1
|
Wareing L, Lin LPY, Readman MR, Crawford TJ, Longo MR, Linkenauger SA. Representations of the relative proportions of body part width. Cognition 2024; 251:105916. [PMID: 39128324 DOI: 10.1016/j.cognition.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Despite our wealth of experience with our bodies, our perceptions of our body size are far from veridical. For example, when estimating the relative proportions of their body part lengths, using the hand as a metric, individuals tend to exhibit systematic distortions which vary across body parts. Whilst extensive research with healthy populations has focused on perceptions of body part length, less is known about perceptions of the width of individual body parts and the various components comprising these representations. Across four experiments, representations of the relative proportions of body part width were investigated for both the self and other, and when using both the hand, or a hand-sized stick as the metric. Overall, we found distortions in the perceived width of body parts; however, different patterns of distortions were observed across all experiments. Moreover, the variability across experiments appears not to be moderated by the type of metric used or individuals' posture at the time of estimation. Consequently, findings suggest that, unlike perceptions of body part length, assessed using an identical methodology, our representations of the width of the body parts measured in this task are not fixed and vary across individuals and context. We propose that, as stored width representations of these parts are not necessarily required for navigating our environments, these may not be maintained by our perceptual systems, and thus variable task performance reflects the engagement of idiosyncratic guessing strategies.
Collapse
Affiliation(s)
- Lettie Wareing
- Department of Psychology, Lancaster University, United Kingdom.
| | - Lisa P Y Lin
- Department of Psychology, Lancaster University, United Kingdom
| | - Megan Rose Readman
- Department of Psychology, Lancaster University, United Kingdom; Department of Primary Care and Mental Health, University of Liverpool, United Kingdom; National Institute of Health Research Applied Research Collaboration, North West Coast, United Kingdom
| | | | - Matthew R Longo
- School of Psychological Sciences, Birkbeck, University of London, United Kingdom
| | | |
Collapse
|
2
|
Isabella SL, D'Alonzo M, Mioli A, Arcara G, Pellegrino G, Di Pino G. Artificial embodiment displaces cortical neuromagnetic somatosensory responses. Sci Rep 2024; 14:22279. [PMID: 39333283 PMCID: PMC11437133 DOI: 10.1038/s41598-024-72460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Integrating artificial limbs as part of one's body involves complex neuroplastic changes resulting from various sensory inputs. While somatosensory feedback is crucial, plastic processes that enable embodiment remain unknown. We investigated this using somatosensory evoked fields (SEFs) in the primary somatosensory cortex (S1) following the Rubber Hand Illusion (RHI), known to quickly induce artificial limb embodiment. During electrical stimulation of the little finger and thumb, 19 adults underwent neuromagnetic recordings before and after the RHI. We found early SEF displacement, including an illusion-brain correlation between extent of embodiment and specific changes to the first cortical response at 20 ms in Area 3b, within S1. Furthermore, we observed a posteriorly directed displacement at 35 ms towards Area 1, known to be important for visual integration during touch perception. That this second displacement was unrelated to extent of embodiment implies a functional distinction between neuroplastic changes of these components and areas. The earlier shift in Area 3b may shape extent of limb ownership, while subsequent displacement into Area 1 may relate to early visual-tactile integration that initiates embodiment. Here we provide evidence for multiple neuroplastic processes in S1-lasting beyond the illusion-supporting integration of artificial limbs like prostheses within the body representation.
Collapse
Affiliation(s)
- Silvia L Isabella
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy.
- San Camillo IRCCS Research Hospital, Venice, Italy.
| | - Marco D'Alonzo
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Mioli
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
| | | | - Giovanni Pellegrino
- Epilepsy program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Giovanni Di Pino
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
3
|
Deo DR, Okorokova EV, Pritchard AL, Hahn NV, Card NS, Nason-Tomaszewski SR, Jude J, Hosman T, Choi EY, Qiu D, Meng Y, Wairagkar M, Nicolas C, Kamdar FB, Iacobacci C, Acosta A, Hochberg LR, Cash SS, Williams ZM, Rubin DB, Brandman DM, Stavisky SD, AuYong N, Pandarinath C, Downey JE, Bensmaia SJ, Henderson JM, Willett FR. A mosaic of whole-body representations in human motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613041. [PMID: 39345372 PMCID: PMC11429821 DOI: 10.1101/2024.09.14.613041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Understanding how the body is represented in motor cortex is key to understanding how the brain controls movement. The precentral gyrus (PCG) has long been thought to contain largely distinct regions for the arm, leg and face (represented by the "motor homunculus"). However, mounting evidence has begun to reveal a more intermixed, interrelated and broadly tuned motor map. Here, we revisit the motor homunculus using microelectrode array recordings from 20 arrays that broadly sample PCG across 8 individuals, creating a comprehensive map of human motor cortex at single neuron resolution. We found whole-body representations throughout all sampled points of PCG, contradicting traditional leg/arm/face boundaries. We also found two speech-preferential areas with a broadly tuned, orofacial-dominant area in between them, previously unaccounted for by the homunculus. Throughout PCG, movement representations of the four limbs were interlinked, with homologous movements of different limbs (e.g., toe curl and hand close) having correlated representations. Our findings indicate that, while the classic homunculus aligns with each area's preferred body region at a coarse level, at a finer scale, PCG may be better described as a mosaic of functional zones, each with its own whole-body representation.
Collapse
|
4
|
Castellani N, Federici A, Fantoni M, Ricciardi E, Garbarini F, Bottari D. Brain Encoding of Naturalistic, Continuous, and Unpredictable Tactile Events. eNeuro 2024; 11:ENEURO.0238-24.2024. [PMID: 39266328 PMCID: PMC11429829 DOI: 10.1523/eneuro.0238-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/14/2024] Open
Abstract
Studies employing EEG to measure somatosensory responses have been typically optimized to compute event-related potentials in response to discrete events. However, tactile interactions involve continuous processing of nonstationary inputs that change in location, duration, and intensity. To fill this gap, this study aims to demonstrate the possibility of measuring the neural tracking of continuous and unpredictable tactile information. Twenty-seven young adults (females, 15) were continuously and passively stimulated with a random series of gentle brushes on single fingers of each hand, which were covered from view. Thus, tactile stimulations were unique for each participant and stimulated fingers. An encoding model measured the degree of synchronization between brain activity and continuous tactile input, generating a temporal response function (TRF). Brain topographies associated with the encoding of each finger stimulation showed a contralateral response at central sensors starting at 50 ms and peaking at ∼140 ms of lag, followed by a bilateral response at ∼240 ms. A series of analyses highlighted that reliable tactile TRF emerged after just 3 min of stimulation. Strikingly, topographical patterns of the TRF allowed discriminating digit lateralization across hands and digit representation within each hand. Our results demonstrated for the first time the possibility of using EEG to measure the neural tracking of a naturalistic, continuous, and unpredictable stimulation in the somatosensory domain. Crucially, this approach allows the study of brain activity following individualized, idiosyncratic tactile events to the fingers.
Collapse
Affiliation(s)
- Nicolò Castellani
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca 55100, Italy
- Manibus Lab, University of Turin, Turin 10124, Italy
| | | | - Marta Fantoni
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca 55100, Italy
| | | | | | - Davide Bottari
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca 55100, Italy
| |
Collapse
|
5
|
Erdbrügger T, Höltershinken M, Radecke J, Buschermöhle Y, Wallois F, Pursiainen S, Gross J, Lencer R, Engwer C, Wolters C. CutFEM-based MEG forward modeling improves source separability and sensitivity to quasi-radial sources: A somatosensory group study. Hum Brain Mapp 2024; 45:e26810. [PMID: 39140847 PMCID: PMC11323619 DOI: 10.1002/hbm.26810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024] Open
Abstract
Source analysis of magnetoencephalography (MEG) data requires the computation of the magnetic fields induced by current sources in the brain. This so-called MEG forward problem includes an accurate estimation of the volume conduction effects in the human head. Here, we introduce the Cut finite element method (CutFEM) for the MEG forward problem. CutFEM's meshing process imposes fewer restrictions on tissue anatomy than tetrahedral meshes while being able to mesh curved geometries contrary to hexahedral meshing. To evaluate the new approach, we compare CutFEM with a boundary element method (BEM) that distinguishes three tissue compartments and a 6-compartment hexahedral FEM in an n = 19 group study of somatosensory evoked fields (SEF). The neural generators of the 20 ms post-stimulus SEF components (M20) are reconstructed using both an unregularized and a regularized inversion approach. Changing the forward model resulted in reconstruction differences of about 1 centimeter in location and considerable differences in orientation. The tested 6-compartment FEM approaches significantly increase the goodness of fit to the measured data compared with the 3-compartment BEM. They also demonstrate higher quasi-radial contributions for sources below the gyral crowns. Furthermore, CutFEM improves source separability compared with both other approaches. We conclude that head models with 6 compartments rather than 3 and the new CutFEM approach are valuable additions to MEG source reconstruction, in particular for sources that are predominantly radial.
Collapse
Affiliation(s)
- Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Malte Höltershinken
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Jan‐Ole Radecke
- Deptartment of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
- Center for Brain, Behaviour and Metabolism (CBBM)University of LübeckLübeckGermany
| | - Yvonne Buschermöhle
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Fabrice Wallois
- Institut National de la Santé et de la Recherche Médicale, University of Picardie Jules VerneAmiensFrance
| | - Sampsa Pursiainen
- Computing Sciences Unit, Faculty of Information Technology and Communication SciencesTampere UniversityTampereFinland
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Rebekka Lencer
- Deptartment of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
- Center for Brain, Behaviour and Metabolism (CBBM)University of LübeckLübeckGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute for Translational Psychiatry, University of MünsterMünsterGermany
| | - Christian Engwer
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Carsten Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| |
Collapse
|
6
|
Hssain-Khalladi S, Giron A, Huneau C, Gitton C, Schwartz D, George N, Le Van Quyen M, Marrelec G, Marchand-Pauvert V. Further characterisation of late somatosensory evoked potentials using electroencephalogram and magnetoencephalogram source imaging. Eur J Neurosci 2024; 60:3772-3794. [PMID: 38726801 DOI: 10.1111/ejn.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/27/2023] [Accepted: 04/18/2024] [Indexed: 07/06/2024]
Abstract
Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.
Collapse
Affiliation(s)
- Sahar Hssain-Khalladi
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
- Sorbonne Université, Laboratoire d'Excellence SMART, Paris, France
| | - Alain Giron
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Clément Huneau
- Université de Nantes, CNRS, Laboratoire des Sciences du Numérique de Nantes, LS2N, Nantes, France
| | - Christophe Gitton
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Denis Schwartz
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Nathalie George
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Michel Le Van Quyen
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Guillaume Marrelec
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | | |
Collapse
|
7
|
Maruyama Y, Kojima S, Onishi H. Discrimination of the moving direction is improved depending on the pattern of the mechanical tactile stimulation intervention. BMC Neurosci 2024; 25:15. [PMID: 38443782 PMCID: PMC10916153 DOI: 10.1186/s12868-024-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The mechanical tactile stimulation, such as plastic pins and airflow-driven membrane, induces cortical activity. The cortical activity depends on the mechanical tactile stimulation pattern. Therefore, the stimulation pattern of mechanical tactile stimuli intervention may influence its effect on the somatosensory function. However, the effect of the mechanical tactile stimulation input pattern on the somatosensory function has not yet been investigated at the behavioral level. The present study aimed to clarify the effects of mechanical tactile stimuli intervention with different stimulation patterns on the ability to discriminate moving directions. RESULTS Twenty healthy adults participated in the experiment. Three conditions were used for mechanical tactile stimuli intervention: (1) the whole stimulus surface was stimulated, (2) the stimulus moved within the stimulus surface, and (3) a no-stimulus condition. The effects of mechanical tactile stimuli intervention on tactile discrimination were evaluated using a simple reaction task and a choice reaction task to discriminate the movement direction. Reaction time, correct rate, and rate correct score were calculated to measure task performance. We examined the effects of mechanical tactile stimuli intervention on the ability to discriminate the moving direction for a certain period under three intervention conditions. The results showed that the mean reaction time during the simple reaction task did not differ significantly before and after the intervention under all intervention conditions. Similarly, we compared the data obtained before and after the intervention during the choice reaction task. Our results revealed that the mean reaction time and correct rate did not differ significantly under vertical and horizontal conditions. However, the rate correct score showed a significant improvement after the horizontal moving tactile stimulation intervention under both vertical and horizontal conditions. CONCLUSIONS Our results showed that the effect of mechanical tactile stimuli intervention on mechanical tactile stimulation moving direction discrimination function depended on the input pattern of mechanical tactile stimuli intervention. Our results suggest the potential therapeutic benefits of sustained tactile stimulation intervention. This study revealed that it is possible to change behavioral levels via mechanical tactile stimuli intervention as well as the potential of mechanical tactile stimuli intervention in the field of rehabilitation.
Collapse
Affiliation(s)
- Yuki Maruyama
- Graduate School, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, 950-3198, Niigata City, Niigata, Japan.
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, 950-3198, Niigata City, Niigata, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, 950-3198, Niigata City, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 950-3198, Niigata City, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, 950-3198, Niigata City, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 950-3198, Niigata City, Niigata, Japan
| |
Collapse
|
8
|
Rifi Z, Remore LG, Tolossa M, Wei W, Sun XR, Bari AA. Somatotopic organization of the ventral nuclear group of the dorsal thalamus: deep brain stimulation for neuropathic pain reveals new insights into the facial homunculus. Brain Struct Funct 2024; 229:349-358. [PMID: 38172466 DOI: 10.1007/s00429-023-02733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Deep Brain Stimulation (DBS) is an experimental treatment for medication-refractory neuropathic pain. The ventral posteromedial (VPM) and ventral posterolateral (VPL) nuclei of the thalamus are popular targets for the treatment of facial and limb pain, respectively. While intraoperative testing is used to adjust targeting of patient-specific pain locations, a better understanding of thalamic somatotopy may improve targeting of specific body regions including the individual trigeminal territories, face, arm, and leg. To elucidate the somatotopic organization of the ventral nuclear group of the dorsal thalamus using in vivo macrostimulation data from patients undergoing DBS for refractory neuropathic pain. In vivo macrostimulation data was retrospectively collected for 14 patients who underwent DBS implantation for neuropathic pain syndromes at our institution. 56 contacts from 14 electrodes reconstructed with LeadDBS were assigned to macrostimulation-related body regions: tongue, face, arm, or leg. 33 contacts from 9 electrodes were similarly assigned to one of three trigeminal territories: V1, V2, or V3. MNI coordinates in the x, y, and z axes were compared by using MANOVA. Across the horizontal plane of the ventral nuclear group of the dorsal thalamus, the tongue was represented significantly medially, followed by the face, arm, and leg most laterally (p < 0.001). The trigeminal territories displayed significant mediolateral distribution, proceeding from V1 and V2 most medial to V3 most lateral (p < 0.001). Along the y-axis, V2 was also significantly anterior to V3 (p = 0.014). While our results showed that the ventral nuclear group of the dorsal thalamus displayed mediolateral somatotopy of the tongue, face, arm, and leg mirroring the cortical homunculus, the mediolateral distribution of trigeminal territories did not mirror the established cortical homunculus. This finding suggests that the facial homunculus may be inverted in the ventral nuclear group of the dorsal thalamus.
Collapse
Affiliation(s)
- Ziad Rifi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Luigi Gianmaria Remore
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- University of Milan "LA STATALE", Milan, Italy
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wenxin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiaonan R Sun
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Jensen MA, Huang H, Valencia GO, Klassen BT, van den Boom MA, Kaufmann TJ, Schalk G, Brunner P, Worrell GA, Hermes D, Miller KJ. A motor association area in the depths of the central sulcus. Nat Neurosci 2023; 26:1165-1169. [PMID: 37202552 PMCID: PMC10322697 DOI: 10.1038/s41593-023-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Cells in the precentral gyrus directly send signals to the periphery to generate movement and are principally organized as a topological map of the body. We find that movement-induced electrophysiological responses from depth electrodes extend this map three-dimensionally throughout the gyrus. Unexpectedly, this organization is interrupted by a previously undescribed motor association area in the depths of the midlateral aspect of the central sulcus. This 'Rolandic motor association' (RMA) area is active during movements of different body parts from both sides of the body and may be important for coordinating complex behaviors.
Collapse
Affiliation(s)
- Michael A Jensen
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA.
- Neurosurgery, Mayo Clinic, Rochester, MN, USA.
| | - Harvey Huang
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Max A van den Boom
- Neurosurgery, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Gerwin Schalk
- Neurosurgery, Mayo Clinic, Rochester, MN, USA
- Chen Frontier Lab for Applied Neurotechnology, Tianqiao and Chrissy Chen Institute, Shanghai, China
- Neurosurgery, Fudan University/Huashan Hospital, Shanghai, China
| | - Peter Brunner
- Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
| | - Gregory A Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kai J Miller
- Neurosurgery, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Delatolas T, Antonakakis M, Wolters CH, Zervakis M. EEG Source Analysis with a Convolutional Neural Network and Finite Element Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083731 DOI: 10.1109/embc40787.2023.10340742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
To reconstruct the electrophysiological activity of brain responses, source analysis is performed through the solution of the forward and inverse problems. The former contains a unique solution while the latter is ill-posed. In this regard, many algorithms have been suggested relying on different prior information for solving the inverse problem. Recently, neural networks have been used to deal with source analysis. However, their underlying training for inverse solutions is based on suboptimal forward modeling. In this work, we propose a CNN that is able to reconstruct EEG brain activity. To train our proposed CNN, a skull-conductivity calibrated and white matter anisotropic head model. Based on this model, we generate simulated EEG data and used them to train our CNN. We first evaluate the performance of our CNN using the simulated EEG data while a realistic application with somatosensory evoked potentials follows. From the results, we observed that the CCN correctly localized the P20/N20 component at the subject-specific Brodmann area 3b and it can potentially localize deeper sources. A comparison is also presented with well-known inverse solutions (single dipole scans and sLORETA) showing similar localization performance. Through these results, an emerging potential for real applications appears on the basis of realistic head modeling.
Collapse
|
11
|
Khan A, Antonakakis M, Suntrup-Krueger S, Lencer R, Nitsche MA, Paulus W, Groß J, Wolters CH. Can individually targeted and optimized multi-channel tDCS outperform standard bipolar tDCS in stimulating the primary somatosensory cortex? Brain Stimul 2023; 16:1-16. [PMID: 36526154 DOI: 10.1016/j.brs.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a non-invasive neuro-modulation technique. Most studies show that anodal tDCS increases cortical excitability, however, with variable outcomes. Previously, we have shown in computer simulations that our multi-channel tDCS (mc-tDCS) approach, the distributed constrained maximum intensity (D-CMI) method can potentially lead to better controlled tDCS results due to the improved directionality of the injected current at the target side for individually optimized D-CMI montages. OBJECTIVE In this study, we test the application of the D-CMI approach in an experimental study to stimulate the somatosensory P20/N20 target source in Brodmann area 3b and compare it with standard bipolar tDCS and sham conditions. METHODS We applied anodal D-CMI, the standard bipolar and D-CMI based Sham tDCS for 10 min to target the 20 ms post-stimulus somatosensory P20/N20 target brain source in Brodmann area 3b reconstructed using combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis in realistic head models with calibrated skull conductivity in a group-study with 13 subjects. Finger-stimulated somatosensory evoked fields (SEF) were recorded and the component at 20 ms post-stimulus (M20) was analyzed before and after the application of the three tDCS conditions in order to read out the stimulation effect on Brodmann area 3b. RESULTS Analysis of the finger stimulated SEF M20 peak before (baseline) and after tDCS shows a significant increase in source amplitude in Brodmann area 3b for D-CMI (6-16 min after tDCS), while no significant effects are found for standard bipolar (6-16 min after tDCS) and sham (6-16 min after tDCS) stimulation conditions. For the later time courses (16-26 and 27-37 min post-stimulation), we found a significant decrease in M20 peak source amplitude for standard bipolar and sham tDCS, while there was no effect for D-CMI. CONCLUSION Our results indicate that targeted and optimized, and thereby highly individualized, mc-tDCS can outperform standard bipolar stimulation and lead to better control over stimulation outcomes with, however, a considerable amount of additional work compared to standard bipolar tDCS.
Collapse
Affiliation(s)
- Asad Khan
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Marios Antonakakis
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, München, Germany; Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Joachim Groß
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
12
|
Neurophysiological Basis of Deep Brain Stimulation and Botulinum Neurotoxin Injection for Treating Oromandibular Dystonia. Toxins (Basel) 2022; 14:toxins14110751. [PMID: 36356002 PMCID: PMC9694803 DOI: 10.3390/toxins14110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Oromandibular dystonia (OMD) induces severe motor impairments, such as masticatory disturbances, dysphagia, and dysarthria, resulting in a serious decline in quality of life. Non-invasive brain-imaging techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) are powerful approaches that can elucidate human cortical activity with high temporal resolution. Previous studies with EEG and MEG have revealed that movements in the stomatognathic system are regulated by the bilateral central cortex. Recently, in addition to the standard therapy of botulinum neurotoxin (BoNT) injection into the affected muscles, bilateral deep brain stimulation (DBS) has been applied for the treatment of OMD. However, some patients' OMD symptoms do not improve sufficiently after DBS, and they require additional BoNT therapy. In this review, we provide an overview of the unique central spatiotemporal processing mechanisms in these regions in the bilateral cortex using EEG and MEG, as they relate to the sensorimotor functions of the stomatognathic system. Increased knowledge regarding the neurophysiological underpinnings of the stomatognathic system will improve our understanding of OMD and other movement disorders, as well as aid the development of potential novel approaches such as combination treatment with BoNT injection and DBS or non-invasive cortical current stimulation therapies.
Collapse
|
13
|
Magnetoencephalographic evaluation of repaired lip sensation in patients with cleft lip. PLoS One 2022; 17:e0274405. [PMID: 36137110 PMCID: PMC9498931 DOI: 10.1371/journal.pone.0274405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Cleft lip is the most common congenital anomaly worldwide. Nevertheless, lip somatosensory characteristics of patients with cleft lip after cheiloplasty have not yet been determined. The present study used magnetoencephalography to objectively evaluate the lip sensation in patients with unilateral cleft lip to establish a new objective evaluation method.
Methods
Participants were 15 patients with unilateral cleft lip after cheiloplasty (UCL group), and 30 healthy young subjects (control group). Five points of the upper and lower lips were stimulated electrically to measure somatosensory evoked magnetic fields (SEFs). The sources of the magnetic fields were modeled as single equivalent current dipoles (ECDs). ECDs located on the central sulcus by superimposition on magnetic resonance images were analyzed. Latency and intensity at 50–75 ms (cP60m) observed in the UCL group were compared with those in the control group. Thresholds of tactile stimuli in both groups were obtained using Semmes–Weinstein monofilaments for subjective sensory evaluation.
Results
No significant difference was found in the intensity of the cP60m or subjective evaluation between the groups. However, the latency of the cP60m was significantly longer in the upper lip of the UCL group than in the control group.
Conclusions
SEFs showed a difference in lip sensation between the UCL group and the control group, suggesting that longer latency might be caused by the effects of surgical scarring on the neurotransmission pathway. These results suggest SEFs as useful for the objective evaluation of lip sensations. This study might improve future surgical procedures and lip functions of patients with cleft lip.
Collapse
|
14
|
Hakonen M, Nurmi T, Vallinoja J, Jaatela J, Piitulainen H. More comprehensive proprioceptive stimulation of the hand amplifies its cortical processing. J Neurophysiol 2022; 128:568-581. [PMID: 35858122 PMCID: PMC9423773 DOI: 10.1152/jn.00485.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Corticokinematic coherence (CKC) quantifies the phase coupling between limb kinematics and cortical neurophysiological signals reflecting proprioceptive feedback to the primary sensorimotor (SM1) cortex. We studied whether the CKC strength or cortical source location differs between proprioceptive stimulation (i.e., actuator-evoked movements) of right-hand digits (index, middle, ring, and little). Twenty-one volunteers participated in magnetoencephalography measurements during which three conditions were tested: 1) simultaneous stimulation of all four fingers at the same frequency, 2) stimulation of each finger separately at the same frequency, and 3) simultaneous stimulation of the fingers at finger-specific frequencies. CKC was computed between MEG responses and accelerations of the fingers recorded with three-axis accelerometers. CKC was stronger (P < 0.003) for the simultaneous (0.52 ± 0.02) than separate (0.45 ± 0.02) stimulation at the same frequency. Furthermore, CKC was weaker (P < 0.03) for the simultaneous stimulation at the finger-specific frequencies (0.38 ± 0.02) than for the separate stimulation. CKC source locations of the fingers were concentrated in the hand region of the SM1 cortex and did not follow consistent finger-specific somatotopic order. Our results indicate that proprioceptive afference from the fingers is processed in partly overlapping cortical neuronal circuits, which was demonstrated by the modulation of the finger-specific CKC strengths due to proprioceptive afference arising from simultaneous stimulation of the other fingers of the same hand as well as overlapping cortical source locations. Finally, comprehensive simultaneous proprioceptive stimulation of the hand would optimize functional cortical mapping to pinpoint the hand region, e.g., prior brain surgery.NEW & NOTEWORTHY Corticokinematic coherence (CKC) can be used to study cortical proprioceptive processing and localize proprioceptive hand representation. Our results indicate that proprioceptive stimulation delivered simultaneously at the same frequency to fingers (D2-D4) maximizes CKC strength allowing robust and fast localization of the human hand region in the sensorimotor cortex using MEG.
Collapse
Affiliation(s)
- Maria Hakonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timo Nurmi
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Aalto NeuroImaging, Magnetoencephalography Core, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
15
|
Somatosensory Evoked Magnetic Fields Induced by Electrical Palate Stimulation in Patients with Unilateral Cleft Lip and Palate after Palatoplasty. Neurosci Res 2022; 184:30-37. [DOI: 10.1016/j.neures.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
|
16
|
Bono D, Belyk M, Longo MR, Dick F. Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates. Neurosci Biobehav Rev 2022; 139:104730. [PMID: 35691470 DOI: 10.1016/j.neubiorev.2022.104730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The English idiom "on the tip of my tongue" commonly acknowledges that something is known, but it cannot be immediately brought to mind. This phrase accurately describes sensorimotor functions of the tongue, which are fundamental for many tongue-related behaviors (e.g., speech), but often neglected by scientific research. Here, we review a wide range of studies conducted on non-primates, non-human and human primates with the aim of providing a comprehensive description of the cortical representation of the tongue's somatosensory inputs and motor outputs across different phylogenetic domains. First, we summarize how the properties of passive non-noxious mechanical stimuli are encoded in the putative somatosensory tongue area, which has a conserved location in the ventral portion of the somatosensory cortex across mammals. Second, we review how complex self-generated actions involving the tongue are represented in more anterior regions of the putative somato-motor tongue area. Finally, we describe multisensory response properties of the primate and non-primate tongue area by also defining how the cytoarchitecture of this area is affected by experience and deafferentation.
Collapse
Affiliation(s)
- Davide Bono
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK.
| | - Michel Belyk
- Department of Speech, Hearing, and Phonetic Sciences, UCL Division of Psychology and Language Sciences, 2 Wakefield Street, London WC1N 1PJ, UK
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK
| | - Frederic Dick
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK; Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK.
| |
Collapse
|
17
|
Oda H, Tsujinaka R, Fukuda S, Sawaguchi Y, Hiraoka K. Tactile perception of right middle fingertip suppresses excitability of motor cortex supplying right first dorsal interosseous muscle. Neuroscience 2022; 494:82-93. [PMID: 35588919 DOI: 10.1016/j.neuroscience.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
The present study examined whether tactile perception of the fingertip modulates excitability of the motor cortex supplying the intrinsic hand muscle and whether this modulation is specific to the fingertip stimulated and the muscle and hand tested. Tactile stimulation was given to one of the five fingertips in the left or right hand, and transcranial magnetic stimulation eliciting motor evoked potential in the first dorsal interosseous muscle (FDI) or abductor digiti minimi was given 200 ms after the onset of tactile stimulation. The corticospinal excitability of the FDI at rest was suppressed by the tactile stimulation of the right middle fingertip, but such suppression was absent for the other fingers stimulated and for the other muscle or hand tested. The persistence and amplitude of the F-wave was not significantly influenced by tactile stimulation of the fingertip in the right hand. These findings indicate that tactile perception of the right middle fingertip suppresses excitability of the motor cortex supplying the right FDI at rest. The suppression of corticospinal excitability was absent during tonic contraction of the right FDI, indicating that the motor execution process interrupts the tactile perception-induced suppression of motor cortical excitability supplying the right FDI. These findings are in line with a view that the tactile perception of the right middle finger induces surround inhibition of the motor cortex supplying the prime mover of the finger neighboring the stimulated finger.
Collapse
Affiliation(s)
- Hitoshi Oda
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino city, Osaka, Japan
| | - Ryo Tsujinaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino city, Osaka, Japan
| | - Shiho Fukuda
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino city, Osaka, Japan
| | - Yasushi Sawaguchi
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino city, Osaka, Japan
| | - Koichi Hiraoka
- College of Health and Human Sciences, Osaka Prefecture University, Habikino city, Osaka, Japan.
| |
Collapse
|
18
|
An N, Cao F, Li W, Wang W, Xu W, Wang C, Gao Y, Xiang M, Ning X. Multiple Source Detection based on Spatial Clustering and Its Applications on Wearable OPM-MEG. IEEE Trans Biomed Eng 2022; 69:3131-3141. [PMID: 35320085 DOI: 10.1109/tbme.2022.3161830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Magnetoencephalography (MEG) is a non-invasive technique that measures the magnetic fields of brain activity. In particular, a new type of optically pumped magnetometer (OPM)-based wearable MEG system has been developed in recent years. Source localization in MEG can provide signals and locations of brain activity. However, conventional source localization methods face the difficulty of accurately estimating multiple sources. The present study presented a new parametric method to estimate the number of sources and localize multiple sources. In addition, we applied the proposed method to a constructed wearable OPM-MEG system. METHODS We used spatial clustering of the dipole spatial distribution to detect sources. The spatial distribution of dipoles was obtained by segmenting the MEG data temporally into slices and then estimating the parameters of the dipoles on each data slice using the particle swarm optimization algorithm. Spatial clustering was performed using the spatial-temporal density-based spatial clustering of applications with a noise algorithm. The performance of our approach for detecting multiple sources was compared with that of four typical benchmark algorithms using the OPM-MEG sensor configuration. RESULTS The simulation results showed that the proposed method had the best performance for detecting multiple sources. Moreover, the effectiveness of the method was verified by a multimodel sensory stimuli experiment on a real constructed 31-channel OPM-MEG. CONCLUSION Our study provides an effective method for the detection of multiple sources. SIGNIFICANCE With the improvement of the source localization methods, MEG may have a wider range of applications in neuroscience and clinical research.
Collapse
|
19
|
Muret D, Root V, Kieliba P, Clode D, Makin TR. Beyond body maps: Information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep 2022; 38:110523. [PMID: 35294887 PMCID: PMC8938902 DOI: 10.1016/j.celrep.2022.110523] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The homunculus in primary somatosensory cortex (S1) is famous for its body part selectivity, but this dominant feature may eclipse other representational features, e.g., information content, also relevant for S1 organization. Using multivariate fMRI analysis, we ask whether body part information content can be identified in S1 beyond its primary region. Throughout S1, we identify significant representational dissimilarities between body parts but also subparts in distant non-primary regions (e.g., between the hand and the lips in the foot region and between different face parts in the foot region). Two movements performed by one body part (e.g., the hand) could also be dissociated well beyond its primary region (e.g., in the foot and face regions), even within Brodmann area 3b. Our results demonstrate that information content is more distributed across S1 than selectivity maps suggest. This finding reveals underlying information contents in S1 that could be harnessed for rehabilitation and brain-machine interfaces.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
| | - Victoria Root
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Centre of Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Dani Clode Design, 40 Hillside Road, London SW2 3HW, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
20
|
An N, Cao F, Li W, Wang W, Xu W, Wang C, Xiang M, Gao Y, Sui B, Liang A, Ning X. Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach. iScience 2022; 25:103752. [PMID: 35118364 PMCID: PMC8800110 DOI: 10.1016/j.isci.2022.103752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) has shown potential for analyzing brain activity. It has a flexible sensor configuration and comparable sensitivity to conventional SQUID-MEG. We constructed a 32-channel OPM-MEG system and used it to measure cortical responses to median and ulnar nerve stimulations. Traditional magnetic source imaging methods tend to blur the spatial extent of sources. Accurate estimation of the spatial size of the source is important for studying the organization of brain somatotopy and for pre-surgical functional mapping. We proposed a new method called variational free energy-based spatial smoothing estimation (FESSE) to enhance the accuracy of mapping somatosensory cortex responses. A series of computer simulations based on the OPM-MEG showed better performance than the three types of competing methods under different levels of signal-to-noise ratios, source patch sizes, and co-registration errors. FESSE was then applied to the source imaging of the OPM-MEG experimental data.
Collapse
Affiliation(s)
- Nan An
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Fuzhi Cao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wen Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wenli Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Weinan Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Chunhui Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Min Xiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
| | - Yang Gao
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Binbin Sui
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Aimin Liang
- Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaolin Ning
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
| |
Collapse
|
21
|
Automatic Selection of Control Features for Electroencephalography-Based Brain–Computer Interface Assisted Motor Rehabilitation: The GUIDER Algorithm. Brain Topogr 2022; 35:182-190. [DOI: 10.1007/s10548-021-00883-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022]
|
22
|
Validating EEG, MEG and Combined MEG and EEG Beamforming for an Estimation of the Epileptogenic Zone in Focal Cortical Dysplasia. Brain Sci 2022; 12:brainsci12010114. [PMID: 35053857 PMCID: PMC8796031 DOI: 10.3390/brainsci12010114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
MEG and EEG source analysis is frequently used for the presurgical evaluation of pharmacoresistant epilepsy patients. The source localization of the epileptogenic zone depends, among other aspects, on the selected inverse and forward approaches and their respective parameter choices. In this validation study, we compare the standard dipole scanning method with two beamformer approaches for the inverse problem, and we investigate the influence of the covariance estimation method and the strength of regularization on the localization performance for EEG, MEG, and combined EEG and MEG. For forward modelling, we investigate the difference between calibrated six-compartment and standard three-compartment head modelling. In a retrospective study, two patients with focal epilepsy due to focal cortical dysplasia type IIb and seizure freedom following lesionectomy or radiofrequency-guided thermocoagulation (RFTC) used the distance of the localization of interictal epileptic spikes to the resection cavity resp. RFTC lesion as reference for good localization. We found that beamformer localization can be sensitive to the choice of the regularization parameter, which has to be individually optimized. Estimation of the covariance matrix with averaged spike data yielded more robust results across the modalities. MEG was the dominant modality and provided a good localization in one case, while it was EEG for the other. When combining the modalities, the good results of the dominant modality were mostly not spoiled by the weaker modality. For appropriate regularization parameter choices, the beamformer localized better than the standard dipole scan. Compared to the importance of an appropriate regularization, the sensitivity of the localization to the head modelling was smaller, due to similar skull conductivity modelling and the fixed source space without orientation constraint.
Collapse
|
23
|
Green S, Karunakaran KD, Labadie R, Kussman B, Mizrahi-Arnaud A, Morad AG, Berry D, Zurakowski D, Micheli L, Peng K, Borsook D. fNIRS brain measures of ongoing nociception during surgical incisions under anesthesia. NEUROPHOTONICS 2022; 9:015002. [PMID: 35111876 PMCID: PMC8794294 DOI: 10.1117/1.nph.9.1.015002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) has evaluated pain in awake and anesthetized states. Aim: We evaluated fNIRS signals under general anesthesia in patients undergoing knee surgery for anterior cruciate ligament repair. Approach: Patients were split into groups: those with regional nerve block (NB) and those without (non-NB). Continuous fNIRS measures came from three regions: the primary somatosensory cortex (S1), known to be involved in evaluation of nociception, the lateral prefrontal cortex (BA9), and the polar frontal cortex (BA10), both involved in higher cortical functions (such as cognition and emotion). Results: Our results show three significant differences in fNIRS signals to incision procedures between groups: (1) NB compared with non-NB was associated with a greater net positive hemodynamic response to pain procedures in S1; (2) dynamic correlation between the prefrontal cortex (PreFC) and S1 within 1 min of painful procedures are anticorrelated in NB while positively correlated in non-NB; and (3) hemodynamic measures of activation were similar at two separate time points during surgery (i.e., first and last incisions) in PreFC and S1 but showed significant differences in their overlap. Comparing pain levels immediately after surgery and during discharge from postoperative care revealed no significant differences in the pain levels between NB and non-NB. Conclusion: Our data suggest multiple pain events that occur during surgery using devised algorithms could potentially give a measure of "pain load." This may allow for evaluation of central sensitization (i.e., a heightened state of the nervous system where noxious and non-noxious stimuli is perceived as painful) to postoperative pain levels and the resulting analgesic consumption. This evaluation could potentially predict postsurgical chronic neuropathic pain.
Collapse
Affiliation(s)
- Stephen Green
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Keerthana Deepti Karunakaran
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Robert Labadie
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Barry Kussman
- Boston Children’s Hospital, Harvard Medical School, Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Arielle Mizrahi-Arnaud
- Boston Children’s Hospital, Harvard Medical School, Division of Perioperative Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Andrea Gomez Morad
- Boston Children’s Hospital, Harvard Medical School, Division of Perioperative Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Delany Berry
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - David Zurakowski
- Boston Children’s Hospital, Harvard Medical School, Division of Biostatistics, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Lyle Micheli
- Boston Children’s Hospital, Harvard Medical School, Sports Medicine Division, Department of Orthopedic Surgery, Boston, Massachusetts, United States
| | - Ke Peng
- Université de Montréal, Département en Neuroscience, Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Departments of Psychiatry and Radiology, Boston, Massachusetts, United States
| |
Collapse
|
24
|
Zlatkina V, Sprung-Much T, Petrides M. Spatial probability maps of the segments of the postcentral sulcus in the human brain. Cereb Cortex 2021; 32:3651-3668. [PMID: 34963136 PMCID: PMC9433426 DOI: 10.1093/cercor/bhab439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The postcentral sulcus is the posterior boundary of the postcentral gyrus where the somatosensory cortex is represented. In the human brain, the postcentral sulcus is composed of five distinct segments that are related to the somatosensory representation of different parts of the body. Segment 1 of the postcentral sulcus, located near the dorsomedial boundary of each hemisphere, is associated with toe/leg representations, segment 2 with arm/hand representations, segment 3 with blinking, and segments 4 and 5, which are near the lateral fissure and the parietal operculum, with the mouth and tongue representations. The variability in location and spatial extent of these five segments were quantified in 40 magnetic resonance imaging (MRI) anatomical brain scans registered to the stereotaxic space of the Montreal Neurological Institute (MNI space), in the form of volumetric (using MINC Toolkit) and surface (using FreeSurfer) spatial probability maps. These probability maps can be used by researchers and clinicians to improve the localization of the segments of the postcentral sulcus in MRI images of interest and also to improve the interpretation of the location of activation peaks generated in functional neuroimaging studies investigating somatosensory cortex.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Address correspondence to Veronika Zlatkina, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Trisanna Sprung-Much
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
25
|
Reconstructing subcortical and cortical somatosensory activity via the RAMUS inverse source analysis technique using median nerve SEP data. Neuroimage 2021; 245:118726. [PMID: 34838947 DOI: 10.1016/j.neuroimage.2021.118726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022] Open
Abstract
This study concerns reconstructing brain activity at various depths based on non-invasive EEG (electroencephalography) scalp measurements. We aimed at demonstrating the potential of the RAMUS (randomized multiresolution scanning) technique in localizing weakly distinguishable far-field sources in combination with coinciding cortical activity. As we have shown earlier theoretically and through simulations, RAMUS is a novel mathematical method that by employing the multigrid concept, allows marginalizing noise and depth bias effects and thus enables the recovery of both cortical and subcortical brain activity. To show this capability with experimental data, we examined the 14-30 ms post-stimulus somatosensory evoked potential (SEP) responses of human median nerve stimulation in three healthy adult subjects. We aim at reconstructing the different response components by evaluating a RAMUS-based estimate for the primary current density in the nervous tissue. We present source reconstructions obtained with RAMUS and compare them with the literature knowledge of the SEP components and the outcome of the unit-noise gain beamformer (UGNB) and standardized low-resolution brain electromagnetic tomography (sLORETA). We also analyzed the effect of the iterative alternating sequential technique, the optimization technique of RAMUS, compared to the classical minimum norm estimation (MNE) technique. Matching with our previous numerical studies, the current results suggest that RAMUS could have the potential to enhance the detection of simultaneous deep and cortical components and the distinction between the evoked sulcal and gyral activity.
Collapse
|
26
|
Individually optimized multi-channel tDCS for targeting somatosensory cortex. Clin Neurophysiol 2021; 134:9-26. [PMID: 34923283 DOI: 10.1016/j.clinph.2021.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive neuro-modulation technique that delivers current through the scalp by a pair of patch electrodes (2-Patch). This study proposes a new multi-channel tDCS (mc-tDCS) optimization method, the distributed constrained maximum intensity (D-CMI) approach. For targeting the P20/N20 somatosensory source at Brodmann area 3b, an integrated combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis is used with individualized skull conductivity calibrated realistic head modeling. METHODS Simulated electric fields (EF) for our new D-CMI method and the already known maximum intensity (MI), alternating direction method of multipliers (ADMM) and 2-Patch methods were produced and compared for the individualized P20/N20 somatosensory target for 10 subjects. RESULTS D-CMI and MI showed highest intensities parallel to the P20/N20 target compared to ADMM and 2-Patch, with ADMM achieving highest focality. D-CMI showed a slight reduction in intensity compared to MI while reducing side effects and skin level sensations by current distribution over multiple stimulation electrodes. CONCLUSION Individualized D-CMI montages are preferred for our follow up somatosensory experiment to provide a good balance between high current intensities at the target and reduced side effects and skin sensations. SIGNIFICANCE An integrated combined MEG and EEG source analysis with D-CMI montages for mc-tDCS stimulation potentially can improve control, reproducibility and reduce sensitivity differences between sham and real stimulations.
Collapse
|
27
|
Ramalho BL, Moly J, Raffin E, Bouet R, Harquel S, Farnè A, Reilly KT. Face-hand sensorimotor interactions revealed by afferent inhibition. Eur J Neurosci 2021; 55:189-200. [PMID: 34796553 DOI: 10.1111/ejn.15536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Reorganization of the sensorimotor cortex following permanent (e.g., amputation) or temporary (e.g., local anaesthesia) deafferentation of the hand has revealed large-scale plastic changes between the hand and face representations that are accompanied by perceptual correlates. The physiological mechanisms underlying this reorganization remain poorly understood. The aim of this study was to investigate sensorimotor interactions between the face and hand using an afferent inhibition transcranial magnetic stimulation protocol in which the motor evoked potential elicited by the magnetic pulse is inhibited when it is preceded by an afferent stimulus. We hypothesized that if face and hand representations in the sensorimotor cortex are functionally coupled, then electrocutaneous stimulation of the face would inhibit hand muscle motor responses. In two separate experiments, we delivered an electrocutaneous stimulus to either the skin over the right upper lip (Experiment 1) or right cheek (Experiment 2) and recorded muscular activity from the right first dorsal interosseous. Both lip and cheek stimulation inhibited right first dorsal interosseous motor evoked potentials. To investigate the specificity of this effect, we conducted two additional experiments in which electrocutaneous stimulation was applied to either the right forearm (Experiment 3) or right upper arm (Experiment 4). Forearm and upper arm stimulation also significantly inhibited the right first dorsal interosseous motor evoked potentials, but this inhibition was less robust than the inhibition associated with face stimulation. These findings provide the first evidence for face-to-hand afferent inhibition.
Collapse
Affiliation(s)
- Bia Lima Ramalho
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, Brazil
| | - Julien Moly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Estelle Raffin
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Romain Bouet
- University UCBL Lyon 1, University of Lyon, Lyon, France.,Brain Dynamics and Cognition Team - DyCog, Lyon Neuroscience Research Center, INSERM U1028, CRNS-UMR5292, Lyon, France
| | - Sylvain Harquel
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.,Laboratoire de Psychologie et NeuroCognition - LPNC, University Grenoble Alpes, CNRS UMR5105, Grenoble, France.,IRMaGe, University Grenoble-Alpes, CHU Grenoble Alpes, INSERM US17, CNRS UMS3552, Grenoble, France
| | - Alessandro Farnè
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion, Mouvement and Handicap, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Karen T Reilly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| |
Collapse
|
28
|
Raffin E. The various forms of sensorimotor plasticity following limb amputation and their link with rehabilitation strategies. Rev Neurol (Paris) 2021; 177:1112-1120. [PMID: 34657732 DOI: 10.1016/j.neurol.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Limb amputation is characterized by complex and intermingled brain reorganization processes combining sensorimotor deprivation induced by the loss of the limb per se, and compensatory behaviors, such as the over-use of the intact or remaining limb. While a large body of evidence documents sensorimotor representation plasticity following arm amputation, less investigations have been performed to fully understand the use-dependent plasticity phenomenon and the role of behavioral compensation in brain reorganization. In this article, I will review the findings on sensorimotor plasticity after limb amputation, focusing on these two aspects: sensorimotor deprivation and adaptive patterns of limb usage, and describe the models that attempt to link these reorganizational processes with phantom limb pain. Two main models have been proposed: the maladaptive plasticity model which states that the reorganization of the adjacent cortical territories into the representation of the missing limb is proportional to phantom pain intensity, and the persistent representation model, which rather suggests that the intensity of residual brain activity associated with phantom hand movements scales with phantom limb pain intensity. I will finally illustrate how this fundamental research helps designing new therapeutic strategies for phantom plain relief.
Collapse
Affiliation(s)
- E Raffin
- Defitech Chair in Clinical Neuroengineering, École Polytechnique Fédérale de Lausanne, Center for Neuroprosthetics and Brain Mind Institute, EPFL, UPHUMMEL lab, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, 1202 Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland.
| |
Collapse
|
29
|
Colamarino E, de Seta V, Masciullo M, Cincotti F, Mattia D, Pichiorri F, Toppi J. Corticomuscular and Intermuscular Coupling in Simple Hand Movements to Enable a Hybrid Brain-Computer Interface. Int J Neural Syst 2021; 31:2150052. [PMID: 34590990 DOI: 10.1142/s0129065721500520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hybrid Brain-Computer Interfaces (BCIs) for upper limb rehabilitation after stroke should enable the reinforcement of "more normal" brain and muscular activity. Here, we propose the combination of corticomuscular coherence (CMC) and intermuscular coherence (IMC) as control features for a novel hybrid BCI for rehabilitation purposes. Multiple electroencephalographic (EEG) signals and surface electromyography (EMG) from 5 muscles per side were collected in 20 healthy participants performing finger extension (Ext) and grasping (Grasp) with both dominant and non-dominant hand. Grand average of CMC and IMC patterns showed a bilateral sensorimotor area as well as multiple muscles involvement. CMC and IMC values were used as features to classify each task versus rest and Ext versus Grasp. We demonstrated that a combination of CMC and IMC features allows for classification of both movements versus rest with better performance (Area Under the receiver operating characteristic Curve, AUC) for the Ext movement (0.97) with respect to Grasp (0.88). Classification of Ext versus Grasp also showed high performances (0.99). All in all, these preliminary findings indicate that the combination of CMC and IMC could provide for a comprehensive framework for simple hand movements to eventually be employed in a hybrid BCI system for post-stroke rehabilitation.
Collapse
Affiliation(s)
- Emma Colamarino
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy.,Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| | - Valeria de Seta
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy.,Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| | | | - Febo Cincotti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy.,Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| | - Donatella Mattia
- Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| | | | - Jlenia Toppi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome 00185, Italy.,Fondazione Santa Lucia IRCCS, Via Ardeatina 306-354, Rome 00179, Italy
| |
Collapse
|
30
|
Salgues S, Plancher G, Michael GA. Visuospatial working memory abilities and spontaneous sensations perception. Somatosens Mot Res 2021; 38:164-177. [PMID: 34180338 DOI: 10.1080/08990220.2021.1914018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aim: Body awareness arises when attending to and maintaining awareness of visuospatial body representations. By the same token, focussing on representations transfers them to working memory. Body awareness and working memory seemingly rely on similar processes and recruit common parietal areas involved in perception. Therefore, we asked whether visuospatial working memory abilities would define individual differences in the perception of spontaneous sensations (SPS), i.e., bodily sensations perceived in the absence of triggers (e.g., tactile stimulation or movement), when attending to the body.Method: Participants completed two visuospatial working memory tasks to assess various mechanisms: (i) the decay of representations was assessed through a Brown-Peterson task in which the delay between the memorandum presentation and its recall was manipulated, and (ii) the impact of distractors' interference and cognitive load (i.e., complexity) on recall performances were assessed through a complex span task that required the processing of distractors while maintaining a memorandum. A standard SPS task involving localization and characterization of SPS perceived on the hands was completed afterwards.Results: Low performance due to decay, distractors' interference and cognitive load in visuospatial working memory was associated with a decrease in the frequency of SPS. Additionally, low performance due to distractors' cognitive load predicted a decrease in the perception of surface-type sensations, and high performance despite distractors' interference led to a better perception of SPS on less sensitive areas of the hand.Conclusion: We discuss how visuospatial working memory processes might contribute to body awareness and perceptual distortions of the body.
Collapse
Affiliation(s)
- Sara Salgues
- Université de Lyon, Lyon, France.,Département de Sciences Cognitives, Psychologie Cognitive et Neuropsychologie, Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Institut de Psychologie, Université Lyon 2, Lyon, France
| | - Gaën Plancher
- Université de Lyon, Lyon, France.,Département de Sciences Cognitives, Psychologie Cognitive et Neuropsychologie, Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Institut de Psychologie, Université Lyon 2, Lyon, France
| | - George A Michael
- Université de Lyon, Lyon, France.,Département de Sciences Cognitives, Psychologie Cognitive et Neuropsychologie, Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Institut de Psychologie, Université Lyon 2, Lyon, France
| |
Collapse
|
31
|
Schrader S, Westhoff A, Piastra MC, Miinalainen T, Pursiainen S, Vorwerk J, Brinck H, Wolters CH, Engwer C. DUNEuro-A software toolbox for forward modeling in bioelectromagnetism. PLoS One 2021; 16:e0252431. [PMID: 34086715 PMCID: PMC8177522 DOI: 10.1371/journal.pone.0252431] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Accurate and efficient source analysis in electro- and magnetoencephalography using sophisticated realistic head geometries requires advanced numerical approaches. This paper presents DUNEuro, a free and open-source C++ software toolbox for the numerical computation of forward solutions in bioelectromagnetism. Building upon the DUNE framework, it provides implementations of modern fitted and unfitted finite element methods to efficiently solve the forward problems of electro- and magnetoencephalography. The user can choose between a variety of different source models that are implemented. The software's aim is to provide interfaces that are extendable and easy-to-use. In order to enable a closer integration into existing analysis pipelines, interfaces to Python and MATLAB are provided. The practical use is demonstrated by a source analysis example of somatosensory evoked potentials using a realistic six-compartment head model. Detailed installation instructions and example scripts using spherical and realistic head models are appended.
Collapse
Affiliation(s)
- Sophie Schrader
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
| | - Andreas Westhoff
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
- Applied Mathematics: Institute for Analysis and Numerics, University of Münster, Munster, Germany
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, Gelsenkirchen, Germany
| | - Maria Carla Piastra
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
- Applied Mathematics: Institute for Analysis and Numerics, University of Münster, Munster, Germany
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tuuli Miinalainen
- Computing Sciences, Tampere University, Tampere, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Johannes Vorwerk
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| | - Heinrich Brinck
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, Gelsenkirchen, Germany
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Munster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Munster, Germany
| | - Christian Engwer
- Applied Mathematics: Institute for Analysis and Numerics, University of Münster, Munster, Germany
- * E-mail:
| |
Collapse
|
32
|
Lincoln SH, Germine LT, Mair P, Hooker CI. Simulation and social behavior: an fMRI study of neural processing during simulation in individuals with and without risk for psychosis. Soc Cogn Affect Neurosci 2021; 15:165-174. [PMID: 32248225 PMCID: PMC7304514 DOI: 10.1093/scan/nsaa047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/17/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Social dysfunction is a risk indicator for schizophrenia spectrum disorders, with at-risk individuals demonstrating a range of social behavior impairments. Variability in social ability may be explained by individual differences in the psychological processes of social behavior. In particular, mental simulation, the process by which an individual generates an internal representation of the thoughts or feelings of another, may explain variation in social behavior. This study investigates the neural process of simulation in healthy individuals and individuals at risk for psychosis. Using a novel fMRI pain paradigm, individuals watch videos of another person’s hand or foot experiencing pain. After each video, individuals are asked to simulate the observed painful situation on their own hand or foot. Neural activity during simulation in the somatosensory cortex was associated with real-world self-reported social behavior, such that a stronger neural response in the somatosensory cortex was associated with greater rates of positive social experiences and affective empathy across all participants. These findings suggest that the neural mechanisms that underlie simulation are important for social behavior, and may explain individual variability in social functioning in healthy and at-risk populations.
Collapse
Affiliation(s)
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.,McLean Hospital, Belmont, MA 02478, USA
| | - Patrick Mair
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Christine I Hooker
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
33
|
Sun F, Zhang G, Yu T, Zhang X, Wang X, Yan X, Qiao L, Ma K, Zhang X. Functional characteristics of the human primary somatosensory cortex: An electrostimulation study. Epilepsy Behav 2021; 118:107920. [PMID: 33770611 DOI: 10.1016/j.yebeh.2021.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The common knowledge of the functional organization of the human primary somatosensory cortex (S1) had been primarily established by Penfield who electrically stimulated the exposed surface [referred as Brodmann area (BA)1] of S1 under neurosurgical conditions. Nevertheless, the functional information regarding the deep surface (BA 2 and 3) of S1 is poorly understood. We retrospectively analyzed all the clinical manifestations induced by extra-operative cortical electrical stimulation (ES) in 33 patients with medically intractable epilepsy who underwent stereo-electroencephalography (SEEG) monitoring for presurgical assessment. Demographic and clinical data were gathered and evaluated to delineate the determinants of the occurrence of positive responses, types of responses, and size of body regions involved. The stimulation of 244 sites in S1 yielded 198 positive sites (81.1%), most of which were located in the sulcal cortex. In multivariable analyses, no clinical or demographic factors predicted the occurrence of responses or their threshold levels. The size of body region involved in the responses had ordinal association with the stimulated BA sites (p < 0.001). Various types of responses elicited from the S1 were documented and classified, and the predictors of those responses were also assessed. Our analysis revealed the functional characteristics of the entire S1 and proved the multiplicity of functions of S1.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Kai Ma
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
34
|
Kojima S, Otsuru N, Miyaguchi S, Yokota H, Nagasaka K, Saito K, Inukai Y, Shirozu H, Onishi H. The intervention of mechanical tactile stimulation modulates somatosensory evoked magnetic fields and cortical oscillations. Eur J Neurosci 2021; 53:3433-3446. [PMID: 33772899 DOI: 10.1111/ejn.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
The different cortical activity evoked by a mechanical tactile stimulus depends on tactile stimulus patterns, which demonstrates that simple stimuli (i.e., global synchronous stimulation the stimulus area) activate the primary somatosensory cortex alone, whereas complex stimuli (i.e., stimulation while moving in the stimulus area) activate not only the primary somatosensory cortex but also the primary motor area. Here, we investigated whether the effects of a repetitive mechanical tactile stimulation (MS) on somatosensory evoked magnetic fields (SEFs) and cortical oscillations depend on MS patterns. This single-blinded study included 15 healthy participants. Two types interventions of MS lasting 20 min were used: a repetitive global tactile stimulation (RGS) was used to stimulate the finger by using 24 pins installed on a finger pad, whereas a sequential stepwise displacement tactile stimulation (SSDS) was used to stimulate the finger by moving a row of six pins between the left and right sides on the finger pad. Each parameter was measured pre- and post-intervention. The P50m amplitude of the SEF was increased by RGS and decreased by SSDS. The modulation of P50m was correlated with its amplitude before RGS and with the modulation of beta band oscillation at the resting state after SSDS. This study showed that the effects of a 20-min MS on SEFs and cortical oscillations depend on mechanical tactile stimulus patterns. Moreover, our results offer potential for the modulation of tactile functions and selection of stimulation patterns according to cortical states.
Collapse
Affiliation(s)
- Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| |
Collapse
|
35
|
Sun F, Zhang G, Ren L, Yu T, Ren Z, Gao R, Zhang X. Functional organization of the human primary somatosensory cortex: A stereo-electroencephalography study. Clin Neurophysiol 2021; 132:487-497. [PMID: 33465535 DOI: 10.1016/j.clinph.2020.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The classical homunculus of the human primary somatosensory cortex (S1) established by Penfield has mainly portrayed the functional organization of convexial cortex, namely Brodmann area (BA) 1. However, little is known about the functions in fissural cortex including BA2 and BA3. We aim at drawing a refined and detailed somatosensory homunculus of the entire S1. METHODS We recruited 20 patients with drug-resistant focal epilepsy who underwent stereo-electroencephalography for preoperative assessments. Direct electrical stimulation was performed for functional mapping. Montreal Neurological Institute coordinates of the stimulation sites lying in S1 were acquired. RESULTS Stimulation of 177 sites in S1 yielded 149 positive sites (84%), most of which were located in the sulcal cortex. The spatial distribution of different body-part representations across the S1 surface revealed that the gross medial-to-lateral sequence of body representations within the entire S1 was consistent with the classical "homunculus". And we identified several unreported body-part representations from the sulcal cortex, such as forehead, deep elbow and wrist joints, and some dorsal body regions. CONCLUSIONS Our results reveal general somatotopical characteristics of the entire S1 cortex and differences with the previous works of Penfield. SIGNIFICANCE The classical S1 homunculus was extended by providing further refinement and additional detail.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
36
|
Golosheykin SA, Blagoveschenskiy ED, Agranovich OE, Nazarova MA, Nikulin VV, Moiseenko OE, Chan RW, Shestakova AN. Feasibility and Challenges of Performing Magnetoencephalography Experiments in Children With Arthrogryposis Multiplex Congenita. Front Pediatr 2021; 9:626734. [PMID: 34671580 PMCID: PMC8521161 DOI: 10.3389/fped.2021.626734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
Arthrogryposis multiplex congenita (AMC) has recently drawn substantial attention from researchers and clinicians. New effective surgical and physiotherapeutic methods have been developed to improve the quality of life of patients with AMC. While it is clear that all these interventions should strongly rely on the plastic reorganization of the central nervous system, almost no studies have investigated this topic. The present study demonstrates the feasibility of using magnetoencephalography (MEG) to investigate brain activity in young AMC patients. We also outlined the general challenges and limitations of electrophysiological investigations on patients with arthrogryposis. We conducted MEG recordings using a 306-channel Elekta Neuromag VectorView system during a cued motor task performance in four patients with arthrogryposis, five normally developed children, and five control adults. Following the voice command of the experimenter, each subject was asked to bring their hand toward their mouth to imitate the self-feeding process. Two patients had latissimus dorsi transferred to the biceps brachii position, one patient had a pectoralis major transferred to the biceps brachii position, and one patient had no elbow flexion restoration surgery before the MEG investigation. Three patients who had undergone autotransplantation prior to the MEG investigation demonstrated activation in the sensorimotor area contralateral to the elbow flexion movement similar to the healthy controls. One patient who was recorded before the surgery demonstrated subjectively weak distributed bilateral activation during both left and right elbow flexion. Visual inspection of MEG data suggested that neural activity associated with motor performance was less pronounced and more widely distributed across the cortical areas of patients than of healthy control subjects. In general, our results could serve as a proof of principle in terms of the application of MEG in studies on cortical activity in patients with AMC. Reported trends might be consistent with the idea that prolonged motor deficits are associated with more difficult neuronal recruitment and the spatial heterogeneity of neuronal sources, most likely reflecting compensatory neuronal mechanisms. On the practical side, MEG could be a valuable technique for investigating the neurodynamics of patients with AMC as a function of postoperative abilitation.
Collapse
Affiliation(s)
- Semyon A Golosheykin
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Evgueni D Blagoveschenskiy
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.,G.I. Turner Scientific Research Institute for Children's Orthopaedics, Ministry of Health of Russia, Saint Petersburg, Russia
| | - Olga E Agranovich
- G.I. Turner Scientific Research Institute for Children's Orthopaedics, Ministry of Health of Russia, Saint Petersburg, Russia
| | - Maria A Nazarova
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.,Federal State Budgetary Institution ≪Federal Center of Brain Research and Neurotechnologies≫ of the Federal Medical Biological Agency, Moscow, Russia
| | - Vadim V Nikulin
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Olesya E Moiseenko
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Russell W Chan
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.,Department of Cognitive Psychology and Ergonomics, University of Twente, Enschede, Netherlands
| | - Anna N Shestakova
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
37
|
Thomas J, Sharma D, Mohanta S, Jain N. Resting-State functional networks of different topographic representations in the somatosensory cortex of macaque monkeys and humans. Neuroimage 2020; 228:117694. [PMID: 33385552 DOI: 10.1016/j.neuroimage.2020.117694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Information processing in the brain is mediated through a complex functional network architecture whose comprising nodes integrate and segregate themselves on different timescales. To gain an understanding of the network function it is imperative to identify and understand the network structure with respect to the underlying anatomical connectivity and the topographic organization. Here we show that the previously described resting-state network for the somatosensory area 3b comprises of distinct networks that are characteristic for different topographic representations. Seed-based resting-state functional connectivity analysis in macaque monkeys and humans using BOLD-fMRI signals from the face, the hand and rest of the medial somatosensory representations of area 3b revealed different correlation patterns. Both monkeys and humans have many similarities in the connectivity networks, although the networks are more complex in humans with many more nodes. In both the species face area network has the highest ipsilateral and contralateral connectivity, which included areas 3b and 4, and ventral premotor area. The area 3b hand network included ipsilateral hand representation in area 4. The emergent functional network structures largely reflect the known anatomical connectivity. Our results show that different body part representations in area 3b have independent functional networks perhaps reflecting differences in the behavioral use of different body parts. The results also show that large cortical areas if considered together, do not give a complete and accurate picture of the network architecture.
Collapse
Affiliation(s)
- John Thomas
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Dixit Sharma
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Sounak Mohanta
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Neeraj Jain
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India.
| |
Collapse
|
38
|
Schrader S, Antonakakis M, Rampp S, Engwer C, Wolters CH. A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model. Phys Med Biol 2020; 65:245043. [PMID: 33113524 DOI: 10.1088/1361-6560/abc5aa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The accuracy in electroencephalography (EEG) and combined EEG and magnetoencephalography (MEG) source reconstructions as well as in optimized transcranial electric stimulation (TES) depends on the conductive properties assigned to the head model, and most importantly on individual skull conductivity. In this study, we present an automatic pipeline to calibrate head models with respect to skull conductivity based on the reconstruction of the P20/N20 response using somatosensory evoked potentials and fields. In order to validate in a well-controlled setup without interplay with numerical errors, we evaluate the accuracy of this algorithm in a 4-layer spherical head model using realistic noise levels as well as dipole sources at different eccentricities with strengths and orientations related to somatosensory experiments. Our results show that the reference skull conductivity can be reliably reconstructed for sources resembling the generator of the P20/N20 response. In case of erroneous assumptions on scalp conductivity, the resulting skull conductivity parameter counterbalances this effect, so that EEG source reconstructions using the fitted skull conductivity parameter result in lower errors than when using the standard value. We propose an automatized procedure to calibrate head models which only relies on non-invasive modalities that are available in a standard MEG laboratory, measures under in vivo conditions and in the low frequency range of interest. Calibrated head modeling can improve EEG and combined EEG/MEG source analysis as well as optimized TES.
Collapse
Affiliation(s)
- S Schrader
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | | | | | | |
Collapse
|
39
|
Antonakakis M, Schrader S, Aydin Ü, Khan A, Gross J, Zervakis M, Rampp S, Wolters CH. Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models. Neuroimage 2020; 223:117353. [DOI: 10.1016/j.neuroimage.2020.117353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 01/11/2023] Open
|
40
|
Makin TR, Flor H. Brain (re)organisation following amputation: Implications for phantom limb pain. Neuroimage 2020; 218:116943. [PMID: 32428706 PMCID: PMC7422832 DOI: 10.1016/j.neuroimage.2020.116943] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Following arm amputation the region that represented the missing hand in primary somatosensory cortex (S1) becomes deprived of its primary input, resulting in changed boundaries of the S1 body map. This remapping process has been termed 'reorganisation' and has been attributed to multiple mechanisms, including increased expression of previously masked inputs. In a maladaptive plasticity model, such reorganisation has been associated with phantom limb pain (PLP). Brain activity associated with phantom hand movements is also correlated with PLP, suggesting that preserved limb functional representation may serve as a complementary process. Here we review some of the most recent evidence for the potential drivers and consequences of brain (re)organisation following amputation, based on human neuroimaging. We emphasise other perceptual and behavioural factors consequential to arm amputation, such as non-painful phantom sensations, perceived limb ownership, intact hand compensatory behaviour or prosthesis use, which have also been related to both cortical changes and PLP. We also discuss new findings based on interventions designed to alter the brain representation of the phantom limb, including augmented/virtual reality applications and brain computer interfaces. These studies point to a close interaction of sensory changes and alterations in brain regions involved in body representation, pain processing and motor control. Finally, we review recent evidence based on methodological advances such as high field neuroimaging and multivariate techniques that provide new opportunities to interrogate somatosensory representations in the missing hand cortical territory. Collectively, this research highlights the need to consider potential contributions of additional brain mechanisms, beyond S1 remapping, and the dynamic interplay of contextual factors with brain changes for understanding and alleviating PLP.
Collapse
Affiliation(s)
- Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Germany; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
41
|
Baker S, Trevarrow M, Gehringer J, Bergwell H, Arpin D, Heinrichs-Graham E, Wilson TW, Kurz MJ. Gamma somatosensory cortical oscillations are attenuated during the stance phase of human walking. Neurosci Lett 2020; 732:135090. [PMID: 32461106 DOI: 10.1016/j.neulet.2020.135090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023]
Abstract
It is well appreciated that processing of peripheral feedback by the somatosensory cortices plays a prominent role in the control of human motor actions like walking. However, very few studies have actually quantified the somatosensory cortical activity during walking. In this investigation, we used electroencephalography (EEG) and beamforming source reconstruction methods to quantify the frequency specific neural oscillations that are induced by an electrical stimulation that is applied to the right tibial nerve under the following experimental conditions: 1) sitting, 2) standing in place, and 3) treadmill walking. Our experimental results revealed that the peripheral stimulation induced a transient increase in theta-alpha (4-12 Hz; 50-350 ms) and gamma (40-80 Hz; 40-100 ms) activity in the leg region of the contralateral somatosensory cortices. The strength of the gamma oscillations were similar while sitting and standing, but were markedly attenuated while walking. Conversely, the strength of the theta-alpha oscillations were not different across the respective experimental conditions. Prior research suggests the afferent feedback from the Ia sensory fibers are likely attenuated during walking, while afferent feedback from the β polysynaptic sensory fibers are not. We suggest that the attenuated gamma oscillations seen during walking reflect the gating of the Ia afferents, while the similarity of theta-alpha oscillations across the experimental conditions is associated with the afferent information from the type II (Aα and β) polysynaptic sensory fibers.
Collapse
Affiliation(s)
- Sarah Baker
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States; Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mike Trevarrow
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States; Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - James Gehringer
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hannah Bergwell
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States; Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - David Arpin
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tony W Wilson
- Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Max J Kurz
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States; Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
42
|
Spatial Information of Somatosensory Stimuli in the Brain: Multivariate Pattern Analysis of Functional Magnetic Resonance Imaging Data. Neural Plast 2020; 2020:8307580. [PMID: 32684924 PMCID: PMC7341392 DOI: 10.1155/2020/8307580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background Multivoxel pattern analysis has provided new evidence on somatotopic representation in the human brain. However, the effects of stimulus modality (e.g., penetrating needle versus non-penetrating touch) and level of classification (e.g., multiclass versus binary classification) on patterns of brain activity encoding spatial information of body parts have not yet been studied. We hypothesized that performance of brain-based prediction models may vary across the types of stimuli, and neural patterns of voxels in the SI and parietal cortex would significantly contribute to the prediction of stimulated locations. Objective We aimed to (1) test whether brain responses to tactile stimuli could distinguish among stimulated locations on the body surface, (2) investigate whether the stimulus modality and number of classes affect classification performance, and (3) localize brain regions encoding the spatial information of somatosensory stimuli. Methods Fifteen healthy participants completed two functional magnetic resonance imaging (MRI) scans and were stimulated via the insertion of acupuncture needles or by non-invasive touch stimuli (5.46-sized von Frey filament). Participants received the stimuli at four different locations on the upper and lower limbs (two sites each) for 5 min while blood-oxygen-level-dependent activity (BOLD) was measured using 3-Tesla MRI. We performed multivariate pattern analysis (MVPA) using parameter estimate images of each trial for each participant and the support vector classifier (SVC) function, and the prediction accuracy and other MVPA outcomes were evaluated using stratified five-fold cross validation. We estimated the significance of the classification accuracy using a permutation test with randomly labeled training data (n = 10,000). Searchlight analysis was conducted to identify brain regions associated with significantly higher accuracy compared to predictions based on chance as obtained from a random classifier. Results For the four-class classification (classifying four stimulated points on the body), SVC analysis of whole-brain beta values in response to acupuncture stimulation was able to discriminate among stimulated locations (mean accuracy, 0.31; q < 0.01). The searchlight analysis found that values related to the right primary somatosensory cortex (SI) and intraparietal sulcus were significantly more accurate than those due to chance (p < 0.01). On the other hand, the same classifier did not predict stimulated locations accurately for touch stimulation (mean accuracy, 0.25; q = 0.66). For binary classification (discriminating between two stimulated body parts, i.e., the arm or leg), the SVC algorithm successfully predicted the stimulated body parts for both acupuncture (mean accuracy, 0.63; q < 0.001) and touch stimulation (mean accuracy, 0.60; q < 0.01). Searchlight analysis revealed that predictions based on the right SI, primary motor cortex (MI), paracentral gyrus, and superior frontal gyrus were significantly more accurate compared to predictions based on chance (p < 0.05). Conclusion Our findings suggest that the SI, as well as the MI, intraparietal sulcus, paracentral gyrus, and superior frontal gyrus, is responsible for the somatotopic representation of body parts stimulated by tactile stimuli. The MVPA approach for identifying neural patterns encoding spatial information of somatosensory stimuli may be affected by the stimulus type (penetrating needle versus non-invasive touch) and the number of classes (classification of four small points on the body versus two large body parts). Future studies with larger samples will identify stimulus-specific neural patterns representing stimulated locations, independent of subjective tactile perception and emotional responses. Identification of distinct neural patterns of body surfaces will help in improving neural biomarkers for pain and other sensory percepts in the future.
Collapse
|
43
|
A probabilistic atlas of finger dominance in the primary somatosensory cortex. Neuroimage 2020; 217:116880. [PMID: 32376303 PMCID: PMC7339146 DOI: 10.1016/j.neuroimage.2020.116880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Abstract
With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies.
Collapse
|
44
|
Watanabe H, Kojima S, Otsuru N, Onishi H. The Repetitive Mechanical Tactile Stimulus Intervention Effects Depend on Input Methods. Front Neurosci 2020; 14:393. [PMID: 32410954 PMCID: PMC7198832 DOI: 10.3389/fnins.2020.00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiraku Watanabe
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Hiraku Watanabe,
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
45
|
Hihara H, Kanetaka H, Kanno A, Shimada E, Koeda S, Kawashima R, Nakasato N, Sasaki K. Somatosensory evoked magnetic fields of periodontal mechanoreceptors. Heliyon 2020; 6:e03244. [PMID: 32021932 PMCID: PMC6993012 DOI: 10.1016/j.heliyon.2020.e03244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 09/25/2019] [Accepted: 01/14/2020] [Indexed: 11/02/2022] Open
Abstract
To evaluate the localization of responses to stimulation of the periodontal mechanoreceptors in the primary somatosensory cortex, somatosensory evoked fields (SEFs) were measured for stimulation of the left mandibular canine and first molar using magnetoencephalography in 25 healthy subjects. Tactile stimulation used a handmade stimulus device which recorded the trigger at the moment of touching the teeth.SEFs for the canine and first molar were detected in 20 and 19 subjects, respectively. Both responses were detected in the bilateral hemispheres. The latency for the canine was 62.1 ± 12.9 ms in the ipsilateral hemisphere and 65.9 ± 14.8 ms in the contralateral hemisphere. The latency for the first molar was 47.4 ± 6.6 ms in the ipsilateral hemisphere and 47.8 ± 9.1 ms in the contralateral hemisphere. The latency for the first molar was significantly shorter than that for the canine. The equivalent current dipoles were estimated in the central sulcus and localized anteroinferiorly compared to the locations for the SEFs for the median nerve. No significant differences in three-dimensional coordinates were found between the canine and first molar. These findings demonstrate the precise location of the teeth within the orofacial representation area in the primary somatosensory cortex.
Collapse
Affiliation(s)
- Hiroki Hihara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyasu Kanetaka
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akitake Kanno
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan.,Department of Electromagnetic Neurophysiology, Tohoku University, Sendai, Japan
| | - Eriya Shimada
- Division of Oral Dysfunction Science, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Satoko Koeda
- Yokohama Clinic, Kanagawa Dental University, Yokohama, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan.,Department of Electromagnetic Neurophysiology, Tohoku University, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
46
|
Saadon-Grosman N, Loewenstein Y, Arzy S. The 'creatures' of the human cortical somatosensory system. Brain Commun 2020; 2:fcaa003. [PMID: 32954277 PMCID: PMC7425349 DOI: 10.1093/braincomms/fcaa003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Penfield’s description of the ‘homunculus’, a ‘grotesque creature’ with large lips and hands and small trunk and legs depicting the representation of body-parts within the primary somatosensory cortex (S1), is one of the most prominent contributions to the neurosciences. Since then, numerous studies have identified additional body-parts representations outside of S1. Nevertheless, it has been implicitly assumed that S1’s homunculus is representative of the entire somatosensory cortex. Therefore, the distribution of body-parts representations in other brain regions, the property that gave Penfield’s homunculus its famous ‘grotesque’ appearance, has been overlooked. We used whole-body somatosensory stimulation, functional MRI and a new cortical parcellation to quantify the organization of the cortical somatosensory representation. Our analysis showed first, an extensive somatosensory response over the cortex; and second, that the proportional representation of body parts differs substantially between major neuroanatomical regions and from S1, with, for instance, much larger trunk representation at higher brain regions, potentially in relation to the regions’ functional specialization. These results extend Penfield’s initial findings to the higher level of somatosensory processing and suggest a major role for somatosensation in human cognition.
Collapse
Affiliation(s)
- Noam Saadon-Grosman
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, 9190401, Israel.,The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, 9190401, Israel.,Department of Cognitive Sciences, The Hebrew University, Jerusalem 9190401, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University, Jerusalem 9190401, Israel
| | - Shahar Arzy
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University, Jerusalem 9112001, Israel.,Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
47
|
Hao M, Chou CH, Zhang J, Yang F, Cao C, Yin P, Liang W, Niu CM, Lan N. Restoring Finger-Specific Sensory Feedback for Transradial Amputees via Non-Invasive Evoked Tactile Sensation. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:98-107. [PMID: 35402945 PMCID: PMC8979634 DOI: 10.1109/ojemb.2020.2981566] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 12/04/2022] Open
Abstract
Objective: This study assessed the feasibility to restore finger-specific sensory feedback in transradial amputees with electrical stimulation of evoked tactile sensation (ETS). Methods: Here we investigated primary somatosensory cortical (SI) responses of ETS using Magnetoencephalography. Results: SI activations revealed a causal correlation with peripheral stimulation of projected finger regions on the stump skin. Peak latency was accountable to neural transmission from periphery to SI. Peak intensity of SI response was proportional to the strength of peripheral stimulation, manifesting a direct neural pathway from skin receptors to SI neurons. Active regions in SI at the amputated side were consistent to the finger/hand map of homunculus, forming a mirror imaging to that of the contralateral hand. With sensory feedback, amputees can recognize a pressure at prosthetic fingers as that at the homonymous lost fingers. Conclusions: Results confirmed that the direct neural pathway from periphery to SI allows effective communication of finger-specific sensory information to these amputees.
Collapse
Affiliation(s)
- Manzhao Hao
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Chih-Hong Chou
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Jie Zhang
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Fei Yang
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Chunyan Cao
- Department of Functional NeurosurgeryRuijin Hospital, School of MedicineShanghai Jiao Tong University Shanghai 200025 China
| | - Pengyu Yin
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| | - Wenyuan Liang
- National Research Center for Rehabilitation Technical Aids Beijing 100176 China
| | - Chuanxin M Niu
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
- Department of Rehabilitation MedicineRuijin Hospital, School of MedicineShanghai Jiao Tong University Shanghai 200025 China
| | - Ning Lan
- Institute of Medical RoboticsShanghai Jiao Tong University Shanghai 200240 China
- Laboratory of NeuroRehabilitation EngineeringSchool of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200030 China
| |
Collapse
|
48
|
Bharadwaj A, Shaw SB, Goldreich D. Comparing Tactile to Auditory Guidance for Blind Individuals. Front Hum Neurosci 2019; 13:443. [PMID: 31920601 PMCID: PMC6930908 DOI: 10.3389/fnhum.2019.00443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
The ability to travel independently is crucial to an individual's quality of life but compromised by visual impairment. Several navigational aids have been developed for blind people to address this limitation. These devices typically employ auditory instructions to guide users to desired waypoints. Unfortunately, auditory instructions may interfere with users' awareness of environmental sounds that signal dangers or provide cues for spatial orientation. Accordingly, there is a need to explore the use of non-auditory modalities to convey information for safe and independent travel. Here, we explored the efficacy of a tactile navigational aid that provides turn signals via vibrations on a hip-worn belt. We compared the performance of 12 blind participants as they navigated a series of paths under the direction of the tactile belt or conventional auditory turn commands; furthermore, we assessed the effect of repeated testing, both in the presence and absence of simulated street sounds. A computer-controlled system triggered each turn command, measured participants' time-to-path-completion, and detected major navigational errors. When participants navigated in a silent environment, they performed somewhat worse with the tactile belt than the auditory device, taking longer to complete each trial and committing more errors. When participants navigated in the presence of simulated street noises, the difference in completion time between auditory and tactile navigation diminished. These results suggest that tactile navigation holds promise as an effective method in everyday environments characterized by ambient noise such as street sounds.
Collapse
Affiliation(s)
- Arnav Bharadwaj
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Saurabh Bhaskar Shaw
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Daniel Goldreich
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
49
|
Kirin SC, Yanagisawa T, Oshino S, Edakawa K, Tanaka M, Kishima H, Nishimura Y. Somatosensation Evoked by Cortical Surface Stimulation of the Human Primary Somatosensory Cortex. Front Neurosci 2019; 13:1019. [PMID: 31607854 PMCID: PMC6769168 DOI: 10.3389/fnins.2019.01019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Electrical stimulation of the primary somatosensory cortex using intracranial electrodes is crucial for the evocation of artificial somatosensations, typically tactile sensations associated with specific regions of the body, in brain-machine interface (BMI) applications. The qualitative characteristics of these artificially evoked somatosensations has been well documented. As of yet, however, the quantitative aspects of these evoked somatosensations, that is to say the quantitative relationship between intensity of electrical stimulation and perceived intensity of the resultant somatosensation remains obscure. This study aimed to explore this quantitative relationship by surface electrical stimulation of the primary somatosensory cortex in two human participants undergoing electrocorticographic monitoring prior to surgical treatment of intractable epilepsy. Electrocorticogram electrodes on the primary somatosensory cortical surface were stimulated with varying current intensities, and a visual analogue scale was employed to provide a quantitative measure of intensity of the evoked sensations. Evoked sensations included those of the thumb, tongue, and hand. A clear linear relationship between current intensity and perceived intensity of sensation was observed. These findings provide novel insight into the quantitative nature of primary somatosensory cortex electrical stimulation-evoked sensation for development of somatosensory neuroprosthetics for clinical use.
Collapse
Affiliation(s)
- St. Clair Kirin
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
- *Correspondence: Takufumi Yanagisawa, ;
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Kohtaroh Edakawa
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Masataka Tanaka
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
- Neural Prosthesis Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Yukio Nishimura,
| |
Collapse
|
50
|
If it looks, sounds, or feels like subitizing, is it subitizing? A modulated definition of subitizing. Psychon Bull Rev 2019; 26:790-797. [PMID: 30632105 DOI: 10.3758/s13423-018-1556-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Research in cognitive psychology has focused mainly on the visual modality as the input interface for mental processes. We suggest that integrating studies from different modalities can aid in resolving theoretical controversies. We demonstrate this in the case of subitizing. Subitizing, the quick and accurate enumeration of small quantities, has been studied since the 19th century. Nevertheless, to date, the underlying mechanism is still debated. Two mechanisms have been suggested: a domain-general mechanism-attention, and a domain-specific mechanism-pattern recognition. Here, we review pivotal studies in the visual, tactile, and auditory modalities. The accumulative findings shed light on the theoretical debate. Accordingly, we suggest that subitizing is a subprocess of counting that occurs in the presence of facilitating factors, such as attentional resources and familiar patterns.
Collapse
|