1
|
Suppression of HIV-associated Macrophage Activation by a p75 Neurotrophin Receptor Ligand. J Neuroimmune Pharmacol 2022; 17:242-260. [PMID: 34296391 PMCID: PMC9386897 DOI: 10.1007/s11481-021-10002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Previous studies indicated that nerve growth factor (NGF) and proNGF differentially regulate the phenotype of macrophages and microglia via actions at tropomyosin receptor kinase A (TrkA) and p75 neurotrophin receptors (p75NTR), respectively. The ability of HIV gp120 and virions to induce the secretion of factors toxic to neurons was suppressed by NGF and enhanced by proNGF, suggesting the potential for neurotrophin based "anti-inflammatory" interventions. To investigate the "anti-inflammatory" potential of the p75NTR ligand, LM11A-31, we treated cultured macrophages and microglia with HIV gp120 in the presence or absence of the ligand and evaluated the morphological phenotype, intrinsic calcium signaling, neurotoxic activity and proteins in the secretome. LM11A-31 at 10 nM was able to suppress the release of neurotoxic factors from both monocyte-derived macrophages (MDM) and microglia. The protective effects correlated with a shift in morphology and a unique secretory phenotype rich in growth factors that overrode the actions of HIV gp120. The protein pattern was generally consistent with anti-inflammatory, phagocytic and tissue remodeling functions. Although the toxic factor(s) and the source of the neuroprotection were not identified, the data indicated that an increased degradation of NGF induced by HIV gp120 was likely to contribute to neuronal vulnerability. Although substantial work is still needed to reveal the functions of many proteins in the mononuclear phagocyte secretome, such as growth and differentiation factors, the data clearly indicate that the ligand LM11A-31 has excellent therapeutic potential due to its ability to induce a more protective phenotype that restricts activation by HIV.
Collapse
|
2
|
Fani Maleki A, Cisbani G, Laflamme N, Prefontaine P, Plante MM, Baillargeon J, Rangachari M, Gosselin J, Rivest S. Selective Immunomodulatory and Neuroprotective Effects of a NOD2 Receptor Agonist on Mouse Models of Multiple Sclerosis. Neurotherapeutics 2021; 18:889-904. [PMID: 33479802 PMCID: PMC8423880 DOI: 10.1007/s13311-020-00998-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The significance of monocytes has been demonstrated in multiple sclerosis (MS). One of the therapeutic challenges is developing medications that induce mild immunomodulation that is solely targeting specific monocyte subsets without affecting microglia. Muramyl dipeptide (MDP) activates the NOD2 receptor, and systemic MDP administrations convert Ly6Chigh into Ly6Clow monocytes. Here, we report selective immunomodulatory and therapeutic effects of MDP on cuprizone and experimental autoimmune encephalomyelitis (EAE) mouse models of MS. MDP treatment exerted various therapeutic effects in EAE, including delaying EAE onset and reducing infiltration of leukocytes into the CNS before EAE onset. Of great interest is the robust beneficial effect of the MDP treatment in mice already developing the disease several days after EAE onset. Finally, we found that the NOD2 receptor plays a critical role in MDP-mediated EAE resistance. Our results demonstrate that MDP is beneficial in both early and progressive phases of EAE. Based on these results, and upon comprehensive basic and clinical research, we anticipate developing NOD2 agonist-based medications for MS in the future.
Collapse
MESH Headings
- Acetylmuramyl-Alanyl-Isoglutamine/pharmacology
- Acetylmuramyl-Alanyl-Isoglutamine/therapeutic use
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Freund's Adjuvant/toxicity
- Immunomodulating Agents/pharmacology
- Immunomodulating Agents/therapeutic use
- Male
- Mice
- Mice, Inbred C57BL
- Monocytes/drug effects
- Monocytes/immunology
- Multiple Sclerosis/chemically induced
- Multiple Sclerosis/immunology
- Multiple Sclerosis/prevention & control
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Nod2 Signaling Adaptor Protein/agonists
- Peptide Fragments/toxicity
Collapse
Affiliation(s)
- Adham Fani Maleki
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Giulia Cisbani
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Nataly Laflamme
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Paul Prefontaine
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Marie-Michele Plante
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Joanie Baillargeon
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Manu Rangachari
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunity, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
3
|
Improved neurocognitive performance in FIV infected cats following treatment with the p75 neurotrophin receptor ligand LM11A-31. J Neurovirol 2021; 27:302-324. [PMID: 33661457 DOI: 10.1007/s13365-021-00956-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
HIV rapidly infects the central nervous system (CNS) and establishes a persistent viral reservoir within microglia, perivascular macrophages and astrocytes. Inefficient control of CNS viral replication by antiretroviral therapy results in chronic inflammation and progressive cognitive decline in up to 50% of infected individuals with no effective treatment options. Neurotrophin based therapies have excellent potential to stabilize and repair the nervous system. A novel non-peptide ligand, LM11A-31, that targets the p75 neurotrophin receptor (p75NTR) has been identified as a small bioavailable molecule capable of strong neuroprotection with minimal side effects. To evaluate the neuroprotective effects of LM11A-31 in a natural infection model, we treated cats chronically infected with feline immunodeficiency virus (FIV) with 13 mg/kg LM11A-31 twice daily over a period of 10 weeks and assessed effects on cognitive functions, open field behaviors, activity, sensory thresholds, plasma FIV, cerebrospinal fluid (CSF) FIV, peripheral blood mononuclear cell provirus, CD4 and CD8 cell counts and general physiology. Between 12 and 18 months post-inoculation, cats began to show signs of neural dysfunction in T maze testing and novel object recognition, which were prevented by LM11A-31 treatment. Anxiety-like behavior was reduced in the open field and no changes were seen in sensory thresholds. Systemic FIV titers were unaffected but treated cats exhibited a log drop in CSF FIV titers. No significant adverse effects were observed under all conditions. The data indicate that LM11A-31 is likely to be a potent adjunctive treatment for the control of neurodegeneration in HIV infected individuals.
Collapse
|
4
|
Xie Y, Seawell J, Boesch E, Allen L, Suchy A, Longo FM, Meeker RB. Small molecule modulation of the p75 neurotrophin receptor suppresses age- and genotype-associated neurodegeneration in HIV gp120 transgenic mice. Exp Neurol 2020; 335:113489. [PMID: 33007293 DOI: 10.1016/j.expneurol.2020.113489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
The persistence of HIV in the central nervous system leads to cognitive deficits in up to 50% of people living with HIV even with systemic suppression by antiretroviral treatment. The interaction of chronic inflammation with age-associated degeneration places these individuals at increased risk of accelerated aging and other neurodegenerative diseases and no treatments are available that effectively halt these processes. The adverse effects of aging and inflammation may be mediated, in part, by an increase in the expression of the p75 neurotrophin receptor (p75NTR) which shifts the balance of neurotrophin signaling toward less protective pathways. To determine if modulation of p75NTR could modify the disease process, we treated HIV gp120 transgenic mice with a small molecule ligand designed to engage p75NTR and downregulate degenerative signaling. Daily treatment with 50 mg/kg LM11A-31 for 4 months suppressed age- and genotype-dependent activation of microglia, increased microtubule associated protein-2 (MAP-2), reduced dendritic varicosities and slowed the loss of parvalbumin immunoreactive neurons in the hippocampus. An age related accumulation of microtubule associated protein Tau was identified in the hippocampus in extracellular clusters that co-expressed p75NTR suggesting a link between Tau and p75NTR. Although the significance of the relationship between p75NTR and Tau is unclear, a decrease in Tau-1 immunoreactivity as gp120 mice entered old age (>16 months) suggests that the Tau may transition to more pathological modifications; a process blocked by LM11A-31. Overall, the effects of LM11A-31 are consistent with strong neuroprotective and anti-inflammatory actions that have significant therapeutic potential.
Collapse
Affiliation(s)
- Youmie Xie
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Jaimie Seawell
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America; The Edward Via College of Osteopathic Medicine, Spartanburg, SC 29303, United States of America
| | - Emily Boesch
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Lauren Allen
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Ashley Suchy
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
5
|
Wang J, Wang J, Wang J, Yang B, Weng Q, He Q. Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis. Front Pharmacol 2019; 10:286. [PMID: 30967783 PMCID: PMC6438858 DOI: 10.3389/fphar.2019.00286] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system (CNS). The early stage is characterized by relapses and the later stage, by progressive disability. Results from experimental and clinical investigations have demonstrated that microglia and macrophages play a key part in the disease course. These cells actively initiate immune infiltration and the demyelination cascade during the early phase of the disease; however, they promote remyelination and alleviate disease in later stages. This review aims to provide a comprehensive overview of the existing knowledge regarding the neuromodulatory function of macrophages and microglia in the healthy and injured CNS, and it discusses the feasibility of harnessing microglia and macrophage physiology to treat MS. The review encourages further investigations into macrophage-targeted therapy, as well as macrophage-based drug delivery, for realizing efficient treatment strategies for MS.
Collapse
Affiliation(s)
- Jiaying Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Sztukowski K, Nip K, Ostwald PN, Sathler MF, Sun JL, Shou J, Jorgensen ET, Brown TE, Elder JH, Miller C, Hofmann F, VandeWoude S, Kim S. HIV induces synaptic hyperexcitation via cGMP-dependent protein kinase II activation in the FIV infection model. PLoS Biol 2018; 16:e2005315. [PMID: 30052626 PMCID: PMC6082575 DOI: 10.1371/journal.pbio.2005315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/08/2018] [Accepted: 07/13/2018] [Indexed: 11/19/2022] Open
Abstract
Over half of individuals infected with human immunodeficiency virus (HIV) suffer from HIV-associated neurocognitive disorders (HANDs), yet the molecular mechanisms leading to neuronal dysfunction are poorly understood. Feline immunodeficiency virus (FIV) naturally infects cats and shares its structure, cell tropism, and pathology with HIV, including wide-ranging neurological deficits. We employ FIV as a model to elucidate the molecular pathways underlying HIV-induced neuronal dysfunction, in particular, synaptic alteration. Among HIV-induced neuron-damaging products, HIV envelope glycoprotein gp120 triggers elevation of intracellular Ca2+ activity in neurons, stimulating various pathways to damage synaptic functions. We quantify neuronal Ca2+ activity using intracellular Ca2+ imaging in cultured hippocampal neurons and confirm that FIV envelope glycoprotein gp95 also elevates neuronal Ca2+ activity. In addition, we reveal that gp95 interacts with the chemokine receptor, CXCR4, and facilitates the release of intracellular Ca2+ by the activation of the endoplasmic reticulum (ER)-associated Ca2+ channels, inositol triphosphate receptors (IP3Rs), and synaptic NMDA receptors (NMDARs), similar to HIV gp120. This suggests that HIV gp120 and FIV gp95 share a core pathological process in neurons. Significantly, gp95's stimulation of NMDARs activates cGMP-dependent protein kinase II (cGKII) through the activation of the neuronal nitric oxide synthase (nNOS)-cGMP pathway, which increases Ca2+ release from the ER and promotes surface expression of AMPA receptors, leading to an increase in synaptic activity. Moreover, we culture feline hippocampal neurons and confirm that gp95-induced neuronal Ca2+ overactivation is mediated by CXCR4 and cGKII. Finally, cGKII activation is also required for HIV gp120-induced Ca2+ hyperactivation. These results thus provide a novel neurobiological mechanism of cGKII-mediated synaptic hyperexcitation in HAND.
Collapse
Affiliation(s)
- Keira Sztukowski
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kaila Nip
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Paige N. Ostwald
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Matheus F. Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jiayi Shou
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily T. Jorgensen
- Pharmaceutical Science and Neuroscience, University of Wyoming, Laramie, Wyoming, United States of America
| | - Travis E. Brown
- Pharmaceutical Science and Neuroscience, University of Wyoming, Laramie, Wyoming, United States of America
| | - John H. Elder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Craig Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Seonil Kim
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
7
|
Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration. Vet Sci 2017; 4:vetsci4010014. [PMID: 29056673 PMCID: PMC5606611 DOI: 10.3390/vetsci4010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Feline Immunodeficiency virus (FIV), similar to its human analog human immunodeficiency virus (HIV), enters the central nervous system (CNS) soon after infection and establishes a protected viral reservoir. The ensuing inflammation and damage give rise to varying degrees of cognitive decline collectively known as HIV-associated neurocognitive disorders (HAND). Because of the similarities to HIV infection and disease, FIV has provided a useful model for both in vitro and in vivo studies of CNS infection, inflammation and pathology. This mini review summarizes insights gained from studies of early infection, immune cell trafficking, inflammation and the mechanisms of neuropathogenesis. Advances in our understanding of these processes have contributed to the development of therapeutic interventions designed to protect neurons and regulate inflammatory activity.
Collapse
|
8
|
Meeker RB, Poulton W, Clary G, Schriver M, Longo FM. Novel p75 neurotrophin receptor ligand stabilizes neuronal calcium, preserves mitochondrial movement and protects against HIV associated neuropathogenesis. Exp Neurol 2015; 275 Pt 1:182-98. [PMID: 26424436 DOI: 10.1016/j.expneurol.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/25/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
Human immunodeficiency virus (HIV) rapidly penetrates into the brain and establishes a persistent infection of macrophages/microglia. Activation of these cells by HIV results in the secretion of soluble factors that destabilize neuronal calcium homeostasis, encourage oxidative stress and result in neural damage. This damage is thought to underlie the cognitive-motor dysfunction that develops in many HIV-infected patients. Studies have suggested that neurotrophins may protect neurons from the toxic effects of HIV-associated proteins. To better understand the pathogenic mechanisms and the neuroprotective potential of neurotrophin ligands, we evaluated neuronal damage, calcium homeostasis and mitochondrial functions after exposure of cultured rat neurons directly to HIV gp120 or to conditioned medium from human monocyte-derived macrophages treated with gp120. We then assessed the ability of a new non-peptide p75 neurotrophin receptor ligand, LM11A-31, to stabilize calcium homeostasis and prevent the development of pathology. Each toxic challenge resulted in a delayed accumulation of intracellular calcium coupled to a decrease in the rate of calcium clearance from the cell. The delayed calcium accumulation correlated with the development of focal dendritic swellings (beading), cytoskeletal damage and impaired movement of mitochondria. Addition of LM11A-31 to the cultures at nanomolar concentrations eliminated cell death, significantly reduced the pathology, suppressed the delayed accumulation of calcium and restored mitochondrial movements. The potent neuroprotection and the stabilization of calcium homeostasis indicate that LM11A-31 may have excellent potential for the treatment of HIV-associated neurodegeneration.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Winona Poulton
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Gillian Clary
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Michael Schriver
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
9
|
Bogie JFJ, Stinissen P, Hendriks JJA. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 2014; 128:191-213. [PMID: 24952885 DOI: 10.1007/s00401-014-1310-2] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/11/2022]
Abstract
Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | |
Collapse
|
10
|
Meeker RB, Poulton W, Feng WH, Hudson L, Longo FM. Suppression of immunodeficiency virus-associated neural damage by the p75 neurotrophin receptor ligand, LM11A-31, in an in vitro feline model. J Neuroimmune Pharmacol 2012; 7:388-400. [PMID: 22161560 PMCID: PMC3746485 DOI: 10.1007/s11481-011-9325-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022]
Abstract
Feline immunodeficiency virus (FIV) infection like human immunodeficiency virus (HIV), produces systemic and central nervous system disease in its natural host, the domestic cat, that parallels the pathogenesis seen in HIV-infected humans. The ability to culture feline nervous system tissue affords the unique opportunity to directly examine interactions of infectious virus with CNS cells for the development of models and treatments that can then be translated to a natural infectious model. To explore the therapeutic potential of a new p75 neurotrophin receptor ligand, LM11A-31, we evaluated neuronal survival, neuronal damage and calcium homeostasis in cultured feline neurons following inoculation with FIV. FIV resulted in the gradual appearance of dendritic beading, pruning of processes and shrinkage of neuronal perikarya in the neurons. Astrocytes developed a more activated appearance and there was an enhanced accumulation of microglia, particularly at longer times post-inoculation. Addition of 10 nM LM11A-31, to the cultures greatly reduced or eliminated the neuronal pathology as well as the FIV effects on astrocytes and microglia. LM11A-31 also, prevented the development of delayed calcium deregulation in feline neurons exposed to conditioned medium from FIV treated macrophages. The suppression of calcium accumulation prevented the development of foci of calcium accumulation and beading in the dendrites. FIV replication was unaffected by LM11A-31. The strong neuroprotection afforded by LM11A-31 in an infectious in vitro model indicates that LM11A-31 may have excellent potential for the treatment of HIV-associated neurodegeneration.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, CB #7025, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
11
|
Hartmann K. Clinical aspects of feline immunodeficiency and feline leukemia virus infection. Vet Immunol Immunopathol 2011; 143:190-201. [PMID: 21807418 PMCID: PMC7132395 DOI: 10.1016/j.vetimm.2011.06.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses with a global impact on the health of domestic cats. The two viruses differ in their potential to cause disease. FIV can cause an acquired immunodeficiency syndrome that increases the risk of developing opportunistic infections, neurological diseases, and tumors. In most naturally infected cats, however, FIV itself does not cause severe clinical signs, and FIV-infected cats may live many years without any health problems. FeLV is more pathogenic, and was long considered to be responsible for more clinical syndromes than any other agent in cats. FeLV can cause tumors (mainly lymphoma), bone marrow suppression syndromes (mainly anemia) and lead to secondary infectious diseases caused by suppressive effects of the virus on bone marrow and the immune system. Today, FeLV is less important as a deadly infectious agent as in the last 20 years prevalence has been decreasing in most countries.
Collapse
Affiliation(s)
- Katrin Hartmann
- Clinic of Small Animal Medicine, LMU University of Munich, Veterinaerstrasse 13, 80539 Munich, Germany.
| |
Collapse
|
12
|
Feline immunodeficiency virus neuropathogenesis: from cats to calcium. J Neuroimmune Pharmacol 2006; 2:154-70. [PMID: 18040840 DOI: 10.1007/s11481-006-9045-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
Invasion of human immunodeficiency virus (HIV) into the central and peripheral nervous system produces a wide range of neurological symptoms, which continue to persist even with adequate therapeutic suppression of the systemic viremia. The development of therapies designed to prevent the neurological complications of HIV require a detailed understanding of the mechanisms of virus penetration into the nervous system, infection, and subsequent neuropathogenesis. These processes, however, are difficult to study in humans. The identification of animal lentiviruses similar to HIV has provided useful models of HIV infection that have greatly facilitated these efforts. This review summarizes contributions made from in vitro and in vivo studies on the infectious and pathological interactions of feline immunodeficiency virus (FIV) with the nervous system. In vivo studies on FIV have provided insights into the natural progression of CNS disease as well as the contribution of various risk factors. In vitro studies have contributed to our understanding of immune cell trafficking, CNS infection and neuropathogenesis. Together, these studies have made unique contributions to our understanding of (1) lentiviral interactions at the blood-cerebrospinal fluid (CSF) barrier within the choroid plexus, (2) early FIV invasion and pathogenesis in the brain, and (3) lentiviral effects on intracellular calcium deregulation and neuronal dysfunction. The ability to combine in vitro and in vivo studies on FIV offers enormous potential to explore neuropathogenic mechanisms and generate information necessary for the development of effective therapeutic interventions.
Collapse
|
13
|
Noorbakhsh F, Tang Q, Liu S, Silva C, van Marle G, Power C. Lentivirus envelope protein exerts differential neuropathogenic effects depending on the site of expression and target cell. Virology 2006; 348:260-76. [PMID: 16492386 DOI: 10.1016/j.virol.2005.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/30/2005] [Accepted: 10/26/2005] [Indexed: 12/27/2022]
Abstract
We investigated the neuropathogenic effects of feline immunodeficiency virus (FIV) envelope proteins in the context of both extracellular exposure and intracellular expression in feline neural cells. The envelope from the neurovirulent CSF-derived FIV V1 strain (V1-CSF) conferred infectivity to pseudotyped viruses in peripheral blood mononuclear cells (P < 0.01) in contrast to other cell types. Intracellular V1-CSF envelope expression in macrophages and microglia but not astrocytes resulted in the induction of host inflammatory genes contributing to neurotoxicity including IL-1beta, TNF-alpha, and indolamine 2',3'-dioxygenase (IDO) (P < 0.05) with concurrent neuronal death (P < 0.05). Upregulation of the endoplasmic reticulum stress genes was evident in brains from FIV-infected animals (P < 0.05) and in FIV-infected macrophages (P < 0.05) relative to controls. Intrastriatal implantation of an FIV envelope pseudotyped virus led to marked neuroinflammation and neuronal injury associated with neurobehavioral deficits (P < 0.01). Thus, lentivirus envelope proteins exert differential neuropathogenic effects through mechanisms that depend on the infected or exposed cell type.
Collapse
|
14
|
Meeker RB, Boles JC, Robertson KR, Hall CD. Cerebrospinal fluid from human immunodeficiency virus--infected individuals facilitates neurotoxicity by suppressing intracellular calcium recovery. J Neurovirol 2005; 11:144-56. [PMID: 16036793 DOI: 10.1080/13550280590922757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neurologic decline associated with penetration of human immunodeficiency virus type 1(HIV-1) into the central nervous system is thought to be due, in large part, to inflammation and local secretion of neurotoxic substances. To examine the cellular processes that mediate neurotoxicity in vivo, the authors valuated the ability of neurons to maintain intracellular calcium homeostasis in the presence of toxic cerebrospinal fluid (CSF) (CSF(tox)) collected from a subset of HIV-infected individuals. Exposure of rat neural cultures to CSF(tox) resulted in a gradual increase in intracellular calcium in neurons (+63%), microglia (+251%), and astrocytes (+52%). Pretreatment of neural cultures with CSF(tox) resulted in an exaggerated calcium response to a brief pulse of glutamate and a > 90% suppression of the rate of recovery of intracellular calcium. Attempts to model the deficit using inhibitors of calcium transport across endoplasmic reticulum, mitochondrial, or plasma membrane indicated that blockade of the plasma membrane sodium/calcium exchanger was best able to reproduce the deficits seen during exposure to CSF(tox). Because the inability of cells to maintain calcium homeostasis would lead to exaggerated responses from a wide variety of stimuli, therapeutics designed to facilitate calcium transport from the cell may provide more comprehensive and effective intervention than strategies targeted to specific receptor pathways.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
15
|
Meeker RB, Boles JC, Bragg DC, Robertson K, Hall C. Development of neuronal sensitivity to toxins in cerebrospinal fluid from HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 2004; 20:1072-86. [PMID: 15585098 DOI: 10.1089/aid.2004.20.1072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV infection of the immature nervous system generally results in a rapid progression of neurological disease that cannot easily be explained by the severity of encephalitis, viral burden, systemic immune deficiency, or developmental changes in utero. Rather than the viral infection dictating disease progression, we explored the possibility that immature neurons might be particularly sensitive to toxins secreted in response to HIV. Primary cultures of rat cortical neurons were exposed to toxic cerebrospinal fluid (CSF) from HIV-infected individuals (CSF(tox)) and evaluated for changes in intracellular calcium and cell death. CSF(tox) had no detectable effect on early neurite outgrowth, calcium regulation, or cell death during the first few days in culture. Starting at Day 4, delayed increases in intracellular calcium appeared in response to CSF(tox). The magnitude of the delayed calcium rise and cell death increased with the age of the culture and correlated with the appearance of synaptophysin immunoreactive varicosities. A similar gradual development of sensitivity was seen during exposure of feline neurons to toxins generated by choroid plexus macrophages after exposure to feline immunodeficiency virus. The possibility that toxin sensitivity is dependent on the presence of synaptic activity is consistent with the rapid pathogenesis in the CNS seen during the first postnatal year. Emerging synaptic activity coupled with other factors such as high metabolic demand in the young nervous system may combine to increase the likelihood of calcium overload and neuronal dysfunction in response to HIV-associated toxins.
Collapse
Affiliation(s)
- R B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|