1
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
2
|
Sesorova IS, Dimov ID, Kashin AD, Sesorov VV, Karelina NR, Zdorikova MA, Beznoussenko GV, Mirоnоv AA. Cellular and sub-cellular mechanisms of lipid transport from gut to lymph. Tissue Cell 2021; 72:101529. [PMID: 33915359 DOI: 10.1016/j.tice.2021.101529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Although the general structure of the barrier between the gut and the blood is well known, many details are still missing. Here, we analyse the literature and our own data related to lipid transcytosis through adult mammalian enterocytes, and their absorption into lymph at the tissue level of the intestine. After starvation, the Golgi complex (GC) of enterocytes is in a resting state. The addition of lipids in the form of chyme leads to the initial appearance of pre-chylomicrons (ChMs) in the tubules of the smooth endoplasmic reticulum, which are attached at the basolateral plasma membrane, immediately below the 'belt' of the adhesive junctions. Then pre-ChMs move into the cisternae of the rough endoplasmic reticulum and then into the expansion of the perforated Golgi cisternae. Next, they pass through the GC, and are concentrated in the distensions of the perforated cisternae on the trans-side of the GC. The arrival of pre-ChMs at the GC leads to the transition of the GC to a state of active transport, with formation of intercisternal connections, attachment of cis-most and trans-most perforated cisternae to the medial Golgi cisternae, and disappearance of COPI vesicles. Post-Golgi carriers then deliver ChMs to the basolateral plasma membrane, fuse with it, and secret ChMs into the intercellular space between enterocytes at the level of their interdigitating contacts. Finally, ChMs are squeezed out into the interstitium through pores in the basal membrane, most likely due to the function of the actin-myosin 'cuff' around the interdigitating contacts. These pores appear to be formed by protrusions of the dendritic cells and the enterocytes per se. ChMs are absorbed from the interstitium into the lymphatic capillaries through the special oblique contacts between endothelial cells, which function as valves through the contraction-relaxation of bundles of smooth muscle cells in the interstitium. Lipid overloading of enterocytes results in accumulation of cytoplasmic lipid droplets, an increase in diameter of ChMs, inhibition of intra-Golgi transport, and fusion of ChMs in the interstitium. Here, we summarise and analyse recent findings, and discuss their functional implications.
Collapse
Affiliation(s)
- Irina S Sesorova
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | - Ivan D Dimov
- Department of Anatomy, Ivanovo State Medical Academy, Ivanovo, Russia
| | - Alexandre D Kashin
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | - Vitaly V Sesorov
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | | | - Maria A Zdorikova
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | | | | |
Collapse
|
3
|
Zhou A, Qu J, Liu M, Tso P. The Role of Interstitial Matrix and the Lymphatic System in Gastrointestinal Lipid and Lipoprotein Metabolism. Front Physiol 2020; 11:4. [PMID: 32038309 PMCID: PMC6987427 DOI: 10.3389/fphys.2020.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
This review emphasizes the events that take place after the chylomicrons are secreted by the enterocytes through exocytosis. First, we will discuss the journey of how chylomicrons cross the basement membrane to enter the lamina propria. Then the chylomicrons have to travel across the lamina propria before they can enter the lacteals. To understand the factors affecting the trafficking of chylomicron particles across the lamina propria, it is important to understand the composition and properties of the lamina propria. With different degree of hydration, the pores of the lamina propria (sponge) changes. The greater the hydration, the greater the pore size and thus the easier the diffusion of the chylomicron particles across the lamina propria to enter the lacteals. The mechanism of the entry of lacteals is discussed in considerable details. We and others have demonstrated that intestinal fat absorption, but not the absorption of protein or carbohydrates, activates the intestinal mucosal mast cells to release many products including mucosal mast cell protease II in the rat. The activation of intestinal mucosal mast cells by fat absorption involves the process of chylomicron formation since the absorption of both medium and short-chain fatty acids do not activate the mast cells. Fat absorption has been associated with increased intestinal permeability. We hypothesize that there is a link between fat absorption, activation of mucosal mast cells, and the leaky gut phenomenon (increased intestinal permeability). Microbiome may also be involved in this chain of events associated with fat absorption. This review is presented in sequence under the following headings: (1) Introduction; (2) Structure and properties of the gut epithelial basement membrane; (3) Composition and physical properties of the interstitial matrix of the lamina propria; (4) The movement of chylomicrons across the interstitial matrix of the lamina propria and importance of the hydration of the interstitial matrix of the lamina propria and the movement of chylomicrons; (5) Entry of the chylomicrons into the intestinal lacteals; (6) Activation of mucosal mast cells by fat absorption and the metabolic consequences; and (7) Link between chylomicron transport, mucosal mast cell activation, leaky gut, and the microbiome.
Collapse
Affiliation(s)
- Anna Zhou
- Department of Pathology and Laboratory Medicine, University of Cincinnati Reading Campus, Cincinnati, OH, United States
| | - Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Reading Campus, Cincinnati, OH, United States
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Reading Campus, Cincinnati, OH, United States
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati Reading Campus, Cincinnati, OH, United States
| |
Collapse
|
4
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Casteleyn C, Cornillie P, Van Ginneken C, Simoens P, Van Cruchten S, Vandevelde K, Van den Broeck W. Lymph drainage from the ovine tonsils: an anatomical study of the tonsillar lymph vessels. Anat Histol Embryol 2014; 43:482-9. [PMID: 24597835 DOI: 10.1111/ahe.12107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 02/01/2014] [Indexed: 01/17/2023]
Abstract
Although the tonsils of sheep have gained much attention during the last decade, only few data are available on their lymph vessel architecture. Tonsillar lymph vessels are immunologically important as they form the efferent routes for locally activated immune cells to reach the draining lymph nodes. To gain insight into the tonsillar lymph drainage in the sheep, Indian ink and a casting polymer were injected into the interstitium of the five tonsils present in the heads of slaughtered sheep. This enabled us to determine the draining lymph node and to examine the microscopic organization of lymph vessels using light and scanning electron microscopy. No lymph vessels were observed within the tonsillar lymphoid follicles. The corrosion casts demonstrated that the lymphoid follicles are surrounded by numerous sacculated lymph sinuses that drain into a dense interfollicular lymph vessel network. From here, the lymph flows into single small lymph vessels that in turn drain into larger lymph vessels extending towards the medial retropharyngeal lymph node. The presented results can be valuable for immunological studies, for example during oral or intranasal vaccine development.
Collapse
Affiliation(s)
- C Casteleyn
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
6
|
Gobbi G, Di Marcantonio D, Micheloni C, Carubbi C, Galli D, Vaccarezza M, Bucci G, Vitale M, Mirandola P. TRAIL up-regulation must be accompanied by a reciprocal PKCε down-regulation during differentiation of colonic epithelial cell: implications for colorectal cancer cell differentiation. J Cell Physiol 2012; 227:630-8. [PMID: 21465464 DOI: 10.1002/jcp.22765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PKC isoenzymes play central roles in various cellular signalling pathways, participating in a variety of protein phosphorylation cascades that regulate/modulate cellular structure and gene expression. It has been firmly established that several isoforms of PKC have a role in the regulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) activity. Our interest in probing the role of the epsilon isoform of PKC in the colonic cell differentiation stems from the discovery that PKCε and TRAIL are involved in the differentiation of other cell types like hematopoietic stem cells. Although the role of PKCε and TRAIL in the gastrointestinal system is unclear, it has been observed that PKCε has oncogenic activity in colon epithelial cells (CEC), while TRAIL increases the death of intestinal epithelial cells during inflammation. Here we demonstrate a reciprocal expression of PKCε and TRAIL in human colon mucosa: CECs at the bottom of the colonic crypts show high levels of PKCε, being negative for TRAIL expression. On the contrary, luminal CECs are positive for TRAIL, while negative for PKCε. Indeed, TRAIL- and butyrate-induced differentiation of the human colorectal cancer cell line HT29 requires the decrease of PKCε expression, whose absence in turn increases cell sensitivity to TRAIL-induced apoptosis. Moreover, TRAIL preferentially promotes HT29 differentiation into goblet cells. Taken together, this data demonstrate that TRAIL and PKCε must be reciprocally regulated to ensure physiological CEC differentiation starting from the stem cell pool, and that the down-regulation of PKCε is however critical for the differentiation and apoptosis of cancer cells.
Collapse
Affiliation(s)
- Giuliana Gobbi
- Department of Human Anatomy, Pharmacology & Forensic Medicine, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
Right from birth, the lymphatics play a crucial role in dietary functions. A majority of the lipid absorbed from the newborn's lipid-rich diet enters the blood circulation through the lymphatic system, which transports triglyceride-loaded particles known as chylomicrons from the villi of the small intestine to the venous circulation near the heart. In light of the significance of this role, as well as the fact that lipid transport from the gut was one of the earliest discovered functions of the lymphatic vasculature, it is surprising that so little is known about how chylomicrons initially gain access to the lymphatic vessel. This review will focus on the current mechanisms thought to be important in this process and highlight important questions that need to be answered in the future.
Collapse
Affiliation(s)
- J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Miller MJ, McDole JR, Newberry RD. Microanatomy of the intestinal lymphatic system. Ann N Y Acad Sci 2010; 1207 Suppl 1:E21-8. [PMID: 20961303 DOI: 10.1111/j.1749-6632.2010.05708.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The intestinal lymphatic system comprises two noncommunicating lymphatic networks: one containing the lacteals draining the villi and the connecting submucosal lymphatic network and one containing the lymphatics that drain the intestine muscular layer. These systems deliver lymph into a common network of collecting lymphatics originating near the mesenteric border. The intestinal lymphatic system serves vital functions in the regulation of tissue fluid homeostasis, immune surveillance, and the transport of nutrients; conversely, this system is affected by, and directly contributes to, disease processes within the intestine. Recent discoveries of specific lymphatic markers, factors promoting lymphangiogenesis, and factors selectively affecting the development of intestinal lymphatics, hold promise for unlocking the role of lymphatics in the pathogenesis of diseases affecting the intestine and for intestinal lymphatic selective therapies. Vital to progress in understanding how the intestinal lymphatic system functions is the integration of recent advances identifying molecular pathways for lymphatic growth and remodeling with advanced imaging modalities to observe lymphatic function and dysfunction in vivo.
Collapse
Affiliation(s)
- Mark J Miller
- Department of Pathology and Immunology, St. Louis, Missouri, USA
| | | | | |
Collapse
|
10
|
Miura S, Kubes P, Granger DN. Gastrointestinal and Liver Microcirculations: Roles in Inflammation and Immunity. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Miura S, Kubes P, Granger DN. Gastrointestinal and Liver Microcirculations. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Beyer T, Meyer-Hermann M. Modeling emergent tissue organization involving high-speed migrating cells in a flow equilibrium. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:021929. [PMID: 17930087 DOI: 10.1103/physreve.76.021929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 04/03/2007] [Indexed: 05/25/2023]
Abstract
There is increasing interest in the analysis of biological tissue, its organization and its dynamics with the help of mathematical models. In the ideal case emergent properties on the tissue scale can be derived from the cellular scale. However, this has been achieved in rare examples only, in particular, when involving high-speed migration of cells. One major difficulty is the lack of a suitable multiscale simulation platform, which embeds reaction diffusion of soluble substances, fast cell migration and mechanics, and, being of great importance in several tissue types, cell flow homeostasis. In this paper a step into this direction is presented by developing an agent-based mathematical model specifically designed to incorporate these features with special emphasis on high-speed cell migration. Cells are represented as elastic spheres migrating on a substrate in lattice-free space. Their movement is regulated and guided by chemoattractants that can be derived from the substrate. The diffusion of chemoattractants is considered to be slower than cell migration and, thus, to be far from equilibrium. Tissue homeostasis is not achieved by the balance of growth and death but by a flow equilibrium of cells migrating in and out of the tissue under consideration. In this sense the number and the distribution of the cells in the tissue is a result of the model and not part of the assumptions. For the purposes of demonstration of the model properties and functioning, the model is applied to a prominent example of tissue in a cellular flow equilibrium, the secondary lymphoid tissue. The experimental data on cell speed distributions in these tissues can be reproduced using reasonable mechanical parameters for the simulated cell migration in dense tissue.
Collapse
Affiliation(s)
- Tilo Beyer
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 1, 60438 Frankfurt Main, Germany.
| | | |
Collapse
|
13
|
Azzali G. On the transendothelial passage of tumor cell from extravasal matrix into the lumen of absorbing lymphatic vessel. Microvasc Res 2006; 72:74-85. [PMID: 16730031 DOI: 10.1016/j.mvr.2006.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 03/06/2006] [Accepted: 03/20/2006] [Indexed: 02/06/2023]
Abstract
The aim of the research is the study of ultrastructural characteristics of the absorbing lymphatic vessel and of tumor cell passage through the endothelial lymphatic wall in (a) subcutaneous xenografts of T84 colon adenocarcinoma and B16 melanoma cell lines in nude mice and (b) human colorectal cancer. It was found that the tumor-associated absorbing lymphatic (TAAL) vessel has the same ultrastructural characteristics as the absorbing lymphatic vessel in normal organs, and it is provided with an endothelial wall wholly lacking a continuous basement membrane, pores, fenestrations, and open junctions. The TAAL vessel is always missing in the studied tumor masses as far as the central stroma is concerned, whereas it is always present in the peripheral area of the tumor and in the peritumoral connective tissue. The factors of extravasal matrix that play an active role in migration process of invasive phenotype tumor (IPT) cell after its detachment from tumor mass, as well as the role of cytoplasmic protrusions (pseudopod-like) in lymphatic recognition, were considered. For the first time, this study demonstrated the transendothelial passage of IPT cell inside the TAAL vessel lumen, which takes place by means of the intraendothelial channel (approximately 1.8-2.1 mum in diameter and 6.8-7.2 microm in length). This channel is to be considered a transient morphological entity organized by TAAL vessel endothelium by means of still unidentified molecular mechanisms. Therefore, it appears to be ascertained that the intraendothelial channel represents a step forward in the knowledge of the drainage into lymphatic circulation of interstitial fluid and the answer to the lack of knowledge expressed till today by researchers concerning the modality of passage of the tumor cell through the endothelial wall of the TAAL vessel.
Collapse
Affiliation(s)
- Giacomo Azzali
- Lymphatology Laboratory, Section of Human Anatomy, Department of Human Anatomy, Pharmacology and Forensic Medicine, School of Medicine, University of Parma, Via Gramsci, 14 (Ospedale Maggiore), 43100 Parma, Italy.
| |
Collapse
|
14
|
Azzali G. Transendothelial transport and migration in vessels of the apparatus lymphaticus periphericus absorbens (ALPA). INTERNATIONAL REVIEW OF CYTOLOGY 2004; 230:41-87. [PMID: 14692681 DOI: 10.1016/s0074-7696(03)30002-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The vessel of the apparatus lymphaticus periphericus absorbens (ALPA) represents the sector with high absorption capacity of the canalization of the lymphatic vascular system. It plays a basic role in preserving tissue homeostasis and in directing interstitial capillary filtrate back to the bloodstream. ALPA lymphatic endothelium differs from the endothelia of conduction and flowing vessels (precollectors, prelymph nodal and postlymph nodal collectors, main trunks), since it presents a discontinuous basement membrane, which is often absent, and lacks pores and fenestrations. The mesenchymal origin of the ALPA lymphatic vessel, morphological and ultrastructural aspects, intrinsic contractile properties, the presence of valves, innervation, and specific lymphatic markers that reliably distinguish it from blood capillaries are studied. Furthermore, its role in lymph formation through different mechanisms (hydrostatic pressure and colloidal osmotic-reticular mechanisms, vesicular pathway, and intraendothelial channel) is investigated. We have studied morphological and biomolecular mechanisms that control the transendothelial migration, from the extracellular interstitial matrix into the lumen of the lymphatic vessel, of cells involved in immune response and resistance (lymphocyte recirculation, etc.) and in the tumoral metastatic process via the lymphatic system. Finally, future research prospects, clinical implications, and therapeutic strategies are considered.
Collapse
Affiliation(s)
- Giacomo Azzali
- Section of Human Anatomy, Department of Human Anatomy, Pharmacology and Forensic Medicine, Faculty of Medicine, University of Parma, 43100 Parma, Italy
| |
Collapse
|
15
|
Azzali G. Structure, lymphatic vascularization and lymphocyte migration in mucosa-associated lymphoid tissue. Immunol Rev 2003; 195:178-89. [PMID: 12969318 DOI: 10.1034/j.1600-065x.2003.00072.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we consider the morphological aspects and topographical arrangement of gut-associated lymphoid tissue (GALT) (solitary and aggregate lymph nodules or Peyer's patches) and of vermiform appendix in the human child and in some mammals. The spatial arrangement of the vessels belonging to apparatus lymphaticus periphericus absorbens (ALPA) and of blood vessels within each lymphoid follicle as well as the ultrastructural characteristics of the lymphatic endothelium with high absorption capacity are considered. Particular attention is also paid to the morphological and biomolecular mechanisms inducing lymphocyte transendothelial migration to the bloodstream by means of lymphatic vessels as well as their passage from blood into lymphoid tissue through the high endothelial venules (HEVs). The preferential transendothelial passage of lymphocytes and polymorphonuclear neutrophils within ALPA vessels of the interfollicular area does not occur following the opening of intercellular contacts, but rather it occurs by means of 'intraendothelial channels'. In HEVs, on the contrary, the hypothesis is plausible that lymphocyte transendothelial migration into lymphoid tissue occurs through a channel-shaped endothelial invagination entirely independent of interendothelial contacts. The lymph of ALPA vessels of the single Peyer's patch is conveyed into precollector lymphatic vessels and into prelymph nodal collectors, totally independent of the ALPA vessels of the gut segments devoid of lymphoid tissue. The quantitative distribution of T lymphocytes in the lymph of mucosal ALPA vessels suggests a prevalent function of fluid uptake, whereas a reservoir and supply function is implicated for the vessels of interfollicular area. The precollector lymphatic vessels and prelymph nodal collectors are considered to be vessels with low absorption capacity, whose main function is lymph conduction and flow.
Collapse
Affiliation(s)
- Giacomo Azzali
- Department of Human Anatomy, Pharmacology and Forensic Medicine, Faculty of Medicine, University of Parma, Parma, Italy.
| |
Collapse
|
16
|
Literature Watch. Lymphat Res Biol 2003. [DOI: 10.1089/153968503321642651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|