1
|
Huang X, Wang X, Sun Y, Xie X, Xiao L, Xu Y, Yan Q, Xu X, Li L, Xu W, Weng W, Wu W, Xie X, Dai C, Diao Y. Effective Reduction of Transgene-Specific Immune Response With rAAV Vectors Co-Expressing miRNA-UL112-5p or ERAP1 shRNA. J Cell Mol Med 2025; 29:e70308. [PMID: 39823241 PMCID: PMC11740984 DOI: 10.1111/jcmm.70308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex. Therefore, we hypothesise that modulation of the ERAP1 activity in rAAV transduced cells may be favoured to evade immune response against transgene products. In this study, we incorporated either miRNA-UL112-5p or ERAP1 shRNA into rAAV vectors expressing full-length ovalbumin (OVA) as a model antigen, and evaluated their effects for antigen presentation, cellular and humour immune response induced by OVA expression. The results indicated that silencing ERAP1 using miR-UL112-5p or ERAP1 shRNA did not affect the expression of OVA in cells, but inhibited the processing and presentation of OVA antigen peptide SIINFEKL in antigen presenting cells (APCs). Moreover, the rAAV vector co-expressing ERAP1 shRNA maintains stable and high expression of OVA in vivo, while simultaneously suppressing the humoral immunity of OVA. In addition, experimental results demonstrated that rAAV vectors incorporated ERAP1 shRNA efficiently repress costimulatory signals in dendritic cells (DCs), significantly attenuated the cytotoxic T-cell response, allowed for sustained transgene expression and reduced clearance of transduced muscle cells in mice. Moreover, our study suggested that the incorporation of miRNA-UL112-5p or ERAP1 shRNA into rAAV vectors effectively reduced transgene products induced immune response. The proposed method may potentially be applied in clinics to deliver therapeutic proteins safely and efficiently.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Xiao Wang
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Yaqi Sun
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xinrui Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Luming Xiao
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Yihang Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Qiongshi Yan
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xianxiang Xu
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Ling Li
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Wentao Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenting Weng
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenlin Wu
- College of Marine and Food ScienceQuanzhou Normal UniversityQuanzhouChina
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine AlgaeQuanzhouChina
| | - Xiaolan Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Congjie Dai
- College of Marine and Food ScienceQuanzhou Normal UniversityQuanzhouChina
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine AlgaeQuanzhouChina
| | - Yong Diao
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| |
Collapse
|
2
|
Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023; 37:311-329. [PMID: 36862289 PMCID: PMC9979149 DOI: 10.1007/s40259-023-00585-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Arjomandnejad M, Kopec AL, Keeler AM. CAR-T Regulatory (CAR-Treg) Cells: Engineering and Applications. Biomedicines 2022; 10:287. [PMID: 35203496 PMCID: PMC8869296 DOI: 10.3390/biomedicines10020287] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Regulatory T cells are critical for maintaining immune tolerance. Recent studies have confirmed their therapeutic suppressive potential to modulate immune responses in organ transplant and autoimmune diseases. However, the unknown and nonspecific antigen recognition of polyclonal Tregs has impaired their therapeutic potency in initial clinical findings. To address this limitation, antigen specificity can be conferred to Tregs by engineering the expression of transgenic T-cell receptor (TCR) or chimeric antigen receptor (CAR). In contrast to TCR Tregs, CAR Tregs are major histocompatibility complex (MHC) independent and less dependent on interleukin-2 (IL-2). Furthermore, CAR Tregs maintain Treg phenotype and function, home to the target tissue and show enhanced suppressive efficacy compared to polyclonal Tregs. Additional development of engineered CAR Tregs is needed to increase Tregs' suppressive function and stability, prevent CAR Treg exhaustion, and assess their safety profile. Further understanding of Tregs therapeutic potential will be necessary before moving to broader clinical applications. Here, we summarize recent studies utilizing CAR Tregs in modulating immune responses in autoimmune diseases, transplantation, and gene therapy and future clinical applications.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
| | - Acadia L. Kopec
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
| | - Allison M. Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
4
|
Arjomandnejad M, Sylvia K, Blackwood M, Nixon T, Tang Q, Muhuri M, Gruntman AM, Gao G, Flotte TR, Keeler AM. Modulating immune responses to AAV by expanded polyclonal T-regs and capsid specific chimeric antigen receptor T-regulatory cells. Mol Ther Methods Clin Dev 2021; 23:490-506. [PMID: 34853797 PMCID: PMC8605179 DOI: 10.1016/j.omtm.2021.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Immune responses to adeno-associated virus (AAV) capsids limit the therapeutic potential of AAV gene therapy. Herein, we model clinical immune responses by generating AAV capsid-specific chimeric antigen receptor (AAV-CAR) T cells. We then modulate immune responses to AAV capsid with AAV-CAR regulatory T cells (Tregs). AAV-CAR Tregs in vitro display phenotypical Treg surface marker expression, and functional suppression of effector T cell proliferation and cytotoxicity. In mouse models, AAV-CAR Tregs mediated continued transgene expression from an immunogenic capsid, despite antibody responses, produced immunosuppressive cytokines, and decreased tissue inflammation. AAV-CAR Tregs are also able to bystander suppress immune responses to immunogenic transgenes similarly mediating continued transgene expression, producing immunosuppressive cytokines, and reducing tissue infiltration. Taken together, AAV-CAR T cells and AAV-CAR Tregs are directed and powerful immunosuppressive tools to model and modulate immune responses to AAV capsids and transgenes in the local environment.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Katelyn Sylvia
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Meghan Blackwood
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Thomas Nixon
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Qiushi Tang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alisha M Gruntman
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, MA 01536, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
5
|
Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:370-389. [PMID: 34761052 PMCID: PMC8550992 DOI: 10.1016/j.omtm.2021.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.
Collapse
|
6
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
8
|
Platelet-targeted hyperfunctional FIX gene therapy for hemophilia B mice even with preexisting anti-FIX immunity. Blood Adv 2021; 5:1224-1238. [PMID: 33646304 DOI: 10.1182/bloodadvances.2020004071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/16/2021] [Indexed: 01/19/2023] Open
Abstract
Gene therapy may lead to a cure for hemophilia B (HB) if it is successful. Data from clinical trials using adeno-associated virus (AAV)-mediated liver-targeted FIX gene therapy are very encouraging. However, this protocol can be applied only to adults who do not have liver disease or anti-AAV antibodies, which occur in 30% to 50% of individuals. Thus, developing a protocol that can be applied to all HB patients is desired. Our previous studies have demonstrated that lentivirus-mediated platelet-specific FIX (2bF9) gene therapy can rescue bleeding diathesis and induce immune tolerance in FIXnull mice, but FIX expression was only ∼2% to 3% in whole blood. To improve the efficacy, we used a codon-optimized hyperfunctional FIX-Padua (2bCoF9R338L) to replace the 2bF9 cassette, resulting in 70% to 122% (35.08-60.77 mU/108 platelets) activity levels in 2bCoF9R338L-transduced FIXnull mice. Importantly, sustained hyperfunctional platelet-FIX expression was achieved in all 2bCoF9R338L-transduced highly immunized recipients with activity levels of 18.00 ± 9.11 and 9.36 ± 12.23 mU/108 platelets in the groups treated with 11 Gy and 6.6 Gy, respectively. The anti-FIX antibody titers declined with time, and immune tolerance was established after 2bCoF9R338L gene therapy. We found that incorporating the proteasome inhibitor bortezomib into preconditioning can help eliminate anti-FIX antibodies. The bleeding phenotype in 2bCoF9R338L-transduced recipients was completely rescued in a tail bleeding test and a needle-induced knee joint injury model once inhibitors dropped to undetectable. The hemostatic efficacy in 2bCoF9R338L-transduced recipients was further confirmed by ROTEM and thrombin generation assay (TGA). Together, our studies suggest that 2bCoF9R338L gene therapy can be a promising protocol for all HB patients, including patients with inhibitors.
Collapse
|
9
|
Abstract
Decades of preclinical and clinical studies developing gene therapy for hemophilia are poised to bear fruit with current promising pivotal studies likely to lead to regulatory approval. However, this recent success should not obscure the multiple challenges that were overcome to reach this destination. Gene therapy for hemophilia A and B benefited from advancements in the general gene therapy field, such as the development of adeno-associated viral vectors, as well as disease-specific breakthroughs, like the identification of B-domain deleted factor VIII and hyperactive factor IX Padua. The gene therapy field has also benefited from hemophilia B clinical studies, which revealed for the first time critical safety concerns related to immune responses to the vector capsid not anticipated in preclinical models. Preclinical studies have also investigated gene transfer approaches for other rare inherited bleeding disorders, including factor VII deficiency, von Willebrand disease, and Glanzmann thrombasthenia. Here we review the successful gene therapy journey for hemophilia and pose some unanswered questions. We then discuss the current state of gene therapy for these other rare inherited bleeding disorders and how the lessons of hemophilia gene therapy may guide clinical development.
Collapse
Affiliation(s)
- Valder R. Arruda
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
| | - Jesse Weber
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020; 472:527-545. [PMID: 32415463 PMCID: PMC7239821 DOI: 10.1007/s00424-020-02387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type–specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation.
Collapse
Affiliation(s)
- Lili A Gundelach
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
| | - Marc A Hüser
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Freiburg, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany.
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Gernoux G, Gruntman AM, Blackwood M, Zieger M, Flotte TR, Mueller C. Muscle-Directed Delivery of an AAV1 Vector Leads to Capsid-Specific T Cell Exhaustion in Nonhuman Primates and Humans. Mol Ther 2020; 28:747-757. [PMID: 31982038 PMCID: PMC7054721 DOI: 10.1016/j.ymthe.2020.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
With the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) approvals for Zolgensma, Luxturna, and Glybera, recombinant adeno-associated viruses (rAAVs) are considered efficient tools for gene transfer. However, studies in animals and humans demonstrate that intramuscular (IM) AAV delivery can trigger immune responses to AAV capsids and/or transgenes. IM delivery of rAAV1 in humans has also been described to induce tolerance to rAAV characterized by the presence of capsid-specific regulatory T cells (Tregs) in periphery. To understand mechanisms responsible for tolerance and parameters involved, we tested 3 muscle-directed administration routes in rhesus monkeys: IM delivery, venous limb perfusion, and the intra-arterial push and dwell method. These 3 methods were well tolerated and led to transgene expression. Interestingly, gene transfer in muscle led to Tregs and exhausted T cell infiltrates in situ at both day 21 and day 60 post-injection. In human samples, an in-depth analysis of the functionality of these cells demonstrates that capsid-specific exhausted T cells are detected after at least 5 years post-vector delivery and that the exhaustion can be reversed by blocking the checkpoint pathway. Overall, our study shows that persisting transgene expression after gene transfer in muscle is mediated by Tregs and exhausted T cells.
Collapse
Affiliation(s)
- Gwladys Gernoux
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alisha M Gruntman
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA; Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, N. Grafton, MA, USA
| | - Meghan Blackwood
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marina Zieger
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Immune Response Mechanisms against AAV Vectors in Animal Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:198-208. [PMID: 31970198 PMCID: PMC6965504 DOI: 10.1016/j.omtm.2019.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early preclinical studies in rodents and other species did not reveal that vector or transgene immunity would present a significant hurdle for sustained gene expression. While there was early evidence of mild immune responses to adeno-associated virus (AAV) in preclinical studies, it was generally believed that these responses were too weak and transient to negatively impact sustained transduction. However, translation of the cumulative success in treating hemophilia B in rodents and dogs with an AAV2-F9 vector to human studies was not as successful. Despite significant progress in recent clinical trials for hemophilia, new immunotoxicities to AAV and transgene are emerging in humans that require better animal models to assess and overcome these responses. The animal models designed to address these immune complications have provided critical information to assess how vector dose, vector capsid processing, vector genome, difference in serotypes, and variations in vector delivery route can impact immunity and to develop approaches for overcoming pre-existing immunity. Additionally, a comprehensive dissection of innate, adaptive, and regulatory responses to AAV vectors in preclinical studies has provided a framework that can be utilized for development of immunomodulatory therapies to overcome or bypass immune responses and for developing strategic approaches toward engineering stealth AAV vectors that can circumvent immunity.
Collapse
|
13
|
Poupiot J, Costa Verdera H, Hardet R, Colella P, Collaud F, Bartolo L, Davoust J, Sanatine P, Mingozzi F, Richard I, Ronzitti G. Role of Regulatory T Cell and Effector T Cell Exhaustion in Liver-Mediated Transgene Tolerance in Muscle. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:83-100. [PMID: 31649958 PMCID: PMC6804827 DOI: 10.1016/j.omtm.2019.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
The pro-tolerogenic environment of the liver makes this tissue an ideal target for gene replacement strategies. In other peripheral tissues such as the skeletal muscle, anti-transgene immune response can result in partial or complete clearance of the transduced fibers. Here, we characterized liver-induced transgene tolerance after simultaneous transduction of liver and muscle. A clinically relevant transgene, α-sarcoglycan, mutated in limb-girdle muscular dystrophy type 2D, was fused with the SIINFEKL epitope (hSGCA-SIIN) and expressed with adeno-associated virus vectors (AAV-hSGCA-SIIN). Intramuscular delivery of AAV-hSGCA-SIIN resulted in a strong inflammatory response, which could be prevented and reversed by concomitant liver expression of the same antigen. Regulatory T cells and upregulation of checkpoint inhibitor receptors were required to establish and maintain liver-mediated peripheral tolerance. This study identifies the fundamental role of the synergy between Tregs and upregulation of checkpoint inhibitor receptors in the liver-mediated control of anti-transgene immunity triggered by muscle-directed gene transfer.
Collapse
Affiliation(s)
- Jérôme Poupiot
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | | | | | - Pasqualina Colella
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Fanny Collaud
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Laurent Bartolo
- UMR 1151, Necker-Institut Enfants Malades-Molecular Medicine Center, Paris, France
| | - Jean Davoust
- UMR 1151, Necker-Institut Enfants Malades-Molecular Medicine Center, Paris, France
| | | | | | - Isabelle Richard
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| |
Collapse
|
14
|
Guilbaud M, Devaux M, Couzinié C, Le Duff J, Toromanoff A, Vandamme C, Jaulin N, Gernoux G, Larcher T, Moullier P, Le Guiner C, Adjali O. Five Years of Successful Inducible Transgene Expression Following Locoregional Adeno-Associated Virus Delivery in Nonhuman Primates with No Detectable Immunity. Hum Gene Ther 2019; 30:802-813. [PMID: 30808235 PMCID: PMC6648187 DOI: 10.1089/hum.2018.234] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/21/2019] [Indexed: 01/28/2023] Open
Abstract
Anti-transgene immune responses elicited after intramuscular (i.m.) delivery of recombinant adeno-associated virus (rAAV) have been shown to hamper long-term transgene expression in large-animal models of rAAV-mediated gene transfer. To overcome this hurdle, an alternative mode of delivery of rAAV vectors in nonhuman primate muscles has been described: the locoregional (LR) intravenous route of administration. Using this injection mode, persistent inducible transgene expression for at least 1 year under the control of the tetracycline-inducible Tet-On system was previously reported in cynomolgus monkeys, with no immunity against the rtTA transgene product. The present study shows the long-term follow-up of these animals. It is reported that LR delivery of a rAAV2/1 vector allows long-term inducible expression up to at least 5 years post gene transfer, with no any detectable host immune response against the transactivator rtTA, despite its immunogenicity following i.m. gene transfer. This study shows for the first time a long-term regulation of muscle gene expression using a Tet-On-inducible system in a large-animal model. Moreover, these findings further confirm that the rAAV LR delivery route is efficient and immunologically safe, allowing long-term skeletal muscle gene transfer.
Collapse
Affiliation(s)
- Mickaël Guilbaud
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Marie Devaux
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Celia Couzinié
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Johanne Le Duff
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Alice Toromanoff
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Céline Vandamme
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Nicolas Jaulin
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Gwladys Gernoux
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | | | - Philippe Moullier
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Caroline Le Guiner
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| |
Collapse
|
15
|
Complete correction of hemophilia B phenotype by FIX-Padua skeletal muscle gene therapy in an inhibitor-prone dog model. Blood Adv 2019; 2:505-508. [PMID: 29500218 DOI: 10.1182/bloodadvances.2017015313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/01/2018] [Indexed: 01/31/2023] Open
Abstract
Key Points
Skeletal muscle–directed expression of FIX-Padua resulted in complete correction of HB phenotype in an inhibitor-prone dog model. Long-term immune tolerance to FIX is sustained over years upon multiple challenges with recombinant FIX protein in 2 HB models.
Collapse
|
16
|
Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:184-201. [PMID: 30705923 PMCID: PMC6349562 DOI: 10.1016/j.omtm.2018.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) and hemophilia B (HB) are X-linked bleeding disorders due to inheritable deficiencies in either coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Recently, gene therapy clinical trials with adeno-associated virus (AAV) vectors and protein-engineered transgenes, B-domain deleted (BDD) FVIII and FIX-Padua, have reported near-phenotypic cures in subjects with HA and HB, respectively. Here, we review the biology and the clinical development of FVIII-BDD and FIX-Padua as transgenes. We also examine alternative bioengineering strategies for FVIII and FIX, as well as the immunological challenges of these approaches. Other engineered proteins and their potential use in gene therapy for hemophilia with inhibitors are also discussed. Continued advancement of gene therapy for HA and HB using protein-engineered transgenes has the potential to alleviate the substantial medical and psychosocial burdens of the disease.
Collapse
|
17
|
Doshi BS, Arruda VR. Gene therapy for hemophilia: what does the future hold? Ther Adv Hematol 2018; 9:273-293. [PMID: 30210756 DOI: 10.1177/2040620718791933] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/09/2018] [Indexed: 01/19/2023] Open
Abstract
Recent phase I/II adeno-associated viral vector-mediated gene therapy clinical trials have reported remarkable success in ameliorating disease phenotype in hemophilia A and B. These trials, which highlight the challenges overcome through decades of preclinical and first in human clinical studies, have generated considerable excitement for patients and caregivers alike. Optimization of vector and transgene expression has significantly improved the ability to achieve therapeutic factor levels in these subjects. Long-term follow-up studies will guide standardization of the approach with respect to the combination of serotype, promoter, dose, and manufacturing processes and inform safety for inclusion of young patients. Certain limitations preclude universal applicability of gene therapy, including transient liver transaminase elevations due to the immune responses to vector capsids or as yet undefined mechanisms, underlying liver disease from iatrogenic viral hepatitis, and neutralizing antibodies to clotting factors. Integrating vectors show promising preclinical results, but manufacturing and safety concerns still remain. The prospect of gene editing for correction of the underlying mutation is on the horizon with considerable potential. Herein, we review the advances and limitations that have resulted in these recent successful clinical trials and outline avenues that will allow for broader applicability of gene therapy.
Collapse
Affiliation(s)
- Bhavya S Doshi
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Valder R Arruda
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, 5056 Colket Translational Research Center, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Abstract
Hemophilia is a congenital bleeding disorder that affects nearly half a million individuals worldwide. Joint bleeding and other co-morbidities are a significant source of debilitation for this population. Current therapies are effective but must be given lifelong at regular intervals, are costly, and are available to only about 25% of the hemophilia population living in resource-rich countries. Gene therapy for hemophilia has been in development for three decades and is now entering pivotal-stage clinical trials. While many different technology platforms exist for gene therapy, all current clinical trials for hemophilia employ adeno-associated vector (AAV)-based cell transduction. This small viral particle is capable of packaging modified F8 or F9 transgenes, can be generated robustly from cell lines, and transduces several relatively end-differentiated target tissues such as the liver with high efficiency. While pre-existing neutralizing antibodies to the AAV capsid are recognized to limit current therapy, other challenges have been identified in human studies that were not seen in preclinical studies. Both liver transaminase elevations and immune-mediated loss of transgene expression have been observed in clinical trials. Toll-like receptors, cytotoxic T cells, and other components of the immune response have been implicated in the loss of factor expression, but a full understanding of the immune response awaits clarification. Despite these challenges, many patients enrolled in gene therapy trials have attained long-term expression of factors VIII and IX. This emerging technology now represents a cure for the severe bleeding and joint damage associated with hemophilia.
Collapse
Affiliation(s)
- John C Chapin
- Shire, 650 Kendall Drive, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
19
|
Vandamme C, Adjali O, Mingozzi F. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Hum Gene Ther 2018; 28:1061-1074. [PMID: 28835127 PMCID: PMC5649404 DOI: 10.1089/hum.2017.150] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, vectors derived from adeno-associated virus (AAV) have established themselves as a powerful tool for in vivo gene transfer, allowing long-lasting and safe transgene expression in a variety of human tissues. Nevertheless, clinical trials demonstrated how B and T cell immune responses directed against the AAV capsid, likely arising after natural infection with wild-type AAV, might potentially impact gene transfer safety and efficacy in patients. Seroprevalence studies have evidenced that most individuals carry anti-AAV neutralizing antibodies that can inhibit recombinant AAV transduction of target cells following in vivo administration of vector particles. Likewise, liver- and muscle-directed clinical trials have shown that capsid-reactive memory CD8+ T cells could be reactivated and expanded upon presentation of capsid-derived antigens on transduced cells, potentially leading to loss of transgene expression and immune-mediated toxicities. In celebration of the 25th anniversary of the European Society of Gene and Cell Therapy, this review article summarizes progress made during the past decade in understanding and modulating AAV vector immunogenicity. While the knowledge generated has contributed to yield impressive clinical results, several important questions remain unanswered, making the study of immune responses to AAV a priority for the field of in vivo transfer.
Collapse
Affiliation(s)
- Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Oumeya Adjali
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Federico Mingozzi
- Genethon and IMSERM U951, Evry, France
- University Pierre and Marie Curie and INSERM U974, Paris, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| |
Collapse
|
20
|
Evens H, Chuah MK, VandenDriessche T. Haemophilia gene therapy: From trailblazer to gamechanger. Haemophilia 2018; 24 Suppl 6:50-59. [DOI: 10.1111/hae.13494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/24/2022]
Affiliation(s)
- H. Evens
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - M. K. Chuah
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| | - T. VandenDriessche
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| |
Collapse
|
21
|
VandenDriessche T, Chuah MK. Hemophilia Gene Therapy: Ready for Prime Time? Hum Gene Ther 2017; 28:1013-1023. [DOI: 10.1089/hum.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Ashley SN, Somanathan S, Hinderer C, Arias M, McMenamin D, Draper C, Wilson JM. Alternative Start Sites Downstream of Non-Sense Mutations Drive Antigen Presentation and Tolerance Induction to C-Terminal Epitopes. THE JOURNAL OF IMMUNOLOGY 2017; 198:4581-4587. [PMID: 28500077 DOI: 10.4049/jimmunol.1601131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/15/2017] [Indexed: 11/19/2022]
Abstract
CTL responses to the transgene product remain an active area of concern for the gene therapy field. A patient's underlying genetic mutation may influence the qualitative nature of these potentially destructive T cell responses. Individuals with a mutation that introduces a premature termination codon (PTC) that prevents synthesis of the full-length peptide are considered more likely to mount a transgene-specific T cell response because of a lack of immune tolerance to C-terminal epitopes as a consequence of absent endogenous Ag presentation. In this article, we demonstrate that a human ornithine transcarbamylase gene containing various PTC-inducing non-sense mutations is able to generate and present epitopes downstream of the termination codon. Generation of these epitopes occurs primarily from alternative translation start sites downstream of the stop codon. Furthermore, we show that expression of these genes from adeno-associated virus vectors in C57BL/6 mice is able to induce peripheral tolerance to epitopes downstream of the PTC. These results suggest that, despite the lack of full-length endogenous protein, patients with PTC-inducing non-sense mutations may still present T cell epitopes downstream of the premature termination site that may render the subject tolerant to wild-type transgene products.
Collapse
Affiliation(s)
- Scott N Ashley
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Suryanarayan Somanathan
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Christian Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Maxwell Arias
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Deirdre McMenamin
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Christine Draper
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
23
|
Abstract
After two decades of research, in vivo gene transfer with adeno-associated viral (AAV) vectors has now resulted in successful treatments and even cures for several human diseases. However, the potential for immune responses against the therapeutic gene products remains one of the concerns as this approach is broadened to more patients, diverse diseases, and target organs. Immune responses following gene transfer of coagulation factor IX (FIX) for the treatment of the bleeding disorder hemophilia B has been extensively investigated in multiple animal models. Findings from these studies have not only influenced clinical trial design but have broader implications for other diseases. The impact of vector design and dose, as well as target organ/route of administration on humoral and cellular immune responses are reviewed. Furthermore, the potential for tolerance induction by hepatic gene transfer or combination with immune modulation is discussed.
Collapse
Affiliation(s)
- Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Markusic DM, Nichols TC, Merricks EP, Palaschak B, Zolotukhin I, Marsic D, Zolotukhin S, Srivastava A, Herzog RW. Evaluation of engineered AAV capsids for hepatic factor IX gene transfer in murine and canine models. J Transl Med 2017; 15:94. [PMID: 28460646 PMCID: PMC5412045 DOI: 10.1186/s12967-017-1200-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Background Adeno-associated virus (AAV) gene therapy vectors have shown the best outcomes in human clinical studies for the treatment of genetic diseases such as hemophilia. However, these pivotal investigations have also identified several challenges. For example, high vector doses are often used for hepatic gene transfer, and cytotoxic T lymphocyte responses against viral capsid may occur. Therefore, achieving therapy at reduced vector doses and other strategies to reduce capsid antigen presentation are desirable. Methods We tested several engineered AAV capsids for factor IX (FIX) expression for the treatment of hemophilia B by hepatic gene transfer. These capsids lack potential phosphorylation or ubiquitination sites, or had been generated through molecular evolution. Results AAV2 capsids lacking either a single lysine residue or 3 tyrosine residues directed substantially higher coagulation FIX expression in mice compared to wild-type sequence or other mutations. In hemophilia B dogs, however, expression from the tyrosine-mutant vector was merely comparable to historical data on AAV2. Evolved AAV2-LiC capsid was highly efficient in hemophilia B mice but lacked efficacy in a hemophilia B dog. Conclusions Several alternative strategies for capsid modification improve the in vivo performance of AAV vectors in hepatic gene transfer for correction of hemophilia. However, capsid optimization solely in mouse liver may not predict efficacy in other species and thus is of limited translational utility. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1200-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA.
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Irene Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Damien Marsic
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Arun Srivastava
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
25
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|
26
|
Rhodes L. New approaches to non-surgical sterilization for dogs and cats: Opportunities and challenges. Reprod Domest Anim 2016; 52 Suppl 2:327-331. [DOI: 10.1111/rda.12862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Linda Rhodes
- Alliance for Contraception in Cats and Dogs Board of Directors; Member Scientific Advisory Board; Found Animals Foundation; Durham NH USA
| |
Collapse
|
27
|
Abstract
Hemophilia is the most well-known hereditary bleeding disorder, with an incidence of one in every 5000 to 30,000 males worldwide. The disease is treated by infusion of protein products on demand and as prophylaxis. Although these therapies have been very successful, some challenging and unresolved tasks remain, such as reducing bleeding rates, presence of target joints and/or established joint damage, eliminating the development of inhibitors, and increasing the success rate of immune-tolerance induction (ITI). Many preclinical trials are carried out on animal models for hemophilia generated by the hemophilia research community, which in turn enable prospective clinical trials aiming to tackle these challenges. Suitable animal models are needed for greater advances in treating hemophilia, such as the development of better models for evaluation of the efficacy and safety of long-acting products, more powerful gene therapy vectors than are currently available, and successful ITI strategies. Mice, dogs, and pigs are the most commonly used animal models for hemophilia. With the advent of the nuclease method for genome editing, namely the CRISPR/Cas9 system, it is now possible to create animal models for hemophilia other than mice in a short period of time. This review presents currently available animal models for hemophilia, and discusses the importance of animal models for the development of better treatment options for hemophilia.
Collapse
Affiliation(s)
- Ching-Tzu Yen
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Ni Fan
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan ; Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chieh Chou
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan ; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Overexpression of factor VIII after AAV delivery is transiently associated with cellular stress in hemophilia A mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16064. [PMID: 27738645 PMCID: PMC5040173 DOI: 10.1038/mtm.2016.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 08/02/2016] [Indexed: 01/13/2023]
Abstract
Factor VIII (FVIII) is a large glycoprotein that is challenging to express both in vitro and in vivo. Several studies suggest that high levels of FVIII expression can lead to cellular stress. After gene transfer, transgene expression is restricted to a subset of cells and the increased FVIII load per cell may impact activation of the unfolded protein response. We sought to determine whether increased FVIII expression in mice after adeno-associated viral liver gene transfer would affect the unfolded protein response and/or immune response to the transgene. The FVIII gene was delivered as B-domain deleted single chain or two chain (light and heavy chains) at a range of doses in hemophilia A mice. A correlation between FVIII expression and anti-FVIII antibody titers was observed. Analysis of key components of the unfolded protein response, binding immunoglobulin protein (BiP), and C/EBP homologous protein (CHOP), showed transient unfolded protein response activation in the single chain treated group expressing >200% of FVIII but not after two chain delivery. These studies suggest that supraphysiological single chain FVIII expression may increase the likelihood of a cellular stress response but does not alter liver function. These data are in agreement with the observed long-term expression of FVIII at therapeutic levels after adeno-associated viral delivery in hemophilia A dogs without evidence of cellular toxicity.
Collapse
|
29
|
Arruda VR, Samelson-Jones BJ. Gene therapy for immune tolerance induction in hemophilia with inhibitors. J Thromb Haemost 2016; 14:1121-34. [PMID: 27061380 PMCID: PMC4907803 DOI: 10.1111/jth.13331] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/15/2022]
Abstract
The development of inhibitors, i.e. neutralizing alloantibodies against factor (F) VIII or FIX, is the most significant complication of protein replacement therapy for patients with hemophilia, and is associated with both increased mortality and substantial physical, psychosocial and financial morbidity. Current management, including bypassing agents to treat and prevent bleeding, and immune tolerance induction for inhibitor eradication, is suboptimal for many patients. Fortunately, there are several emerging gene therapy approaches aimed at addressing these unmet clinical needs of patients with hemophilia and inhibitors. Herein, we review the mounting evidence from preclinical hemophilia models that the continuous uninterrupted expression of FVIII or FIX delivered as gene therapy can bias the immune system towards tolerance induction, and even promote the eradication of pre-existing inhibitors. We also discuss several gene transfer approaches that directly target immune cells in order to promote immune tolerance. These preclinical findings also shed light on the immunologic mechanisms that underlie tolerance induction.
Collapse
Affiliation(s)
- V R Arruda
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman Center for Cell and Molecular Therapeutics, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
Gernoux G, Guilbaud M, Dubreil L, Larcher T, Babarit C, Ledevin M, Jaulin N, Planel P, Moullier P, Adjali O. Early interaction of adeno-associated virus serotype 8 vector with the host immune system following intramuscular delivery results in weak but detectable lymphocyte and dendritic cell transduction. Hum Gene Ther 2015; 26:1-13. [PMID: 25333770 DOI: 10.1089/hum.2014.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Following in vivo recombinant adeno-associated virus (rAAV)-based gene transfer, adaptive immune responses specific to the vector or the transgene product have emerged as a potential roadblock to successful clinical translation. The occurrence of such responses depends on several parameters, including the route of vector administration as well as the viral serotype and the genome configuration, either self-complementary (sc) or single-stranded (ss). These parameters influence rAAV vector-associated immunity by modulating the crosstalk between the vector and the host immune system, including vector ability to interact or even transduce lymphoid tissues in general and antigen-presenting cells (APCs) in particular. Little is known about immune cell populations that are targeted in vivo by rAAV vectors. Moreover, the transduction of dendritic cells is still controversial and not directly demonstrated. Here, we show that intramuscular administration of an sc rAAV8 vector in the mouse leads to a rapid distribution of viral genomes in the lymphoid tissues that is associated with transgene expression. Transduced cells were detected in follicular areas of the spleen and the draining lymph nodes. In addition to B and T lymphocytes, transduced professional APCs were detected although at very low frequency. In addition, viral genomes and transgene transcripts were also detected in these cell populations after ss rAAV8 vector administration. Although the functional significance of those observations needs further explorations, our results highlight an early and intricate interaction between the rAAV vector upon its in vivo delivery and the host immune system.
Collapse
Affiliation(s)
- Gwladys Gernoux
- 1 INSERM UMR 1089, Nantes University Hospital , 44007 Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gruntman AM, Flotte TR. Delivery of Adeno-Associated Virus Gene Therapy by Intravascular Limb Infusion Methods. HUM GENE THER CL DEV 2015; 26:159-64. [PMID: 26357010 PMCID: PMC4606036 DOI: 10.1089/humc.2015.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/24/2015] [Indexed: 01/07/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) can be delivered to the skeletal muscle of the limb (pelvic or thoracic) by means of regional intravascular delivery. This review summarizes the evolution of this technique to deliver rAAV either via the arterial blood supply or via the peripheral venous circulation. The focus of this review is on applications in large animal models, including preclinical studies. Based on this overview of past research, we aim to inform the design of preclinical and clinical studies.
Collapse
Affiliation(s)
- Alisha M. Gruntman
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Terence R. Flotte
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
- Microbiology & Physiologic Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
32
|
Augmentation of transgene-encoded protein after neonatal injection of adeno-associated virus improves hepatic copy number without immune responses. Pediatr Res 2015; 78:239-246. [PMID: 26042522 PMCID: PMC4540625 DOI: 10.1038/pr.2015.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Achieving persistent expression is a prerequisite for genetic therapies for inherited metabolic enzymopathies. Such disorders potentially could be treated with gene therapy shortly after birth to prevent pathology. However, rapid cell turnover leads to hepatic episomal vector loss, which diminishes effectiveness. The current studies assessed whether tolerance to transgene proteins expressed in the neonatal period is durable and if the expression may be augmented with subsequent adeno-associated virus (AAV) administration. METHODS AAV was administered to mice on day 2 with reinjection at 14 or at 14 and 42 d with examination of changes in hepatic copies and B and T cell-mediated immune responses. RESULTS Immune responses to the transgene protein and AAV were absent after neonatal administration. Reinjection at 14 or at 14 and 42 d resulted in augmented expression with greater hepatic genome copies. Unlike controls, immune responses to transgene proteins were not detected in animals injected as neonates and subsequently. However, while no immune response developed after neonatal administration, anticapsid immune responses developed with further injections suggesting immunological ignorance was the initial mechanism of unresponsiveness. CONCLUSIONS Persistence of transgene protein allows for tolerance induction permitting readministration of AAV to re-establish protein levels that decline with growth.
Collapse
|
33
|
Johnston S, Rhodes L. No surgery required: the future of feline sterilization: An overview of the Michelson Prize & Grants in Reproductive Biology. J Feline Med Surg 2015; 17:777-82. [PMID: 26323802 PMCID: PMC11148980 DOI: 10.1177/1098612x15594992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
OVERVIEW For many years, researchers have been studying reproduction of cats and dogs, including approaches to non-surgical sterilization, but scant funding has been available for this work. Recognizing the need to fund research and to attract researchers from the biomedical community to apply their expertise to this area, the Michelson Prize & Grants (MPG) in Reproductive Biology program was founded. Since 2009, it has funded 34 research projects in seven countries toward discovery of a safe single-administration lifetime non-surgical sterilant in male and female cats and dogs. GOAL The goal of the MPG program is the reduction or elimination of the approximately 2.7 million deaths of healthy shelter cats and dogs in the US every year. The successful product is expected to be a single-dose injectable product approved by the US Food and Drug Administration as a veterinary prescription item. The most optimistic prediction is that such a product will reach the hands of practicing veterinarians within the next decade. AREAS OF RESEARCH Active research is in progress using approaches such as immunocontraception with a single-administration vaccine against gonadotropin releasing hormone (GnRH). Long-term therapy with GnRH agonists such as deslorelin administered in controlled-release devices is also being studied. Other scientists are targeting cells in the brain or gonads with cytotoxins, such as are used in cancer chemotherapy. Gene therapy expressing proteins that suppress reproduction and gene silencing of peptides essential to reproduction are further avenues of research. Findings are available at www.michelsonprizeandgrants.org/michelson-grants/research-findings.
Collapse
Affiliation(s)
- Shirley Johnston
- Director of Scientific Research, Found Animals Foundation, Los Angeles, California, USA
| | - Linda Rhodes
- Board of Directors, Alliance for Contraception in Cats & Dogs (ACC&D), Portland, Oregon, USA
| |
Collapse
|
34
|
Tai DS, Hu C, Lee CCI, Martinez M, Cantero G, Kim EH, Tarantal AF, Lipshutz GS. Development of operational immunologic tolerance with neonatal gene transfer in nonhuman primates: preliminary studies. Gene Ther 2015; 22:923-30. [PMID: 26333349 DOI: 10.1038/gt.2015.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 02/05/2023]
Abstract
Achieving persistent expression is a prerequisite for effective genetic therapies for inherited disorders. These proof-of-concept studies focused on adeno-associated virus (AAV) administration to newborn monkeys. Serotype rh10 AAV expressing ovalbumin and green fluorescent protein (GFP) was administered intravenously at birth and compared with vehicle controls. At 4 months postnatal age, a second injection was administered intramuscularly, followed by vaccination at 1 year of age with ovalbumin and GFP. Ovalbumin was highest 2 weeks post administration in the treated monkey, which declined but remained detectable thereafter; controls demonstrated no expression. Long-term AAV genome copies were present in myocytes. At 4 weeks, neutralizing antibodies to rh10 were present in the experimental animal only. With AAV9 administration at 4 months, controls showed transient ovalbumin expression that disappeared with the development of strong anti-ovalbumin and anti-GFP antibodies. In contrast, increased and maintained ovalbumin expression was noted in the monkey administered AAV at birth, without antibody development. After vaccination, the experimental monkey maintained levels of ovalbumin without antibodies, whereas controls demonstrated high levels of antibodies. These preliminary studies suggest that newborn AAV administration expressing secreted and intracellular xenogenic proteins may result in persistent expression in muscle, and subsequent vector administration can result in augmented expression without humoral immune responses.
Collapse
Affiliation(s)
- D S Tai
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - C Hu
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - C C I Lee
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - M Martinez
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - G Cantero
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - E H Kim
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - A F Tarantal
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - G S Lipshutz
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Nichols TC, Whitford MH, Arruda VR, Stedman HH, Kay MA, High KA. Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs. HUM GENE THER CL DEV 2015; 26:5-14. [PMID: 25675273 DOI: 10.1089/humc.2014.153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (<1% FIX) provide well-characterized phenotypes and genotypes in which a species-specific transgene can be expressed in a mixed genetic background. Correction of the hemophilic coagulopathy by sustained expression of FIX, reduction of bleeding events, and a comprehensive assessment of the humoral and cell-mediated immune responses to the expressed transgene and recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches.
Collapse
Affiliation(s)
- Timothy C Nichols
- 1 Francis Owen Blood Research Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC 27516
| | | | | | | | | | | |
Collapse
|
36
|
AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood 2015; 125:1553-61. [PMID: 25568350 DOI: 10.1182/blood-2014-07-588194] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging successful clinical data on gene therapy using adeno-associated viral (AAV) vector for hemophilia B (HB) showed that the risk of cellular immune response to vector capsid is clearly dose dependent. To decrease the vector dose, we explored AAV-8 (1-3 × 10(12) vg/kg) encoding a hyperfunctional factor IX (FIX-Padua, arginine 338 to leucine) in FIX inhibitor-prone HB dogs. Two naïve HB dogs showed sustained expression of FIX-Padua with an 8- to 12-fold increased specific activity reaching 25% to 40% activity without antibody formation to FIX. A third dog with preexisting FIX inhibitors exhibited a transient anamnestic response (5 Bethesda units) at 2 weeks after vector delivery following by spontaneous eradication of the antibody to FIX by day 70. In this dog, sustained FIX expression reached ∼200% and 30% of activity and antigen levels, respectively. Immune tolerance was confirmed in all dogs after challenges with plasma-derived FIX concentrate. Shortening of the clotting times and lack of bleeding episodes support the phenotypic correction of the severe phenotype, with no clinical or laboratory evidence of risk of thrombosis. Provocative studies in mice showed that FIX-Padua exhibits similar immunogenicity and thrombogenicity compared with FIX wild type. Collectively, these data support the potential translation of gene-based strategies using FIX-Padua for HB.
Collapse
|
37
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
38
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
39
|
Nichols T, Whitford MH, Arruda VR, Stedman HH, Kay MA, High KA. Translational Data from AAV-Mediated Gene Therapy of Hemophilia B in Dogs. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
40
|
Intrinsic transgene immunogenicity gears CD8(+) T-cell priming after rAAV-mediated muscle gene transfer. Mol Ther 2014; 23:697-706. [PMID: 25492560 DOI: 10.1038/mt.2014.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 01/18/2023] Open
Abstract
Antitransgene CD8(+) T-cell responses are an important hurdle after recombinant adeno-associated virus (rAAV) vector-mediated gene transfer. Indeed, depending on the mutational genotype of the host, transgene amino-acid sequences of foreign origin can elicit deleterious cellular and humoral responses. We compared here two different major histocompatibility complex (MHC) class I epitopes of an engineered ovalbumin transgene delivered in muscle tissue by rAAV1 vector and found very different strength of CD8 responses, muscle destruction being correlated with the course of the immunodominant response. We further demonstrate that robust CD8(+) T-cell priming can occur through the cross-presentation pathway but requires the presence of either a strong MHC class II epitope or antibodies to the transgene product. Finally, manipulating transgene subcellular localization, we found that provided we avoid transgene expression in antigen presenting cells, the poorly accessible cytosolic form of ovalbumin transgene lacking strong MHC II epitope, evades CD8(+) T-cell priming and remains permanently expressed in muscle with no immune cell infiltration. Our results demonstrate that the intrinsic immunogenicity of transgenes delivered with rAAV vector in muscle can be manipulated in a rational manner to avoid adverse immune responses.
Collapse
|
41
|
Moreau A, Vandamme C, Segovia M, Devaux M, Guilbaud M, Tilly G, Jaulin N, Le Duff J, Cherel Y, Deschamps JY, Anegon I, Moullier P, Cuturi MC, Adjali O. Generation and in vivo evaluation of IL10-treated dendritic cells in a nonhuman primate model of AAV-based gene transfer. Mol Ther Methods Clin Dev 2014; 1:14028. [PMID: 26015970 PMCID: PMC4420248 DOI: 10.1038/mtm.2014.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 01/20/2023]
Abstract
Preventing untoward immune responses against a specific antigen is a major challenge in different clinical settings such as gene therapy, transplantation, or autoimmunity. Following intramuscular delivery of recombinant adeno-associated virus (rAAV)-derived vectors, transgene rejection can be a roadblock to successful clinical translation. Specific immunomodulation strategies potentially leading to sustained transgene expression while minimizing pharmacological immunosuppression are desirable. Tolerogenic dendritic cells (TolDC) are potential candidates but have not yet been evaluated in the context of gene therapy, to our knowledge. Following intramuscular delivery of rAAV-derived vectors expressing an immunogenic protein in the nonhuman primate model, we assessed the immunomodulating potential of autologous bone marrow-derived TolDC generated in the presence of IL10 and pulsed with the transgene product. TolDC administered either intradermally or intravenously were safe and well tolerated. While the intravenous route showed a modest ability to modulate host immunity against the transgene product, intradermally delivery resulted in a robust vaccination of the macaques when associated to intramuscular rAAV-derived vectors-based gene transfer. These findings demonstrate the critical role of TolDC mode of injection in modulating host immunity. This study also provides the first evidence of the potential of TolDC-based immunomodulation in gene therapy.
Collapse
Affiliation(s)
- Aurélie Moreau
- INSERM UMR 1064, ITUN - Institut de Transplantation Urologie Nephrologie, CHU de Nantes, Center of Research in Transplantation and Immunology, Université de Nantes, Nantes, France
| | - Céline Vandamme
- INSERM UMR 1089/Atlantic Gene Therapies, CHU de Nantes/Université de Nantes, Nantes, France
| | - Mercedes Segovia
- INSERM UMR 1064, ITUN - Institut de Transplantation Urologie Nephrologie, CHU de Nantes, Center of Research in Transplantation and Immunology, Université de Nantes, Nantes, France
| | - Marie Devaux
- INSERM UMR 1089/Atlantic Gene Therapies, CHU de Nantes/Université de Nantes, Nantes, France
| | - Mickaël Guilbaud
- INSERM UMR 1089/Atlantic Gene Therapies, CHU de Nantes/Université de Nantes, Nantes, France
| | - Gaëlle Tilly
- INSERM UMR 1064, ITUN - Institut de Transplantation Urologie Nephrologie, CHU de Nantes, Center of Research in Transplantation and Immunology, Université de Nantes, Nantes, France
| | - Nicolas Jaulin
- INSERM UMR 1089/Atlantic Gene Therapies, CHU de Nantes/Université de Nantes, Nantes, France
| | - Johanne Le Duff
- INSERM UMR 1089/Atlantic Gene Therapies, CHU de Nantes/Université de Nantes, Nantes, France
| | - Yan Cherel
- ONIRIS, INRA UMR 703/Atlantic Gene Therapies, Nantes, France
| | | | - Ignacio Anegon
- INSERM UMR 1064, ITUN - Institut de Transplantation Urologie Nephrologie, CHU de Nantes, Center of Research in Transplantation and Immunology, Université de Nantes, Nantes, France
| | - Philippe Moullier
- INSERM UMR 1089/Atlantic Gene Therapies, CHU de Nantes/Université de Nantes, Nantes, France
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Maria Cristina Cuturi
- INSERM UMR 1064, ITUN - Institut de Transplantation Urologie Nephrologie, CHU de Nantes, Center of Research in Transplantation and Immunology, Université de Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089/Atlantic Gene Therapies, CHU de Nantes/Université de Nantes, Nantes, France
| |
Collapse
|
42
|
A dystrophic muscle broadens the contribution and activation of immune cells reacting to rAAV gene transfer. Gene Ther 2014; 21:828-39. [PMID: 25030611 PMCID: PMC4283385 DOI: 10.1038/gt.2014.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/16/2014] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are used for therapeutic gene transfer in skeletal muscle, but it is unclear if immune reactivity to gene transfer and persistence of transgene are affected by pathologic conditions such as muscular dystrophy. Thus, we compared dystrophic mice devoid of α-sarcoglycan with healthy mice to characterize immune cell activation and cellular populations contributing to the loss of gene-modified myofibers. Following rAAV2/1 delivery of an immunogenic α-sarcoglycan reporter transgene in the muscle, both strains developed strong CD4 and CD8 T-cell-mediated immune responses in lymphoid organs associated with muscle CD3+ T and CD11b+ mononuclear cell infiltrates. Selective cell subset depletion models revealed that CD4+ T cells were essential for transgene rejection in both healthy and pathologic mice, but macrophages and CD8+ T cells additionally contributed as effector cells of transgene rejection only in dystrophic mice. Vectors restricting transgene expression in antigen-presenting cells showed that endogenous presentation of transgene products was the sole mechanism responsible for T-cell priming in normal mice, whereas additional and protracted antigenic presentation occurred in dystrophic animals, leading to secondary CD4+ T-cell activation and failure to maintain transgene expression. Therefore, the dystrophic environment diversifies cellular immune response mechanisms induced by gene transfer, with a negative outcome.
Collapse
|
43
|
Omental implantation of BOECs in hemophilia dogs results in circulating FVIII antigen and a complex immune response. Blood 2014; 123:4045-53. [PMID: 24829206 DOI: 10.1182/blood-2013-12-545780] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ex vivo gene therapy strategies avoid systemic delivery of viruses thereby mitigating the risk of vector-associated immunogenicity. Previously, we delivered autologous factor VIII (FVIII)-expressing blood outgrowth endothelial cells (BOECs) to hemophilia A mice and showed that these cells remained sequestered within the implanted matrix and provided therapeutic levels of FVIII. Prior to translating this strategy into the canine (c) model of hemophilia A, we increased cFVIII transgene expression by at least 100-fold with the use of the elongation factor 1 alpha (EF1α) promoter and a strong endothelial enhancer element. BOECs isolated from hemophilia A dogs transduced with this lentiviral vector express levels of cFVIII ranging between 1.0 and 1.5 U/mL per 10(6) cells over 24 hours. Autologous BOECs have been implanted into the omentum of 2 normal and 3 hemophilia A dogs. These implanted cells formed new vessels in the omentum. All 3 hemophilia A dogs treated with FVIII-expressing autologous BOECs developed anti-FVIII immunoglobulin G2 antibodies, but in only 2 of the dogs were these antibodies inhibitory. FVIII antigen levels >40% in the absence of FVIII coagulant function were detected in the circulation for up to a year after a single gene therapy treatment, indicating prolonged cellular viability and synthesis of FVIII.
Collapse
|
44
|
Abstract
Animal models of hemophilia and related diseases are important for the development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease (VWD) have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and VWD pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform preclinical assessments of standard protein replacement therapies, as well as novel gene transfer technology. The differences both between species and in underlying causative mutations must be considered in choosing the best animal for a specific scientific study.
Collapse
|
45
|
Boisgerault F, Gross DA, Ferrand M, Poupiot J, Darocha S, Richard I, Galy A. Prolonged gene expression in muscle is achieved without active immune tolerance using microrRNA 142.3p-regulated rAAV gene transfer. Hum Gene Ther 2014; 24:393-405. [PMID: 23427817 DOI: 10.1089/hum.2012.208] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene transfer efficacy is limited by unwanted immunization against transgene products. In some models, immunization may be avoided by regulating transgene expression with mir142.3p target sequences. Yet, it is unclear if such a strategy controls T-cell responses following recombinant adeno-associated viral vector (rAAV)-mediated gene transfer, particularly in muscle. In mice, intramuscular rAAV1 gene delivery of a tagged human sarcoglycan muscle protein is robustly immunogenic and leads to muscle destruction. In this model, the simple insertion of mir142.3p-target sequences in the transgene expression cassette modifies the outcome of gene transfer, providing high and persistent levels of muscle transduction in C57Bl/6 mice. Such regulated vector fails to prime specific CD4 and CD8 T cells; although, transgene tolerance seems to result from ignorance and could be broken by a robust antigenic challenge. While effective in normal mice, the mir142.3p-regulated transgene remains immunogenic in sarcoglycan-deficient dystrophic mice. In these mice, transgene expression is only prolonged but does not persist as effector CD4 and CD8 T-cell responses develop. Thus, using a mir142.3p-regulated transgene can improve rAAV muscle gene transfer results, but the level of efficacy depends on the context of application. In normal muscle, this strategy is sufficient to prevent immunization and functions even more effectively than tissue-specific promoters. In dystrophic models, additional strategies are required to fully control T-cell responses.
Collapse
Affiliation(s)
- Florence Boisgerault
- Genethon, Molecular Immunology and Innovative Biotherapies Group, Evry F91002 France
| | | | | | | | | | | | | |
Collapse
|
46
|
Rogers GL, Martino AT, Zolotukhin I, Ertl HCJ, Herzog RW. Role of the vector genome and underlying factor IX mutation in immune responses to AAV gene therapy for hemophilia B. J Transl Med 2014; 12:25. [PMID: 24460861 PMCID: PMC3904690 DOI: 10.1186/1479-5876-12-25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/23/2014] [Indexed: 11/24/2022] Open
Abstract
Background Self-complementary adeno-associated virus (scAAV) vectors have become a desirable vector for therapeutic gene transfer due to their ability to produce greater levels of transgene than single-stranded AAV (ssAAV). However, recent reports have suggested that scAAV vectors are more immunogenic than ssAAV. In this study, we investigated the effects of a self-complementary genome during gene therapy with a therapeutic protein, human factor IX (hF.IX). Methods Hemophilia B mice were injected intramuscularly with ss or scAAV1 vectors expressing hF.IX. The outcome of gene transfer was assessed, including transgene expression as well as antibody and CD8+ T cell responses to hF.IX. Results Self-complementary AAV1 vectors induced similar antibody responses (which eliminated systemic hF.IX expression) but stronger CD8+ T cell responses to hF.IX relative to ssAAV1 in mice with F9 gene deletion. As a result, hF.IX-expressing muscle fibers were effectively eliminated in scAAV-treated mice. In contrast, mice with F9 nonsense mutation (late stop codon) lacked antibody or T cell responses, thus showing long-term expression regardless of the vector genome. Conclusions The nature of the AAV genome can impact the CD8+ T cell response to the therapeutic transgene product. In mice with endogenous hF.IX expression, however, this enhanced immunogenicity did not break tolerance to hF.IX, suggesting that the underlying mutation is a more important risk factor for transgene-specific immunity than the molecular form of the AAV genome.
Collapse
Affiliation(s)
| | | | | | | | - Roland W Herzog
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
47
|
Chuah MK, Evens H, VandenDriessche T. Gene therapy for hemophilia. J Thromb Haemost 2013; 11 Suppl 1:99-110. [PMID: 23809114 DOI: 10.1111/jth.12215] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
Abstract
Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia.
Collapse
Affiliation(s)
- M K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | | | | |
Collapse
|
48
|
Abstract
Gene therapy products for the treatment of genetic diseases are currently in clinical trials, and one of these, an adeno-associated viral (AAV) product, has recently been licensed. AAV vectors have achieved positive results in a number of clinical and preclinical settings, including hematologic disorders such as the hemophilias, Gaucher disease, hemochromatosis, and the porphyrias. Because AAV vectors are administered directly to the patient, the likelihood of a host immune response is high, as shown by human studies. Preexisting and/or recall responses to the wild-type virus from which the vector is engineered, or to the transgene product itself, can interfere with therapeutic efficacy if not identified and managed optimally. Small-scale clinical studies have enabled investigators to dissect the immune responses to the AAV vector capsid and to the transgene product, and to develop strategies to manage these responses to achieve long-term expression of the therapeutic gene. However, a comprehensive understanding of the determinants of immunogenicity of AAV vectors, and of potential associated toxicities, is still lacking. Careful immunosurveillance conducted as part of ongoing clinical studies will provide the basis for understanding the intricacies of the immune response in AAV-mediated gene transfer, facilitating safe and effective therapies for genetic diseases.
Collapse
|
49
|
Chuah MK, Nair N, VandenDriessche T. Recent progress in gene therapy for hemophilia. Hum Gene Ther 2012; 23:557-65. [PMID: 22671033 DOI: 10.1089/hum.2012.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemophilia A and B are X-linked monogenic disorders caused by deficiencies in coagulation factor VIII (FVIII) and factor IX (FIX), respectively. Current treatment for hemophilia involves intravenous infusion of clotting factor concentrates. However, this does not constitute a cure, and the development of gene-based therapies for hemophilia to achieve prolonged high level expression of clotting factors to correct the bleeding diathesis are warranted. Different types of viral and nonviral gene delivery systems and a wide range of different target cells, including hepatocytes, skeletal muscle cells, hematopoietic stem cells (HSCs), and endothelial cells, have been explored for hemophilia gene therapy. Adeno-associated virus (AAV)-based and lentiviral vectors are among the most promising vectors for hemophilia gene therapy. Stable correction of the bleeding phenotypes in hemophilia A and B was achieved in murine and canine models, and these promising preclinical studies prompted clinical trials in patients suffering from severe hemophilia. These studies recently resulted in the first demonstration that long-term expression of therapeutic FIX levels could be achieved in patients undergoing gene therapy. Despite this progress, there are still a number of hurdles that need to be overcome. In particular, the FIX levels obtained were insufficient to prevent bleeding induced by trauma or injury. Moreover, the gene-modified cells in these patients can become potential targets for immune destruction by effector T cells, specific for the AAV vector antigens. Consequently, more efficacious approaches are needed to achieve full hemostatic correction and to ultimately establish a cure for hemophilia A and B.
Collapse
Affiliation(s)
- Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, B-1090 Brussels, Belgium
| | | | | |
Collapse
|
50
|
Zhu X, McTiernan CF, Rajagopalan N, Shah H, Fischer D, Toyoda Y, Letts D, Bortinger J, Gibson G, Xiang W, McCurry K, Mathier M, Glorioso JC, London B. Immunosuppression decreases inflammation and increases AAV6-hSERCA2a-mediated SERCA2a expression. Hum Gene Ther 2012; 23:722-32. [PMID: 22482463 PMCID: PMC3404422 DOI: 10.1089/hum.2011.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 03/01/2012] [Indexed: 01/07/2023] Open
Abstract
The calcium pump SERCA2a (sarcoplasmic reticulum calcium ATPase 2a), which plays a central role in cardiac contraction, shows decreased expression in heart failure (HF). Increasing SERCA2a expression in HF models improves cardiac function. We used direct cardiac delivery of adeno-associated virus encoding human SERCA2a (AAV6-hSERCA2a) in HF and normal canine models to study safety, efficacy, and the effects of immunosuppression. Tachycardic-paced dogs received left ventricle (LV) wall injection of AAV6-hSERCA2a or solvent. Pacing continued postinjection for 2 or 6 weeks, until euthanasia. Tissue/serum samples were analyzed for hSERCA2a expression (Western blot) and immune responses (histology and AAV6-neutralizing antibodies). Nonpaced dogs received AAV6-hSERCA2a and were analyzed at 12 weeks; a parallel cohort received AAV-hSERCA2a and immunosuppression. AAV-mediated cardiac expression of hSERCA2a peaked at 2 weeks and then declined (to ~50%; p<0.03, 6 vs. 2 weeks). LV end diastolic and end systolic diameters decreased in 6-week dogs treated with AAV6-hSERCA2a (p<0.05) whereas LV diameters increased in control dogs. Dogs receiving AAV6-hSERCA2a developed neutralizing antibodies (titer ≥1:120) and cardiac cellular infiltration. Immunosuppression dramatically reduced immune responses (reduced inflammation and neutralizing antibody titers <1:20), and maintained hSERCA2a expression. Thus cardiac injection of AAV6-hSERCA2a promotes local hSERCA2a expression and improves cardiac function. However, the hSERCA2a protein level is reduced by host immune responses. Immunosuppression alleviates immune responses and sustains transgene expression, and may be an important adjuvant for clinical gene therapy trials.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Navin Rajagopalan
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hemal Shah
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - David Fischer
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yoshiya Toyoda
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dustin Letts
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jonathan Bortinger
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Gregory Gibson
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Wenyu Xiang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kenneth McCurry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Michael Mathier
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Joseph C. Glorioso
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Barry London
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|