1
|
Maji D, Miguela V, Cameron AD, Campbell DA, Sasset L, Yao X, Thompson AT, Sussman C, Yang D, Miller R, Drozdz MM, Liberatore RA. Enhancing In Vivo Electroporation Efficiency through Hyaluronidase: Insights into Plasmid Distribution and Optimization Strategies. Pharmaceutics 2024; 16:547. [PMID: 38675208 PMCID: PMC11053992 DOI: 10.3390/pharmaceutics16040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Electroporation (EP) stands out as a promising non-viral plasmid delivery strategy, although achieving optimal transfection efficiency in vivo remains a challenge. A noteworthy advancement in the field of in vivo EP is the application of hyaluronidase, an enzyme with the capacity to degrade hyaluronic acid in the extracellular matrix, which thereby enhances DNA transfer efficiency by 2- to 3-fold. This paper focuses on elucidating the mechanism of hyaluronidase's impact on transfection efficiency. We demonstrate that hyaluronidase promotes a more uniform distribution of plasmid DNA (pDNA) within skeletal muscle. Additionally, our study investigates the effect of the timing of hyaluronidase pretreatment on EP efficiency by including time intervals of 0, 5, and 30 min between hyaluronidase treatment and the application of pulses. Serum levels of the pDNA-encoded transgene reveal a minimal influence of the hyaluronidase pretreatment time on the final serum protein levels following delivery in both mice and rabbit models. Leveraging bioimpedance measurements, we capture morphological changes in muscle induced by hyaluronidase treatment, which result in a varied pDNA distribution. Subsequently, these findings are employed to optimize EP electrical parameters following hyaluronidase treatment in animal models. This paper offers novel insights into the potential of hyaluronidase in enhancing the effectiveness of in vivo EP, as well as guides optimized electroporation strategies following hyaluronidase use.
Collapse
Affiliation(s)
- Debnath Maji
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | - Verónica Miguela
- RenBio Inc., Long Island City, New York, NY 11101, USA
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas—Universidad Miguel Hernández de Elche, Sant Joan d’Alacant, 03550 Alicante, Spain
| | | | | | - Linda Sasset
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | - Xin Yao
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | | | | | - David Yang
- RenBio Inc., Long Island City, New York, NY 11101, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert Miller
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | | | | |
Collapse
|
2
|
Chastagnier L, Marquette C, Petiot E. In situ transient transfection of 3D cell cultures and tissues, a promising tool for tissue engineering and gene therapy. Biotechnol Adv 2023; 68:108211. [PMID: 37463610 DOI: 10.1016/j.biotechadv.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Various research fields use the transfection of mammalian cells with genetic material to induce the expression of a target transgene or gene silencing. It is a tool widely used in biological research, bioproduction, and therapy. Current transfection protocols are usually performed on 2D adherent cells or suspension cultures. The important rise of new gene therapies and regenerative medicine in the last decade raises the need for new tools to empower the in situ transfection of tissues and 3D cell cultures. This review will present novel in situ transfection methods based on a chemical or physical non-viral transfection of cells in tissues and 3D cultures, discuss the advantages and remaining gaps, and propose future developments and applications.
Collapse
Affiliation(s)
- Laura Chastagnier
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Christophe Marquette
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Emma Petiot
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France.
| |
Collapse
|
3
|
Aurisicchio L, Brambilla N, Cazzaniga ME, Bonfanti P, Milleri S, Ascierto PA, Capici S, Vitalini C, Girolami F, Giacovelli G, Caselli G, Visintin M, Fanti F, Ghirri M, Conforti A, Compagnone M, Lione L, Salvatori E, Pinto E, Muzi A, Marra E, Palombo F, Roscilli G, Manenti A, Montomoli E, Cadossi M, Rovati LC. A first-in-human trial on the safety and immunogenicity of COVID-eVax, a cellular response-skewed DNA vaccine against COVID-19. Mol Ther 2023; 31:788-800. [PMID: 36575794 PMCID: PMC9792419 DOI: 10.1016/j.ymthe.2022.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The COVID-19 pandemic and the need for additional safe, effective, and affordable vaccines gave new impetus into development of vaccine genetic platforms. Here we report the findings from the phase 1, first-in-human, dose-escalation study of COVID-eVax, a DNA vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Sixty-eight healthy adults received two doses of 0.5, 1, or 2 mg 28 days apart, or a single 2-mg dose, via intramuscular injection followed by electroporation, and they were monitored for 6 months. All participants completed the primary safety and immunogenicity assessments after 8 weeks. COVID-eVax was well tolerated, with mainly mild to moderate solicited adverse events (tenderness, pain, bruising, headache, and malaise/fatigue), less frequent after the second dose, and it induced an immune response (binding antibodies and/or T cells) at all prime-boost doses tested in up to 90% of the volunteers at the highest dose. However, the vaccine did not induce neutralizing antibodies, while particularly relevant was the T cell-mediated immunity, with a robust Th1 response. This T cell-skewed immunological response adds significant information to the DNA vaccine platform and should be assessed in further studies for its protective capacity and potential usefulness also in other therapeutic areas, such as oncology.
Collapse
Affiliation(s)
| | - Nadia Brambilla
- Rottapharm Biotech, Via Valosa di Sopra 9, 20900 Monza, Italy
| | - Marina E Cazzaniga
- Phase 1 Research Centre and Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy
| | - Paolo Bonfanti
- Infectious Diseases Unit, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy
| | - Stefano Milleri
- CRC - Centro Ricerche Cliniche di Verona, 37134 Verona, Italy
| | - Paolo A Ascierto
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy
| | - Serena Capici
- Phase 1 Research Centre and Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy
| | | | | | | | | | | | - Francesca Fanti
- Rottapharm Biotech, Via Valosa di Sopra 9, 20900 Monza, Italy
| | - Matteo Ghirri
- Rottapharm Biotech, Via Valosa di Sopra 9, 20900 Monza, Italy
| | - Antonella Conforti
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy; Evvivax Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Lucia Lione
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | | | - Alessia Muzi
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Fabio Palombo
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | | | - Emanuele Montomoli
- VisMederi Research, 53100 Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | | - Lucio C Rovati
- Rottapharm Biotech, Via Valosa di Sopra 9, 20900 Monza, Italy; University of Milano-Bicocca School of Medicine, 20900 Monza, Italy.
| |
Collapse
|
4
|
Nanotechnology for DNA and RNA delivery. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
5
|
Hughes DC, Hardee JP, Waddell DS, Goodman CA. CORP: Gene delivery into murine skeletal muscle using in vivo electroporation. J Appl Physiol (1985) 2022; 133:41-59. [PMID: 35511722 DOI: 10.1152/japplphysiol.00088.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The strategy of gene delivery into skeletal muscles has provided exciting avenues in identifying new potential therapeutics towards muscular disorders and addressing basic research questions in muscle physiology through overexpression and knockdown studies. In vivo electroporation methodology offers a simple, rapidly effective technique for the delivery of plasmid DNA into post-mitotic skeletal muscle fibers and the ability to easily explore the molecular mechanisms of skeletal muscle plasticity. The purpose of this review is to describe how to robustly electroporate plasmid DNA into different hindlimb muscles of rodent models. Further, key parameters (e.g., voltage, hyaluronidase, plasmid concentration) which contribute to the successful introduction of plasmid DNA into skeletal muscle fibers will be discussed. In addition, details on processing tissue for immunohistochemistry and fiber cross-sectional area (CSA) analysis will be outlined. The overall goal of this review is to provide the basic and necessary information needed for successful implementation of in vivo electroporation of plasmid DNA and thus open new avenues of discovery research in skeletal muscle physiology.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Justin P Hardee
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
6
|
|
7
|
Pagant S, Liberatore RA. In Vivo Electroporation of Plasmid DNA: A Promising Strategy for Rapid, Inexpensive, and Flexible Delivery of Anti-Viral Monoclonal Antibodies. Pharmaceutics 2021; 13:1882. [PMID: 34834297 PMCID: PMC8618954 DOI: 10.3390/pharmaceutics13111882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Since the first approval of monoclonal antibodies by the United States Food and Drug Administration (FDA) in 1986, therapeutic antibodies have become one of the predominant classes of drugs in oncology and immunology. Despite their natural function in contributing to antiviral immunity, antibodies as drugs have only more recently been thought of as tools for combating infectious diseases. Passive immunization, or the delivery of the products of an immune response, offers near-immediate protection, unlike the active immune processes triggered by traditional vaccines, which rely on the time it takes for the host's immune system to develop an effective defense. This rapid onset of protection is particularly well suited to containing outbreaks of emerging viral diseases. Despite these positive attributes, the high cost associated with antibody manufacture and the need for a cold chain for storage and transport limit their deployment on a global scale, especially in areas with limited resources. The in vivo transfer of nucleic acid-based technologies encoding optimized therapeutic antibodies transform the body into a bioreactor for rapid and sustained production of biologics and hold great promise for circumventing the obstacles faced by the traditional delivery of antibodies. In this review, we provide an overview of the different antibody delivery strategies that are currently being developed, with particular emphasis on in vivo transfection of naked plasmid DNA facilitated by electroporation.
Collapse
|
8
|
Kumar S, Lazau E, Kim C, N Thadhani N, R Prausnitz M. Serum Protects Cells and Increases Intracellular Delivery of Molecules by Nanoparticle-Mediated Photoporation. Int J Nanomedicine 2021; 16:3707-3724. [PMID: 34103912 PMCID: PMC8180297 DOI: 10.2147/ijn.s307027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Intracellular delivery of molecules is central to applications in biotechnology, medicine, and basic research. Nanoparticle-mediated photoporation using carbon black nanoparticles exposed to pulsed, near-infrared laser irradiation offers a physical route to create transient cell membrane pores, enabling intracellular delivery. However, nanoparticle-mediated photoporation, like other physical intracellular delivery technologies, necessitates a trade-off between achieving efficient uptake of exogenous molecules and maintaining high cell viability. Methods In this study, we sought to shift this balance by adding serum to cells during nanoparticle-mediated photoporation as a viability protectant. DU-145 prostate cancer cells and human dermal fibroblasts were exposed to laser irradiation in the presence of carbon black (CB) nanoparticles and other formulation additives, including fetal bovine serum (FBS) and polymers. Results Our studies showed that FBS can protect cells from viability loss, even at high-fluence laser irradiation conditions that lead to high levels of intracellular delivery in two different mammalian cell types. Further studies revealed that full FBS was not needed: viability protection was achieved with denatured FBS, with just the high molecular weight fraction of FBS (>30 kDa), or even with individual proteins like albumin or hemoglobin. Finally, we found that viability protection was also obtained using certain neutral water-soluble polymers, including Pluronic F127, polyvinylpyrrolidone, poly(2-ethyl-2-oxazoline), and polyethylene glycol, which were more effective at increased concentration, molecular weight, or hydrophobicity. Conclusion Altogether, these findings suggest an interaction between amphiphilic domains of polymers with the cell membrane to help cells maintain viability, possibly by facilitating transmembrane pore closure. In this way, serum components or synthetic polymers can be used to increase intracellular delivery by nanoparticle-mediated photoporation while maintaining high cell viability.
Collapse
Affiliation(s)
- Simple Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eunice Lazau
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Carter Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
9
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Remes A, Basha D, Frey N, Wagner A, Müller O. Gene transfer to the vascular system: Novel translational perspectives for vascular diseases. Biochem Pharmacol 2020; 182:114265. [DOI: 10.1016/j.bcp.2020.114265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023]
|
11
|
Induction of a local muscular dystrophy using electroporation in vivo: an easy tool for screening therapeutics. Sci Rep 2020; 10:11301. [PMID: 32647247 PMCID: PMC7347864 DOI: 10.1038/s41598-020-68135-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/09/2020] [Indexed: 01/19/2023] Open
Abstract
Intramuscular injection and electroporation of naked plasmid DNA (IMEP) has emerged as a potential alternative to viral vector injection for transgene expression into skeletal muscles. In this study, IMEP was used to express the DUX4 gene into mouse tibialis anterior muscle. DUX4 is normally expressed in germ cells and early embryo, and silenced in adult muscle cells where its pathological reactivation leads to Facioscapulohumeral muscular dystrophy. DUX4 encodes a potent transcription factor causing a large deregulation cascade. Its high toxicity but sporadic expression constitutes major issues for testing emerging therapeutics. The IMEP method appeared as a convenient technique to locally express DUX4 in mouse muscles. Histological analyses revealed well delineated muscle lesions 1-week after DUX4 IMEP. We have therefore developed a convenient outcome measure by quantification of the damaged muscle area using color thresholding. This method was used to characterize lesion distribution and to assess plasmid recirculation and dose–response. DUX4 expression and activity were confirmed at the mRNA and protein levels and through a quantification of target gene expression. Finally, this study gives a proof of concept of IMEP model usefulness for the rapid screening of therapeutic strategies, as demonstrated using antisense oligonucleotides against DUX4 mRNA.
Collapse
|
12
|
Le Guen YT, Le Gall T, Midoux P, Guégan P, Braun S, Montier T. Gene transfer to skeletal muscle using hydrodynamic limb vein injection: current applications, hurdles and possible optimizations. J Gene Med 2020; 22:e3150. [PMID: 31785130 DOI: 10.1002/jgm.3150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
Hydrodynamic limb vein injection is an in vivo locoregional gene delivery method. It consists of administrating a large volume of solution containing nucleic acid constructs in a limb with both blood inflow and outflow temporarily blocked using a tourniquet. The fast, high pressure delivery allows the musculature of the whole limb to be reached. The skeletal muscle is a tissue of choice for a variety of gene transfer applications, including gene therapy for Duchenne muscular dystrophy or other myopathies, as well as for the production of antibodies or other proteins with broad therapeutic effects. Hydrodynamic limb vein delivery has been evaluated with success in a large range of animal models. It has also proven to be safe and well-tolerated in muscular dystrophy patients, thus supporting its translation to the clinic. However, some possible limitations may occur at different steps of the delivery process. Here, we have highlighted the interests, bottlenecks and potential improvements that could further optimize non-viral gene transfer following hydrodynamic limb vein injection.
Collapse
Affiliation(s)
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, France
| | - Philippe Guégan
- Laboratoire de chimie des polymères, Sorbonne Université, CNRS UMR 8232, UPMC Paris 06, F-75005, Paris, France
| | - Serge Braun
- AFM Telethon, 1 rue de l'Internationale, BP59, 91002 Evry, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France
| |
Collapse
|
13
|
Zakharova LY, Kaupova GI, Gabdrakhmanov DR, Gaynanova GA, Ermakova EA, Mukhitov AR, Galkina IV, Cheresiz SV, Pokrovsky AG, Skvortsova PV, Gogolev YV, Zuev YF. Alkyl triphenylphosphonium surfactants as nucleic acid carriers: complexation efficacy toward DNA decamers, interaction with lipid bilayers and cytotoxicity studies. Phys Chem Chem Phys 2019; 21:16706-16717. [PMID: 31321392 DOI: 10.1039/c9cp02384d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, for the first time the complexation ability of a homological series of triphenylphosphonium surfactants (TPPB-n) toward DNA decamers has been explored. Formation of lipoplexes was confirmed by alternative techniques, including dynamic light scattering, indicating the occurrence of nanosized complexes (ca. 100-150 nm), and monitoring the charge neutralization of nucleotide phosphate groups and the fluorescence quenching of dye-intercalator ethidium bromide. The complexation efficacy of TPPB-surfactants toward an oligonucleotide (ONu) is compared with that of reference cationic surfactants. Strong effects of the alkyl chain length and the structure of the head group on the surfactant/ONu interaction are revealed, which probably occur via different mechanisms, with electrostatic and hydrophobic forces or intercalation imbedding involved. Phosphonium surfactants are shown to be capable of disordering lipid bilayers, which is supported by a decrease in the temperature of the main phase transition, Tm. This effect enhances with an increase in the alkyl chain length, indicating the integration of TPPB-n with lipid membranes. This markedly differs from the behavior of typical cationic surfactant cetyltrimethylammonium bromide, which induces an increase in the Tm value. It was demonstrated that the cytotoxicity of TPPB-n in terms of the MTT-test on a human cell line 293T nonmonotonically changes within the homological series, with the highest cytotoxicity exhibited by the dodecyl and tetradecyl homologs.
Collapse
Affiliation(s)
- Lucia Ya Zakharova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia.
| | - Guzalia I Kaupova
- Scientific and Technological Center of PAO "Niznekamskneftekhim", Sobolekovskaya Street 23, Nizhnekamsk 423574, Russia
| | - Dinar R Gabdrakhmanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia.
| | - Gulnara A Gaynanova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia.
| | - Elena A Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| | - Alexander R Mukhitov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| | - Irina V Galkina
- Kazan (Volga Region) Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Sergey V Cheresiz
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Andrey G Pokrovsky
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Polina V Skvortsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevski Street 2/31, Kazan 420111, Russia
| |
Collapse
|
14
|
Sokołowska E, Błachnio-Zabielska AU. A Critical Review of Electroporation as A Plasmid Delivery System in Mouse Skeletal Muscle. Int J Mol Sci 2019; 20:ijms20112776. [PMID: 31174257 PMCID: PMC6600476 DOI: 10.3390/ijms20112776] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
The gene delivery to skeletal muscles is a promising strategy for the treatment of both muscular disorders (by silencing or overexpression of specific gene) and systemic secretion of therapeutic proteins. The use of a physical method like electroporation with plate or needle electrodes facilitates long-lasting gene silencing in situ. It has been reported that electroporation enhances the expression of the naked DNA gene in the skeletal muscle up to 100 times and decreases the changeability of the intramuscular expression. Coelectransfer of reporter genes such as green fluorescent protein (GFP), luciferase or beta-galactosidase allows the observation of correctly performed silencing in the muscles. Appropriate selection of plasmid injection volume and concentration, as well as electrotransfer parameters, such as the voltage, the length and the number of electrical pulses do not cause long-term damage to myocytes. In this review, we summarized the electroporation methodology as well as the procedure of electrotransfer to the gastrocnemius, tibialis, soleus and foot muscles and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Emilia Sokołowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | | |
Collapse
|
15
|
Jativa SD, Thapar N, Broyles D, Dikici E, Daftarian P, Jiménez JJ, Daunert S, Deo SK. Enhanced Delivery of Plasmid DNA to Skeletal Muscle Cells using a DLC8-Binding Peptide and ASSLNIA-Modified PAMAM Dendrimer. Mol Pharm 2019; 16:2376-2384. [PMID: 30951315 DOI: 10.1021/acs.molpharmaceut.8b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle is ideally suited and highly desirable as a target for therapeutic gene delivery because of its abundance, high vascularization, and high levels of protein expression. However, efficient gene delivery to skeletal muscle remains a current challenge. Besides the major obstacle of cell-specific targeting, efficient intracellular trafficking, or the cytosolic transport of DNA to the nucleus, must be demonstrated. To overcome the challenge of cell-specific targeting, herein we develop a generation 5-polyamidoamine dendrimer (G5-PAMAM) functionalized with a skeletal muscle-targeted peptide, ASSLNIA (G5-SMTP). Specifically, to demonstrate the feasibility of our approach, we prepared a complex of our G5-SMTP dendrimer with a plasmid encoding firefly luciferase and investigated its delivery to skeletal muscle cells. Luciferase assays indicated a threefold increase in transfection efficiency of C2C12 murine skeletal muscle cells using G5-SMTP when compared with nontargeting nanocarriers using unmodified G5. To further improve the transfection yield, we employed a cationic dynein light chain 8 protein (DLC8)-binding peptide (DBP) containing an internal sequence known to bind to the DLC8 of the dynein motor protein complex. Complexation of DBP with our targeting nanocarrier, that is, G5-SMTP, and our luciferase plasmid cargo resulted in a functional nanocarrier that showed an additional sixfold increase in transfection efficiency compared with G5-SMTP transfection alone. To our knowledge, this is the first successful use of two different functional nanocarrier components that enable targeted skeletal muscle cell recognition and increased efficiency of intracellular trafficking to synergistically enhance gene delivery to skeletal muscle cells. This strategy of targeting and trafficking can also be universally applied to any cell/tissue type for which a recognition domain exists.
Collapse
Affiliation(s)
- Samuel D Jativa
- University of Miami Clinical and Translational Science Institute , Miami 33136 , United States
| | | | - David Broyles
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami , Miami 33136 , United States
| | - Emre Dikici
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami , Miami 33136 , United States
| | - Pirouz Daftarian
- JSR Micro, Life Sciences , 1280 North Matilda Avenue , Sunnyvale , California 94089 , United States
| | | | - Sylvia Daunert
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami , Miami 33136 , United States.,University of Miami Clinical and Translational Science Institute , Miami 33136 , United States
| | - Sapna K Deo
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami , Miami 33136 , United States.,University of Miami Clinical and Translational Science Institute , Miami 33136 , United States
| |
Collapse
|
16
|
Chellappan DK, Sivam NS, Teoh KX, Leong WP, Fui TZ, Chooi K, Khoo N, Yi FJ, Chellian J, Cheng LL, Dahiya R, Gupta G, Singhvi G, Nammi S, Hansbro PM, Dua K. Gene therapy and type 1 diabetes mellitus. Biomed Pharmacother 2018; 108:1188-1200. [PMID: 30372820 DOI: 10.1016/j.biopha.2018.09.138] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disorder characterized by T cell-mediated self-destruction of insulin-secreting islet β cells. Management of T1DM is challenging and complicated especially with conventional medications. Gene therapy has emerged as one of the potential therapeutic alternatives to treat T1DM. This review primarily focuses on the current status and the future perspectives of gene therapy in the management of T1DM. A vast number of the studies which are reported on gene therapy for the management of T1DM are done in animal models and in preclinical studies. In addition, the safety of such therapies is yet to be established in humans. Currently, there are several gene level interventions that are being investigated, notably, overexpression of genes and proteins needed against T1DM, transplantation of cells that express the genes against T1DM, stem-cells mediated gene therapy, genetic vaccination, immunological precursor cell-mediated gene therapy and vectors. METHODS We searched the current literature through searchable online databases, journals and other library sources using relevant keywords and search parameters. Only relevant publications in English, between the years 2000 and 2018, with evidences and proper citations, were considered. The publications were then analyzed and segregated into several subtopics based on common words and content. A total of 126 studies were found suitable for this review. FINDINGS Generally, the pros and cons of each of the gene-based therapies have been discussed based on the results collected from the literature. However, there are certain interventions that require further detailed studies to ensure their effectiveness. We have also highlighted the future direction and perspectives in gene therapy, which, researchers could benefit from.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Nandhini S Sivam
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kai Xiang Teoh
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Wai Pan Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Tai Zhen Fui
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kien Chooi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Nico Khoo
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Fam Jia Yi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Lim Lay Cheng
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, NSW, 2751, Australia; NICM Health Research Institute, Western Sydney University, NSW, 2751, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|
17
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
18
|
Lee LYY, Izzard L, Hurt AC. A Review of DNA Vaccines Against Influenza. Front Immunol 2018; 9:1568. [PMID: 30038621 PMCID: PMC6046547 DOI: 10.3389/fimmu.2018.01568] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/25/2018] [Indexed: 01/07/2023] Open
Abstract
The challenges of effective vaccination against influenza are gaining more mainstream attention, as recent influenza seasons have reported low efficacy in annual vaccination programs worldwide. Combined with the potential emergence of novel influenza viruses resulting in a pandemic, the need for effective alternatives to egg-produced conventional vaccines has been made increasingly clear. DNA vaccines against influenza have been in development since the 1990s, but the initial excitement over success in murine model trials has been tempered by comparatively poor performance in larger animal models. In the intervening years, much progress has been made to refine the DNA vaccine platform-the rational design of antigens and expression vectors, the development of novel vaccine adjuvants, and the employment of innovative gene delivery methods. This review discusses how these advances have been applied in recent efforts to develop an effective influenza DNA vaccine.
Collapse
|
19
|
Rey-Rico A, Cucchiarini M. PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine-An Overview. Int J Mol Sci 2018. [PMID: 29518011 PMCID: PMC5877636 DOI: 10.3390/ijms19030775] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have been broadly explored for controlled drug delivery in different regenerative medicine approaches. The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO copolymers as gene delivery systems is a powerful emerging strategy to improve the performance of classical gene transfer vectors. This review summarizes the state of art of the application of PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as gene delivery systems in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
| |
Collapse
|
20
|
Immunization with electroporation enhances the protective effect of a DNA vaccine candidate expressing prME antigen against dengue virus serotype 2 infection. Clin Immunol 2016; 171:41-49. [DOI: 10.1016/j.clim.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/24/2022]
|
21
|
AYDIN S, YALVAÇ ME, ÖZCAN F, ŞAHİN F. Pluronic PF68 increases transfection efficiency in electroporationof mesenchymal stem cells. Turk J Biol 2016. [DOI: 10.3906/biy-1503-55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
22
|
Brolin C, Shiraishi T, Hojman P, Krag TO, Nielsen PE, Gehl J. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e267. [PMID: 26623939 PMCID: PMC5014535 DOI: 10.1038/mtna.2015.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023]
Abstract
Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue.
Collapse
Affiliation(s)
- Camilla Brolin
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Copenhagen University Hospital Herlev, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Pernille Hojman
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas O Krag
- Neuromuscular Research Unit, Department of Neurology Rigshospitalet, University of Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Copenhagen University Hospital Herlev, Denmark
| |
Collapse
|
23
|
Hargrave B, Strange R, Navare S, Stratton M, Burcus N, Murray L, Lundberg C, Bulysheva A, Li F, Heller R. Gene electro transfer of plasmid encoding vascular endothelial growth factor for enhanced expression and perfusion in the ischemic swine heart. PLoS One 2014; 9:e115235. [PMID: 25545364 PMCID: PMC4278858 DOI: 10.1371/journal.pone.0115235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022] Open
Abstract
Myocardial ischemia can damage heart muscle and reduce the heart's pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth factor alone. Higher gene expression was also seen in ischemic versus non-ischemic groups with parameters 20 Volts (p<0.03), 40 Volts (p<0.05), and 90 Volts (p<0.05), but not with 60 Volts (p<0.09) while maintaining a pulse width of 20 milliseconds. The group with gene electro transfer of plasmid encoding vascular endothelial growth factor had increased perfusion in the area at risk compared to control groups. Troponin and creatine kinase increased across all groups, suggesting equivalent ischemia in all groups prior to treatment. Echocardiography was used to assess ejection fraction, cardiac output, stroke volume, left ventricular end diastolic volume, and left ventricular end systolic volume. No statistically significant differences in these parameters were detected during a 2-week time period. However, directional trends of these variables were interesting and offer valuable information about the feasibility of gene electro transfer of vascular endothelial growth factor in the ischemic heart. The results demonstrate that gene electro transfer can be applied safely and can increase perfusion in an ischemic area. Additional study is needed to evaluate potential efficacy.
Collapse
Affiliation(s)
- Barbara Hargrave
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
- School of Medical Diagnostics and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Robert Strange
- Naval Medical Center Portsmouth, Portsmouth, Virginia, United States of America
| | - Sagar Navare
- Naval Medical Center Portsmouth, Portsmouth, Virginia, United States of America
| | - Michael Stratton
- Naval Medical Center Portsmouth, Portsmouth, Virginia, United States of America
| | - Nina Burcus
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Len Murray
- Sobran, Inc. Fairfax, Virginia, United States of America
| | - Cathryn Lundberg
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Anna Bulysheva
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Fanying Li
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
- School of Medical Diagnostics and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
24
|
Vandermeulen G, Uyttenhove C, De Plaen E, Van den Eynde BJ, Préat V. Intramuscular electroporation of a P1A-encoding plasmid vaccine delays P815 mastocytoma growth. Bioelectrochemistry 2014; 100:112-8. [DOI: 10.1016/j.bioelechem.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022]
|
25
|
Bergamaschi C, Kulkarni V, Rosati M, Alicea C, Jalah R, Chen S, Bear J, Sardesai NY, Valentin A, Felber BK, Pavlakis GN. Intramuscular delivery of heterodimeric IL-15 DNA in macaques produces systemic levels of bioactive cytokine inducing proliferation of NK and T cells. Gene Ther 2014; 22:76-86. [PMID: 25273353 PMCID: PMC4289118 DOI: 10.1038/gt.2014.84] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 01/06/2023]
Abstract
Interleukin-15 (IL-15) is a common γ-chain cytokine that has a significant role in the activation and proliferation of T and NK cells and holds great potential in fighting infection and cancer. We have previously shown that bioactive IL-15 in vivo comprises a complex of the IL-15 chain with the soluble or cell-associated IL-15 receptor alpha (IL-15Rα) chain, which together form the IL-15 heterodimer. We have generated DNA vectors expressing the heterodimeric IL-15 by optimizing mRNA expression and protein trafficking. Repeated administration of these DNA plasmids by intramuscular injection followed by in vivo electroporation in rhesus macaques resulted in sustained high levels of IL-15 in plasma, with no significant toxicity. Administration of DNAs expressing heterodimeric IL-15 also resulted in an increased frequency of NK and T cells undergoing proliferation in peripheral blood. Heterodimeric IL-15 led to preferential expansion of CD8+NK cells, all memory CD8+ T-cell subsets and effector memory CD4+ T cells. Expression of heterodimeric IL-15 by DNA delivery to the muscle is an efficient procedure to obtain high systemic levels of bioactive cytokine, without the toxicity linked to the high transient cytokine peak associated with protein injection.
Collapse
Affiliation(s)
- C Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - V Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - M Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - C Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - R Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - S Chen
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - J Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - N Y Sardesai
- Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | - A Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - B K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - G N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
26
|
A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Res 2014; 13:390-403. [PMID: 25310255 DOI: 10.1016/j.scr.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/22/2022] Open
Abstract
An emerging therapeutic approach for Duchenne muscular dystrophy is the transplantation of autologous myogenic progenitor cells genetically modified to express dystrophin. The use of this approach is challenged by the difficulty in maintaining these cells ex vivo while keeping their myogenic potential, and ensuring sufficient transgene expression following their transplantation and myogenic differentiation in vivo. We investigated the use of the piggyBac transposon system to achieve stable gene expression when transferred to cultured mesoangioblasts and into murine muscles. Without selection, up to 8% of the mesoangioblasts expressed the transgene from 1 to 2 genomic copies of the piggyBac vector. Integration occurred mostly in intergenic genomic DNA and transgene expression was stable in vitro. Intramuscular transplantation of mouse Tibialis anterior muscles with mesoangioblasts containing the transposon led to sustained myofiber GFP expression in vivo. In contrast, the direct electroporation of the transposon-donor plasmids in the mouse Tibialis muscles in vivo did not lead to sustained transgene expression despite molecular evidence of piggyBac transposition in vivo. Together these findings provide a proof-of-principle that piggyBac transposon may be considered for mesoangioblast cell-based therapies of muscular dystrophies.
Collapse
|
27
|
Liu S, Ma L, Tan R, Lu Q, Geng Y, Wang G, Gu Z. Safe and efficient local gene delivery into skeletal muscle via a combination of Pluronic L64 and modified electrotransfer. Gene Ther 2014; 21:558-65. [PMID: 24694536 DOI: 10.1038/gt.2014.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 11/09/2022]
Abstract
Efficient DNA electrotransfer into muscles can be achieved by combining two types of electronic pulses sequentially: short high-voltage (HV) pulse for the cell electropermeabilization and long low-voltage (LV) pulse for the DNA electrophoresis into cells. However, the voltages currently applied can still induce histological and functional damages to tissues. Pluronic L64 has been considered as a molecule possessing cell membrane-disturbing ability. For these reasons, we hope that L64 can be used as a substitute for the HV pulse in cell membrane permeabilization, and a safe LV pulse may still keep the ability to drive plasmid DNA across the permeabilized membrane. In this work, we optimized the electrotransfer parameters to establish a safe and efficient procedure using a clinically applied instrument, and found out that the critical condition for a successful combination of electrotransfer with L64 was that the injection of plasmid/L64 mixture should be applied 1 h before the electrotransfer. In addition, we revealed that the combined procedure could not efficiently transfer plasmid into solid tumor because the uncompressed plasmid may rapidly permeate the leaky tumor vessels and flow away. Altogether, the results demonstrate that the combined procedure has the potential for plasmid-based gene therapy through safe and efficient local gene delivery into skeletal muscles.
Collapse
Affiliation(s)
- S Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - L Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - R Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Q Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Y Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - G Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Z Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
van Drunen Littel-van den Hurk S, Hannaman D. Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 2014; 9:503-17. [DOI: 10.1586/erv.10.42] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
In vivo electroporation of minicircle DNA as a novel method of vaccine delivery to enhance HIV-1-specific immune responses. J Virol 2013; 88:1924-34. [PMID: 24284319 DOI: 10.1128/jvi.02757-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA vaccines offer advantage over conventional vaccines, as they are safer to use, easier to produce, and able to induce humoral as well cellular immune responses. Unfortunately, no DNA vaccines have been licensed for human use for the difficulties in developing an efficient and safe in vivo gene delivery system. In vivo electroporation (EP)-based DNA delivery has attracted great attention for its potency to enhance cellular uptake of DNA vaccines and function as an adjuvant. Minicircle DNA (a new form of DNA containing only a gene expression cassette and lacking a backbone of bacterial plasmid DNA) is a powerful candidate of gene delivery in terms of improving the levels and the duration of transgene expression in vivo. In this study, as a novel vaccine delivery system, we combined in vivo EP and the minicircle DNA carrying a codon-optimized HIV-1 gag gene (minicircle-gag) to evaluate the immunogenicity of this system. We found that minicircle-gag conferred persistent and high levels of gag expression in vitro and in vivo. The use of EP delivery further increased minicircle-based gene expression. Moreover, when delivered by EP, minicircle-gag vaccination elicited a 2- to 3-fold increase in cellular immune response and a 1.5- to 3-fold augmentation of humoral immune responses compared with those elicited by a pVAX1-gag positive control. Increased immunogenicity of EP-assisted minicircle-gag may benefit from increasing local antigen expression, upregulating inflammatory genes, and recruiting immune cells. Collectively, in vivo EP of minicircle DNA functions as a novel vaccine platform that can enhance efficacy and immunogenicity of DNA vaccines.
Collapse
|
30
|
Saljoughian N, Zahedifard F, Doroud D, Doustdari F, Vasei M, Papadopoulou B, Rafati S. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol 2013; 35:397-408. [DOI: 10.1111/pim.12042] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/23/2013] [Indexed: 02/03/2023]
Affiliation(s)
- N. Saljoughian
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - F. Zahedifard
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - D. Doroud
- Department of Quality Control; Research and Production Complex; Pasteur Institute of Iran; Tehran Iran
| | - F. Doustdari
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - M. Vasei
- Department of Pathology; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - B. Papadopoulou
- Research Centre in Infectious Disease; CHU de Quebec Research Centre (CHUL); Quebec QC Canada
- Department of Microbiology; Infectious Disease and Immunology; Faculty of Medicine; Laval University; Quebec QC Canada
| | - S. Rafati
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
31
|
Williams JA. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines (Basel) 2013; 1:225-49. [PMID: 26344110 PMCID: PMC4494225 DOI: 10.3390/vaccines1030225] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/25/2022] Open
Abstract
DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.
Collapse
Affiliation(s)
- James A Williams
- Nature Technology Corporation/Suite 103, 4701 Innovation Drive, Lincoln, NE 68521, USA.
| |
Collapse
|
32
|
Diehl MC, Lee JC, Daniels SE, Tebas P, Khan AS, Giffear M, Sardesai NY, Bagarazzi ML. Tolerability of intramuscular and intradermal delivery by CELLECTRA(®) adaptive constant current electroporation device in healthy volunteers. Hum Vaccin Immunother 2013; 9:2246-52. [PMID: 24051434 DOI: 10.4161/hv.24702] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA vaccines are being developed as a potentially safe and effective immunization platform. However, translation of DNA vaccines into a clinical setting has produced results that have fallen short of those generated in a preclinical setting. Various strategies are being developed to address this lack of potency, including improvements in delivery methods. Electroporation (EP) creates transient increases in cell membrane permeability, thus enhancing DNA uptake and leading to a more robust immune response. Here, we report on the safety and tolerability of delivering sterile saline via intramuscular (IM) or intradermal (ID) injection followed by in vivo electroporation using the CELLECTRA(®) adaptive constant current device in healthy adults from two open-label studies. Pain, as assessed by VAS, was highest immediately after EP but diminishes by about 50% within 5 min. Mean VAS scores appear to correlate with the amount of energy delivered and depth of needle insertion, especially for intramuscular EP. Mean scores did not exceed 7 out of 10 or 3 out of 10 for IM and ID EP, respectively. The majority of adverse events included mild to moderate injection site reactions that resolved within one day. No deaths or serious adverse events were reported during the course of either study. Overall, injection followed by EP with the CELLECTRA(®) device was well-tolerated and no significant safety concerns were identified. These studies support the further development of electroporation as a vaccine delivery method to enhance immunogenicity, particularly for diseases in which traditional vaccination approaches are ineffective.
Collapse
Affiliation(s)
| | | | | | - Pablo Tebas
- University of Pennsylvania; Division of Infectious Disease; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
33
|
Gabdrakhmanov DR, Voronin MA, Zakharova LY, Konovalov AI, Khaybullin RN, Strobykina IY, Kataev VE, Faizullin DA, Gogoleva NE, Konnova TA, Salnikov VV, Zuev YF. Supramolecular design of biocompatible nanocontainers based on amphiphilic derivatives of a natural compound isosteviol. Phys Chem Chem Phys 2013; 15:16725-35. [DOI: 10.1039/c3cp51511g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Spanggaard I, Corydon T, Hojman P, Gissel H, Dagnaes-Hansen F, Jensen TG, Gehl J. Spatial Distribution of Transgenic Protein After Gene Electrotransfer to Porcine Muscle. Hum Gene Ther Methods 2012; 23:387-92. [DOI: 10.1089/hgtb.2012.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Iben Spanggaard
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark
| | - Thomas Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Pernille Hojman
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark
- Centre of Inflammation and Metabolism, Department of Infectious Diseases, Copenhagen University, 2100 Copenhagen, Denmark
| | - Hanne Gissel
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Thomas G. Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark
| |
Collapse
|
35
|
Baligand C, Jouvion G, Schakman O, Gilson H, Wary C, Thissen JP, Carlier PG. Multiparametric functional nuclear magnetic resonance imaging shows alterations associated with plasmid electrotransfer in mouse skeletal muscle. J Gene Med 2012; 14:598-608. [DOI: 10.1002/jgm.2671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | | | - Olivier Schakman
- Pôle d'Endocrinologie, de Diabétologie et Nutrition, Institut de Recherches expérimentales et cliniques (IREC); Université catholique de Louvain; Brussels; Belgium
| | - Helene Gilson
- Pôle d'Endocrinologie, de Diabétologie et Nutrition, Institut de Recherches expérimentales et cliniques (IREC); Université catholique de Louvain; Brussels; Belgium
| | | | - Jean-Paul Thissen
- Pôle d'Endocrinologie, de Diabétologie et Nutrition, Institut de Recherches expérimentales et cliniques (IREC); Université catholique de Louvain; Brussels; Belgium
| | | |
Collapse
|
36
|
Su CH, Wu YJ, Wang HH, Yeh HI. Nonviral gene therapy targeting cardiovascular system. Am J Physiol Heart Circ Physiol 2012; 303:H629-38. [PMID: 22821991 DOI: 10.1152/ajpheart.00126.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of gene therapy is either to introduce a therapeutic gene into or replace a defective gene in an individual's cells and tissues. Gene therapy has been urged as a potential method to induce therapeutic angiogenesis in ischemic myocardium and peripheral tissues after extensive investigation in recent preclinical and clinical studies. A successful gene therapy mainly relies on the development of the gene delivery vector. Developments in viral and nonviral vector technology including cell-based gene transfer will further improve transgene delivery and expression efficiency. Nonviral approaches as alternative gene delivery vehicles to viral vectors have received significant attention. Recently, a simple and safe approach of gene delivery into target cells using naked DNA has been improved by combining several techniques. Among the physical approaches, ultrasonic microbubble gene delivery, with its high safety profile, low costs, and repeatable applicability, can increase the permeability of cell membrane to macromolecules such as plasmid DNA by its bioeffects and can provide as a feasible tool in gene delivery. On the other hand, among the promising areas for gene therapy in acquired diseases, ischemic cardiovascular diseases have been widely studied. As a result, gene therapy using advanced technology may play an important role in this regard. The aims of this review focus on understanding the cellular and in vivo barriers in gene transfer and provide an overview of currently used chemical vectors and physical tools that are applied in nonviral cardiovascular gene transfer.
Collapse
Affiliation(s)
- Cheng-Huang Su
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | | | | | | |
Collapse
|
37
|
Hargrave B, Downey H, Strange R, Murray L, Cinnamond C, Lundberg C, Israel A, Chen YJ, Marshall W, Heller R. Electroporation-mediated gene transfer directly to the swine heart. Gene Ther 2012; 20:151-7. [PMID: 22456328 PMCID: PMC3387511 DOI: 10.1038/gt.2012.15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using three different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the electrocardiogram were administered at varying pulse widths and field strengths following an injection of either a plasmid encoding luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left ventricle were treated. Animals were killed 48 h after injection and electroporation and gene expression was determined. Results were compared with sites in the heart that received plasmid injection but no electric pulses or were not treated. Gene expression was higher in all electroporated sites when compared with injection only sites demonstrating the robustness of this approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-viral method for delivering genes to the heart, in vivo.
Collapse
Affiliation(s)
- B Hargrave
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu H, Chen Y. Nanotechnology for DNA and RNA delivery. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.2.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Roche JA, Ford-Speelman DL, Ru LW, Densmore AL, Roche R, Reed PW, Bloch RJ. Physiological and histological changes in skeletal muscle following in vivo gene transfer by electroporation. Am J Physiol Cell Physiol 2011; 301:C1239-50. [PMID: 21832248 DOI: 10.1152/ajpcell.00431.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electroporation (EP) is used to transfect skeletal muscle fibers in vivo, but its effects on the structure and function of skeletal muscle tissue have not yet been documented in detail. We studied the changes in contractile function and histology after EP and the influence of the individual steps involved to determine the mechanism of recovery, the extent of myofiber damage, and the efficiency of expression of a green fluorescent protein (GFP) transgene in the tibialis anterior (TA) muscle of adult male C57Bl/6J mice. Immediately after EP, contractile torque decreased by ∼80% from pre-EP levels. Within 3 h, torque recovered to ∼50% but stayed low until day 3. Functional recovery progressed slowly and was complete at day 28. In muscles that were depleted of satellite cells by X-irradiation, torque remained low after day 3, suggesting that myogenesis is necessary for complete recovery. In unirradiated muscle, myogenic activity after EP was confirmed by an increase in fibers with central nuclei or developmental myosin. Damage after EP was confirmed by the presence of necrotic myofibers infiltrated by CD68+ macrophages, which persisted in electroporated muscle for 42 days. Expression of GFP was detected at day 3 after EP and peaked on day 7, with ∼25% of fibers transfected. The number of fibers expressing green fluorescent protein (GFP), the distribution of GFP+ fibers, and the intensity of fluorescence in GFP+ fibers were highly variable. After intramuscular injection alone, or application of the electroporating current without injection, torque decreased by ∼20% and ∼70%, respectively, but secondary damage at D3 and later was minimal. We conclude that EP of murine TA muscles produces variable and modest levels of transgene expression, causes myofiber damage due to the interaction of intramuscular injection with the permeabilizing current, and that full recovery requires myogenesis.
Collapse
Affiliation(s)
- Joseph A Roche
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Gene transfer within the cardiovascular system was first demonstrated in 1989 yet, despite extensive basic-science and clinical research, unequivocal benefit in the clinical setting remains to be demonstrated. Potential reasons for this include the fact that recombinant viral vectors, used in the majority of clinical studies, have inherent problems with immunogenicity that are difficult to circumvent. Attention has turned therefore to plasmid vectors, which possess many advantages over viruses in terms of safety and ease of use, and many clinical studies have now been performed using non-viral technology. This review will provide an overview of clinical trials for cardiovascular disease using plasmid vectors, recent developments in plasmid delivery and design, and potential directions for this modality of gene therapy.
Collapse
Affiliation(s)
- Paul D Williams
- Manchester Academic Health Science Centre, School of Biomedicine, Vascular Gene Therapy Unit, Core Technology Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| | | |
Collapse
|
41
|
Flanagan M, Gimble JM, Yu G, Wu X, Xia X, Hu J, Yao S, Li S. Competitive electroporation formulation for cell therapy. Cancer Gene Ther 2011; 18:579-86. [PMID: 21660061 DOI: 10.1038/cgt.2011.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Established cell transfection via nucleofection relies on nucleofection buffers with unknown and proprietary makeup due to trade secrecy, inhibiting the possibility of using this otherwise effective method for developing cell therapy. We devised a three-step method for discovering an optimal formulation for the nucleofection of any cell line. These steps include the selection of the best nucleofection program and known buffer type, selection of the best polymer for boosting the transfection efficiency of the best buffer and the comparison with the optimal buffer from an established commercial vendor (Amaxa). Using this three-step selection system, competitive nucleofection formulations were discovered for multiple cell lines, which are equal to or surpass the efficiency of the Amaxa nucleofector solution in a variety of cells and cell lines, including primary adipose stem cells, muscle cells, tumor cells and immune cells. Through the use of scanning electron microscopy, we have revealed morphological changes, which predispose for the ability of these buffers to assist in transferring plasmid DNA into the nuclear space. Our formulation may greatly reduce the cost of electroporation study in laboratory and boosts the potential of application of electroporation-based cell therapies in clinical trials.
Collapse
Affiliation(s)
- M Flanagan
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen YC, Jiang LP, Liu NX, Wang ZH, Hong K, Zhang QP. P85, Optison microbubbles and ultrasound cooperate in mediating plasmid DNA transfection in mouse skeletal muscles in vivo. ULTRASONICS SONOCHEMISTRY 2011; 18:513-519. [PMID: 20863738 DOI: 10.1016/j.ultsonch.2010.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/22/2010] [Accepted: 08/31/2010] [Indexed: 05/29/2023]
Abstract
Pluronic block copolymers, a kind of non-ionic surfactant, also known as poloxamers, and ultrasound-targeted microbubble destruction have been respectively investigated as vectors for gene delivery in vitro and in vivo. However, they are limited for clinical application due to the relatively low transfer efficiency of each individual vector. In the present study, we explored if the combination of P85, a pluronic block copolymer, Optison, a microbubble contrast agent and ultrasound enhances the transfection of plasmid DNA in vivo using mouse skeletal muscle models. Plasmid encoding green fluorescent protein (GFP) was respectively conjugated with 0.05%P85, 10%Optison, or 0.05%P85 plus 10%Optison, and injected into mouse tibialis anterior (TA) muscles with or without ultrasound irradiation (1 MHz, 1 W/cm(2), 2 min and 20% duty cycle). Mice were sacrificed 1 week after injection. The TA muscles were collected and cryo-sectioned into a series of 7 μm slices. To assess the efficiency of plasmid DNA transfection, tissue sections were counterstained with DAPI and scored by counting the number of GFP-positive fibers. Meanwhile the area of damaged muscles was measured based on the tissues stained with hematoxylin and eosin. Both P85 and Optison significantly enhanced the delivery of plasmid DNA in mouse TA skeletal muscles (P<0.01 and P<0.05 respectively, compared to saline control). In combination with Ultrasound irradiation, P85 (P<0.01, compared to P85 alone) but not Optison (P>0.05, compared to Optison alone) exerted a more pronounced effect on the transfection efficiency. Furthermore P85-induced gene delivery was higher than that by Optison regardless of the presence of ultrasound (P<0.01). The highest transfection efficiency was observed when P85, Optison and ultrasound irradiation were administrated together (P<0.01, compared to any other treatment in this study). The area of damaged muscles was enlarged by ultrasound irradiation in the presence of Optison microbubbles (P<0.01, compared to those groups without ultrasound irradiation). These results suggest that P85, microbubbles and ultrasound irradiation synergistically enhance plasmid DNA delivery in mouse skeletal muscles in vivo.
Collapse
Affiliation(s)
- Yun-Chao Chen
- Ultrasound Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
43
|
Wooddell CI, Subbotin VM, Sebestyén MG, Griffin JB, Zhang G, Schleef M, Braun S, Huss T, Wolff JA. Muscle Damage After Delivery of Naked Plasmid DNA into Skeletal Muscles Is Batch Dependent. Hum Gene Ther 2011; 22:225-35. [DOI: 10.1089/hum.2010.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | | | | | - Guofeng Zhang
- Department of Pediatrics and Department of Medical Genetics, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705
- Present affiliation: Roche Madison, Madison, WI 53711
| | | | - Serge Braun
- Association Française contre les Myopathies, 91002 Evry, France
| | | | - Jon A. Wolff
- Department of Pediatrics and Department of Medical Genetics, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705
- Present affiliation: Roche Madison, Madison, WI 53711
| |
Collapse
|
44
|
Chen YC, Jiang LP, Liu NX, Ding L, Liu XL, Wang ZH, Hong K, Zhang QP. Enhanced Gene Transduction into Skeletal Muscle of Mice In Vivo with Pluronic Block Copolymers and Ultrasound Exposure. Cell Biochem Biophys 2011; 60:267-73. [DOI: 10.1007/s12013-010-9149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Murakami T, Imada Y, Kawamura M, Takahashi T, Fujita Y, Sato E, Yoshitomi H, Sunada Y, Nakamura A. Placental growth factor-2 gene transfer by electroporation restores diabetic sensory neuropathy in mice. Exp Neurol 2010; 227:195-202. [PMID: 21056561 DOI: 10.1016/j.expneurol.2010.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 11/18/2022]
Abstract
Placental growth factor-2 (PlGF-2) exhibits neurotrophic activity in dorsal root ganglion (DRG) neurons through the neuropilin-1 (NP-1) receptor in vitro. To examine the potential utility of PlGF-2 therapy for treating diabetic neuropathy, we performed intramuscular PlGF-2 gene transfer by electroporation, and examined its effects on sensory neuropathy in diabetic mice. PlGF-2 was overexpressed in the tibial anterior (TA) muscles of streptozotocin-induced diabetic mice with hypoalgesia using a PlGF-2 plasmid injection with electroporation. The nociceptive threshold was measured using a paw-pressure test. In addition, we overexpressed PlGF-1, an isoform of PlGF that does not bind NP-1. The sciatic nerve and skin were examined 3weeks after PlGF-2 electro-gene transfer. The overexpression and secretion of PlGF-2 in TA muscles were confirmed by an increase in PlGF levels in TA muscles and plasma, and strongly PlGF positive myofibers in TA muscles. Two weeks after electro-gene transfer into the bilateral TA muscles, the previously elevated nociceptive threshold was found to be significantly decreased in all treated mice. PlGF-1 gene transfer by electroporation did not significantly decrease the nociceptive threshold in diabetic mice. No increase in the number of endoneurial vessels in the sciatic nerve was found in the PlGF-2 plasmid-electroporated mice. A reduction of area of immunoreactivity in epidermal nerves in diabetic mice was restored by PlGF-2 gene transfer. These findings suggest that PlGF-2 electro-gene therapy can significantly ameliorate sensory deficits (i.e. hypoalgesia) in diabetic mice through NP-1 in DRG and peripheral nerves.
Collapse
Affiliation(s)
- Tatsufumi Murakami
- Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Barbon CM, Baker L, Lajoie C, Ramstedt U, Hedley ML, Luby TM. In vivo electroporation enhances the potency of poly-lactide co-glycolide (PLG) plasmid DNA immunization. Vaccine 2010; 28:7852-64. [DOI: 10.1016/j.vaccine.2010.09.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/22/2010] [Accepted: 09/26/2010] [Indexed: 11/16/2022]
|
47
|
De Vry J, Martínez-Martínez P, Losen M, Temel Y, Steckler T, Steinbusch HWM, De Baets MH, Prickaerts J. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 2010; 92:227-44. [PMID: 20937354 DOI: 10.1016/j.pneurobio.2010.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/24/2010] [Accepted: 10/01/2010] [Indexed: 01/11/2023]
Abstract
Electroporation is a widely used technique for enhancing the efficiency of DNA delivery into cells. Application of electric pulses after local injection of DNA temporarily opens cell membranes and facilitates DNA uptake. Delivery of plasmid DNA by electroporation to alter gene expression in tissue has also been explored in vivo. This approach may constitute an alternative to viral gene transfer, or to transgenic or knock-out animals. Among the most frequently electroporated target tissues are skin, muscle, eye, and tumors. Moreover, different regions in the central nervous system (CNS), including the developing neural tube and the spinal cord, as well as prenatal and postnatal brain have been successfully electroporated. Here, we present a comprehensive review of the literature describing electroporation of the CNS with a focus on the adult brain. In addition, the mechanism of electroporation, different ways of delivering the electric pulses, and the risk of damaging the target tissue are highlighted. Electroporation has been successfully used in humans to enhance gene transfer in vaccination or cancer therapy with several clinical trials currently ongoing. Improving the knowledge about in vivo electroporation will pave the way for electroporation-enhanced gene therapy to treat brain carcinomas, as well as CNS disorders such as Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Jochen De Vry
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kosovac D, Wild J, Ludwig C, Meissner S, Bauer AP, Wagner R. Minimal doses of a sequence-optimized transgene mediate high-level and long-term EPO expression in vivo: challenging CpG-free gene design. Gene Ther 2010; 18:189-98. [DOI: 10.1038/gt.2010.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Wasungu L, Marty AL, Bureau MF, Kichler A, Bessodes M, Teissie J, Scherman D, Rols MP, Mignet N. Pre-treatment of cells with pluronic L64 increases DNA transfection mediated by electrotransfer. J Control Release 2010; 149:117-25. [PMID: 20888380 DOI: 10.1016/j.jconrel.2010.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 11/26/2022]
Abstract
Gene transfer into muscle cells is a key issue in biomedical research. Indeed, it is important for the development of new therapy for many genetic disorders affecting this tissue and for the use of muscle tissue as a secretion platform of therapeutic proteins. Electrotransfer is a promising method to achieve gene expression in muscles. However, this method can lead to some tissue damage especially on pathologic muscles. Therefore there is a need for the development of new and less deleterious methods. Triblock copolymers as pluronic L64 are starting to be used to improve gene transfer mediated by several agents into muscle tissue. Their mechanism of action is still under investigation. The combination of electrotransfer and triblock copolymers, in allowing softening electric field conditions leading to efficient DNA transfection, could potentially represent a milder and more secure transfection method. In the present study, we addressed the possible synergy that could be obtained by combining the copolymer triblock L64 and electroporation. We have found that a pre-treatment of cells with L64 could improve the transfection efficiency. This pre-treatment was shown to increase cell viability and this is partly responsible for the improvement of transfection efficiency. We have then labelled the plasmid DNA and the pluronic L64 in order to gain some insights into the mechanism of transfection of the combined physical and chemical methods. These experiences allowed us to exclude an action of L64 either on membrane permeabilization or on DNA/membrane interaction. Using plasmids containing or not binding sequences for NF-κB and an inhibitor of NF-κB pathway activation we have shown that this beneficial effect was rather related to the NF-κB signalling pathway, as it is described for other pluronics. Finally we address here some mechanistic issues on electrically mediated transfection, L64 mediated membrane permeabilization and the combination of both for gene transfer.
Collapse
Affiliation(s)
- L Wasungu
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ratanamart J, Huggins CG, Shaw JAM. Transgene expression in mononuclear muscle cells not infiltrating inflammatory cells following intramuscular plasmid gene electrotransfer. J Gene Med 2010; 12:377-84. [PMID: 20373332 DOI: 10.1002/jgm.1448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND In situ electroporation-assisted intramuscular plasmid DNA delivery offers high efficiency for therapeutic protein replacement. Expression may be impaired by an immune response against the plasmid or transgenic protein. Expression of the transgene in non-muscle cells may increase the immune response. Gene transfer efficiency and phenotypic identification of intramuscular transgene-expressing mononuclear cells was studied following electroporation-mediated plasmid delivery. METHODS Plasmids expressing beta-galactosidase (pVR1012-betagal) or enhanced green fluorescent protein (eGFP) (pVR1012-eGFP) were electrotransferred into rat tibialis anterior muscles. Both transfection efficiency and the inflammatory response were determined in pVR1012-betagal-injected muscles by beta-galactosidase and haematoxylin and eosin staining of muscles 7 days post-plasmid injection. Muscles injected with pVR1012-eGFP were stained for CD3, CD68 and desmin at 24 and 48 h post-injection to determine whether mononuclear cells expressing eGFP were of immune or myogenic origin. RESULTS With electroporation, beta-galactosidase expression was significantly enhanced by up to ten-fold compared to plasmid injection without electroporation. A large area of regenerating muscle fibres and inflammatory cell infiltration was found in electroporated plasmid-injected muscle. No eGFP expression was found in CD3- or CD68-positive cells. Small mononuclear cells expressing eGFP showed negative staining for CD3 and CD68, but all stained positive for desmin. CONCLUSIONS In situ electroporation enhanced transfection efficiency of plasmid DNA delivery into muscle. Alongside its advantage for improving gene transfer, electroporation led to an increased inflammatory response and muscle damage. Mononuclear cells in muscle were transfected with plasmid and expressed the transgene. These cells were of myogenic origin with no evidence of transgene expression in infiltrating inflammatory cells.
Collapse
Affiliation(s)
- Jarupa Ratanamart
- Institute of Cellular Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | | | | |
Collapse
|