gene-editing approach to the inner ear in adult mice has not yet been studied. Based on our previous work, we investigated several AAV serotypes in neonatal and adult mice in parallel, and found that AAV8 had the top efficiency to transduce inner HCs. We then tested the ability of Cre-expressing AAV8 to activate Cas9 in floxed-Cas9 knockin mice, and observed significant Cas9 activation in the inner ear of both neonatal and adult animals. Neither the AAV8 virus itself nor the surgical procedures used to deliver it-cochleostomy for neonatal mice and canalostomy for adult mice-caused any damage to HCs or impaired normal hearing. Our studies indicate that the local injection of AAV8-Cre can induce Cas9 activation to perform safe and efficient gene editing in the inner ear, expanding the repertoire of gene-editing tools for regulating gene expression in the inner ear as a part of efforts to rescue genetic hearing loss, initiate regeneration of HCs, or develop gene therapy techniques.
Collapse
|
10
|
Van De Water TR. Historical Aspects of Gene Therapy and Stem Cell Therapy in the Treatment of Hearing and Balance Disorder. Anat Rec (Hoboken) 2020; 303:390-407. [DOI: 10.1002/ar.24332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas R. Van De Water
- Cochlear Implant Research Program, Department of Otolaryngology, University of Miami Ear InstituteUniversity of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
11
|
Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019; 28:R65-R79. [PMID: 31227837 PMCID: PMC6796998 DOI: 10.1093/hmg/ddz129] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder. Its underlying etiologies include a broad spectrum of genetic and environmental factors that can lead to hearing loss that is congenital or late onset, stable or progressive, drug related, noise induced, age related, traumatic or post-infectious. Habilitation options typically focus on amplification using wearable or implantable devices; however exciting new gene-therapy-based strategies to restore and prevent SNHL are actively under investigation. Recent proof-of-principle studies demonstrate the potential therapeutic potential of molecular agents delivered to the inner ear to ameliorate different types of SNHL. Correcting or preventing underlying genetic forms of hearing loss is poised to become a reality. Herein, we review molecular therapies for hearing loss such as gene replacement, antisense oligonucleotides, RNA interference and CRISPR-based gene editing. We discuss delivery methods, techniques and viral vectors employed for inner ear gene therapy and the advancements in this field that are paving the way for basic science research discoveries to transition to clinical trials.
Collapse
Affiliation(s)
- Ryotaro Omichi
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Seiji B Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M139NT, UK
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Pierstorff E, Yang WW, Chen YJA, Cheung S, Kalinec F, Slattery WH. Prevention of cisplatin-induced hearing loss by extended release fluticasone propionate intracochlear implants. Int J Pediatr Otorhinolaryngol 2019; 121:157-163. [PMID: 30913504 PMCID: PMC6502669 DOI: 10.1016/j.ijporl.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/27/2019] [Accepted: 03/17/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Cisplatin is a chemotherapeutic drug known to induce hearing loss. Although corticosteroids may help to mitigate the ototoxic side effects of cisplatin, there are complications associated with their systemic and prolonged use. The goal of this study is to test the efficacy of extended-release fluticasone propionate intracochlear implant particles to protect against cisplatin-induced hearing loss. METHODS We used guinea pigs (n = 9) injected with cisplatin (IP, 12 mg/kg weight). Fluticasone particles were delivered to the cochlear scala tympani through the round window membrane into the right ears of the guinea pigs (left ears being used as a control) two weeks prior to cisplatin administration, and hearing function was evaluated by ABR and DPOAE before implantation, immediately before cisplatin administration, and 2 weeks after the challenge with cisplatin. Data was statistically evaluated using paired t-test analysis. RESULTS No significant differences were observed in ABR threshold between control and implanted ears on day 14 (23.9 ± 2.3 dB vs. 25.6 ± 1.3 dB, P = 0.524), whereas the significant cisplatin-induced hearing loss in control animals (23.9 ± 2.3 dB at day 14 vs. 40.7 ± 2.5 dB at day 28, P ≤ 0.0001) was prevented in implanted animals (25.6 ± 1.3 dB at day 14 vs. 25.0 ± 3.1 at day 28, P ≥ 0.85). A similar, though not statistically significant, trend was observed in DPOAE responses in untreated ears (7.9 ± 5.8 dB at day14 vs. -0.5 ± 5.3 dB at day 28, P = 0.654) as compared to treatment (11.1 ± 3.4 dB at day 14 vs. 13.6 ± 4.8 dB at day 28, P = 0.733). CONCLUSION These results suggest that fluticasone intracochlear implants are safe and able to provide effective otoprotection against cisplatin-induced hearing loss in the guinea pig model.
Collapse
Affiliation(s)
- Erik Pierstorff
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA.
| | - Wan-Wan Yang
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA
| | - Yen-Jung Angel Chen
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Shirley Cheung
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | | |
Collapse
|
13
|
Atkinson PJ, Kim GS, Cheng AG. Direct cellular reprogramming and inner ear regeneration. Expert Opin Biol Ther 2019; 19:129-139. [PMID: 30584811 DOI: 10.1080/14712598.2019.1564035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Sound is integral to communication and connects us to the world through speech and music. Cochlear hair cells are essential for converting sounds into neural impulses. However, these cells are highly susceptible to damage from an array of factors, resulting in degeneration and ultimately irreversible hearing loss in humans. Since the discovery of hair cell regeneration in birds, there have been tremendous efforts to identify therapies that could promote hair cell regeneration in mammals. AREAS COVERED Here, we will review recent studies describing spontaneous hair cell regeneration and direct cellular reprograming as well as other factors that mediate mammalian hair cell regeneration. EXPERT OPINION Numerous combinatorial approaches have successfully reprogrammed non-sensory supporting cells to form hair cells, albeit with limited efficacy and maturation. Studies on epigenetic regulation and transcriptional network of hair cell progenitors may accelerate discovery of more promising reprogramming regimens.
Collapse
Affiliation(s)
- Patrick J Atkinson
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Grace S Kim
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Alan G Cheng
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
14
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
15
|
Tao Y, Huang M, Shu Y, Ruprecht A, Wang H, Tang Y, Vandenberghe LH, Wang Q, Gao G, Kong WJ, Chen ZY. Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction. Hum Gene Ther 2018; 29:492-506. [PMID: 29130354 PMCID: PMC5909114 DOI: 10.1089/hum.2017.120] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/27/2017] [Indexed: 02/05/2023] Open
Abstract
Hearing loss, including genetic hearing loss, is one of the most common forms of sensory deficits in humans with limited options of treatment. Adeno-associated virus (AAV)-mediated gene transfer has been shown to recover auditory functions effectively in mouse models of genetic deafness when delivered at neonatal stages. However, the mouse cochlea is still developing at those time points, whereas in humans, the newborn inner ears are already fully mature. For effective gene therapy to treat genetic deafness, it is necessary to determine whether AAV-mediated therapy can be equally effective in the fully mature mouse inner ear without causing damage to the inner ear. This study tested several AAV serotypes by canalostomy in adult mice. It is shown that most AAVs transduce the sensory inner hair cells efficiently, but are less efficient at transducing outer hair cells. A subset of AAVs also transduces non-sensory cochlear cell types. Neither the surgical procedure of canalostomy nor the AAV serotypes damage hair cells or impair normal hearing. The studies indicate that canalostomy can be a viable route for safe and efficient gene delivery, and they expand the repertoire of AAVs to target diverse cell types in the adult inner ear.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingqian Huang
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Yilai Shu
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Otolaryngology—Head and Neck Surgery, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Adam Ruprecht
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Hongyang Wang
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Yong Tang
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Ear, Nose and Throat, People's Hospital of Jilin Province, Changchun, China
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Qiuju Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Guangping Gao
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Yi Chen
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
16
|
Zeng S, Sun X, Chen Z, Yu D, Chen B, Yin S. Low, but Not High, Doses of Cisplatin Damage Cochlear Hair Cells in C57 Mouse Organotypic Cultures. ORL J Otorhinolaryngol Relat Spec 2016; 78:177-86. [PMID: 27270730 DOI: 10.1159/000446189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/12/2016] [Indexed: 11/19/2022]
Abstract
AIMS The purpose of this study was to investigate the characteristics of cisplatin-induced C57 mouse cochlear hair cell damage in vitro. METHODS Forty-seven cochleae harvested from 2- to 4-day-old C57 mice were used. Forty specimens were treated with different concentrations of cisplatin (10, 25, 50, 100, 400, and 1,000 μmol/l) for 48 h. The remaining seven specimens were used as a control group. RESULTS The rate of hair cell loss increased from 14.5 to 78.4% over cisplatin concentrations of 10 to 100 μmol/l, whereas hair cell loss decreased to 48.8 and 8.77% at concentrations of 400 and 1,000 μmol/l, respectively. Apoptosis was detected by DAPI staining in the areas of hair cell damage. Hair cell loss rates differed significantly among the cisplatin-treated groups. Linear regression analysis of cisplatin dose versus hair cell number showed a significant negative correlation for cisplatin doses up to 100 μmol/l and a positive correlation with further increases up to 1,000 μmol/l. CONCLUSIONS We conclude that cisplatin-induced hair cell damage was concentration dependent only up to a certain dose and that injury resistance may occur in cochlear cells treated with higher doses of cisplatin.
Collapse
Affiliation(s)
- Shan Zeng
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
17
|
Genetic Effects on Sensorineural Hearing Loss and Evidence-based Treatment for Sensorineural Hearing Loss. ACTA ACUST UNITED AC 2016; 30:179-88. [PMID: 26564418 DOI: 10.1016/s1001-9294(15)30044-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this article, the mechanism of inheritance behind inherited hearing loss and genetic susceptibility in noise-induced hearing loss are reviewed. Conventional treatments for sensorineural hearing loss (SNHL), i.e. hearing aid and cochlear implant, are effective for some cases, but not without limitations. For example, they provide little benefit for patients of profound SNHL or neural hearing loss, especially when the hearing loss is in poor dynamic range and with low frequency resolution. We emphasize the most recent evidence-based treatment in this field, which includes gene therapy and allotransplantation of stem cells. Their promising results have shown that they might be options of treatment for profound SNHL and neural hearing loss. Although some treatments are still at the experimental stage, it is helpful to be aware of the novel therapies and endeavour to explore the feasibility of their clinical application.
Collapse
|
18
|
Wan G, Corfas G. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res 2015; 329:1-10. [PMID: 25937135 DOI: 10.1016/j.heares.2015.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 01/02/2023]
Abstract
Cochlear ribbon synapses are required for the rapid and precise neural transmission of acoustic signals from inner hair cells to the spiral ganglion neurons. Emerging evidence suggests that damage to these synapses represents an important form of cochlear neuropathy that might be highly prevalent in sensorineural hearing loss. In this review, we discuss our current knowledge on how ribbon synapses are damaged by noise and during aging, as well as potential strategies to promote ribbon synapse regeneration for hearing restoration.
Collapse
Affiliation(s)
- Guoqiang Wan
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Kohrman DC, Raphael Y. Gene therapy for deafness. Gene Ther 2013; 20:1119-23. [PMID: 23864018 PMCID: PMC4113964 DOI: 10.1038/gt.2013.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/18/2022]
Abstract
Hearing loss is the most common sensory deficit in humans and can result from genetic, environmental or combined etiologies that prevent normal function of the cochlea, the peripheral sensory organ. Recent advances in understanding the genetic pathways that are critical for the development and maintenance of cochlear function, as well as the molecular mechanisms that underlie cell trauma and death, have provided exciting opportunities for modulating these pathways to correct genetic mutations, to enhance the endogenous protective pathways for hearing preservation and to regenerate lost sensory cells with the possibility of ameliorating hearing loss. A number of recent animal studies have used gene-based therapies in innovative ways toward realizing these goals. With further refinement, some of the protective and regenerative approaches reviewed here may become clinically applicable.
Collapse
Affiliation(s)
- D C Kohrman
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
20
|
Kelles M, Tan M, Kalcioglu MT, Toplu Y, Bulam N. The Protective Effect of Chrysin Against Cisplatin İnduced Ototoxicity in Rats. Indian J Otolaryngol Head Neck Surg 2013; 66:369-74. [PMID: 26396946 DOI: 10.1007/s12070-013-0695-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/21/2013] [Indexed: 11/25/2022] Open
Abstract
Ototoxicity is a common side effect of cisplatin chemotherapy. The aim of this study was to investigate the potential protective effect of chrysin against cisplatin-induced ototoxicity. Thirty-four adult female Wistar albino rats were separated into four groups: a cisplatin group (Group A), with cisplatin administered to ten rats once daily for three consecutive days at doses of 8 mg/kg body weight intraperitoneally (i.p.); a cisplatin plus chrysin group (Group B), with 8 mg/kg of cisplatin administered i.p. daily to ten rats for three consecutive days and 25 mg/kg of chrysin administered via oral gavage in a corn oil for 5 days: a chrysin group (Group C), with 25 mg/kg of chrysin administered via oral gavage in corn oil for 5 days to seven rats; and a control group (Group D), with 5 ml/kg of corn oil administered to seven rats via oral gavage for 5 days. Distortion product otoacoustic emission measurements were performed in the same ear of the rats under general anesthesia at baseline and on the first and fifth days after drug administration. No significant differences were noted between the measurements either in the chrysin group or in the control group. In the cisplatin group, there was a significant worsening of hearing compared to baseline and the measurements on the fifth day at all frequencies. In the statistical analysis, a statistically significant difference was observed at 5039, 6351, 8003, and 10078 Hz frequencies between the measurements on the first and fifth days. In the cisplatin plus chrysin group, there were statistically significant differences at frequencies of 2,003 and 5,039 Hz between the measurements at baseline and on the fifth day, at 3,175 and 5,039 Hz between the measurements on the first and fifth days, and at 8,003 and 100,078 Hz between the measurements at baseline and on the first day. According to these results, this study demonstrates that cisplatin-related ototoxicity can be prevented in rats by the administration of chrysin.
Collapse
Affiliation(s)
- Mehmet Kelles
- Department of Otorhinolaryngology, Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Tan
- Department of Otorhinolaryngology, Inonu University, Malatya, Turkey
| | - M Tayyar Kalcioglu
- Department of Otorhinolarngology, Istanbul Medeniyet University Medical Faculty, Istanbul, Turkey
| | - Yuksel Toplu
- Department of Otorhinolaryngology, Inonu University, Malatya, Turkey
| | - Nazire Bulam
- Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| |
Collapse
|
21
|
Meyer A, Petit C, Safieddine S. [Gene therapy for human hearing loss: challenges and promises]. Med Sci (Paris) 2013; 29:883-9. [PMID: 24148127 DOI: 10.1051/medsci/20132910016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thanks to the advances accomplished in human genomics during the last twenty years, major progress has been made towards understanding the pathogenesis of various forms of congenital or acquired deafness. The identification of deafness genes, which are potential therapeutic targets, and generation and functional characterization of murine models for human deafness forms have advanced the knowledge of the molecular physiology of auditory sensory cells. These milestones have opened the way for the development of new therapeutic strategies, alternatives to conventional prostheses, hearing amplification for mild-to-severe hearing loss, or cochlear implantation for severe-to-profound deafness. In this review, we first summarize the progress made over the last decade in using gene therapy and antisense RNA delivery, including the development of new methods for cochlear gene transfer. We then discuss the potential of gene therapy for curing acquired or inherited deafness and the major obstacles that must be overcome before clinical application can be considered.
Collapse
Affiliation(s)
- Anaïs Meyer
- Institut Pasteur, unité de génétique et physiologie de l'audition, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France - Inserm UMRS 1120, 75015 Paris, France
| | | | | |
Collapse
|
22
|
Possible protective effect of sertraline against cisplatin-induced ototoxicity: an experimental study. ScientificWorldJournal 2013; 2013:523480. [PMID: 24198723 PMCID: PMC3807705 DOI: 10.1155/2013/523480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/11/2013] [Indexed: 11/17/2022] Open
Abstract
Background/Objective. Cisplatin is a widely used chemotherapeutic agent, but its ototoxicity side effect can occur in the majority of patients. Lots of agents were tried to prevent this, but there is not a routine treatment modality yet. The aim of this study was to evaluate the otoprotective effect of sertraline, which is an antidepressant with neuroprotective effects, against cisplatin, in rats. Design. Experimental animal study. Material and Methods. Forty-eight rats were randomly separated in two groups as groups I and II. Group I was identified as the control group and only a single dose of intraperitoneal cisplatin was administered. In group II, in addition to cisplatin, sertraline was administered to the rats through an oral cannula for ten-day period. Distortion product otoacoustic emission measurements were performed at the first day and the 10th day. Results. When the ototoxicity rates after cisplatin in group I and group II in distortion product otoacoustic emission measurements were compared, it was statistically significantly lower in group II in frequencies of 5652, 6165, 6726, 7336, and 7996 Hz (P < 0.05). Conclusion. Sertraline seems to have a protective effect on cisplatin ototoxicity and could be used to prevent the ototoxicity and also to treat the depression that occurred in cancer patients together.
Collapse
|
23
|
XIA LI, YIN SHANKAI. Local gene transfection in the cochlea (Review). Mol Med Rep 2013; 8:3-10. [DOI: 10.3892/mmr.2013.1496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
|
24
|
Abstract
Animal studies on inner ear development, repair and regeneration provide understanding of molecular pathways that can be harnessed for treating inner ear disease. Use of transgenic mouse technology, in particular, has contributed knowledge of genes that regulate development of hair cells and innervation, and of molecular players that can induce regeneration, but this technology is not applicable for human treatment, for practical and ethical reasons. Therefore other means for influencing gene expression in the inner ear are needed. We describe several gene vectors useful for inner ear gene therapy and the practical aspects of introducing these vectors into the ear. We then review the progress toward using gene transfer for therapies in both auditory and balance systems, and discuss the technological milestones needed to advance to clinical application of these methods.
Collapse
Affiliation(s)
- Hideto Fukui
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | | |
Collapse
|
25
|
Gene therapy for cisplatin-induced ototoxicity: a systematic review of in vitro and experimental animal studies. Otol Neurotol 2012; 33:302-10. [PMID: 22388732 DOI: 10.1097/mao.0b013e318248ee66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Ototoxicity is a frequent adverse event of cisplatin treatment. No therapy is currently available for cisplatin-induced ototoxicity. A systematic review of experimental animal studies and in vitro experiments was conducted to evaluate gene therapy as a potential future therapeutic option. DATA SOURCES Eligible studies were identified through searches of electronic databases Ovid MEDLINE, Ovid MEDLINE In-Process, Embase, PubMed, Biosis Previews, Scopus, ISI Web of Science, and The Cochrane Library. STUDY SELECTION Articles obtained from the search were independently reviewed by 2 authors using specific criteria to identify experimental animal studies and in vitro experiments conducted to evaluate gene therapy for cisplatin-induced ototoxicity. No restriction was applied to publication dates or languages. DATA EXTRACTION Data extracted included experiment type, cell type, species, targeted gene, gene expression, method, administration, inner ear site evaluated, outcome measures for cytotoxicity, and significant results. RESULTS Fourteen articles were included in this review. In vitro and in vivo experiments have been performed to evaluate the potential of gene expression manipulation for cisplatin-induced ototoxicity. Twelve different genes were targeted including NTF3, GDNF, HO-1, XIAP, Trpv1, BCL2, Otos, Nfe2l2, Nox1, Nox3, Nox4, and Ctr1. All of the included articles demonstrated a benefit of gene therapy on cytotoxicity caused by cisplatin. CONCLUSION Experimental animal studies and in vitro experiments have demonstrated the efficacy of gene therapy for cisplatin-induced ototoxicity. However, further investigation regarding safety, immunogenicity, and consequences of genetic manipulation in the inner ear tissues must be completed to develop future therapeutic options.
Collapse
|
26
|
Sacheli R, Delacroix L, Vandenackerveken P, Nguyen L, Malgrange B. Gene transfer in inner ear cells: a challenging race. Gene Ther 2012; 20:237-47. [PMID: 22739386 DOI: 10.1038/gt.2012.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in human genomics led to the identification of numerous defective genes causing deafness, which represent novel putative therapeutic targets. Future gene-based treatment of deafness resulting from genetic or acquired sensorineural hearing loss may include strategies ranging from gene therapy to antisense delivery. For successful development of gene therapies, a minimal requirement involves the engineering of appropriate gene carrier systems. Transfer of exogenous genetic material into the mammalian inner ear using viral or non-viral vectors has been characterized over the last decade. The nature of inner ear cells targeted, as well as the transgene expression level and duration, are highly dependent on the vector type, the route of administration and the strength of the promoter driving expression. This review summarizes and discusses recent advances in inner ear gene-transfer technologies aimed at examining gene function or identifying new treatment for inner ear disorders.
Collapse
Affiliation(s)
- R Sacheli
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
27
|
Yumusakhuylu AC, Yazici M, Sari M, Binnetoglu A, Kosemihal E, Akdas F, Sirvanci S, Yuksel M, Uneri C, Tutkun A. Protective role of resveratrol against cisplatin induced ototoxicity in guinea pigs. Int J Pediatr Otorhinolaryngol 2012; 76:404-8. [PMID: 22261612 DOI: 10.1016/j.ijporl.2011.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/20/2011] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness of systemic administration of resveratrol against cisplatin-induced ototoxicity in guinea pigs. MATERIALS AND METHODS Healthy guinea pigs (n=24) were randomly divided into four groups. Group 1 (n=6) received resveratrol+cisplatin, group 2 (n=6) received 4% ethanol+cisplatin, group 3 (n=6) received cisplatin, and group 4 (n=6) received saline. Cisplatin was administered at a dose of 10mg/kg/day on days 14 and 15 of the study. Resveratrol (10mg/kg/day), 4% ethanol, and saline were administered throughout the study. Baseline auditory brainstem responses (ABR) (4 kHz, 8 kHz, and click stimulus) were determined for all groups. ABR was repeated 72 h after the last dose of cisplatin in order to record the threshold shifts. The ABR threshold shifts for the click stimulus, 4-kHz- and 8-kHz-frequency stimuli were compared after drug administration. After follow-up ABRs the animals sacrificed under deep sedation and their cochleae were removed. Left cochleae were immediately harvested for measurement of level of reactive oxygen species (ROS). Right cochleae were prepared for histological changes which were observed by scanning electron microscopy (SEM). RESULTS For the all stimulus, there was a significant threshold difference among the groups (p<0.01). Group 3 had a significantly higher threshold shift at all stimuli when compared with groups 1 and 4. There was no significant threshold shifts in all stimuli between groups 2 and 3. The resveratrol-treated group 1 showed preservation of threshold in ABR (p ≤ 0.05). SEM showed that inner and outer hair cells were preserved in the group 1. Level of reactive oxygen species (ROS) were significantly higher in groups 2 and 3 compared with groups 1 and 4 (p ≤ 0.05). CONCLUSION These results indicated that systemic administration of resveratrol afforded statistically significant protection to the cochlea of guinea pigs from cisplatin toxicity. Experimental dose of resveratrol injections may have a protective effect against cisplatin ototoxicity in guinea pigs.
Collapse
|
28
|
Jerusalinsky D, Baez MV, Epstein AL. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. ACTA ACUST UNITED AC 2011; 106:2-11. [PMID: 22108428 DOI: 10.1016/j.jphysparis.2011.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/11/2011] [Accepted: 11/04/2011] [Indexed: 12/24/2022]
Abstract
Somatic manipulation of the nervous system without the involvement of the germinal line appears as a powerful counterpart of the transgenic strategy. The use of viral vectors to produce specific, transient and localized knockout, knockdown, ectopic expression or overexpression of a gene, leads to the possibility of analyzing both in vitro and in vivo molecular basis of neural function. In this approach, viral particles engineered to carry transgenic sequences are delivered into discrete brain regions, to transduce cells that will express the transgenic products. Amplicons are replication-incompetent helper-dependent vectors derived from herpes simplex virus type 1 (HSV-1), with several advantages that potentiate their use in neurosciences: (1) minimal toxicity: amplicons do not encode any virus proteins, are neither toxic for the infected cells nor pathogenic for the inoculated animals and elicit low levels of adaptive immune responses; (2) extensive transgene capacity to carry up to 150-kb of foreign DNA; i.e., entire genes with regulatory sequences could be delivered; (3) widespread cellular tropism: amplicons can experimentally infect several cell types including glial cells, though naturally the virus infects mainly neurons and epithelial cells; (4) since the viral genome does not integrate into cellular chromosomes there is low probability to induce insertional mutagenesis. Recent investigations on gene transfer into the brain using these vectors, have focused on gene therapy of inherited genetic diseases affecting the nervous system, such as ataxias, or on neurodegenerative disorders using experimental models of Parkinson's or Alzheimer's disease. Another group of studies used amplicons to investigate complex neural functions such as neuroplasticity, anxiety, learning and memory. In this short review, we summarize recent data supporting the potential of HSV-1 based amplicon vector model for gene delivery and modulation of gene expression in primary cultures of neuronal cells and into the brain of living animals.
Collapse
Affiliation(s)
- Diana Jerusalinsky
- Instituto de Biología Celular y Neurociencia (IBCN), CONICET-UBA. Buenos Aires, Argentina.
| | | | | |
Collapse
|
29
|
Stöver T, Lenarz T. Biomaterials in cochlear implants. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc10. [PMID: 22073103 PMCID: PMC3199815 DOI: 10.3205/cto000062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development.
Collapse
Affiliation(s)
- Timo Stöver
- Department of Otolaryngology, Goethe University Frankfurt, Frankfurt a.M., Germany
| | | |
Collapse
|
30
|
Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther 2011; 18:569-78. [PMID: 21209625 PMCID: PMC3085601 DOI: 10.1038/gt.2010.175] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.
Collapse
|
31
|
Staecker H, Garnham C. Neurotrophin therapy and cochlear implantation: translating animal models to human therapy. Exp Neurol 2010; 226:1-5. [PMID: 20654616 DOI: 10.1016/j.expneurol.2010.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 12/31/2022]
Abstract
Cochlear implantation is a highly successful intervention for the treatment of deafness that depends on electrical stimulation of the inner ear's surviving spiral ganglion neurons. It is thought that some of the variability in hearing outcomes that is seen in patients receiving implants may be a reflection of the number or health of surviving neurons. A variety of studies have demonstrated a relationship between hair cell loss and degeneration of the spiral ganglion. This has been attributed to the loss of neurotrophin production with destruction of the spiral ganglion's target, the hair cell. Delivery of neurotrophins either through a device or through gene therapy has been shown to improve spiral ganglion survival after hair cell loss and additionally improves the function of cochlear implants in animal models. Translation of these observations to human therapy will require a clear understanding of the relationship between human spiral ganglion health and cochlear implant outcomes as well as the development of novel pre- and post-implantation outcomes measures.
Collapse
Affiliation(s)
- Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas, Kansas City, KS 66160, USA.
| | | |
Collapse
|
32
|
Huang Q, Tang J. Age-related hearing loss or presbycusis. Eur Arch Otorhinolaryngol 2010; 267:1179-91. [DOI: 10.1007/s00405-010-1270-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/28/2010] [Indexed: 11/29/2022]
|
33
|
Rybak LP, Mukherjea D, Jajoo S, Ramkumar V. Cisplatin ototoxicity and protection: clinical and experimental studies. TOHOKU J EXP MED 2009; 219:177-86. [PMID: 19851045 PMCID: PMC2927105 DOI: 10.1620/tjem.219.177] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Cisplatin is a chemotherapeutic agent that is widely used to treat a variety of malignant tumors. Serious dose-limiting side effects like ototoxicity, nephrotoxicity and neurotoxicity occur with the use of this agent. This review summarizes recent important clinical and experimental investigations of cisplatin ototoxicity. It also discusses the utility of protective agents employed in patients and in experimental animals. The future strategies for limiting cisplatin ototoxicity will need to avoid interference with the therapeutic effect of cisplatin in order to enhance the quality of life of patients receiving this important anti-tumor agent.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Surgery, Southern Illinois University School of Medicine, IL, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
Therapies for the protection and regeneration of auditory hair cells are of great interest given the significant monetary and lifestyle impact of hearing loss. The past decade has seen tremendous advances in the use of adenoviral vectors to achieve these aims. Preliminary data demonstrated the functional capacity of this technique as adenoviral-induced expression of neurotrophic and growth factors protected hair cells and spiral ganglion neurons from ototoxic insults. Subsequent efforts confirmed the feasibility of adenoviral transfection of cells in the auditory neuroepithelium via cochleostomy into the scala media. Most recently, efforts have focused on regeneration of depleted hair cells. Mammalian hearing loss is generally considered a permanent insult as the auditory epithelium lacks a basal layer capable of producing new hair cells. Recently, the transcription factor Atoh1 has been found to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo have shown the ability to regenerate auditory and vestibular hair cells by causing transdifferentiation of neighboring epithelial-supporting cells. Functional recovery of both the auditory and vestibular systems has been documented following adenoviral induced Atoh1 overexpression.
Collapse
|
35
|
Cuchet D, Epstein AL. Further improvements in the technology of HSV-1-based amplicon vectors. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.7.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Hendricks JL, Chikar JA, Crumling MA, Raphael Y, Martin DC. Localized cell and drug delivery for auditory prostheses. Hear Res 2008; 242:117-31. [PMID: 18573323 DOI: 10.1016/j.heares.2008.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/09/2008] [Accepted: 06/02/2008] [Indexed: 12/20/2022]
Abstract
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness.
Collapse
Affiliation(s)
- Jeffrey L Hendricks
- Department of Biomedical Engineering, The University of Michigan, 1107 Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA.
| | | | | | | | | |
Collapse
|
37
|
Xia A, Wooltorton JRA, Palmer DJ, Ng P, Pereira FA, Eatock RA, Oghalai JS. Functional prestin transduction of immature outer hair cells from normal and prestin-null mice. J Assoc Res Otolaryngol 2008; 9:307-20. [PMID: 18506528 DOI: 10.1007/s10162-008-0121-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 04/04/2008] [Indexed: 10/22/2022] Open
Abstract
Prestin is a membrane protein in the outer hair cell (OHC) that has been shown to be essential for electromotility. OHCs from prestin-null mice do not express prestin, do not have a nonlinear capacitance (the electrical signature of electromotility), and are smaller in size than wild-type OHCs. We sought to determine whether prestin-null OHCs can be transduced to incorporate functional prestin protein in a normal fashion. A recombinant helper-dependent adenovirus expressing prestin and green fluorescent protein (HDAd-prestin-GFP) was created and tested in human embryonic kidney cells (HEK cells). Transduced HEK cells demonstrated membrane expression of prestin and nonlinear capacitance. HDAd-prestin-GFP was then applied to cochlear sensory epithelium explants harvested from wild-type and prestin-null mice at postnatal days 2-3, the age at which native prestin is just beginning to become functional in wild-type mice. At postnatal days 4-5, we investigated transduced OHCs for (1) their prestin expression pattern as revealed by immunofluorescence; (2) their cell surface area as measured by linear capacitance; and (3) their prestin function as indicated by nonlinear capacitance. HDAd-prestin-GFP efficiently transduced OHCs of both genotypes and prestin protein localized to the plasma membrane. Whole-cell voltage clamp studies revealed a nonlinear capacitance in transduced wild-type and prestin-null OHCs, but not in non-transduced cells of either genotype. Prestin transduction did not increase the linear capacitance (cell surface area) for either genotype. In peak nonlinear capacitance, voltage at peak nonlinear capacitance, charge density of the nonlinear capacitance, and shape of the voltage-capacitance curves, the transduced cells of the two genotypes resembled each other and previously reported data from adult wild-type mouse OHCs. Thus, prestin introduced into prestin-deficient OHCs segregates normally to the cell membrane and generates a normal nonlinear capacitance, indicative of normal prestin function.
Collapse
Affiliation(s)
- Anping Xia
- Bobby R. Alford Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Pfannenstiel S, Praetorius M. [Protection and regeneration of sensory epithelia of the inner ear]. HNO 2008; 56:13-20. [PMID: 18210008 DOI: 10.1007/s00106-007-1631-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysfunctions of the inner ear such as hearing impairment due to noise exposure or presbycusis and vertigo are often caused by loss of hair cells in the sensory epithelium. There is still no specific therapy, just technical aids. Options for protecting and regenerating hair cells are explained here. The inhibition of apoptosis via caspases is presently the main target of research. They are involved in damage caused by aminoglycosides, cisplatin, or noise exposure. Bcl-2, growth factors, and oxidative stress are discussed. In regeneration the transdifferentiation of supporting cells to hair cells is explained. This can be achieved with local gene therapy using math1. Approach and media for the application are discussed, while viral vectors such as the adenovector seem the most promising in research.
Collapse
Affiliation(s)
- S Pfannenstiel
- Sektion Otologie und Neuro-Otologie, Hals-Nasen-Ohrenklinik,Universitätsklinikum, Im Neuenheimer Feld 400 , 69120, Heidelberg, Deutschland
| | | |
Collapse
|
39
|
Cuchet D, Potel C, Thomas J, Epstein AL. HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 2007; 7:975-95. [PMID: 17665988 DOI: 10.1517/14712598.7.7.975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amplicons are defective and non-integrative vectors derived from herpes simplex virus type 1. They carry no virus genes in the vector genome and are, therefore, not toxic to the infected cells or pathogenic for the transduced organisms, making these vectors safe. In addition, the large transgenic capacity of amplicons, which allow delivery of < or = 150 Kbp of foreign DNA, make these vectors one of the most powerful, interesting and versatile gene delivery platforms. Here, the authors present recent technological developments that have significantly improved and extended the use of amplicons, both in cultured cells and in living organisms. In addition, this review illustrates the many possible applications that are presently being developed with amplicons and discuss the many difficulties still pending to be solved in order to achieve stable and physiologically regulated transgenic expression.
Collapse
|
40
|
Sharif S, Nakagawa T, Ohno T, Matsumoto M, Kita T, Riazuddin S, Ito J. The potential use of bone marrow stromal cells for cochlear cell therapy. Neuroreport 2007; 18:351-4. [PMID: 17435601 DOI: 10.1097/wnr.0b013e3280287a9a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigated the potential of bone-marrow stromal cell transplantation for cell replacement therapy in the cochlea. Bone-marrow stromal cells labeled with enhanced green fluorescent protein were injected into the perilymphatic space of normal cochleae in mice. Histological analysis 2 weeks after transplantation demonstrated that transplanted cells settled within the cochlear tissues, especially in the spiral ligament and the spiral limbus, although most transplants were located in the perilymphatic space. Some of the transplanted cells expressed the cochlear gap-junction protein connexin 26. These findings indicate the potential of bone-marrow stromal cells for delivering therapeutic molecules and for the restoration of cochlear cells, particularly in the spiral ligament and the spiral limbus.
Collapse
Affiliation(s)
- Sadia Sharif
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Shogoin, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 2006; 226:157-67. [PMID: 17113254 DOI: 10.1016/j.heares.2006.09.015] [Citation(s) in RCA: 379] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 09/09/2006] [Accepted: 09/24/2006] [Indexed: 11/27/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent to treat malignant disease. Unfortunately, ototoxicity occurs in a large percentage of patients treated with higher dose regimens. In animal studies and in human temporal bone investigations, several areas of the cochlea are damaged, including outer hair cells in the basal turn, spiral ganglion cells and the stria vascularis, resulting in hearing impairment. The mechanisms appear to involve the production of reactive oxygen species (ROS), which can trigger cell death. Approaches to chemoprevention include the administration of antioxidants to protect against ROS at an early stage in the ototoxic pathways and the application of agents that act further downstream in the cell death cascade to prevent apoptosis and hearing loss. This review summarizes recent data that shed new light on the mechanisms of cisplatin ototoxicity and its prevention.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Surgery, Division of Otolaryngology, Southern Illinois University, School of Medicine, P.O. Box 19653, Springfield, IL 62794-9653, USA.
| | | | | | | |
Collapse
|
42
|
Okano T, Nakagawa T, Kita T, Endo T, Ito J. Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear. Mol Ther 2006; 14:866-71. [PMID: 16956795 DOI: 10.1016/j.ymthe.2006.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/08/2006] [Accepted: 06/21/2006] [Indexed: 12/30/2022] Open
Abstract
Sensorineural hearing loss is a common disability, but treatment options are currently limited to cochlear implants and hearing aids. Studies are therefore being conducted to provide alternative means of biological therapy, including gene therapy. Safe and effective methods of gene delivery to the cochlea need to be developed to facilitate the clinical application of these therapeutic treatments for hearing loss. In this study, we examined the potential of cell-gene therapy with nonviral vectors for delivery of therapeutic molecules into the cochlea. NIH3T3 cells were transfected with the brain-derived neurotrophic factor (Bdnf) gene using lipofection and then transplanted into the mouse inner ear. Immunohistochemistry and Western blotting demonstrated the survival of grafted cells in the cochlea for up to 4 weeks after transplantation. No significant hearing loss was induced by the transplantation procedure. A Bdnf-specific enzyme-linked immunosorbent assay revealed a significant increase in Bdnf production in the inner ear following transplantation of engineered cells. These findings indicate that cell-gene delivery with nonviral vectors may be applicable for the local, sustained delivery of therapeutic molecules into the cochlea.
Collapse
Affiliation(s)
- Takayuki Okano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 606-8507 Kyoto, Japan
| | | | | | | | | |
Collapse
|
43
|
Crumling MA, Raphael Y. Manipulating gene expression in the mature inner ear. Brain Res 2006; 1091:265-9. [PMID: 16513096 DOI: 10.1016/j.brainres.2006.01.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 01/18/2006] [Accepted: 01/21/2006] [Indexed: 10/25/2022]
Abstract
It is possible to manipulate gene expression in cochlear tissue, but technical issues have made this challenging in the mature in vivo inner ear. Generally, the most common reasons for such manipulations involve basic science or therapeutic quests. Examples of experimental studies are those designed to elucidate the role of a specific gene or a gene expression cascade or to understand the function of a particular cell type. Therapeutic goals may include replacing a defective gene or enhancing tissue protection, repair, or regeneration. This review summarizes the main technical approaches that are viable options for in vivo manipulation of gene expression in the mature inner ear, as well as major research and clinical issues likely to benefit from such genetic manipulations.
Collapse
Affiliation(s)
- Mark A Crumling
- Kresge Hearing Research Institute, The University of Michigan, MSRB III Room-9303, Ann Arbor, MI 48109-0648, USA
| | | |
Collapse
|
44
|
Maiorana CR, Staecker H. Advances in inner ear gene therapy: exploring cochlear protection and regeneration. Curr Opin Otolaryngol Head Neck Surg 2006; 13:308-12. [PMID: 16160526 DOI: 10.1097/01.moo.0000179248.51476.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To review the application of gene therapy in the inner ear. Gene delivery to the inner ear was first reported in 1996. Since then the field has progressed on multiple fronts. RECENT DEVELOPMENTS More diverse and sophisticated vectors are improving the efficiency of delivery to the inner ear. Research is transitioning from the delivery of marker genes to the delivery of therapeutic genes in animal models of inner ear disease. Three distinct areas of research are developing: (1) delivery of genes for protection of spiral ganglion neurons with potential application in cochlear implantation, (2) delivery of genes for protection of hair cells and hearing preservation in degenerative diseases and cochlear insults and (3) the use of gene therapy to transform cells from one phenotype to another and replace lost cells, potentially restoring lost function. SUMMARY Currently, no specific drugs are targeted at inner ear disease. The use of gene therapy in the inner ear is being applied in animal models of ototoxicity and ischemia reperfusion injury. Gene therapy can protect the inner ear from damage and even restore function through the regeneration of hair cells.
Collapse
Affiliation(s)
- Carrie R Maiorana
- Department of Otolaryngology, University of Kansas, Kansas City, KS 66160, USA
| | | |
Collapse
|
45
|
Abstract
Biological therapy for the inner ear has the potential to revolutionise the treatment of sensorineural hearing loss, the most common form of deafness. Progress in the molecular understanding of hearing and hearing loss, combined with advances in the fields of both gene and cellular therapy for the inner ear, is providing a robust foundation from which clinical translation is plausible. Potential areas of interest in gene therapy and its preclinical application to deafness are reviewed, and experimental progress that has occurred in cellular therapy for the inner ear is examined.
Collapse
Affiliation(s)
- Nirmal P Patel
- Laboratory of Molecular Otology, Department of Otolaryngology, New York University School of Medicine, NY 10016, USA
| | | | | |
Collapse
|
46
|
Liang F, Schulte BA, Qu C, Hu W, Shen Z. Inhibition of the calcium- and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience 2005; 135:263-71. [PMID: 16109459 DOI: 10.1016/j.neuroscience.2005.05.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 05/03/2005] [Accepted: 05/11/2005] [Indexed: 01/24/2023]
Abstract
The role of calcium- and voltage-dependent big conductance potassium channels in regulating apoptosis was investigated in cultured type I spiral ligament fibrocytes. Incubation of type I spiral ligament fibrocytes derived from gerbil cochlea with cisplatin induced dose- and time-dependent apoptosis as demonstrated by annexin V conjugated to fluorescein isothiocyanate/prodidium iodide assays. The average voltage activation threshold of whole cell current was sharply shifted to -40 mV in the cisplatin-treated cells as compared with a value of 40 mV in control cells. The average whole-cell current of cisplatin-treated cells induced by a depolarization voltage step from -80 to -10 mV was increased significantly to 1.2+/-0.4 nA as compared with 0.08+/-0.1 nA in control cells. Coincubation with tetraethylammonium and cisplatin retained the whole cell current in the normal range (0.12+/-0.2 nA). The increment of cisplatin-induced whole-cell current was inhibited (97+/-5%) by a specific calcium- and voltage-dependent big conductance potassium channel blocker iberiotoxin. Consistent with this, co-incubation with tetraethylammonium significantly attenuated cisplatin-induced apoptosis in type I spiral ligament fibrocytes by more than 50%. We conclude that the activation of BK channels is an early event associated with cisplatin-induced apoptosis in type I spiral ligament fibrocytes. These findings also point to the calcium- and voltage-dependent big conductance potassium channels as a potential pharmacological target for manipulating cisplatin ototoxicity.
Collapse
Affiliation(s)
- F Liang
- Department of Pathology and Laboratory Medicine, 165 Ashley Avenue, Suite 309, PO Box 250908, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
47
|
Stone IM, Lurie DI, Kelley MW, Poulsen DJ. Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther 2005; 11:843-8. [PMID: 15922954 DOI: 10.1016/j.ymthe.2005.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/19/2022] Open
Abstract
More than 28 million Americans suffer from various forms of hearing loss. The lack of effective treatments for many forms of hearing disorders has prompted interest in the potential application of gene delivery techniques to treat both inherited and pathological hearing disorders. However, to develop a gene therapy strategy that will successfully treat hearing disorders, appropriate vectors that are capable of transducing cochlear hair cells and support cells must be identified. In the present study, we examined the efficiency with which AAV vectors (serotypes 1, 2, and 5) transduce hair cells and support cells in cochlear explants from P0 and E13 mice. We further examined the ability of the CBA and GFAP promoters to drive expression of a GFP marker gene in hair cells and support cells. Robust GFP expression was observed in hair cells and support cells following transduction of primary murine cochlear explants with AAV serotypes 1 and 2, but not serotype 5. The CBA promoter predominantly drove GFP expression in hair cells. In contrast, strong expression from the GFAP promoter was observed primarily in support cells. Thus, using AAV vectors and specific promoters, cell-type-specific expression of transgenes can be established within the cochlea.
Collapse
Affiliation(s)
- Ida M Stone
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, No. 1552, Missoula, MT 59812, USA
| | | | | | | |
Collapse
|
48
|
Liu Y, Okada T, Sheykholeslami K, Shimazaki K, Nomoto T, Muramatsu SI, Kanazawa T, Takeuchi K, Ajalli R, Mizukami H, Kume A, Ichimura K, Ozawa K. Specific and efficient transduction of cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther 2005; 12:725-33. [PMID: 16169458 DOI: 10.1016/j.ymthe.2005.03.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 11/17/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors are of interest for cochlear gene therapy because of their ability to mediate the efficient transfer and long-term stable expression of therapeutic genes in a wide variety of postmitotic tissues with minimal vector-related cytotoxicity. In the present study, seven AAV serotypes (AAV1-5, 7, 8) were used to construct vectors. The expression of EGFP by the chicken beta-actin promoter associated with the cytomegalovirus immediate-early enhancer in cochlear cells showed that each of these serotypes successfully targets distinct cochlear cell types. In contrast to the other serotypes, the AAV3 vector specifically transduced cochlear inner hair cells with high efficiency in vivo, while the AAV1, 2, 5, 7, and 8 vectors also transduced these and other cell types, including spiral ganglion and spiral ligament cells. There was no loss of cochlear function with respect to evoked auditory brain-stem responses over the range of frequencies tested after the injection of AAV vectors. These findings are of value for further molecular studies of cochlear inner hair cells and for gene replacement strategies to correct recessive genetic hearing loss due to monogenic mutations in these cells.
Collapse
Affiliation(s)
- Yuhe Liu
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Minami-kawachi, Kawachi, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
With the completion of the sequencing of the human genome, the field of medicine is undergoing a dramatic and fundamental change. The identification of our genes and the proteins they encode and the mechanisms of mutations that are pathogenic will allow us to devise revolutionary new ways to diagnose, treat and prevent the thousands of disorders that affect us. Certainly, disorders of the auditory system are no exception. Revealing the molecular mechanisms of hearing and understanding the role of each player in the intricate auditory network could enable us to employ gene- or cell-based therapy to cure or prevent hearing loss. To this end, much emphasis has been placed on the identification and characterization of genes involved in human deafness, as well as research on mouse models for deafness. Ultimately, the effect of genomics on medicine will be dramatic, providing us with the ability to cure sensory defects, a tangible goal that is now within our reach.
Collapse
Affiliation(s)
- Orna Atar
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
50
|
Di Pasquale G, Rzadzinska A, Schneider ME, Bossis I, Chiorini JA, Kachar B. A Novel Bovine Virus Efficiently Transduces Inner Ear Neuroepithelial Cells. Mol Ther 2005; 11:849-55. [PMID: 15922955 DOI: 10.1016/j.ymthe.2005.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/22/2022] Open
Abstract
Disruption of the cellular composition or arrangement of the sensory epithelia due to hair cell or supporting cell damage leads to hearing loss and vestibular dysfunctions. These peripheral hearing disorders make good targets for gene therapy; however, development requires efficient gene transfer methods for the inner ear. Here we characterized the cellular tropism of a novel adeno-associated bovine virus vector (BAAV) in cultured rat inner ear epithelia. To help identify transduced cells, we used beta-actin-GFP as a reporter gene. We found that BAAV efficiently transduced auditory and vestibular hair cells as well as all types of supporting cells with no apparent pathological effects. The number of transduced hair cells significantly increased in both a dose- and a time-dependent manner. Transduction was independent of the cells' maturation state and was observed in both P2 and P10 cultures. Interestingly, even after several days of incubation with BAAV, hair cells demonstrated varying progression of beta-actin-GFP incorporation into the stereocilia. This suggests that the onset of viral transduction can occur throughout the course of the experiment. Of the other tested AAVs, AAV2 and AAV5 transduced only a small percentage of inner and vestibular hair cells, respectively, whereas no transduction was detected with AAV4.
Collapse
Affiliation(s)
- Giovanni Di Pasquale
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|