1
|
Zampier VC, Mochizuki L, Beretta VS, de Belli V, Gobbi LTB, Barbieri FA, Orcioli-Silva D. Verbal arm swing instructions alter arm-leg interlimb coordination but not prefrontal cortex hemodynamics in people with Parkinson's disease. Hum Mov Sci 2025; 101:103367. [PMID: 40451039 DOI: 10.1016/j.humov.2025.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/28/2024] [Accepted: 05/22/2025] [Indexed: 06/11/2025]
Abstract
Verbal instructions related to the arm swing amplitude and velocity change step gait behavior in people with Parkinson's disease (PwPD) and neurotypical individuals. However, how verbal instructions related to upper limb act on interlimb coordination and prefrontal cortex activation are not yet known. Therefore, the aim of this study was to investigate the effects of the instructions to increase arm swing amplitude and velocity during walking on prefrontal cortex (PFC) hemodynamics and arm-leg interlimb coordination in PwPD and neurotypical individuals. Fifteen PwPD and 13 neurotypical individuals walked over a 26.8 m pathway under three experimental conditions: usual walking, walking with increased arm swing amplitude, and walking with increased arm swing velocity. Gait step parameters, continuous relative phase and latency between arm and leg movements, and PFC hemodynamics were calculated. ANOVA two-way (groups x conditions) showed that the verbal instructions to increase arm swing amplitude and velocity during walking improved gait step parameters and arm-leg interlimb coordination, without changing PFC hemodynamics. Specifically, verbal instructions increased average continuous relative phase (F2,52 = 45.5; p < 0.001; ηp2 = 0.63) and decreased the average relative phase variability (F2,52 = 86.9; p < 0.001; ηp2 = 0.77) in both groups and decreased PwPD latency (F2,52 = 3.5; p = 0.03; ηp2 = 0.19). Verbal instructions also increased stride length (F2,52 = 27.7; p < 0.001; ηp2 = 0.51) and velocity (F2,52 = 46.6; p < 0.001; ηp2 = 0.64) and decreased double support phase in both groups. These results allow us to speculate that the engagement of the motor areas to follow the instructions and perform the ensuing action could be related to preservation of some automaticity and it is possible that the participants do not need to use their cognitive resources by increasing PFC activity to process and do the action.
Collapse
Affiliation(s)
- Vinicius Cavassano Zampier
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil.
| | - Luis Mochizuki
- University of São Paulo, School of Arts, Sciences and Humanities, São Paulo, Brazil
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil
| | - Vinicius de Belli
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Fabio Augusto Barbieri
- São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| |
Collapse
|
2
|
Seynaeve M, Mantini D, de Beukelaar TT. Electrophysiological Approaches to Understanding Brain-Muscle Interactions During Gait: A Systematic Review. Bioengineering (Basel) 2025; 12:471. [PMID: 40428090 PMCID: PMC12108685 DOI: 10.3390/bioengineering12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/29/2025] Open
Abstract
This study systematically reviews the role of the cortex in gait control by analyzing connectivity between electroencephalography (EEG) and electromyography (EMG) signals, i.e., neuromuscular connectivity (NMC) during walking. We aim to answer the following questions: (i) Is there significant NMC during gait in a healthy population? (ii) Is NMC modulated by gait task specifications (e.g., speed, surface, and additional task demands)? (iii) Is NMC altered in the elderly or a population affected by a neuromuscular or neurologic disorder? Following PRISMA guidelines, a systematic search of seven scientific databases was conducted up to September 2023. Out of 1308 identified papers, 27 studies met the eligibility criteria. Despite large variability in methodology, significant NMC was detected in most of the studies. NMC was able to discriminate between a healthy population and a population affected by a neuromuscular or neurologic disorder. Tasks requiring higher sensorimotor control resulted in an elevated level of NMC. While NMC holds promise as a metric for advancing our comprehension of brain-muscle interactions during gait, aligning methodologies across studies is imperative. Analysis of NMC provides valuable insights for the understanding of neural control of movement and development of gait retraining programs and contributes to advancements in neurotechnology.
Collapse
Affiliation(s)
- Maura Seynaeve
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
- KU Leuven Institute of Sports Science, 3001 Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
| | - Toon T. de Beukelaar
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
- KU Leuven Institute of Sports Science, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Suzen E, Tombak K, Simsek B, Colak OH, Ozen S. Evaluation of Prefrontal Cortex Activation and Static Balance Mechanisms in Adolescent Idiopathic Scoliosis Using fNIRS. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:667. [PMID: 40282959 PMCID: PMC12028968 DOI: 10.3390/medicina61040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/23/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: In this study, the role of oxyhemoglobin (HbO) in subregions of the prefrontal cortex during a static balance task under eyes-open and eyes-closed conditions was investigated in adolescent idiopathic scoliosis (AIS) using functional near-infrared spectroscopy (fNIRS), a powerful neuroimaging tool that enables more natural and flexible measurement in the analysis of balance mechanisms and motor tasks. Materials and Methods: Hemodynamic changes in the right and left dorsolateral cortex (DLPFC), frontopolar prefrontal cortex, and orbitofrontal cortex were analyzed in 16 healthy controls and 15 individuals with AIS. The statistical results were supported by HbO contrast maps. Results: Significant differences were found in the cortical activity patterns between the AIS and control groups. The AIS group had lower HbO concentrations than the control group in the eyes-closed condition and completely differed from the control group by showing more active HbO concentrations in the DLPFC regions than in the frontopolar regions. In the eyes-open condition, it was found that the maximum HbO value was reached in the frontopolar regions, and this value was weakened and observed throughout the left frontopolar region. Discriminative differences were also found in the orbitofrontal region in the eyes-closed static balance condition. Conclusions: The results obtained were evaluated and discussed in terms of postural balance compensation, differences in neural pathways, and the conscious balance mechanism. It was determined that the AIS group tended to utilize a conscious balance mechanism in the eyes-closed static balance condition and developed its own balance compensation mechanism in the eyes-open static balance condition. This study concludes that fNIRS is a powerful tool in the evaluation of balance and control mechanisms and can be used effectively in the evaluation of rehabilitation-oriented development in AIS.
Collapse
Affiliation(s)
- Esra Suzen
- NeuroscienceLab, Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya 07058, Turkey; (B.S.); (O.H.C.); (S.O.)
| | - Kadriye Tombak
- Department of Physical Therapy, Vocational School of Health Services, Akdeniz University, Antalya 07058, Turkey
| | - Buket Simsek
- NeuroscienceLab, Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya 07058, Turkey; (B.S.); (O.H.C.); (S.O.)
| | - Omer Halil Colak
- NeuroscienceLab, Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya 07058, Turkey; (B.S.); (O.H.C.); (S.O.)
| | - Sukru Ozen
- NeuroscienceLab, Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya 07058, Turkey; (B.S.); (O.H.C.); (S.O.)
| |
Collapse
|
4
|
Mehta RK, Zhu Y, Weston EB, Marras WS. Development of a neural efficiency metric to assess human-exoskeleton adaptations. Front Robot AI 2025; 12:1541963. [PMID: 40242512 PMCID: PMC11999848 DOI: 10.3389/frobt.2025.1541963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Passive exoskeletons have been introduced to alleviate loading on the lumbar spine while increasing the wearer's productivity. However, few studies have examined the neurocognitive effects of short-term human-exoskeleton adaptation. The objective of the study was to develop a novel neural efficiency metric to assess short-term human exoskeleton adaptation during repetitive lifting. Twelve participants (gender-balanced) performed simulated asymmetric lifting tasks for a short duration (phase: early, middle, late) with and without a passive low back exoskeleton on two separate days. Phase, exoskeleton condition, and their interaction effects on biomechanical parameters, neural activation, and the novel neural efficiency metric were examined. Peak L5/S1 superior lateral shear forces were found to be significantly lower in the exoskeleton condition than in the control condition. However, other biomechanical and neural activation measures were comparable between conditions. The temporal change of the neural efficiency metric was found to follow the motor adaptation process. Compared to the control condition, participants exhibited lower efficiency during the exoskeleton-assisted lifting condition over time. The neural efficiency metric was capable of tracking the short-term task adaptation process during a highly ambulatory exoskeleton-assisted manual handling task. The exoskeleton-assisted task was less efficient and demanded a longer adaptation period than the control condition, which may impact exoskeleton acceptance and/or intent to use.
Collapse
Affiliation(s)
- Ranjana K. Mehta
- Department of Industrial and Systems Engineering, University of Wisconsin Madison, Madison, WI, United States
| | - Yibo Zhu
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Eric B. Weston
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, United States
| | - William S. Marras
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Jeong H, Song M, Jang SH, Kim J. Investigating the cortical effect of false positive feedback on motor learning in motor imagery based rehabilitative BCI training. J Neuroeng Rehabil 2025; 22:61. [PMID: 40102969 PMCID: PMC11916930 DOI: 10.1186/s12984-025-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Motor imagery-based brain-computer interface (MI-BCI) is a promising solution for neurorehabilitation. Many studies proposed that reducing false positive (FP) feedback is crucial for inducing neural plasticity by BCI technology. However, the effect of FP feedback on cortical plasticity induction during MI-BCI training is yet to be investigated. OBJECTIVE This study aims to validate the hypothesis that FP feedback affects the cortical plasticity of the user's MI during MI-BCI training by first comparing two different asynchronous MI-BCI paradigms (with and without FP feedback), and then comparing its effectiveness with that of conventional motor learning methods (passive and active training). METHODS Twelve healthy volunteers and four patients with stroke participated in the study. We implemented two electroencephalogram-driven asynchronous MI-BCI systems with different feedback conditions. The feedback was provided by a hand exoskeleton robot performing hand open/close task. We assessed the hemodynamic responses in two different feedback conditions and compared them with two conventional motor learning methods using functional near-infrared spectroscopy with an event-related design. The cortical effects of FP feedback were analyzed in different paradigms, as well as in the same paradigm via statistical analysis. RESULTS The MI-BCI without FP feedback paradigm induced higher cortical activation in MI, focusing on the contralateral motor area, compared to the paradigm with FP feedback. Additionally, within the same paradigm providing FP feedback, the task period immediately following FP feedback elicited a lower hemodynamic response in the channel located over the contralateral motor area compared to the MI-BCI paradigm without FP feedback (p = 0.021 for healthy people; p = 0.079 for people with stroke). In contrast, task trials where there was no FP feedback just before showed a higher hemodynamic response, similar to the MI-BCI paradigm without FP feedback (p = 0.099 for healthy people, p = 0.084 for people with stroke). CONCLUSIONS FP feedback reduced cortical activation for the users during MI-BCI training, suggesting a potential negative effect on cortical plasticity. Therefore, minimizing FP feedback may enhance the effectiveness of rehabilitative MI-BCI training by promoting stronger cortical activation and plasticity, particularly in the contralateral motor area.
Collapse
Affiliation(s)
- Hojun Jeong
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Minsu Song
- Department of Psychology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Sung-Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Jonghyun Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
6
|
Falivene A, Johnson C, Klingels K, Meyns P, Verbecque E, Hallemans A, Biffi E, Piazza C, Crippa A. Time-Normalization Approach for fNIRS Data During Tasks with High Variability in Duration. SENSORS (BASEL, SWITZERLAND) 2025; 25:1768. [PMID: 40292857 PMCID: PMC11945418 DOI: 10.3390/s25061768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Abstract
Functional near-infrared spectroscopy (fNIRS) is particularly suitable for measuring brain activity during motor tasks, due to its portability and good motion tolerance. In such cases, the trials' duration may vary depending on the experimental conditions or the participant's response, therefore a comparison of hemodynamic responses across repetitions cannot be properly performed. In this work, we present a MATLAB (R2023a) function (TaskNorm.m) developed for time-normalizing fNIRS data recorded during trials with different durations. It is based on a spline interpolation method that rescales the time -axis to the percentage of the trial with a fixed number of samples. This allows us to successively average across repetitions to obtain the mean hemodynamic responses and complete the standard data processing. The algorithm was tested on eight subjects (four with developmental coordination disorder, age: 9.78 ± 0.30 and four typically developing children, age: 9.02 ± 0.30) performing three different tasks. The results show that the TaskNorm function works as expected, allowing both a comparison and averaging of the data across multiple repetitions. The performance of the function is independent of the task or the pre-processing pipeline applied. The proposed function is publicly available and importable into the HomER3 package (v1.72.0), representing a further step in the ongoing standardization process of fNIRS data analysis.
Collapse
Affiliation(s)
- Anna Falivene
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (E.B.); (C.P.); (A.C.)
| | - Charlotte Johnson
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium; (C.J.); (A.H.)
- Research Centre (REVAL), Faculty of Rehabilitation Sciences and Physiotherapy, Hasselt University, 3590 Diepenbeek, Belgium; (K.K.); (P.M.); (E.V.)
| | - Katrijn Klingels
- Research Centre (REVAL), Faculty of Rehabilitation Sciences and Physiotherapy, Hasselt University, 3590 Diepenbeek, Belgium; (K.K.); (P.M.); (E.V.)
| | - Pieter Meyns
- Research Centre (REVAL), Faculty of Rehabilitation Sciences and Physiotherapy, Hasselt University, 3590 Diepenbeek, Belgium; (K.K.); (P.M.); (E.V.)
| | - Evi Verbecque
- Research Centre (REVAL), Faculty of Rehabilitation Sciences and Physiotherapy, Hasselt University, 3590 Diepenbeek, Belgium; (K.K.); (P.M.); (E.V.)
| | - Ann Hallemans
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium; (C.J.); (A.H.)
| | - Emilia Biffi
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (E.B.); (C.P.); (A.C.)
| | - Caterina Piazza
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (E.B.); (C.P.); (A.C.)
| | - Alessandro Crippa
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (E.B.); (C.P.); (A.C.)
| |
Collapse
|
7
|
Zhong L, Luo J, Ma X, Yan J, Tang Q, Bao X, Lan S. Based on fNIRS Technology: The Effects of Scalp Acupuncture Combined with iTBS on Cognitive Function After Stroke. NeuroRehabilitation 2025; 56:152-163. [PMID: 40260724 DOI: 10.1177/10538135241303348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundStroke is recognized as the second primary cause of mortality and disability worldwide. Cognitive dysfunction often remains a residual issue post-stroke.ObjectiveTo explore the impact of integrating scalp acupuncture with iTBS therapy on cognitive impairments post-stroke.MethodsThis study was a randomized, controlled, single-blind trial. Fifty-four patients completed the study and were allocated into the SA group, iTBS group, and combined group using a random number table method. The SA group received scalp acupuncture treatment for 4 weeks, the iTBS group underwent intermittent theta burst stimulation for 4 weeks, and the combined group received both scalp acupuncture and iTBS treatments for 4 weeks. All enrolled patients also received standard pharmacological and conventional rehabilitation treatments, six days a week, for four weeks in total. Cognitive function was evaluated using the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE) before treatment (baseline) and after treatment (4 weeks). Additionally, changes in cerebral hemodynamics during the experiment were measured using functional near-infrared spectroscopy (fNIRS).ResultsScalp acupuncture therapy, iTBS therapy, and the combination of scalp acupuncture with iTBS therapy all significantly activated the cortical regions of the frontal and temporal lobes in patients with Post-Stroke Cognitive Impairment No Dementia (PSCIND) (P < 0.05). Compared to scalp acupuncture or iTBS therapy alone, the combined therapy activated more channels, with more significant activation in the right Superior Temporal Cortex (r-STC), right Ventrolateral Prefrontal Cortex (r-VLPFC), Medial Prefrontal Cortex (mPFC), left Ventrolateral Prefrontal Cortex (l-VLPFC), right Superior Frontal Cortex (r-SFC), and left Dorsolateral Prefrontal Cortex (l-DLPFC) (P < 0.05). The combined therapy enhances cognitive functions in PSCIND patients, exhibiting superior clinical effectiveness compared to either scalp acupuncture or iTBS therapy when used individually (P < 0.05).ConclusionThe combination of scalp acupuncture with iTBS therapy represents a novel and promising neurorehabilitation treatment technique for post-stroke cognitive impairment. Future clinical research is needed to explore its therapeutic mechanisms and further refine this technique.
Collapse
Affiliation(s)
- Lida Zhong
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Jinning Luo
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Xiancong Ma
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Jiayan Yan
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Qiong Tang
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Xiao Bao
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Shouhuang Lan
- Department of Rehabilitation Medicine, The Second People's Hospital of Lechang City, Lechang, Guangdong, China
| |
Collapse
|
8
|
Biggio M, Iester C, Cattaneo D, Cutini S, Bisio A, Pedullà L, Torchio A, Bove M, Bonzano L. Should you hold onto the treadmill handrails or not? Cortical evidence at different walking speeds. J Neuroeng Rehabil 2025; 22:5. [PMID: 39815334 PMCID: PMC11736955 DOI: 10.1186/s12984-025-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Treadmill-based gait training is part of rehabilitation programs focused on walking abilities. The use of handrails embedded in treadmill systems is debated, and current literature only explores the issue from a behavioral perspective. METHODS We examined the cortical correlates of treadmill walking in healthy participants using functional near-infrared spectroscopy. We investigated whether the utilization of treadmill handrails at varying walking speeds could affect cortical activation associated with the task, and we evaluated potential differences in task-based functional connectivity across the various walking conditions. RESULTS Significant differences in cortical activation were found between the two walking speeds (3 and 5 km/h) in the unsupported condition; these differences were reduced when using the handrails. Specifically, cortical activation was significantly higher when the participants swung their arms freely while walking at a speed of 5 compared to 3 km/h in several Brodmann's Areas (BA): left BA10, BA3 and BA39, and right BA10, BA9, BA8, BA3, and BA40. No significant differences were found when participants were holding onto the handrails. A significant difference was found in the left BA40 between the two speeds, regardless of whether the participants were holding onto the handrails. Furthermore, at the higher speed and without the use of handrails, a wider pattern of task-based functional connectivity was observed, with significantly stronger connectivity between the left BA10 and BA40. CONCLUSIONS We suggest that speed and handrails use play a role in walking cortical activity patterns, therefore they are key ingredients to take into account when planning a rehabilitation program.
Collapse
Affiliation(s)
- Monica Biggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Costanza Iester
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Davide Cattaneo
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Simone Cutini
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Ludovico Pedullà
- Italian Multiple Sclerosis Foundation, Scientific Research Area, Genoa, Italy
| | | | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
9
|
Haltmar H, Janura M, Kolářová B. Muscle activity and lower body kinematics change when performing motor imagery of gait. Sci Rep 2025; 15:191. [PMID: 39748042 PMCID: PMC11697421 DOI: 10.1038/s41598-024-84081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults. No significant change was observed in electromyography activity and lower body kinematics when comparing MI tasks of normal gait. A significantly higher acceleration for the lower limb segments in the vertical direction and for the pelvis in the mediolateral and anteroposterior direction and angular velocity for pelvis in the frontal plane were found during MI of slackline gait after its real execution compared to rest. The results show that MI of normal gait does not lead to any significant changes, while MI of slackline gait affects lower body kinematics parameters.
Collapse
Affiliation(s)
- Hana Haltmar
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic.
- Department of Rehabilitation, University Hospital Olomouc, Olomouc, Czech Republic.
- Department of Clinical Rehabilitation, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Miroslav Janura
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| | - Barbora Kolářová
- Department of Rehabilitation, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Clinical Rehabilitation, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
10
|
Huo C, Shao G, Chen T, Li W, Wang J, Xie H, Wang Y, Li Z, Zheng P, Li L, Li L. Effectiveness of unilateral lower-limb exoskeleton robot on balance and gait recovery and neuroplasticity in patients with subacute stroke: a randomized controlled trial. J Neuroeng Rehabil 2024; 21:213. [PMID: 39639336 PMCID: PMC11622492 DOI: 10.1186/s12984-024-01493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Impaired balance and gait in stroke survivors are associated with decreased functional independence. This study aimed to evaluate the effectiveness of unilateral lower-limb exoskeleton robot-assisted overground gait training compared with conventional treatment and to explore the relationship between neuroplastic changes and motor function recovery in subacute stroke patients. METHODS In this randomized, single-blind clinical trial, 40 patients with subacute stroke were recruited and randomly assigned to either a robot-assisted training (RT) group or a conventional training (CT) group. All outcome measures were assessed at the enrollment baseline (T0), 2nd week (T1) and 4th week (T2) of the treatment. The primary outcome was the between-group difference in the change in the Berg balance scale (BBS) score from baseline to T2. The secondary measures included longitudinal changes in the Fugl-Meyer assessment of the lower limb (FMA-LE), modified Barthel index (mBI), functional ambulation category (FAC), and locomotion assessment with gait analysis. In addition, the cortical activation pattern related to robot-assisted training was measured before and after intervention via functional near-infrared spectroscopy. RESULTS A total of 30 patients with complete data were included in this study. Clinical outcomes improved after 4 weeks of training in both groups, with significantly better BBS (F = 6.341, p = 0.018, partial η2 = 0.185), FMA-LE (F = 5.979, p = 0.021, partial η2 = 0.176), FAC (F = 7.692, p = 0.010, partial η2 = 0.216), and mBI scores (F = 7.255, p = 0.042, partial η2 = 0.140) in the RT group than in the CT group. Both groups showed significant improvement in gait speed and stride cadence on the locomotion assessment. Only the RT group presented a significantly increased stride length (F = 4.913, p = 0.015, partial η2 = 0.267), support phase (F = 5.335, p = 0.011, partial η2 = 0.283), and toe-off angle (F = 3.829, p = 0.035, partial η2 = 0.228) on the affected side after the intervention. The RT group also showed increased neural activity response over the ipsilesional motor area and bilateral prefrontal cortex during robot-assisted weight-shift and gait training following 4 weeks of treatment. CONCLUSIONS Overground gait training with a unilateral exoskeleton robot showed improvements in balance and gait functions, resulting in better gait patterns and increased gait stability for stroke patients. The increased cortical response related to the ipsilesional motor areas and their related functional network is crucial in the rehabilitation of lower limb gait in post-stroke patients.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, P.R. China
| | - Guangjian Shao
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
| | - Tiandi Chen
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
| | - Wenhao Li
- School of Rehabilitation Engineering, China Civil Affairs University, Beijing, 102600, China
| | - Jue Wang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, P.R. China
| | - Hui Xie
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, P.R. China
| | - Yan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China.
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, P.R. China.
| | - Pengyuan Zheng
- The Fifth Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Liguo Li
- Zhengzhou Health Vocational College, Henan, 450052, P.R. China
| | - Luya Li
- The Fifth Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| |
Collapse
|
11
|
Massai E, Bonizzato M, De Jesus I, Drainville R, Martinez M. Cortical neuroprosthesis-mediated functional ipsilateral control of locomotion in rats with spinal cord hemisection. eLife 2024; 12:RP92940. [PMID: 39585196 PMCID: PMC11588340 DOI: 10.7554/elife.92940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.
Collapse
Affiliation(s)
- Elena Massai
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
| | - Marco Bonizzato
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Isley De Jesus
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Roxanne Drainville
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| | - Marina Martinez
- Département de Neurosciences, Groupe de recherche sur la Signalisation Neurale etla Circuiterie (SNC) and Centre Interdisciplinaire de Recherche sur le Cerveau etl’Apprentissage (CIRCA), Université de MontréalMontréalCanada
- CIUSSS du Nord-de-l'Île-de-MontréalMontréalCanada
| |
Collapse
|
12
|
Cockx HM, Oostenveld R, Flórez R YA, Bloem BR, Cameron IGM, van Wezel RJA. Freezing of gait in Parkinson's disease is related to imbalanced stopping-related cortical activity. Brain Commun 2024; 6:fcae259. [PMID: 39229492 PMCID: PMC11369826 DOI: 10.1093/braincomms/fcae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Freezing of gait, characterized by involuntary interruptions of walking, is a debilitating motor symptom of Parkinson's disease that restricts people's autonomy. Previous brain imaging studies investigating the mechanisms underlying freezing were restricted to scan people in supine positions and yielded conflicting theories regarding the role of the supplementary motor area and other cortical regions. We used functional near-infrared spectroscopy to investigate cortical haemodynamics related to freezing in freely moving people. We measured functional near-infrared spectroscopy activity over multiple motor-related cortical areas in 23 persons with Parkinson's disease who experienced daily freezing ('freezers') and 22 age-matched controls during freezing-provoking tasks including turning and doorway passing, voluntary stops and actual freezing. Crucially, we corrected the measured signals for confounds of walking. We first compared cortical activity between freezers and controls during freezing-provoking tasks without freezing (i.e. turning and doorway passing) and during stops. Secondly, within the freezers, we compared cortical activity between freezing, stopping and freezing-provoking tasks without freezing. First, we show that turning and doorway passing (without freezing) resemble cortical activity during stopping in both groups involving activation of the supplementary motor area and prefrontal cortex, areas known for their role in inhibiting actions. During these freezing-provoking tasks, the freezers displayed higher activity in the premotor areas than controls. Secondly, we show that, during actual freezing events, activity in the prefrontal cortex was lower than during voluntary stopping. The cortical relation between the freezing-provoking tasks (turning and doorway passing) and stopping may explain their susceptibility to trigger freezing by activating a stopping mechanism. Besides, the stopping-related activity of the supplementary motor area and prefrontal cortex seems to be out of balance in freezers. In this paper, we postulate that freezing results from a paroxysmal imbalance between the supplementary motor area and prefrontal cortex, thereby extending upon the current role of the supplementary motor area in freezing pathophysiology.
Collapse
Affiliation(s)
- Helena M Cockx
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GC Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525EN Nijmegen, The Netherlands
- NatMEG, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yuli A Flórez R
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
- Department of Psychiatry, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GC Nijmegen, The Netherlands
| | - Ian G M Cameron
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522NB Enschede, The Netherlands
- Domain Expert Precision Health, Nutrition & Behavior, OnePlanet Research Center, 6525EC Nijmegen, The Netherlands
| | - Richard J A van Wezel
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522NB Enschede, The Netherlands
| |
Collapse
|
13
|
Yao Q, Chen L, Qu H, Fan W, He L, Li G, Hu J, Zou J, Huang G, Zeng Q. Comparable cerebral cortex activity and gait performance in elderly hypertensive and healthy individuals during dual-task walking: A fNIRS study. Brain Behav 2024; 14:e3568. [PMID: 38988039 PMCID: PMC11236899 DOI: 10.1002/brb3.3568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypertension increases the risk of cognitive impairment and related dementia, causing impaired executive function and unusual gait parameters. However, the mechanism of neural function illustrating this is unclear. Our research aimed to explore the differences of cerebral cortex activation, gait parameters, and working memory performance between healthy older adults (HA) and older hypertensive (HT) patients when performing cognitive and walking tasks. METHOD A total of 36 subjects, including 12 healthy older adults and 24 older hypertensive patients were asked to perform series conditions including single cognitive task (SC), single walking task (SW), and dual-task (DT), wearing functional near-infrared spectroscopy (fNIRS) equipment and Intelligent Device for Energy Expenditure and Activity equipment to record cortical hemodynamic reactions and various gait parameters. RESULTS The left somatosensory cortex (L-S1) and bilateral supplementary motor area (SMA) showed higher cortical activation (p < .05) than HA when HT performed DT. The intragroup comparison showed that HT had higher cortical activation (p < .05) when performing DT as SW. The cognitive performance of HT was significantly worse (p < .05) than HA when executing SC. The activation of the L-S1, L-M1, and bilateral SMA in HT were significantly higher during SW (p < .05). CONCLUSION Hypertension can lead to cognitive impairment in the elderly, including executive function and walking function decline. As a result of these functional declines, elderly patients with hypertension are unable to efficiently allocate brain resources to support more difficult cognitive interference tasks and need to meet more complex task demands by activating more brain regions.
Collapse
Affiliation(s)
- Qiuru Yao
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Ling Chen
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Hang Qu
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Weichao Fan
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Longlong He
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Gege Li
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jinjing Hu
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jihua Zou
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- School of Rehabilitation MedicineSouthern Medical UniversityGuangzhouChina
- Faculty of Health and Social SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Guozhi Huang
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- School of Rehabilitation MedicineSouthern Medical UniversityGuangzhouChina
| | - Qing Zeng
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
14
|
Richer N, Bradford JC, Ferris DP. Mobile neuroimaging: What we have learned about the neural control of human walking, with an emphasis on EEG-based research. Neurosci Biobehav Rev 2024; 162:105718. [PMID: 38744350 PMCID: PMC11813811 DOI: 10.1016/j.neubiorev.2024.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Our understanding of the neural control of human walking has changed significantly over the last twenty years and mobile brain imaging methods have contributed substantially to current knowledge. High-density electroencephalography (EEG) has the advantages of being lightweight and mobile while providing temporal resolution of brain changes within a gait cycle. Advances in EEG hardware and processing methods have led to a proliferation of research on the neural control of locomotion in neurologically intact adults. We provide a narrative review of the advantages and disadvantages of different mobile brain imaging methods, then summarize findings from mobile EEG studies quantifying electrocortical activity during human walking. Contrary to historical views on the neural control of locomotion, recent studies highlight the widespread involvement of many areas, such as the anterior cingulate, posterior parietal, prefrontal, premotor, sensorimotor, supplementary motor, and occipital cortices, that show active fluctuations in electrical power during walking. The electrocortical activity changes with speed, stability, perturbations, and gait adaptation. We end with a discussion on the next steps in mobile EEG research.
Collapse
Affiliation(s)
- Natalie Richer
- Department of Kinesiology and Applied Health, University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - J Cortney Bradford
- US Army Combat Capabilities Development Command US Army Research Laboratory, Adelphi, MD, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Luo X, Huang B, Huang Y, Li M, Niu W, Wang T. Central imaging based on near-infrared functional imaging technology can be useful to plan management in patients with chronic lateral ankle instability. J Orthop Surg Res 2024; 19:361. [PMID: 38890731 PMCID: PMC11184706 DOI: 10.1186/s13018-024-04790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Near infrared brain functional imaging (FNIRS) has been used for the evaluation of brain functional areas, the imaging differences of central activation of cognitive-motor dual tasks between patients with chronic lateral ankle instability (CLAI) and healthy population remain unclear. This study aimed to evaluated the role of central imaging based on FNIRS technology on the plan management in patients with CLAI, to provide insights to the clinical treatment of CLAI. METHODS CLAI patients treated in our hospital from January 1, 2021 to June 31, 2022 were selected. Both CLAI patients and health controls were intervened with simple task and cognitive-motor dual task under sitting and walking conditions, and the changes of oxygenated hemoglobin concentration in bilateral prefrontal cortex (PFC), premotor cortex (PMC) and auxiliary motor area (SMA) were collected and compared. RESULTS A total of 23 participants were enrolled. There were significant differences in the fNIRS ΔHbO2 of barefoot subtractive walking PFC-R and barefoot subtractive walking SMA-R between experimental and control group (all P < 0.05). There was no significant difference in ΔHbO2 between the experimental group and the control group in other states (P > 0.05). There was no significant difference in ΔHbO2 between the experimental group and the control group in each state of the brain PMC region. CONCLUSION Adaptive alterations may occur within the relevant brain functional regions of individuals with CLAI. The differential activation observed between the PFC and the SMA could represent a compensatory mechanism emerging from proprioceptive afferent disruptions following an initial ankle sprain.
Collapse
Affiliation(s)
- Xiaoming Luo
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Ben Huang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Yonglei Huang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Ming Li
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Wenxin Niu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Taoli Wang
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| |
Collapse
|
16
|
Shen B, Xiao S, Yu C, Zhang C, Zhan J, Liu Y, Fu W. Cerebral hemodynamics underlying ankle force sense modulated by high-definition transcranial direct current stimulation. Cereb Cortex 2024; 34:bhae226. [PMID: 38850217 DOI: 10.1093/cercor/bhae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
This study aimed to investigate the effects of high-definition transcranial direct current stimulation on ankle force sense and underlying cerebral hemodynamics. Sixteen healthy adults (8 males and 8 females) were recruited in the study. Each participant received either real or sham high-definition transcranial direct current stimulation interventions in a randomly assigned order on 2 visits. An isokinetic dynamometer was used to assess the force sense of the dominant ankle; while the functional near-infrared spectroscopy was employed to monitor the hemodynamics of the sensorimotor cortex. Two-way analyses of variance with repeated measures and Pearson correlation analyses were performed. The results showed that the absolute error and root mean square error of ankle force sense dropped more after real stimulation than after sham stimulation (dropped by 23.4% vs. 14.9% for absolute error, and 20.0% vs. 10.2% for root mean square error). The supplementary motor area activation significantly increased after real high-definition transcranial direct current stimulation. The decrease in interhemispheric functional connectivity within the Brodmann's areas 6 was significantly correlated with ankle force sense improvement after real high-definition transcranial direct current stimulation. In conclusion, high-definition transcranial direct current stimulation can be used as a potential intervention for improving ankle force sense. Changes in cerebral hemodynamics could be one of the explanations for the energetic effect of high-definition transcranial direct current stimulation.
Collapse
Affiliation(s)
- Bin Shen
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai 200438, China
| | - Songlin Xiao
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai 200438, China
| | - Changxiao Yu
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai 200438, China
| | - Chuyi Zhang
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai 200438, China
| | - Jianglong Zhan
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai 200438, China
| | - Ying Liu
- School of Psychology, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai 200438, China
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai 200438, China
| |
Collapse
|
17
|
Hwang J, Liu C, Winesett SP, Chatterjee SA, Gruber AD, Swanson CW, Manini TM, Hass CJ, Seidler RD, Ferris DP, Roy A, Clark DJ. Prefrontal cortical activity during uneven terrain walking in younger and older adults. Front Aging Neurosci 2024; 16:1389488. [PMID: 38765771 PMCID: PMC11099210 DOI: 10.3389/fnagi.2024.1389488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Walking in complex environments increases the cognitive demand of locomotor control; however, our understanding of the neural mechanisms contributing to walking on uneven terrain is limited. We used a novel method for altering terrain unevenness on a treadmill to investigate the association between terrain unevenness and cortical activity in the prefrontal cortex, a region known to be involved in various cognitive functions. Methods Prefrontal cortical activity was measured with functional near infrared spectroscopy while participants walked on a novel custom-made terrain treadmill surface across four different terrains: flat, low, medium, and high levels of unevenness. The assessments were conducted in younger adults, older adults with better mobility function and older adults with worse mobility function. Mobility function was assessed using the Short Physical Performance Battery. The primary hypothesis was that increasing the unevenness of the terrain would result in greater prefrontal cortical activation in all groups. Secondary hypotheses were that heightened prefrontal cortical activation would be observed in the older groups relative to the younger group, and that prefrontal cortical activation would plateau at higher levels of terrain unevenness for the older adults with worse mobility function, as predicted by the Compensation Related Utilization of Neural Circuits Hypothesis. Results The results revealed a significant main effect of terrain, indicating a significant increase in prefrontal cortical activation with increasing terrain unevenness during walking in all groups. A significant main effect of group revealed that prefrontal cortical activation was higher in older adults with better mobility function compared to younger adults and older adults with worse mobility function in all pooled terrains, but there was no significant difference in prefrontal cortical activation between older adults with worse mobility function and younger adults. Contrary to our hypothesis, the older group with better mobility function displayed a sustained increase in activation but the other groups did not, suggestive of neural compensation. Additional findings were that task-related increases in prefrontal cortical activation during walking were lateralized to the right hemisphere in older adults with better mobility function but were bilateral in older adults with worse mobility function and younger adults. Discussion These findings support that compared to walking on a flat surface, walking on uneven terrain surfaces increases demand on cognitive control resources as measured by prefrontal cortical activation.
Collapse
Affiliation(s)
- Jungyun Hwang
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Chang Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Steven P. Winesett
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Sudeshna A. Chatterjee
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University, Philadelphia, PA, United States
| | - Anthony D. Gruber
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Clayton W. Swanson
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Todd M. Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachael D. Seidler
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Daniel P. Ferris
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - David J. Clark
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| |
Collapse
|
18
|
Jacobs S, Izzetoglu M, Holtzer R. The impact of music making on neural efficiency & dual-task walking performance in healthy older adults. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:438-456. [PMID: 36999570 PMCID: PMC10544664 DOI: 10.1080/13825585.2023.2195615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
Music making is linked to improved cognition and related neuroanatomical changes in children and adults; however, this has been relatively under-studied in aging. The purpose of this study was to assess neural, cognitive, and physical correlates of music making in aging using a dual-task walking (DTW) paradigm. Study participants (N = 415) were healthy adults aged 65 years or older, including musicians (n = 70) who were identified by current weekly engagement in musical activity. A DTW paradigm consisting of single- and dual-task conditions, as well as portable neuroimaging (functional near-infrared spectroscopy), was administered. Outcome measures included neural activation in the prefrontal cortex assessed across task conditions by recording changes in oxygenated hemoglobin, cognitive performance, and gait velocity. Linear mixed effects models examined the impact of music making on outcome measures in addition to moderating their change between task conditions. Across participants (53.3% women; 76 ± 6.55 years), neural activation increased from single- to dual-task conditions (p < 0.001); however, musicians demonstrated attenuated activation between a single cognitive interference task and dual-task walking (p = 0.014). Musicians also displayed significantly smaller decline in behavioral performance (p < 0.001) from single- to dual-task conditions and faster gait overall (p = 0.014). Given evidence of lower prefrontal cortex activation in the context of similar or improved behavioral performance, results indicate the presence of enhanced neural efficiency in older adult musicians. Furthermore, improved dual-task performance in older adult musicians was observed. Results have important clinical implications for healthy aging, as executive functioning plays an essential role in maintaining functional ability in older adulthood.
Collapse
Affiliation(s)
- Sydney Jacobs
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
19
|
Kim K, Hwang H, Bae S, Kim SM, Han DH. The Effectiveness of a Digital App for Reduction of Clinical Symptoms in Individuals With Panic Disorder: Randomized Controlled Trial. J Med Internet Res 2024; 26:e51428. [PMID: 38608270 PMCID: PMC11053392 DOI: 10.2196/51428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Panic disorder is a common and important disease in clinical practice that decreases individual productivity and increases health care use. Treatments comprise medication and cognitive behavioral therapy. However, adverse medication effects and poor treatment compliance mean new therapeutic models are needed. OBJECTIVE We hypothesized that digital therapy for panic disorder may improve panic disorder symptoms and that treatment response would be associated with brain activity changes assessed with functional near-infrared spectroscopy (fNIRS). METHODS Individuals (n=50) with a history of panic attacks were recruited. Symptoms were assessed before and after the use of an app for panic disorder, which in this study was a smartphone-based app for treating the clinical symptoms of panic disorder, panic symptoms, depressive symptoms, and anxiety. The hemodynamics in the frontal cortex during the resting state were measured via fNIRS. The app had 4 parts: diary, education, quest, and serious games. The study trial was approved by the institutional review board of Chung-Ang University Hospital (1041078-202112-HR-349-01) and written informed consent was obtained from all participants. RESULTS The number of participants with improved panic symptoms in the app use group (20/25, 80%) was greater than that in the control group (6/21, 29%; χ21=12.3; P=.005). During treatment, the improvement in the Panic Disorder Severity Scale (PDSS) score in the app use group was greater than that in the control group (F1,44=7.03; P=.01). In the app use group, the total PDSS score declined by 42.5% (mean score 14.3, SD 6.5 at baseline and mean score 7.2, SD 3.6 after the intervention), whereas the PDSS score declined by 14.6% in the control group (mean score 12.4, SD 5.2 at baseline and mean score 9.8, SD 7.9 after the intervention). There were no significant differences in accumulated oxygenated hemoglobin (accHbO2) at baseline between the app use and control groups. During treatment, the reduction in accHbO2 in the right ventrolateral prefrontal cortex (VLPFC; F1,44=8.22; P=.006) and the right orbitofrontal cortex (OFC; F1,44=8.88; P=.005) was greater in the app use than the control group. CONCLUSIONS Apps for panic disorder should effectively reduce symptoms and VLPFC and OFC brain activity in patients with panic disorder. The improvement of panic disorder symptoms was positively correlated with decreased VLPFC and OFC brain activity in the resting state. TRIAL REGISTRATION Clinical Research Information Service KCT0007280; https://cris.nih.go.kr/cris/search/detailSearch.do?seq=21448.
Collapse
Affiliation(s)
- KunJung Kim
- Chung Ang University Hospital, Seoul, Republic of Korea
| | | | - Sujin Bae
- Chung Ang University Hospital, Seoul, Republic of Korea
| | - Sun Mi Kim
- Chung Ang University Hospital, Seoul, Republic of Korea
| | - Doug Hyun Han
- Chung Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
20
|
Putzolu M, Samogin J, Bonassi G, Cosentino C, Mezzarobba S, Botta A, Avanzino L, Mantini D, Vato A, Pelosin E. Motor imagery ability scores are related to cortical activation during gait imagery. Sci Rep 2024; 14:5207. [PMID: 38433230 PMCID: PMC10909887 DOI: 10.1038/s41598-024-54966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the θ, α, and β band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). Positive correlations were identified between VMIQ and avgERD of the middle cingulum in the β band and with avgERD of the left insula, right precentral area, and right middle occipital region in the θ band. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.
Collapse
Affiliation(s)
- Martina Putzolu
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Laura Avanzino
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Alessandro Vato
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA.
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, USA.
- College of Engineering and Applied Sciences, University at Albany - SUNY, Albany, NY, USA.
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
21
|
Park JH. Classification of Mild Cognitive Impairment Using Functional Near-Infrared Spectroscopy-Derived Biomarkers With Convolutional Neural Networks. Psychiatry Investig 2024; 21:294-299. [PMID: 38569587 PMCID: PMC10990628 DOI: 10.30773/pi.2023.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 04/05/2024] Open
Abstract
OBJECTIVE To date, early detection of mild cognitive impairment (MCI) has mainly depended on paper-based neuropsychological assessments. Recently, biomarkers for MCI detection have gained a lot of attention because of the low sensitivity of neuropsychological assessments. This study proposed the functional near-infrared spectroscopy (fNIRS)-derived data with convolutional neural networks (CNNs) to identify MCI. METHODS Eighty-two subjects with MCI and 148 healthy controls (HC) performed the 2-back task, and their oxygenated hemoglobin (HbO2) changes in the prefrontal cortex (PFC) were recorded during the task. The CNN model based on fNIRS-derived spatial features with HbO2 slope within time windows was trained to classify MCI. Thereafter, the 5-fold cross-validation approach was used to evaluate the performance of the CNN model. RESULTS Significant differences in averaged HbO2 values between MCI and HC groups were found, and the CNN model could better discriminate MCI with over 89.57% accuracy than the Korean version of the Montreal Cognitive Assessment (MoCA) (89.57%). Specifically, the CNN model based on HbO2 slope within the time window of 20-60 seconds from the left PFC (96.09%) achieved the highest accuracy. CONCLUSION These findings suggest that the fNIRS-derived spatial features with CNNs could be a promising way for early detection of MCI as a surrogate for a conventional screening tool and demonstrate the superiority of the fNIRS-derived spatial features with CNNs to the MoCA.
Collapse
Affiliation(s)
- Jin-Hyuck Park
- Department of Occupational Therapy, College of Medical Science, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
22
|
Ross D, Wagshul ME, Izzetoglu M, Holtzer R. Cortical thickness moderates intraindividual variability in prefrontal cortex activation patterns of older adults during walking. J Int Neuropsychol Soc 2024; 30:117-127. [PMID: 37366047 PMCID: PMC10751394 DOI: 10.1017/s1355617723000371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Increased intraindividual variability (IIV) in behavioral and cognitive performance is a risk factor for adverse outcomes but research concerning hemodynamic signal IIV is limited. Cortical thinning occurs during aging and is associated with cognitive decline. Dual-task walking (DTW) performance in older adults has been related to cognition and neural integrity. We examined the hypothesis that reduced cortical thickness would be associated with greater increases in IIV in prefrontal cortex oxygenated hemoglobin (HbO2) from single tasks to DTW in healthy older adults while adjusting for behavioral performance. METHOD Participants were 55 healthy community-dwelling older adults (mean age = 74.84, standard deviation (SD) = 4.97). Structural MRI was used to quantify cortical thickness. Functional near-infrared spectroscopy (fNIRS) was used to assess changes in prefrontal cortex HbO2 during walking. HbO2 IIV was operationalized as the SD of HbO2 observations assessed during the first 30 seconds of each task. Linear mixed models were used to examine the moderation effect of cortical thickness throughout the cortex on HbO2 IIV across task conditions. RESULTS Analyses revealed that thinner cortex in several regions was associated with greater increases in HbO2 IIV from the single tasks to DTW (ps < .02). CONCLUSIONS Consistent with neural inefficiency, reduced cortical thickness in the PFC and throughout the cerebral cortex was associated with increases in HbO2 IIV from the single tasks to DTW without behavioral benefit. Reduced cortical thickness and greater IIV of prefrontal cortex HbO2 during DTW may be further investigated as risk factors for developing mobility impairments in aging.
Collapse
Affiliation(s)
- Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Mark E. Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
23
|
Liu S, Rosso AL, Baillargeon EM, Weinstein AM, Rosano C, Torres-Oviedo G. Novel attentional gait index reveals a cognitive ability-related decline in gait automaticity during dual-task walking. Front Aging Neurosci 2024; 15:1283376. [PMID: 38274986 PMCID: PMC10808635 DOI: 10.3389/fnagi.2023.1283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Gait automaticity refers to the ability to walk with minimal recruitment of attentional networks typically mediated through the prefrontal cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources during walking) is common with aging, contributing to an increased risk of falls and reduced quality of life. A common assessment of gait automaticity involves examining PFC activation using near-infrared spectroscopy (fNIRS) during dual-task (DT) paradigms, such as walking while performing a cognitive task. However, neither PFC activity nor task performance in isolation measures automaticity accurately. For example, greater PFC activation could be interpreted as worse gait automaticity when accompanied by poorer DT performance, but when accompanied by better DT performance, it could be seen as successful compensation. Thus, there is a need to incorporate behavioral performance and PFC measurements for a more comprehensive evaluation of gait automaticity. To address this need, we propose a novel attentional gait index as an analytical approach that combines changes in PFC activity with changes in DT performance to quantify automaticity, where a reduction in automaticity will be reflected as an increased need for attentional gait control (i.e., larger index). Methods The index was validated in 173 participants (≥65 y/o) who completed DTs with two levels of difficulty while PFC activation was recorded with fNIRS. The two DTs consisted of reciting every other letter of the alphabet while walking over either an even or uneven surface. Results As DT difficulty increases, more participants showed the anticipated increase in the attentional control of gait (i.e., less automaticity) as measured by the novel index compared to PFC activation. Furthermore, when comparing across individuals, lower cognitive function was related to higher attentional gait index, but not PFC activation or DT performance. Conclusion The proposed index better quantified the differences in attentional control of gait between tasks and individuals by providing a unified measure that includes both brain activation and performance. This new approach opens exciting possibilities to assess participant-specific deficits and compare rehabilitation outcomes from gait automaticity interventions.
Collapse
Affiliation(s)
- Shuqi Liu
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Andrea L. Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emma M. Baillargeon
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrea M. Weinstein
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Yun SH, Jang TS, Kwon JW. Cortical activity and spatiotemporal parameters during gait termination and walking: A preliminary study. Behav Brain Res 2024; 456:114701. [PMID: 37813283 DOI: 10.1016/j.bbr.2023.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Gait termination requires an interaction between the biomechanical and neuromuscular systems to arrest forward momentum. Currently, the biomechanical characteristics of gait termination have been demonstrated; however, the neural mechanism of gait termination remains unclear. This study aimed to investigate cortical activity during gait termination using functional near-infrared spectroscopy (fNIRS). Thirteen healthy younger adults (mean age:24.0 ± 1.7) participated in this study. All participants performed three experimental sessions: planned gait termination (PGT), unplanned gait termination (UGT), and walking. Each experimental session comprised a block paradigm design (three cycles; 20 s resting, 45 s task). Cortical activity in the dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and primary motor cortex (M1) and spatiotemporal parameters were measured. We compared the cortical activities and spatiotemporal parameters among PGT, UGT, and walking sessions. In addition, we performed Pearson correlations between hemodynamic responses and spatiotemporal parameters. The PGT was activated in the right DLPFC, whereas the UGT and walking were activated in the left SMA (p < 0.05). Comparing cortical activation between sessions, both the PGT and UGT showed significantly higher activation in the right DLPFC than during walking (p < 0.05). There were no significant differences in cortical activity between PGT and UGT (p > 0.05). In addition, the gait termination time revealed moderate positive correlation with hemodynamic responses in the right DLPFC (p < 0.05). Our results indicate that the right DLPFC is associated with gait termination, regardless of gait termination type. Our findings provide the potential implication that the hemodynamic response in the right DLPFC would be a biomarker to evaluate the ability of gait termination.
Collapse
Affiliation(s)
- Seong Ho Yun
- Department of Public Health Sciences, Graduate School, Dankook University, Cheonan, South Korea
| | - Tae Su Jang
- Department of Health Administration, College of Health and Welfare Sciences, Dankook University, Cheonan, South Korea
| | - Jung Won Kwon
- Department of Physical Therapy, College of Health and Welfare Sciences, Dankook University, Cheonan, South Korea.
| |
Collapse
|
25
|
Abstract
The past decade has witnessed tremendous growth in analyzing the cortical representation of human locomotion and balance using Electroencephalography (EEG). With the advanced developments in miniaturized electronics, wireless brain recording systems have been developed for mobile recordings, such as in locomotion. In this review, the cortical dynamics during locomotion are presented with extensive focus on motor imagery, and employing the treadmill as a tool for performing different locomotion tasks. Further, the studies that examine the cortical dynamics during balancing, focusing on two types of balancing tasks, ie, static and dynamic, with the challenges in sensory inputs and cognition (dual-task), are presented. Moreover, the current literature demonstrates the advancements in signal processing methods to detect and remove the artifacts from EEG signals. Prior studies show the electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor cortex was found to be activated during locomotion. The event-related potential has been observed to increase in the fronto-central region for a wide range of balance tasks. The advanced knowledge of cortical dynamics during mobility can benefit various application areas such as neuroprosthetics and gait/balance rehabilitation. This review will be beneficial for the development of neuroprostheses, and rehabilitation devices for patients suffering from movement or neurological disorders.
Collapse
Affiliation(s)
- Aayushi Khajuria
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Richa Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Deepak Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Goldfarb AH, Kraemer RR, Baiamonte BA. Endogenous Opioids and Exercise-Related Hypoalgesia: Modern Models, Measurement, and Mechanisms of Action. ADVANCES IN NEUROBIOLOGY 2024; 35:137-155. [PMID: 38874722 DOI: 10.1007/978-3-031-45493-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This chapter will focus on the role exercise appears to have on activation and modulating factors within the central nervous system related to endogenous like opioids and its possible contribution to exercise-induced hypoalgesia. The implications for the exercise-mediated alterations of CNS activation factors related to opioids, specifically endorphins and enkephalins, will be presented. In this update, we discuss utilization of new technology and methods to monitor mechanisms of opioid involvement to suggest their contribution with exercise mediated hypoalgesia as well as their relationships to alterations of perceptions of pain and mood. Several special populations were included to suggest that not all individuals will respond to the exercise by mediating hypoalgesia. Factors that may confound the current understanding and suggestions from the recent literature will be presented as well as suggestions for future investigations.
Collapse
Affiliation(s)
- Allan H Goldfarb
- University of North Carolina Greensboro, Department of Kinesiology, Greensboro, NC, USA.
| | - Robert R Kraemer
- Southeastern Louisiana University, Department of Kinesiology and Health Studies, Hammond, LA, USA
| | - Brandon A Baiamonte
- Southeastern Louisiana University, Department of Psychology, Hammond, LA, USA
| |
Collapse
|
27
|
Park JH. Mental workload classification using convolutional neural networks based on fNIRS-derived prefrontal activity. BMC Neurol 2023; 23:442. [PMID: 38102540 PMCID: PMC10722812 DOI: 10.1186/s12883-023-03504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) is a tool to assess brain activity during cognitive testing. Despite its usefulness, its feasibility in assessing mental workload remains unclear. This study was to investigate the potential use of convolutional neural networks (CNNs) based on functional near-infrared spectroscopy (fNIRS)-derived signals to classify mental workload in individuals with mild cognitive impairment. METHODS Spatial images by constructing a statistical activation map from the prefrontal activity of 120 subjects with MCI performing three difficulty levels of the N-back task (0, 1, and 2-back) were used for CNNs. The CNNs were evaluated using a 5 and 10-fold cross-validation method. RESULTS As the difficulty level of the N-back task increased, the accuracy decreased and prefrontal activity increased. In addition, there was a significant difference in the accuracy and prefrontal activity across the three levels (p's < 0.05). The accuracy of the CNNs based on fNIRS-derived spatial images evaluated by 5 and 10-fold cross-validation in classifying the difficulty levels ranged from 0.83 to 0.96. CONCLUSION fNIRS could also be a promising tool for measuring mental workload in older adults with MCI despite their cognitive decline. In addition, this study demonstrated the feasibility of the classification performance of the CNNs based on fNIRS-derived signals from the prefrontal cortex.
Collapse
Affiliation(s)
- Jin-Hyuck Park
- Department of Occupational Therapy, College of Medical Science, Soonchunhyang University, Asan, Republic of Korea.
| |
Collapse
|
28
|
Zhang H, Cao X, Wang L, Tong Q, Sun H, Gan C, Shan A, Yuan Y, Zhang K. Transcutaneous auricular vagus nerve stimulation improves gait and cortical activity in Parkinson's disease: A pilot randomized study. CNS Neurosci Ther 2023; 29:3889-3900. [PMID: 37311693 PMCID: PMC10651956 DOI: 10.1111/cns.14309] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVE In this randomized, double-blind, sham-controlled trial, we explored the effect of 20 Hz transcutaneous auricular vagus nerve stimulation (taVNS) on gait impairments in Parkinson's disease (PD) patients and investigated the underlying neural mechanism. METHODS In total, 22 PD patients and 14 healthy controls were enrolled. PD patients were randomized (1:1) to receive active or sham taVNS (same position as active taVNS group but without releasing current) twice a day for 1 week. Meanwhile, all subjects were measured activation in the bilateral frontal and sensorimotor cortex during usual walking by functional near-infrared spectroscopy. RESULTS PD patients showed instable gait with insufficient range of motion during usual walking. Active taVNS improved gait characteristics including step length, stride velocity, stride length, and step length variability compared with sham taVNS after completion of the 7-day therapy. No difference was found in the Unified Parkinson's Disease Rating Scale III, Timed Up and Go, Tinetti Balance, and Gait scores. Moreover, PD patients had higher relative change of oxyhemoglobin in the left dorsolateral prefrontal cortex, pre-motor area, supplementary motor area, primary motor cortex, and primary somatosensory cortex than HCs group during usual walking. Hemodynamic responses in the left primary somatosensory cortex were significantly decreased after taVNS therapy. CONCLUSION taVNS can relieve gait impairments and remodel sensorimotor integration in PD patients.
Collapse
Affiliation(s)
- Heng Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xing‐yue Cao
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Li‐na Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qing Tong
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hui‐min Sun
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Cai‐ting Gan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ai‐di Shan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yong‐sheng Yuan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ke‐zhong Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
29
|
Katmah R, Shehhi AA, Jelinek HF, Hulleck AA, Khalaf K. A Systematic Review of Gait Analysis in the Context of Multimodal Sensing Fusion and AI. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4189-4202. [PMID: 37847624 DOI: 10.1109/tnsre.2023.3325215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND Neurological diseases are a leading cause of disability and mortality. Gait, or human walking, is a significant predictor of quality of life, morbidity, and mortality. Gait patterns and other kinematic, kinetic, and balance gait features are accurate and powerful diagnostic and prognostic tools. OBJECTIVE This review article focuses on the applicability of gait analysis using fusion techniques and artificial intelligence (AI) models. The aim is to examine the significance of mixing several types of wearable and non-wearable sensor data and the impact of this combination on the performance of AI models. METHOD In this systematic review, 66 studies using more than two modalities to record and analyze gait were identified. 40 studies incorporated multiple gait analysis modalities without the use of artificial intelligence to extract gait features such as kinematic, kinetic, margin of stability, temporal, and spatial gait parameters, as well as cerebral activity. Similarly, 26 studies analyzed gait data using multimodal fusion sensors and AI algorithms. RESULTS The research summarized here demonstrates that the quality of gait analysis and the effectiveness of AI models can both benefit from the integration of data from many sensors. Meanwhile, the utilization of EMG signals in fusion data is especially advantageous. CONCLUSION The findings of this review suggest that a smart, portable, wearable-based gait and balance assessment system can be developed using multimodal sensing of the most cutting-edge, clinically relevant tools and technology available. The information presented in this article may serve as a vital springboard for such development.
Collapse
|
30
|
Nishimoto R, Fujiwara S, Kutoku Y, Ogata T, Mihara M. Effect of dual-task interaction combining postural and visual perturbations on cortical activity and postural control ability. Neuroimage 2023; 280:120352. [PMID: 37648121 DOI: 10.1016/j.neuroimage.2023.120352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/27/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Previous studies have suggested cortical involvement in postural control in humans by measuring cortical activities and conducting dual-task paradigms. In dual-task paradigms, task performance deteriorates and can be facilitated in specific dual-task settings. Theoretical frameworks explaining these dual-task interactions have been proposed and debated for decades. Therefore, we investigated postural control performance under different visual conditions using a virtual reality system, simultaneously measuring cortical activities with a functional near-infrared spectroscopy system. Twenty-four healthy participants were included in this study. Postural stability and cortical activities after perturbations were measured under several conditions consisting of postural and visual perturbations. The results showed that concurrent visual and postural perturbations could facilitate cortical activities in the supplementary motor area and superior parietal lobe. Additionally, visual distractors deteriorated postural control ability and cortical activation of the supplementary motor area. These findings supported the theoretical framework of the "Cross talk model", in which concurrent tasks using similar neural domains can facilitate these task performances. Furthermore, it indicated that the cortical resource capacity and domains activated for information processing should be considered in experiments involving dual-task paradigms and training.
Collapse
Affiliation(s)
- Ryoki Nishimoto
- Department of Neurology, Kawasaki Medical School, Okayama 701-0192, Japan; Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Sayaka Fujiwara
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yumiko Kutoku
- Department of Neurology, Kawasaki Medical School, Okayama 701-0192, Japan
| | - Toru Ogata
- Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Okayama 701-0192, Japan.
| |
Collapse
|
31
|
Pitts J, Kannan L, Bhatt T. Cognitive Task Domain Influences Cognitive-Motor Interference during Large-Magnitude Treadmill Stance Perturbations. SENSORS (BASEL, SWITZERLAND) 2023; 23:7746. [PMID: 37765803 PMCID: PMC10534402 DOI: 10.3390/s23187746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Reactive balance is postulated to be attentionally demanding, although it has been underexamined in dual-tasking (DT) conditions. Further, DT studies have mainly included only one cognitive task, leaving it unknown how different cognitive domains contribute to reactive balance. This study examined how DT affected reactive responses to large-magnitude perturbations and compared cognitive-motor interference (CMI) between cognitive tasks. A total of 20 young adults aged 18-35 (40% female; 25.6 ± 3.8 y) were exposed to treadmill support surface perturbations alone (single-task (ST)) and while completing four cognitive tasks: Target, Track, Auditory Clock Test (ACT), Letter Number Sequencing (LNS). Three perturbations were delivered over 30 s in each trial. Cognitive tasks were also performed while seated and standing (ST). Compared to ST, post-perturbation MOS was lower when performing Track, and cognitive performance was reduced on the Target task during DT (p < 0.05). There was a larger decline in overall (cognitive + motor) performance from ST for both of the visuomotor tasks compared to the ACT and LNS (p < 0.05). The highest CMI was observed for visuomotor tasks; real-life visuomotor tasks could increase fall risk during daily living, especially for individuals with difficulty attending to more than one task.
Collapse
Affiliation(s)
| | | | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W Taylor St., Chicago, IL 60612, USA
| |
Collapse
|
32
|
Pitts J, Singhal K, Apte Y, Patel P, Kannan L, Bhatt T. The Effect of Cognitive Task, Gait Speed, and Age on Cognitive-Motor Interference during Walking. SENSORS (BASEL, SWITZERLAND) 2023; 23:7368. [PMID: 37687823 PMCID: PMC10490746 DOI: 10.3390/s23177368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Dual-tasking can cause cognitive-motor interference (CMI) and affect task performance. This study investigated the effects of age, gait speed, and type of cognitive task on CMI during gait. Ten younger and 10 older adults walked on a pressure-sensitive GAITRite walkway which recorded gait speed and step length. Participants walked at a slow, preferred, or fast speed while simultaneously completing four cognitive tasks: visuomotor reaction time (VMRT), serial subtraction (SS), word list generation (WLG), and visual Stroop (VS). Each combination of task and speed was repeated for two trials. Tasks were also performed while standing. Motor and cognitive costs were calculated with the formula: ((single-dual)/single × 100). Higher costs indicate a larger reduction in performance from single to dual-task. Motor costs were higher for WLG and SS than VMRT and VS and higher in older adults (p < 0.05). Cognitive costs were higher for SS than WLG (p = 0.001). At faster speeds, dual-task costs increased for WLG and SS, although decreased for VMRT. CMI was highest for working memory, language, and problem-solving tasks, which was reduced by slow walking. Aging increased CMI, although both ages were affected similarly by task and speed. Dual-task assessments could include challenging CMI conditions to improve the prediction of motor and cognitive status.
Collapse
Affiliation(s)
- Jessica Pitts
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W Taylor St., Chicago, IL 60612, USA
| | - Kunal Singhal
- Department of Physical Therapy, University of St. Augustine for Health Sciences, Austin, TX 32086, USA
| | - Yashashree Apte
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W Taylor St., Chicago, IL 60612, USA
| | - Prakruti Patel
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80521, USA
| | - Lakshmi Kannan
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W Taylor St., Chicago, IL 60612, USA
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W Taylor St., Chicago, IL 60612, USA
| |
Collapse
|
33
|
Baek CY, Kim HD, Yoo DY, Kang KY, Woo Lee J. Effect of automaticity induced by treadmill walking on prefrontal cortex activation and dual-task performance in older adults. PLoS One 2023; 18:e0287252. [PMID: 37535522 PMCID: PMC10399859 DOI: 10.1371/journal.pone.0287252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 08/05/2023] Open
Abstract
As individuals age, they may experience a decline in gait automaticity, which requires increased attentional resources for the control of gait. This age-related decline in gait automaticity has been shown to contribute to higher prefrontal cortex (PFC) activation and lower dual-task performance during dual-task walking in older adults. This study is to investigate the effect of treadmill walking on PFC activation and dual-task performance in older adults. A total of 20 older adults (mean age, 64.35 ± 2.74 years) and 20 younger adults (mean age, 30.00 ± 3.15 years) performed single- and dual-task walking in overground and treadmill conditions. A wearable functional near-infrared spectroscopy and gait analyzer were used to analyze PFC activation and dual-task performance, respectively. To determine the dual-task (gait and cognitive) performance, the dual-task cost (DTC) was calculated using the following formula: (single-task - dual-task)/single-task × 100. In both groups, dual-task treadmill walking led to reduced PFC activation and reduced DTC compared to dual-task overground walking. Furthermore, despite a higher DTC in gait variability, correct response, total response, response index and a higher error score in older adults than in younger adults during overground walking, there was no difference in treadmill walking. The difference in PFC activation between single- and dual-tasks was also observed only in overground walking. Performing dual-task walking on a treadmill compared to overground walking results in different levels of dual-task performance and PFC activity. Specifically, older adults are able to maintain similar levels of dual-task performance as younger adults while walking on a treadmill, with reduced PFC activation due to the automaticity induced by the treadmill. Therefore, older adults who exhibit low dual-task performance during overground walking may be able to improve their performance while walking on a treadmill with fewer attentional resources.
Collapse
Affiliation(s)
- Chang Yoon Baek
- Department of Physical Therapy, College of Health Science, Korea University, Seoul, Republic of Korea
- Department of Rehabilitation medicine, National Health Insurance Ilsan Hospital, Ilsan, Republic of Korea
| | - Hyeong Dong Kim
- Department of Physical Therapy, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Dong Yup Yoo
- Department of Rehabilitation medicine, National Health Insurance Ilsan Hospital, Ilsan, Republic of Korea
| | - Kyoung Yee Kang
- Department of Rehabilitation medicine, National Health Insurance Ilsan Hospital, Ilsan, Republic of Korea
| | - Jang Woo Lee
- Department of Rehabilitation medicine, National Health Insurance Ilsan Hospital, Ilsan, Republic of Korea
| |
Collapse
|
34
|
Alcock L, Vitório R, Stuart S, Rochester L, Pantall A. Faster Walking Speeds Require Greater Activity from the Primary Motor Cortex in Older Adults Compared to Younger Adults. SENSORS (BASEL, SWITZERLAND) 2023; 23:6921. [PMID: 37571703 PMCID: PMC10422240 DOI: 10.3390/s23156921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Gait speed declines with age and slower walking speeds are associated with poor health outcomes. Understanding why we do not walk faster as we age, despite being able to, has implications for rehabilitation. Changes in regional oxygenated haemoglobin (HbO2) across the frontal lobe were monitored using functional near infrared spectroscopy in 17 young and 18 older adults while they walked on a treadmill for 5 min, alternating between 30 s of walking at a preferred and fast (120% preferred) speed. Gait was quantified using a triaxial accelerometer (lower back). Differences between task (preferred/fast) and group (young/old) and associations between regional HbO2 and gait were evaluated. Paired tests indicated increased HbO2 in the supplementary motor area (right) and primary motor cortex (left and right) in older adults when walking fast (p < 0.006). HbO2 did not significantly change in the young when walking fast, despite both groups modulating gait. When evaluating the effect of age (linear mixed effects model), greater increases in HbO2 were observed for older adults when walking fast (prefrontal cortex, premotor cortex, supplementary motor area and primary motor cortex) compared to young adults. In older adults, increased step length and reduced step length variability were associated with larger increases in HbO2 across multiple regions when walking fast. Walking fast required increased activation of motor regions in older adults, which may serve as a therapeutic target for rehabilitation. Widespread increases in HbO2 across the frontal cortex highlight that walking fast represents a resource-intensive task as we age.
Collapse
Affiliation(s)
- Lisa Alcock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (L.A.); (L.R.)
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rodrigo Vitório
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (R.V.); (S.S.)
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (R.V.); (S.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (L.A.); (L.R.)
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Annette Pantall
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
35
|
Yozu A, Katsuhira J, Oka H, Matsudaira K. Effect of Trunk Solution ® on hemodynamics in the supplementary motor area during walking. J Phys Ther Sci 2023; 35:502-506. [PMID: 37405183 PMCID: PMC10315207 DOI: 10.1589/jpts.35.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 07/06/2023] Open
Abstract
[Purpose] Humans keep their trunks vertical while walking. This defining characteristic is known as upright bipedalism. Research on the neural control of locomotion indicates that not only subcortical structures, but also the cerebral cortex, especially the supplementary motor area (SMA), is involved in locomotion. A previous study suggested that SMA may contribute to truncal upright posture-control during walking. Trunk Solution® (TS) is a trunk orthosis designed to support the trunk in decreasing the low back load. We hypothesized that the trunk orthosis might reduce the burden of truncal control on the SMA. The objective of this study was, therefore, to determine the effect of trunk orthosis on the SMA during walking. [Participants and Methods] Thirteen healthy participants were enrolled in the study. We measured the hemodynamics of the SMA during walking with functional near-infrared spectroscopy (fNIRS). The participants performed two gait tasks on a treadmill: (A) independent gait (usual gait) and (B) supported gait while wearing the TS. [Results] During (A) independent gait, the hemodynamics of the SMA exhibited no significant changes. During (B) gait with truncal support, the SMA hemodynamics decreased significantly. [Conclusion] TS may reduce the burden of truncal control on the SMA during walking.
Collapse
Affiliation(s)
- Arito Yozu
- Department of Precision Engineering, School of Engineering,
The University of Tokyo: 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junji Katsuhira
- Department of Medical Research and Management for
Musculoskeletal Pain, 22nd Century Medical and Research Center, The University of Tokyo
Hospital, Japan
- Department of Human Environment Design, Faculty of Human
Life Design, Toyo University, Japan
- Department of Prosthetics and Orthotics and Assistive
Technology, Faculty of Medical Technology, Niigata University of Health and Welfare,
Japan
| | - Hiroyuki Oka
- Department of Medical Research and Management for
Musculoskeletal Pain, 22nd Century Medical and Research Center, The University of Tokyo
Hospital, Japan
| | - Ko Matsudaira
- Department of Medical Research and Management for
Musculoskeletal Pain, 22nd Century Medical and Research Center, The University of Tokyo
Hospital, Japan
| |
Collapse
|
36
|
Fan W, Xiao C, He L, Chen L, Qu H, Yao Q, Li G, Hu J, Zou J, Zeng Q, Huang G. Cerebral Cortex Activation and Gait Performance between Healthy and Prefrail Older Adults during Cognitive and Walking Tasks. Brain Sci 2023; 13:1018. [PMID: 37508950 PMCID: PMC10377719 DOI: 10.3390/brainsci13071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Pre-frailty is a transitional stage between health and frailty. Previous studies have demonstrated that individuals with pre-frailty experience declines in cognitive and gait performances compared with healthy individuals. However, the basic neural mechanism underlying this needs to be clarified. In this cross-sectional study, twenty-one healthy older adults and fifteen with pre-frailty underwent three conditions, including a single cognitive task (SC), single walking task (SW), and dual-task (DT), while cortical hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). The prefrail group (PG) showed a significantly lower activation of the left dorsolateral prefrontal cortex (L-DLPFC) than the healthy group (HG) when performing SC (p < 0.05). The PG showed a significantly lower Timed Up and Go test and step speed than the HG during SW (p < 0.05). The coefficient of variation (CV) of the step length of the PG was significantly higher than that of the HG when performing DT (p < 0.05). No significant correlation in cerebral cortex activation and gait parameters in the HG when performing SW and DT was noted (p > 0.05). Participants of the PG with a higher oxygenated area in the left anterior prefrontal cortex (L-APFC) had a lower step frequency during SW (r = -0.533, p = 0.041), and so did the following indicators of the PG during DT: L-APFC and step speed (r = -0.557, p = 0.031); right anterior prefrontal cortex and step speed (r = -0.610, p = 0.016); left motor cortex and step speed (r = -0.674, p = 0.006); step frequency (r = -0.656, p = 0.008); and step length (r = -0.535, p = 0.040). The negative correlations between the cerebral cortex and gait parameters of the PG indicated a neural compensatory effect of pre-frailty. Therefore, older adults with pre-frailty promote prefrontal activation to compensate for the impaired sensorimotor systems.
Collapse
Affiliation(s)
- Weichao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
- School of Nursing, Southern Medical University, Guangzhou 510280, China
| | - Chongwu Xiao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
| | - Longlong He
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
| | - Ling Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
| | - Hang Qu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
| | - Qiuru Yao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
- School of Nursing, Southern Medical University, Guangzhou 510280, China
| | - Gege Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
| | - Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou 510280, China
- Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (W.F.); (C.X.); (L.H.); (L.C.); (H.Q.); (Q.Y.); (G.L.); (J.H.)
- School of Nursing, Southern Medical University, Guangzhou 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
37
|
Belluscio V, Cartocci G, Terbojevich T, Di Feo P, Inguscio BMS, Ferrari M, Quaresima V, Vannozzi G. Facilitating or disturbing? An investigation about the effects of auditory frequencies on prefrontal cortex activation and postural sway. Front Neurosci 2023; 17:1197733. [PMID: 37425019 PMCID: PMC10324668 DOI: 10.3389/fnins.2023.1197733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Auditory stimulation activates brain areas associated with higher cognitive processes, like the prefrontal cortex (PFC), and plays a role in postural control regulation. However, the effects of specific frequency stimuli on upright posture maintenance and PFC activation patterns remain unknown. Therefore, the study aims at filling this gap. Twenty healthy adults performed static double- and single-leg stance tasks of 60s each under four auditory conditions: 500, 1000, 1500, and 2000 Hz, binaurally delivered through headphones, and in quiet condition. Functional near-infrared spectroscopy was used to measure PFC activation through changes in oxygenated hemoglobin concentration, while an inertial sensor (sealed at the L5 vertebra level) quantified postural sway parameters. Perceived discomfort and pleasantness were rated through a 0-100 visual analogue scale (VAS). Results showed that in both motor tasks, different PFC activation patterns were displayed at the different auditory frequencies and the postural performance worsened with auditory stimuli, compared to quiet conditions. VAS results showed that higher frequencies were considered more discomfortable than lower ones. Present data prove that specific sound frequencies play a significant role in cognitive resources recruitment and in the regulation of postural control. Furthermore, it supports the importance of exploring the relationship among tones, cortical activity, and posture, also considering possible applications with neurological populations and people with hearing dysfunctions.
Collapse
Affiliation(s)
- Valeria Belluscio
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
- Fondazione Santa Lucia, Rome, Italy
| | - Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- BrainSigns Ltd, Rome, Italy
| | | | - Paolo Di Feo
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
| | | | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giuseppe Vannozzi
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
- Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
38
|
Bonnal J, Ozsancak C, Monnet F, Valery A, Prieur F, Auzou P. Neural Substrates for Hand and Shoulder Movement in Healthy Adults: A Functional near Infrared Spectroscopy Study. Brain Topogr 2023:10.1007/s10548-023-00972-x. [PMID: 37202647 DOI: 10.1007/s10548-023-00972-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Characterization of cortical activation patterns during movements in healthy adults may help our understanding of how the injured brain works. Upper limb motor tasks are commonly used to assess impaired motor function and to predict recovery in individuals with neurological disorders such as stroke. This study aimed to explore cortical activation patterns associated with movements of the hand and shoulder using functional near-infrared spectroscopy (fNIRS) and to demonstrate the potential of this technology to distinguish cerebral activation between distal and proximal movements. Twenty healthy, right-handed participants were recruited. Two 10-s motor tasks (right-hand opening-closing and right shoulder abduction-adduction) were performed in a sitting position at a rate of 0.5 Hz in a block paradigm. We measured the variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations. fNIRS was performed with a 24-channel system (Brite 24®; Artinis) that covered most motor control brain regions bilaterally. Activation was mostly contralateral for both hand and shoulder movements. Activation was more lateral for hand movements and more medial for shoulder movements, as predicted by the classical homunculus representation. Both HbO2 and HbR concentrations varied with the activity. Our results showed that fNIRS can distinguish patterns of cortical activity in upper limb movements under ecological conditions. These results suggest that fNIRS can be used to measure spontaneous motor recovery and rehabilitation-induced recovery after brain injury. The trial was restropectively registered on January 20, 2023: NCT05691777 (clinicaltrial.gov).
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France.
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France.
- CIAMS, Université d'Orléans, 45067, Orléans, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fanny Monnet
- Institut Denis Poisson, Bâtiment de mathématiques, Université d'Orléans, CNRS, Université de Tours, Institut Universitaire de France, Rue de Chartres, 45067, Orléans cedex 2, B.P. 6759, France
| | - Antoine Valery
- Département d'Informations Médicales, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| |
Collapse
|
39
|
Shatzer HE, Russo FA. Brightening the Study of Listening Effort with Functional Near-Infrared Spectroscopy: A Scoping Review. Semin Hear 2023; 44:188-210. [PMID: 37122884 PMCID: PMC10147513 DOI: 10.1055/s-0043-1766105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Listening effort is a long-standing area of interest in auditory cognitive neuroscience. Prior research has used multiple techniques to shed light on the neurophysiological mechanisms underlying listening during challenging conditions. Functional near-infrared spectroscopy (fNIRS) is growing in popularity as a tool for cognitive neuroscience research, and its recent advances offer many potential advantages over other neuroimaging modalities for research related to listening effort. This review introduces the basic science of fNIRS and its uses for auditory cognitive neuroscience. We also discuss its application in recently published studies on listening effort and consider future opportunities for studying effortful listening with fNIRS. After reading this article, the learner will know how fNIRS works and summarize its uses for listening effort research. The learner will also be able to apply this knowledge toward generation of future research in this area.
Collapse
Affiliation(s)
- Hannah E. Shatzer
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Frank A. Russo
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
40
|
Putzolu M, Samogin J, Bonassi G, Cosentino C, Mezzarobba S, Botta A, Avanzino L, Mantini D, Vato A, Pelosin E. Are Motor Imagery Ability scores related to cortical activity during gait imagery? RESEARCH SQUARE 2023:rs.3.rs-2777321. [PMID: 37090654 PMCID: PMC10120778 DOI: 10.21203/rs.3.rs-2777321/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography (hdEEG) in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the β band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). VMIQ was positively correlated with avgERD of frontal and cingulate areas, whereas IA SCORE was positively correlated with avgERD of left inferior frontal and superior temporal regions. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.
Collapse
|
41
|
Cockx H, Oostenveld R, Tabor M, Savenco E, van Setten A, Cameron I, van Wezel R. fNIRS is sensitive to leg activity in the primary motor cortex after systemic artifact correction. Neuroimage 2023; 269:119880. [PMID: 36693595 DOI: 10.1016/j.neuroimage.2023.119880] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND functional near-infrared spectroscopy (fNIRS) is an increasingly popular tool to study cortical activity during movement and gait that requires further validation. This study aimed to assess (1) whether fNIRS can detect the difficult-to-measure leg area of the primary motor cortex (M1) and distinguish it from the hand area; and (2) whether fNIRS can differentiate between automatic (i.e., not requiring one's attention) and non-automatic movement processes. Special attention was attributed to systemic artifacts (i.e., changes in blood pressure, heart rate, breathing) which were assessed and corrected by short channels, i.e., fNIRS channels which are mainly sensitive to superficial scalp hemodynamics. METHODS Twenty-three seated, healthy participants tapped four fingers on a keyboard or tapped the right foot on four squares on the floor in a specific order given by a 12-digit sequence (e.g., 434141243212). Two different sequences were executed: a beforehand learned (i.e., automatic) version and a newly learned (i.e., non-automatic) version. A 36-channel fNIRS device including 12 short channels covered multiple motor-related cortical areas including M1. The fNIRS data were analyzed with a general linear model (GLM). Correlation between the expected functional hemodynamic responses (i.e. task regressor) and the short channels (i.e. nuisance regressors), necessitated performing a separate short channel regression instead of integrating them in the GLM. RESULTS Consistent with the M1 somatotopy, we found significant HbO increases of very large effect size in the lateral M1 channels during finger tapping (Cohen's d = 1.35, p<0.001) and significant HbO increases of moderate effect size in the medial M1 channels during foot tapping (Cohen's d = 0.8, p<0.05). The cortical activity differences between automatic and non-automatic tasks were not significantly different. Importantly, leg movements produced large systemic fluctuations, which were adequately removed by the use of all available short channels. DISCUSSION Our results indicate that fNIRS is sensitive to leg activity in M1, though the sensitivity is lower than for finger activity and requires rigorous correction for systemic fluctuations. We furthermore highlight that systemic artifacts may result in an unreliable GLM analysis when short channels show signals that are similar to the expected hemodynamic responses.
Collapse
Affiliation(s)
- Helena Cockx
- Donders Institute for Brain, Cognition and Behaviour, Biophysics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands.
| | - Robert Oostenveld
- Donders Institute for Brain Cognition and Behaviour, Donders Center for Cognitive Neuroimaging, Radboud University, Kapittelweg 29, 6525EN Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Nobels Väg 9, D2:D235, 17177 Stockholm, Sweden.
| | - Merel Tabor
- Donders Institute for Brain, Cognition and Behaviour, Biophysics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands
| | - Ecaterina Savenco
- Donders Institute for Brain, Cognition and Behaviour, Biophysics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands
| | - Arne van Setten
- Donders Institute for Brain, Cognition and Behaviour, Biophysics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands
| | - Ian Cameron
- Donders Institute for Brain, Cognition and Behaviour, Biophysics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands; OnePlanet Research Center, Toernooiveld 300, 6525EC Nijmegen, the Netherlands; Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Drienerlolaan 5, 7522NB Enschede, the Netherlands.
| | - Richard van Wezel
- Donders Institute for Brain, Cognition and Behaviour, Biophysics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands; Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Drienerlolaan 5, 7522NB Enschede, the Netherlands.
| |
Collapse
|
42
|
Patelaki E, Foxe JJ, Mazurek KA, Freedman EG. Young adults who improve performance during dual-task walking show more flexible reallocation of cognitive resources: a mobile brain-body imaging (MoBI) study. Cereb Cortex 2023; 33:2573-2592. [PMID: 35661873 PMCID: PMC10016048 DOI: 10.1093/cercor/bhac227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION In young adults, pairing a cognitive task with walking can have different effects on gait and cognitive task performance. In some cases, performance clearly declines whereas in others compensatory mechanisms maintain performance. This study investigates the preliminary finding of behavioral improvement in Go/NoGo response inhibition task performance during walking compared with sitting, which was observed at the piloting stage. MATERIALS AND METHODS Mobile brain/body imaging (MoBI) was used to record electroencephalographic (EEG) activity, 3-dimensional (3D) gait kinematics and behavioral responses in the cognitive task, during sitting or walking on a treadmill. RESULTS In a cohort of 26 young adults, 14 participants improved in measures of cognitive task performance while walking compared with sitting. These participants exhibited walking-related EEG amplitude reductions over frontal scalp regions during key stages of inhibitory control (conflict monitoring, control implementation, and pre-motor stages), accompanied by reduced stride-to-stride variability and faster responses to stimuli compared with those who did not improve. In contrast, 12 participants who did not improve exhibited no EEG amplitude differences across physical condition. DISCUSSION The neural activity changes associated with performance improvement during dual tasking hold promise as cognitive flexibility markers that can potentially help assess cognitive decline in aging and neurodegeneration.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall Rochester, NY 14627, United States
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Kevin A Mazurek
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Joseph Building 4-184W, 200 First Street SW, Rochester, MN 55905, United States
- Well Living Lab, Well Living Lab, Inc., 221 First Avenue SW, Rochester, MN 55902, United States
| | | |
Collapse
|
43
|
Polskaia N, St-Amant G, Fraser S, Lajoie Y. Involvement of the prefrontal cortex in motor sequence learning: A functional near-infrared spectroscopy (fNIRS) study. Brain Cogn 2023; 166:105940. [PMID: 36621187 DOI: 10.1016/j.bandc.2022.105940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Our previous functional near-infrared spectroscopy (fNIRS) study on motor sequence learning (Polskaia et al., 2020) did not detect the same decrease in activity in the left dorsolateral prefrontal cortex (DLPFC) associated with movement automaticity, as reported by Wu et al. (2004). This was partly attributed to insufficient practice time to reach neural efficiency. Therefore, we sought to expand on our previous work to better understand the contribution of the prefrontal cortex (PFC) to motor sequence learning by examining learning across a longer period of time. Participants were randomly assigned to one of two groups: control or trained. fNIRS was acquired at three time points: pre-test, post-test, and retention. Participants performed four sequences (S1, S2, S3, and S4) of right-hand finger tapping. The trained group also underwent four days of practice of S1 and S2. No group differences in the left DLPFC and ventrolateral (VLPFC) were found between sessions for S1 and S2. Our findings revealed increased contribution from the right VLPFC in post-test for the trained group, which may reflect the active retrieval of explicit information from long-term memory. Our results suggest that despite additional practice time, explicit motor sequence learning requires the continued involvement of the PFC.
Collapse
Affiliation(s)
- Nadia Polskaia
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Canada.
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| |
Collapse
|
44
|
Kim H, Onate JA, Criss CR, Simon JE, Mischkowski D, Grooms DR. The relationship between drop vertical jump action-observation brain activity and kinesiophobia after anterior cruciate ligament reconstruction: A cross-sectional fMRI study. Brain Behav 2023; 13:e2879. [PMID: 36602922 PMCID: PMC9927857 DOI: 10.1002/brb3.2879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Injury and reconstruction of anterior cruciate ligament (ACL) result in central nervous system alteration to control the muscles around the knee joint. Most individuals with ACL reconstruction (ACLR) experience kinesiophobia which can prevent them from returning to activity and is associated with negative outcomes after ACLR. However, it is unknown if kinesiophobia alters brain activity after ACL injury. OBJECTIVES To compare brain activity between an ACLR group and matched uninjured controls during an action-observation drop vertical jump (AO-DVJ) paradigm and to explore the association between kinesiophobia and brain activity in the ACLR group. METHODS This cross-sectional study enrolled 26 individuals, 13 with ACLR (5 males and 8 females, 20.62 ± 1.93 years, 1.71 ± 0.1 m, 68.42 ± 14.75 kg) and 13 matched uninjured controls (5 males and 8 females, 22.92 ± 3.17 years, 1.74 ± 0.10 m, 70.48 ± 15.38 kg). Individuals were matched on sex and activity level. Participants completed the Tampa Scale of Kinesiophobia-11 (TSK-11) to evaluate the level of movement-related fear. To assay the brain activity associated with a functional movement, the current study employed an action-observation/motor imagery paradigm during functional magnetic resonance imaging (fMRI). RESULTS The ACLR group had lower brain activity in the right ventrolateral prefrontal cortex relative to the uninjured control group. Brain activity of the left cerebellum Crus I and Crus II, the right cerebellum lobule IX, amygdala, middle temporal gyrus, and temporal pole were positively correlated with TSK-11 scores in the ACLR group. CONCLUSION Brain activity for the AO-DVJ paradigm was different between the ACLR group and uninjured controls. Secondly, in participants with ACLR, there was a positive relationship between TSK-11 scores and activity in brain areas engaged in fear and cognitive processes during the AO-DVJ paradigm.
Collapse
Affiliation(s)
- HoWon Kim
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Translational Biomedical Sciences Program, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - James A Onate
- Division of Athletic Training, School of Health and Rehabilitation Sciences, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Cody R Criss
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Heritage Fellow, Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Janet E Simon
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Dominik Mischkowski
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Psychology Department, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA.,Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| |
Collapse
|
45
|
Son M, Jung J, Hwang D, Beck D, Park W. The effect of backpack weight on the performance of basic short-term/working memory tasks while walking along a pre-determined route. ERGONOMICS 2023; 66:227-245. [PMID: 35532033 DOI: 10.1080/00140139.2022.2075941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
This study investigated possible backpack weight effects on the performance of three basic short-term/working memory (STM/WM) tasks conducted concurrently with the physical task of route walking. The STM/WM tasks were the Corsi block-tapping, digit span, and 3-back tasks, and, were employed to examine the visuo-spatial sketchpad, phonological loop and central executive components of the WM system. Four backpack weight levels (0%, 15%, 25% and 40% of body mass) were considered. Thirty participants conducted the three experimental tasks requiring physical-cognitive multitasking. Data analyses revealed that: (1) increased backpack weight resulted in decreases in the performance of the Corsi block-tapping and the 3-back task, but (2) backpack weight did not significantly affect the digit span task performance. The study results suggest that reducing backpack weight could benefit the performance of various cognitive tasks during route walking. The study findings may be useful for the ergonomics design of body-worn equipment and human-system interfaces.Practitioner summary: This study examined the backpack weight effects on the performance of three basic short-term/working memory tasks conducted concurrently with the physical task of route walking. The study revealed that reducing backpack weight could benefit various cognitive tasks during physical-cognitive multitasking, especially cognitive tasks that require visuospatial processing and executive control.
Collapse
Affiliation(s)
- Minseok Son
- Digital Appliances Business, Samsung Electronics Co. Ltd, Seoul, South Korea
| | - Jaemoon Jung
- Department of Industrial Engineering, Seoul National University, Seoul, South Korea
| | - Dongwook Hwang
- School of Media and Communication, Kwangwoon University, Seoul, South Korea
| | - Donghyun Beck
- Department of Safety Engineering, Incheon National University, Incheon, South Korea
| | - Woojin Park
- Department of Industrial Engineering, Seoul National University, Seoul, South Korea
- Department of Industrial Engineering and Institute for Industrial Systems Innovation, Seoul National University, Seoul, South Korea
| |
Collapse
|
46
|
He X, Lei L, Yu G, Lin X, Sun Q, Chen S. Asymmetric cortical activation in healthy and hemiplegic individuals during walking: A functional near-infrared spectroscopy neuroimaging study. Front Neurol 2023; 13:1044982. [PMID: 36761919 PMCID: PMC9905619 DOI: 10.3389/fneur.2022.1044982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
Background This study investigated the cortical activation mechanism underlying locomotor control during healthy and hemiplegic walking. Methods A total of eight healthy individuals with right leg dominance (male patients, 75%; mean age, 40.06 ± 4.53 years) and six post-stroke patients with right hemiplegia (male patients, 86%; mean age, 44.41 ± 7.23 years; disease course, 5.21 ± 2.63 months) completed a walking task at a treadmill speed of 2 km/h and a functional electrical stimulation (FES)-assisted walking task, respectively. Functional near-infrared spectroscopy (fNIRS) was used to detect hemodynamic changes in neuronal activity in the bilateral sensorimotor cortex (SMC), supplementary motor area (SMA), and premotor cortex (PMC). Results fNIRS cortical mapping showed more SMC-PMC-SMA locomotor network activation during hemiplegic walking than during healthy gait. Furthermore, more SMA and PMC activation in the affected hemisphere was observed during the FES-assisted hemiplegic walking task than during the non-FES-assisted task. The laterality index indicated asymmetric cortical activation during hemiplegic gait, with relatively greater activation in the unaffected (right) hemisphere during hemiplegic gait than during healthy walking. During hemiplegic walking, the SMC and SMA were predominantly activated in the unaffected hemisphere, whereas the PMC was predominantly activated in the affected hemisphere. No significant differences in the laterality index were noted between the other groups and regions (p > 0.05). Conclusion An important feature of asymmetric cortical activation was found in patients with post-stroke during the walking process, which was the recruitment of more SMC-SMA-PMC activation than in healthy individuals. Interestingly, there was no significant lateralized activation during hemiplegic walking with FES assistance, which would seem to indicate that FES may help hemiplegic walking recover the balance in cortical activation. These results, which are worth verifying through additional research, suggest that FES used as a potential therapeutic strategy may play an important role in motor recovery after stroke.
Collapse
Affiliation(s)
- Xiaokuo He
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China
| | - Lei Lei
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China
| | - Guo Yu
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China
| | - Xin Lin
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China
| | - Qianqian Sun
- Department of Rehabilitative Medicine, Xiangyang Central Hospital, Xiangyang, Hubei, China,Qianqian Sun ✉
| | - Shanjia Chen
- Department of Rehabilitative Medicine, Fifth Hospital of Xiamen, Xiamen, China,Department of Rehabilitative Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China,*Correspondence: Shanjia Chen ✉
| |
Collapse
|
47
|
Yatsyk LM, Karkashadze GA, Altunin VV, Povalyaeva IA, Prudnikov PA, Namazova-Baranova LS, Vishneva EA. Functional Near-Infrared Spectroscopy as Promising Method for Studying Cognitive Functions in Children. CURRENT PEDIATRICS 2023. [DOI: 10.15690/vsp.v21i6.2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The description of new promising method of functional neuroimaging, functional near-infrared spectroscopy (fNIRS), is presented. General information on functional tomography and its features in children are given. Brief description on the history of fNIRS development, the method itself, its advantages and disadvantages are covered. fNIRS implementation areas in science and clinical practice are clarified. fNIRS features are described, and the role of this method among others in functional tomography is determined. It was noted that fNIRS significantly complements other research and diagnostic methods, including functional magnetic resonance imaging, electroencephalography, induced potentials, thereby expanding the range of scientific and clinical issues that can be solved by functional neuroimaging.
Collapse
Affiliation(s)
- L. M. Yatsyk
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - G. A. Karkashadze
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - V. V. Altunin
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - I. A. Povalyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - P. A. Prudnikov
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - L. S. Namazova-Baranova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | - E. A. Vishneva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| |
Collapse
|
48
|
Korivand S, Jalili N, Gong J. Experiment protocols for brain-body imaging of locomotion: A systematic review. Front Neurosci 2023; 17:1051500. [PMID: 36937690 PMCID: PMC10014824 DOI: 10.3389/fnins.2023.1051500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Human locomotion is affected by several factors, such as growth and aging, health conditions, and physical activity levels for maintaining overall health and well-being. Notably, impaired locomotion is a prevalent cause of disability, significantly impacting the quality of life of individuals. The uniqueness and high prevalence of human locomotion have led to a surge of research to develop experimental protocols for studying the brain substrates, muscle responses, and motion signatures associated with locomotion. However, from a technical perspective, reproducing locomotion experiments has been challenging due to the lack of standardized protocols and benchmarking tools, which impairs the evaluation of research quality and the validation of previous findings. Methods This paper addresses the challenges by conducting a systematic review of existing neuroimaging studies on human locomotion, focusing on the settings of experimental protocols, such as locomotion intensity, duration, distance, adopted brain imaging technologies, and corresponding brain activation patterns. Also, this study provides practical recommendations for future experiment protocols. Results The findings indicate that EEG is the preferred neuroimaging sensor for detecting brain activity patterns, compared to fMRI, fNIRS, and PET. Walking is the most studied human locomotion task, likely due to its fundamental nature and status as a reference task. In contrast, running has received little attention in research. Additionally, cycling on an ergometer at a speed of 60 rpm using fNIRS has provided some research basis. Dual-task walking tasks are typically used to observe changes in cognitive function. Moreover, research on locomotion has primarily focused on healthy individuals, as this is the scenario most closely resembling free-living activity in real-world environments. Discussion Finally, the paper outlines the standards and recommendations for setting up future experiment protocols based on the review findings. It discusses the impact of neurological and musculoskeletal factors, as well as the cognitive and locomotive demands, on the experiment design. It also considers the limitations imposed by the sensing techniques used, including the acceptable level of motion artifacts in brain-body imaging experiments and the effects of spatial and temporal resolutions on brain sensor performance. Additionally, various experiment protocol constraints that need to be addressed and analyzed are explained.
Collapse
Affiliation(s)
- Soroush Korivand
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, United States
- Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States
| | - Nader Jalili
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Jiaqi Gong
- Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jiaqi Gong
| |
Collapse
|
49
|
Irisawa H, Inui N, Mizushima T, Watanabe H. Cerebral Blood Deoxygenation by a Postural Change Detected by Near-Infrared Spectroscopy Has a Close Association with Cerebral Infarction. Brain Sci 2022; 12:1419. [PMID: 36291352 PMCID: PMC9599262 DOI: 10.3390/brainsci12101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The recent introduction of near-infrared spectroscopy has enabled the monitoring of cerebral blood flow in real-time. Previous studies have shown that blood flow velocity is a predictor of cardiovascular disease. We hypothesized that cerebral oxygenation with a change in posture is a predictor for cerebral infarction. We designed a cross-sectional study to investigate the relationship between postural-related changes in cerebral oxygenation and a history of chronic cerebral infarction. METHODS A total of 100 consecutive participants were enrolled in this study. We evaluated changes in cerebral oxygenation with a change in posture from the supine to the upright position in the bilateral forehead. The association between a decline in cerebral oxygenation and chronic cerebral infarction was analyzed with multiple logistic regression adjusted for covariates. RESULTS Cerebral blood oxygenation increased in 52 participants and decreased in 48 participants with a postural change. The prevalence of decreased cerebral oxygenation was 76.3% in participants with chronic cerebral infarction. Multiple logistic regression analysis showed that a decline in cerebral oxygenation upon a postural change was strongly associated with chronic cerebral infarction (adjusted odds ratio: 3.42, p = 0.025). CONCLUSIONS Cerebral blood oxygenation upon a postural change could be a useful predictor for cerebral infarction.
Collapse
Affiliation(s)
- Hiroshi Irisawa
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Rehabilitation Medicine, Dokkyo Medical University, Shimotsugagun 321-0293, Japan
- Department of Rehabilitation Medicine, Enshu Hospital, Hamamatsu 430-0929, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takashi Mizushima
- Department of Rehabilitation Medicine, Dokkyo Medical University, Shimotsugagun 321-0293, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
50
|
Polskaia N, St-Amant G, Fraser S, Lajoie Y. Neural Correlates of Dual-Task Processing following Motor Sequence Learning: A Functional Near-Infrared Spectroscopy (fNIRS) Study. J Mot Behav 2022; 55:92-101. [PMID: 36210346 DOI: 10.1080/00222895.2022.2131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The current study used functional near-infrared spectroscopy (fNIRS) to examine cerebral oxygenation changes in the prefrontal cortex (PFC) associated with dual-task processing before and after motor sequence learning. Participants performed self-initiated sequential finger movements that were 4 and 12 units in length with a visual letter-counting task. After practice, dual-task sequence-4 performance revealed decreased activity in the right dorsolateral PFC, medial PFC, and orbitofrontal cortex. However, dual-task sequence-12 performance revealed increased activity in the right ventrolateral PFC when compared to the left hemisphere. The findings suggest that dual-task interference was reduced following practice for dual-task sequence-4. The results also suggest that increased right hemisphere activation is needed to maintain performance when the primary sequential task (e.g., dual-task sequence-12) has a high level of difficulty.
Collapse
Affiliation(s)
- Nadia Polskaia
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|