1
|
Liu Y, Qiao F, Xu Z. Detection of mussels contaminated with cadmium by near-infrared reflectance spectroscopy based on RELS-TSVM. J Food Sci 2024. [PMID: 39495598 DOI: 10.1111/1750-3841.17471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
Eating mussels contaminated with cadmium (Cd) can seriously harm health. In this study, a non-destructive and rapid detection method for Cd-contaminated mussels based on near-infrared reflectance spectroscopy was studied. The spectral data of Cd-contaminated and non-contaminated mussels were collected in the range of 950-1700 nm. The model based on a robust energy-based least squares twin support vector machine (RELS-TSVM) was established to detect Cd-contaminated mussels. The influence of parameters on the RELS-TSVM model was analyzed, and the most suitable parameters were determined. The average accuracy of the proposed RELS-TSVM model in detecting Cd-contaminated mussels reached 99.92%, which was better than other twin support vector machine-derived models. For test datasets with different kinds of spectral noises (Gaussian noise, baseline shift, stray light, and wavelength shift), the RELS-TSVM model had a high robustness for noise disturbance. The results show that near-infrared spectroscopy combined with the RELS-TSVM model can realize the detection of Cd-contaminated mussels, which can provide technical support for the monitoring of heavy metals in shellfish. PRACTICAL APPLICATION: The method of detecting Cd-contaminated mussels by the NIRS has important practical significance for ensuring the safety of consumers. It provides a new way for the quality assessment and safety detection of shellfish and provides a technical basis for the marine environment assessment and management.
Collapse
Affiliation(s)
- Yao Liu
- School of Electronic and Electrical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Fu Qiao
- School of Computer Science and Intelligence Education, Lingnan Normal University, Zhanjiang, China
| | - Zhen Xu
- Science and Technology Extension Department, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Satarug S. Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity? Cells 2023; 13:83. [PMID: 38201287 PMCID: PMC10778334 DOI: 10.3390/cells13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Lin HC, Chou SH, Fan PC, Zhu Z, Pan J, Li J, Chang CH, Wu VCC, Chen SW, Chu PH. The association between Day-1 urine cadmium excretion and 30-day mortality in patients with acute myocardial infarction: A multi-institutional cohort study. Int J Cardiol 2023; 371:397-401. [PMID: 36103945 DOI: 10.1016/j.ijcard.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this study was to investigate the relationship between day-1 urine cadmium excretion and 30-day mortality in patients with acute myocardial infarction (AMI) at two centers. METHODS A total of 286 patients (222 males and 64 females) with AMI from Huashan Hospital, Shanghai and Chang Gung Memorial Hospital, Taiwan were enrolled. Basic vital signs, history, laboratory results, and day-1 urine excretion of cadmium (D1UECd) were recorded. Disease severity was assessed during the first hospitalization using Killip score, APACHE II score, and SOFA score. The main endpoint was 30-day mortality. RESULTS Among the 286 patients, 218 were from Chung Gung Memorial Hospital and 68 were from Huashan Hospital with an average age of 64.2 years. Forty (14%) patients died within 30 days after AMI. The average 24-h urine cadmium level among the Chung Gung Memorial Hospital cohort was 1.5 ± 2.4 μg compared to 1.7 ± 1.7 μg among Huashan Hospital cohort, both higher than the local populations. A higher D1UECd level was significantly associated with a greater risk of 30-day mortality (odds ratio 1.68, 95% confidence interval 1.30-2.16) after controlling for a number of covariates. The ability of D1UECd to discriminate 30-day mortality was excellent, with a very high area under the curve (87.2%, 95% CI 82.0-92.5%). CONCLUSION D1UECd was positively correlated and an independent predictor of 30-day mortality in the enrolled AMI patients. D1UECd may be a simple, objective prognostic scoring system in AMI patients.
Collapse
Affiliation(s)
- Hung-Chen Lin
- Department of Cardiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Shing-Hsien Chou
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Pei-Chun Fan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taiwan
| | - Zhidong Zhu
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jian Li
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Chih-Hsiang Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taiwan
| | - Victor Chien-Chia Wu
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Shao-Wei Chen
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan; Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
5
|
Wu D, Shi Y, Wang M, Ran M, Wang Y, Tian L, Ye H, Han F. A baseline study on the distribution characteristics and health risk assessment of cadmium in edible tissues of the swimming crabs (Portunus trituberculatus) from Shanghai, China. MARINE POLLUTION BULLETIN 2022; 185:114253. [PMID: 36279728 DOI: 10.1016/j.marpolbul.2022.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study analyzed the cadmium accumulation differences in edible tissues of the swimming crabs (Portunus trituberculatus) from Shanghai markets, which were mostly caught in the East China Sea, and the human health risk of cadmium from crabs consumption was evaluated. A total of 78 swimming crabs were collected, and the white meat and brown meat were separated for the cadmium analysis by Inductively coupled plasma mass spectrometry. The results revealed that there was difference in cadmium content in brown meat (1.260-16.303 mg/kg) and white meat (0.005-0.542 mg/kg). Furthermore, pollution index (Pi) results showed that only the claw muscle was at low contamination levels, while other edible tissues had varying degrees of contamination. Based on the health risk assessment by estimated daily intake (EDI), target hazard quotient (THQ) and target cancer risk (TCR), the consumption of the swimming crabs in Shanghai is considered safe, however, the accumulation of cadmium in the brown meat of swimming crabs deserves further attention and evaluation.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yongfu Shi
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| | - Mengyuan Wang
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Maoxia Ran
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan Wang
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Liangliang Tian
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Hongli Ye
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Feng Han
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
6
|
Xie S, Zhang R, Li Z, Liu C, Xiang W, Lu Q, Chen Y, Yu Q. Indispensable role of melatonin, a scavenger of reactive oxygen species (ROS), in the protective effect of Akkermansia muciniphila in cadmium-induced intestinal mucosal damage. Free Radic Biol Med 2022; 193:447-458. [PMID: 36328351 DOI: 10.1016/j.freeradbiomed.2022.10.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The gastrointestinal tract is the main target of cadmium toxicity. However, whether Akkermansia muciniphila (A. muciniphila), which has been reported to be the next generation of promising probiotics, can alleviate cadmium-induced intestinal damage has not been investigated. In this study, we found that compared to the cadmium exposure group, mice gavaged with A. muciniphila showed less severe intestinal mucosal damage, with improved bodyweight, colon length, a decline in inflammation, and significantly increased glutathione and goblet cell numbers. Meanwhile, melatonin was interestingly found to be strikingly increased after A. muciniphila treatment. We then demonstrated that melatonin also could ameliorate the intestinal mucosal damage caused by cadmium through scavenging reactive oxygen species (ROS) and increasing the number of goblet cells. Furthermore, mice treated with inhibitors had a low level of melatonin and could not reproduce the beneficial effects of the A. muciniphila. Our results implied that the regulation of melatonin production by A. muciniphila is associated with an increase in enterochromaffin cells number, which determine melatonin secretion. This study indicated that the A. muciniphila-melatonin axis reduces cadmium-induced damage by increasing the goblet cells and scavenging the ROS, which may guide the prevention of the toxic effects of heavy metals.
Collapse
Affiliation(s)
- Shuang Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Rui Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Zhaoyan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Chunru Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Weiwei Xiang
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, 200335, PR China
| | - Qianqian Lu
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, 200335, PR China
| | - Yanyu Chen
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, 200335, PR China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China; Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, 200335, PR China.
| |
Collapse
|
7
|
Mitigation of Cadmium Toxicity through Modulation of the Frontline Cellular Stress Response. STRESSES 2022. [DOI: 10.3390/stresses2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is an environmental toxicant of public health significance worldwide. Diet is the main Cd exposure source in the non-occupationally exposed and non-smoking populations. Metal transporters for iron (Fe), zinc (Zn), calcium (Ca), and manganese (Mn) are involved in the assimilation and distribution of Cd to cells throughout the body. Due to an extremely slow elimination rate, most Cd is retained by cells, where it exerts toxicity through its interaction with sulfur-containing ligands, notably the thiol (-SH) functional group of cysteine, glutathione, and many Zn-dependent enzymes and transcription factors. The simultaneous induction of heme oxygenase-1 and the metal-binding protein metallothionein by Cd adversely affected the cellular redox state and caused the dysregulation of Fe, Zn, and copper. Experimental data indicate that Cd causes mitochondrial dysfunction via disrupting the metal homeostasis of this organelle. The present review focuses on the adverse metabolic outcomes of chronic exposure to low-dose Cd. Current epidemiologic data indicate that chronic exposure to Cd raises the risk of type 2 diabetes by several mechanisms, such as increased oxidative stress, inflammation, adipose tissue dysfunction, increased insulin resistance, and dysregulated cellular intermediary metabolism. The cellular stress response mechanisms involving the catabolism of heme, mediated by heme oxygenase-1 and -2 (HO-1 and HO-2), may mitigate the cytotoxicity of Cd. The products of their physiologic heme degradation, bilirubin and carbon monoxide, have antioxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
|
8
|
Abstract
Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The present review focuses on the role of zinc (Zn), a nutritionally essential metal, to protect against the cytotoxicity and carcinogenicity of Cd in urinary bladder epithelial cells. The stress responses and defense mechanisms involving the low-molecular-weight metal binding protein, metallothionein (MT), are highlighted. The efflux and influx transporters of the ZnT and Zrt-/Irt-like protein (ZIP) gene families are discussed with respect to their putative role in retaining cellular Zn homeostasis. Among fourteen ZIP family members, ZIP8 and ZIP14 mediate Cd uptake by cells, while ZnT1 is among ten ZnT family members solely responsible for efflux of Zn (Cd), representing cellular defense against toxicity from excessively high Zn (Cd) intake. In theory, upregulation of the efflux transporter ZnT1 concomitant with the downregulation of influx transporters such as ZIP8 and ZIP14 can prevent Cd accumulation by cells, thereby increasing tolerance to Cd toxicity. To link the perturbation of Zn homeostasis, reflected by the aberrant expression of ZnT1, ZIP1, ZIP6, and ZIP10, with malignancy, tolerance to Cd toxicity acquired during Cd-induced transformation of a cell model of human urothelium, UROtsa, is discussed as a particular example.
Collapse
|
9
|
Cadmium and Lead Exposure, Nephrotoxicity, and Mortality. TOXICS 2020; 8:toxics8040086. [PMID: 33066165 PMCID: PMC7711868 DOI: 10.3390/toxics8040086] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
The present review aims to provide an update on health risks associated with the low-to-moderate levels of environmental cadmium (Cd) and lead (Pb) to which most populations are exposed. Epidemiological studies examining the adverse effects of coexposure to Cd and Pb have shown that Pb may enhance the nephrotoxicity of Cd and vice versa. Herein, the existing tolerable intake levels of Cd and Pb are discussed together with the conventional urinary Cd threshold limit of 5.24 μg/g creatinine. Dietary sources of Cd and Pb and the intake levels reported for average consumers in the U.S., Spain, Korea, Germany and China are summarized. The utility of urine, whole blood, plasma/serum, and erythrocytes to quantify exposure levels of Cd and Pb are discussed. Epidemiological studies that linked one of these measurements to risks of chronic kidney disease (CKD) and mortality from common ailments are reviewed. A Cd intake level of 23.2 μg/day, which is less than half the safe intake stated by the guidelines, may increase the risk of CKD by 73%, and urinary Cd levels one-tenth of the threshold limit, defined by excessive ß2-microglobulin excretion, were associated with increased risk of CKD, mortality from heart disease, cancer of any site and Alzheimer's disease. These findings indicate that the current tolerable intake of Cd and the conventional urinary Cd threshold limit do not provide adequate health protection. Any excessive Cd excretion is probably indicative of tubular injury. In light of the evolving realization of the interaction between Cd and Pb, actions to minimize environmental exposure to these toxic metals are imperative.
Collapse
|
10
|
Almenara CCP, Oliveira TF, Padilha AS. The Role of Antioxidants in the Prevention of Cadmium-Induced Endothelial Dysfunction. Curr Pharm Des 2020; 26:3667-3675. [DOI: 10.2174/1381612826666200415172338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
Background:
Cadmium is a worldwide spread toxicant that accumulates in tissues and affects many
organs, mainly through oxidative damage. Oxidative stress is often associated with cardiovascular diseases and,
when it affects vessels, it induces endothelial dysfunction, which, in turn, could precipitate atherosclerosis and
hypertension. Therefore, it is reasonable to suggest antioxidant supplementation as a therapy against cadmiuminduced
endothelial dysfunction.
Objective:
This literature review aims to present the mechanisms involving oxidative stress in which cadmium
induces endothelial dysfunction and the benefits of antioxidant supplementation as a therapeutic strategy against
its harmful effects.
Methods:
On PubMed Central, articles that contemplated studies on cadmium intoxication and associated oxidative
stress with endothelial dysfunction as well as articles that reported the use of antioxidant supplementation in
an attempt to prevent or avoid endothelial dysfunction induced by cadmium exposure were selected.
Results:
Most of the studies that associated cadmium intoxication with endothelial dysfunction suggested oxidative
stress as the major mechanism for this damage. Furthermore, experimental studies also revealed that the
administration of substances with antioxidant properties, such as ascorbic acid and curcumin, has beneficial effects
on the prevention of such dysfunction, reducing reactive oxygen species within the vessels, preventing a
reduction in the amount of glutathione and the increase in blood pressure observed in animals exposed to cadmium.
Conclusion:
Antioxidant therapy demonstrated to be a potential treatment to reduce cardiovascular injuries provoked
by cadmium, but more studies are needed to determine the best antioxidant substance and dose to treat or
avoid this complication.
Collapse
Affiliation(s)
- Camila Cruz Pereira Almenara
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Thiago F. Oliveira
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Alessandra S. Padilha
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| |
Collapse
|
11
|
Wang J, Zhang Y, Fang Z, Sun L, Wang Y, Liu Y, Xu D, Nie F, Gooneratne R. Oleic Acid Alleviates Cadmium-Induced Oxidative Damage in Rat by Its Radicals Scavenging Activity. Biol Trace Elem Res 2019; 190:95-100. [PMID: 30267311 DOI: 10.1007/s12011-018-1526-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
Toxic heavy metal cadmium wildly pollutes the environment and threats the human health. Effective treatment of cadmium-induced toxicity and organ damage is an important issue. Cadmium causes organ damage through inducing oxidative stress. Our previous study also found oleic acid (OA) synthesis-related gene can confer resistance to cadmium and alleviate cadmium-induced stress in yeast. However, its alleviation mechanism on cadmium stress especially in animals is still unclear. In this study, the alleviative effects of OA on cadmium and cadmium-induced oxidative stress in rats were investigated. Oral administration of 10, 20, and 30 mg/kg/day OA can significantly increase the survival rate of rats intraperitoneally injected with 30 mg/kg/day cadmium continuously for 7 days. Similar to ascorbic acid (AA), OA can significantly reduce the cadmium-induced lipid peroxidation in multiple organs of rats. The investigation of OA on superoxide dismutase (SOD) activity showed that OA increased the SOD activity of cadmium-treated rat organs. More important, OA reduced the level of superoxide radical O2- of cadmium-treated rat organs. And OA exhibited a strong DPPH radicals scavenging activity at dose of 10, 20 and 30 mg/mL, which may contributed to alleviating cadmium-induced oxidative stress. This study revealed that OA could significantly alleviate cadmium stress via reducing cadmium-induced lipid peroxidation and SOD activity inhibition through its radicals scavenging activity.
Collapse
Affiliation(s)
- Jingwen Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China.
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Yaling Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China.
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Defeng Xu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Fanghong Nie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
12
|
Li JJ, Pang LN, Wu S, Zeng MD. Advances in the Effect of Heavy Metals in Aquatic Environment on the Health Risks for Bone. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/186/3/012057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Han SJ, Ha KH, Jeon JY, Kim HJ, Lee KW, Kim DJ. Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11396-409. [PMID: 26378560 PMCID: PMC4586682 DOI: 10.3390/ijerph120911396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/21/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is an environmental contaminant that has a direct impact on the gut microbiome. Perturbations in the gut microbiome have been linked to metabolic disorders associated with inflammation generated by lipopolysaccharide (LPS). We investigated the impact of Cd on the association between LPS and metabolic syndrome. The study population consisted of 200 apparently healthy subjects (30–64 years of age; 96 men, 104 women). Serum LPS and blood Cd concentrations were measured by ELISA and graphite furnace-atomic absorption spectrophotometry (GF-AAS), respectively. The highest LPS quartile was associated with a greater prevalence of metabolic syndrome in men. There was a significant association between LPS activity and metabolic syndrome in men with blood Cd concentrations higher than the 50th percentile (OR = 3.05, 95% CI = 1.39–6.70); however, this relationship was not significant in men with blood Cd concentrations lower than the 50th percentile. The results of this study provide evidence for a strong association between high LPS activity and the prevalence of metabolic syndrome in men with relatively high blood Cd concentrations. Therefore, exposure to Cd may potentiate the association between LPS and metabolic syndrome in men.
Collapse
Affiliation(s)
- Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | - Kyoung Hwa Ha
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| |
Collapse
|
14
|
Sato W, Sato Y. Midkine in nephrogenesis, hypertension and kidney diseases. Br J Pharmacol 2014; 171:879-87. [PMID: 24106831 DOI: 10.1111/bph.12418] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/31/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Midkine (MK; K; gene abbreviation, Mdk: mus musculus, MDK: homo sapiens) is a multifunctional heparin-binding growth factor that regulates cell growth, survival and migration as well as anti-apoptotic activity in nephrogenesis and development. Proximal tubular epithelial cells are the main sites of MK expression in the kidneys. The pathophysiological roles of MK are diverse, ranging from the development of acute kidney injury (AKI) to the progression of chronic kidney disease, often accompanied by hypertension, renal ischaemia and diabetic nephropathy. The obvious hypertension that develops in Mdk(+/+) mouse models of renal ablation compared with Mdk(-/-) mice eventually leads to progressive renal failure, such as glomerular sclerosis and tubulointerstitial damage associated with elevated plasma angiotensin (Ang) II levels. MK is also induced in the lung endothelium by oxidative stress and subsequently up-regulated by ACE, which hydrolyzes Ang II to induce further oxidative stress, thus accelerating MK generation; this leads to a vicious cycle of positive feedback in the MK-Ang II pathway. Kidney-lung interactions involving positive feedback between the renin-angiotensin system and MK might partly account for the pathogenesis of hypertension and kidney damage. MK is also involved in the pathogenesis of AKI and diabetic nephropathy through the recruitment of inflammatory cells. In contrast, MK plays a protective role against crescentic glomerulonephritis, by down-regulating plasminogen activator inhibitor-1. These diverse actions of MK might open up new avenues for targeted approaches to treating hypertension and various renal diseases. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- Waichi Sato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | |
Collapse
|
15
|
Lin JL, Chu PH, Lin-Tan DT, Hsu CW, Huang WH, Chen KH, Yen TH. Cadmium excretion predicting 30-day mortality and illness severity of patients with acute myocardial infarction. Int J Cardiol 2013; 168:4822-4. [PMID: 23890850 DOI: 10.1016/j.ijcard.2013.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
16
|
Satarug S, Moore MR. Emerging roles of cadmium and heme oxygenase in type-2 diabetes and cancer susceptibility. TOHOKU J EXP MED 2012; 228:267-88. [PMID: 23117262 DOI: 10.1620/tjem.228.267] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many decades after an outbreak of severe cadmium poisoning, known as Itai-itai disease, cadmium continues to pose a significant threat to human health worldwide. This review provides an update on the effects of this environmental toxicant cadmium, observed in numerous populations despite modest exposure levels. In addition, it describes the current knowledge on the link between heme catabolism and glycolysis. It examines novel functions of heme oxygenase-2 (HO-2) that protect against type 2-diabetes and obesity, which have emerged from diabetic/obese phenotypes of the HO-2 knockout mouse model. Increased cancer susceptibility in type-2 diabetes has been noted in several large cohorts. This is a cause for concern, given the high prevalence of type-2 diabetes worldwide. A lifetime exposure to cadmium is associated with pre-diabetes, diabetes, and overall cancer mortality with sex-related differences in specific types of cancer. Liver and kidney are target organs for the toxic effects of cadmium. These two organs are central to the maintenance of blood glucose levels. Further, inhibition of gluconeogenesis is a known effect of heme, while cadmium has the propensity to alter heme catabolism. This raises the possibility that cadmium may mimic certain HO-2 deficiency conditions, resulting in diabetic symptoms. Intriguingly, evidence has emerged from a recent study to suggest the potential interaction and co-regulation of HO-2 with the key regulator of glycolysis: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4). HO-2 could thus be critical to a metabolic switch to cancer-prone cells because the enzyme PFKFB and glycolysis are metabolic requirements for cell proliferation and resistance to apoptosis.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Center for Kidney Disease Research, University of Queensland School of Medicine, Brisbane, Australia.
| | | |
Collapse
|
17
|
Abdelaziz I, Elhabiby MI, Ashour AA. Toxicity of cadmium and protective effect of bee honey, vitamins C and B complex. Hum Exp Toxicol 2012; 32:362-70. [PMID: 23111883 DOI: 10.1177/0960327111429136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present work aimed to study the toxic effect of cadmium (Cd) on rabbits' blood indices, as well as the therapeutic effect of the antioxidant agents, vitamins C and B complex and bee honey on Cd intoxicated rabbits. Cadmium chloride (CdCl2) was injected subcutaneously at a dose of 3 mg/kg of body weight. The results showed a significant increase in serum glucose, triglycerides, cholesterol, total protein, albumin, globulin, urea and creatinine, compared to the control group. In addition, CdCl2 intoxication increased the levels of uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bilirubin. Concerning haematological parameters, the more obvious changes were an increase in mean corpuscular volume and a decrease in white blood cells count, platelets, lymphocytes, heamatocrit, haemoglobin and red blood cells count. Treatment of CdCl2-intoxicated animals with vitamins C and B complex and bee honey showed a decrease in the harmful effects of Cd by restoring haematological and biochemical changes. Bee honey treatment was the most effective in providing recoveries in the altered blood parameters.
Collapse
Affiliation(s)
- I Abdelaziz
- Biology Department, The Islamic University of Gaza, Palestine
| | | | | |
Collapse
|
18
|
Chen S, Xu Y, Xu B, Guo M, Zhang Z, Liu L, Ma H, Chen Z, Luo Y, Huang S, Chen L. CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cell death. J Neurochem 2011; 119:1108-18. [PMID: 21933187 DOI: 10.1111/j.1471-4159.2011.07493.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Life Sciences, Nanjing Normal University, Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Srinivasan P, Li YH, Hsu DZ, Su SB, Liu MY. Ostensibly ineffectual doses of cadmium and lipopolysaccharide causes liver damage in rats. Hum Exp Toxicol 2010; 30:624-35. [DOI: 10.1177/0960327110376553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various hepatotoxicants co-treated with lipopolysaccharide (LPS) have the potential to cause severe hepatic damage. Whether co-treatment with ostensibly ineffectual (without effect on customary clinical liver function tests, such as aspartate aminotransferase and alanine aminotransferase) doses of cadmium (Cd) and LPS cause liver damage is still unknown. We examined the effects of treating ostensibly ineffectual doses of Cd and LPS on liver dysfunction as well as on liver histopathology. We injected rats with saline only, Cd only, LPS only, or a single ostensibly ineffectual dose of Cd (100 μg/kg body weight) plus LPS (0.1 mg/kg body weight). After 6 h, the rats were killed and their liver damage was assessed. Co-treated with ostensibly ineffectual doses of Cd and LPS had higher levels of aspartate aminotransferase and alanine aminotransferase, hepatic lipid peroxidation, peroxynitrite, nitrite, and interleukin-1β (IL-1β), but lower levels of hepatic metallothionein (MT) than did that treated with saline only, Cd only, and LPS only. Histopathological analysis of Cd only and LPS only showed apparent liver damage, but Cd plus LPS showed marked hepatic damage. We conclude that co-treating the rats with ostensibly ineffectual doses of Cd and LPS is hepatotoxic. Cd promotes LPS-initiated oxidative-stress-associated liver damage by increasing IL-1β and decreasing MT levels in rats.
Collapse
Affiliation(s)
- Periasamy Srinivasan
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Ya-Hui Li
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Family Medicine, Chi-Mei Medical Center, Tainan, Taiwan, , Institute of Biomedical Engineering, Southern Taiwan University, Tainan, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan, . edu.tw, Sustainable Environment Research Centre, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Yazihan N, Mehtap Kacar Kocak, Akcil E, Erdem O, Sayal A. Role of midkine in cadmium-induced liver, heart and kidney damage. Hum Exp Toxicol 2010; 30:391-7. [DOI: 10.1177/0960327110372402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accumulation of the widespread environmental toxin cadmium (Cd) in tissues results in toxicity. Cd, which can induce a broad spectrum of biological effects, is a toxic substance and is associated with inflammation and apoptosis. Midkine (MK) has fibrinolytic, antiapoptotic, transforming, angiogenetic and chemotactic activities. After Cd toxicity, we found increased MK expression in liver cells in an in vitro cell culture model. The aim of this study was to determine the possibility of relationship between tissue MK expression levels, tumor necrosis factor α(TNF-α) levels and apoptosis in a chronic Cd toxicity model in rats. Male Wistar rats were exposed to Cd at the dose of 15 parts per million (ppm) for 8 weeks. MK levels were measured in kidney, heart and liver tissue by enzyme-linked-immunosorbent assay (ELISA). MK messenger RNA (mRNA) expression was evaluated by RT-PCR. Tissue apoptosis level was evaluated with tissue caspase-3 activity levels. Accumulation of Cd in liver is higher than the kidney and heart. Cd-treated rats had significantly higher tissue TNF-α and caspase-3 levels when compared with the control rats (p < 0.001). MK mRNA and protein levels were also significantly upregulated in the Cd-treated group (p < 0.05, p < 0.001, respectively). When compared with apoptosis in tissues, it was more prominent in the liver than kidney and heart. MK level is found increased 3, 1.7 and 1.3× folds in liver, kidney and heart, respectively. Our results showed that chronic Cd administration induces inflammation and apoptosis in rat liver, kidney and heart. MK involved in damage mechanisms of Cd-induced tissues. Further studies will show the underlying mechanism of increased MK expression in Cd toxicity.
Collapse
Affiliation(s)
- Nuray Yazihan
- Pathophysiology Department, Faculty of Medicine, Ankara University, Ankara, Turkey, Molecular Biology Unit, Ankara, Turkey,
| | - Mehtap Kacar Kocak
- Pathophysiology Department, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ethem Akcil
- Pathophysiology Department, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Onur Erdem
- Department of Phamaceutical Toxicology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Ahmet Sayal
- Department of Phamaceutical Toxicology, Gulhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
21
|
Apinan R, Tassaneeyakul W, Mahavorasirikul W, Satarug S, Kajanawart S, Vannaprasaht S, Ruenweerayut R, Na-Bangchang K. The influence of CYP2A6 polymorphisms and cadmium on nicotine metabolism in Thai population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:420-424. [PMID: 21784037 DOI: 10.1016/j.etap.2009.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 05/31/2023]
Abstract
We investigated the influence of genetic, cadmium exposure and smoking status, on cytochrome P450-mediated nicotine metabolism (CYP2A6) in 182 Thai subjects after receiving 2mg of nicotine gum chewing for 30min. The urinary excretion of cotinine was normally distributed over a 2h period (logarithmically transformed). Individuals with urinary cotinine levels in the ranges of 0.01-0.21, and 0.52-94.99μg/2h were categorized as poor metabolizes (PMs: 6.5%), and extensive metabolizers (EMs: 93.5%), respectively. The majority of EMs (45%) carried homozygous wild-type genotypes (CYP2A6*1A/*1A, CYP2A6*1A/*1B and CYP2A6*1B/*1B), whereas only 1% of PMs carried these genotypes. Markedly higher frequencies of EMs were also observed in all heterozygous defective genotypes including the null genotype (*4C/*4C; 1 subject). A weak but significant positive correlation was observed between total amounts of urinary cadmium excretion and total cotinine excretion over 2h. Our study shows generally good agreement between CYP2A6 genotypes and phenotypes. Smokers accumulated about 3-4-fold higher mean total amounts of 2-h urinary cadmium excretion (127.5±218.2ng/2h) than that of non-smokers (40.5±78.4ng/2h). Among the smokers (n=16), homologous wild-type genotype *1/*1 was significantly the predominant genotype (6/16) compared with other defective allele including *4C/*4C. In addition, 2h urinary excretion of cotinine in smokers of all genotypes was significantly higher than non-smokers. The proportion of smokers who smoked more than 5 cigarettes/day was significantly higher in EMs in all CYP2A6 genotypes (n=14) than in PMs (n=0).
Collapse
Affiliation(s)
- Roongnapa Apinan
- Pharmacology and Toxicology Unit, Graduate Program in Biomedical Sciences, Thammasat University, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Piacenza F, Malavolta M, Cipriano C, Costarelli L, Giacconi R, Muti E, Tesei S, Pierpaoli S, Basso A, Bracci M, Bonacucina V, Santarelli L, Mocchegiani E. l-Arginine normalizes NOS activity and zinc-MT homeostasis in the kidney of mice chronically exposed to inorganic mercury. Toxicol Lett 2009; 189:200-5. [PMID: 19501138 DOI: 10.1016/j.toxlet.2009.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/22/2009] [Accepted: 05/25/2009] [Indexed: 11/15/2022]
Abstract
Inorganic mercury (HgCl2) exposure provokes damage in many organs, especially kidney. Inducible nitric oxide synthase (iNOS) expression, total NOS activity and the profiles of zinc (Zn), copper (Cu) and Hg as well as their distribution when bound to specific intracellular proteins, including metallothioneins (MT), were studied during HgCl2 exposure and after l-arginine treatment in C57BL/6 mouse kidney. HgCl2 exposure modulates differently iNOS expression and NOS activity, increasing iNOS expression but, conversely, decreasing total NOS activity in the mouse kidney. Moreover, during Hg exposure an increased MT production occurs. The kidney damage leads to a loss of urinary proteins, increased plasma creatinine and high Zn mobilization with consequent increased urinary Zn excretion. l-arginine treatment recovers NOS activity and induces a normalization of MT induction, plasma creatinine values and urinary proteins excretion, suggesting that l-arginine may limit kidney damages by Hg exposure.
Collapse
Affiliation(s)
- Francesco Piacenza
- Department of Molecular Pathology and Innovative Therapies, Occupational Medicine, Polytechnic University of Marche, Torrette, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cadmium excretion predicting hospital mortality and illness severity of critically ill medical patients. Crit Care Med 2009; 37:957-62. [PMID: 19237903 DOI: 10.1097/ccm.0b013e318198675c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the prognostic value of day 1 urine excretion of cadmium (1st DUE-Cd) for predicting outcomes in intensive care unit (ICU) patients. DESIGN Prospective study. SETTING ICUs in Chang Gung Memorial Hospital, Lin-Kou Medical Center, Taiwan, ROC. PATIENTS Two hundred one ICU patients. INTERVENTIONS Urine and blood samples were taken within 24 hours after admission. MEASUREMENTS AND MAIN RESULTS Disease severity, hospital mortality, and number of organ failures were evaluated in each medical ICU patient. Stepwise multiple linear regression analysis indicated that a history of chronic hepatitis, serum albumin, and glutamic-pyruvic transaminase were significantly related to 1st DUE-Cd after adjusting for other related variables. Cox multivariate analysis revealed that serum blood urea nitrogen level and ICU 1st DUE-Cd were significantly related to hospital mortality after other risk factors and scoring systems were adjusted. Each 1-microg increase in ICU 1st DUE-Cd was associated with a 7% increase in hospital mortality rate. All patients with poisoning magnitude of cadmium excretion (>10 microg/day) died, except one and those with normal cadmium excretion survived. Chi-square values of the Hosmer-Lemeshow goodness-of-fit test were 6.936 (p = 0.544), and area under the receiver operating characteristic curve was 0.868 (95% confidence intervals: 0.82-0.92) for ICU 1st DUE-Cd. CONCLUSIONS The ICU 1st DUE-Cd may predict hospital mortality in critically ill medical patients. Because of excess mortality and relatively small sample size, the predictive role of DUE-Cd needs further external validation.
Collapse
|
24
|
Haswell-Elkins M, Satarug S, O'Rourke P, Moore M, Ng J, McGrath V, Walmby M. Striking association between urinary cadmium level and albuminuria among Torres Strait Islander people with diabetes. ENVIRONMENTAL RESEARCH 2008; 106:379-83. [PMID: 18045586 DOI: 10.1016/j.envres.2007.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/20/2007] [Accepted: 10/10/2007] [Indexed: 05/22/2023]
Abstract
OBJECTIVES Indigenous people of the Torres Strait (Australia) have greater potential for cadmium exposure and renal damage than other Australians due to high cadmium in some traditional seafood and a high prevalence of Type 2 diabetes, hypertension, smoking, and obesity. This study explored associations between albuminuria and an index of cadmium exposure (urinary cadmium excretion) in the presence and absence of Type 2 diabetes. RESEARCH DESIGN AND METHODS Two population-based, cross-sectional studies were undertaken in the Torres Strait to obtain data on body mass index (BMI), blood pressure, chronic disease, smoking, urinary cadmium, and albumin creatinine ratio (ACR). RESULTS Age- and BMI-adjusted urinary cadmium levels were significantly higher (p<0.01) among people with diabetes and albuminuria (n=22, geometric mean (GM) 1.91 microg Cd/g creatinine) compared to those with diabetes and normal ACR (n=21, GM 0.74 microg Cd/g creatinine). Urinary cadmium was also strongly associated (p<0.001) with ACR among people with diabetes in regression models and remained significant after controlling for age, sex, BMI, smoking status, and hypertension (or continuous systolic and diastolic measurements). CONCLUSIONS While the study has methodological limitations and the nature of the association is unclear, the striking dose-dependent links between markers of cadmium exposure and of Type 2 diabetic nephropathy highlight the need for further definitive research on the health effects of cadmium in the presence of diabetes.
Collapse
Affiliation(s)
- Melissa Haswell-Elkins
- North Queensland Health Equalities Promotion Unit, School of Medicine, University of Queensland, Cairns, Qld 4870, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen L, Liu L, Luo Y, Huang S. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. J Neurochem 2007; 105:251-61. [PMID: 18021293 DOI: 10.1111/j.1471-4159.2007.05133.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cadmium (Cd) may be accumulated in human body through long-term exposure to Cd-polluted environment, resulting in neurodegeneration and other diseases. To study the mechanism of Cd-induced neurodegeneration, PC12 and SH-SY5Y cells were exposed to Cd. We observed that Cd-induced apoptosis in the cells in a time- and concentration-dependent manner. Cd rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2 and JNK, but not p38, partially protected the cells from Cd-induced apoptosis. Consistently, over-expression of dominant negative c-Jun or down-regulation of Erk1/2, but not p38 MAPK, partially prevented Cd-induced apoptosis. To our surprise, Cd also activated mammalian target of rapamycin (mTOR)-mediated signaling pathways. Treatment with rapamycin, an mTOR inhibitor, blocked Cd-induced phosphorylation of S6K1 and eukaryotic initiation factor 4E binding protein 1, and markedly inhibited Cd-induced apoptosis. Down-regulation of mTOR by RNA interference also in part, rescued cells from Cd-induced death. These findings indicate that activation of the signaling network of MAPK and mTOR is associated with Cd-induced neuronal apoptosis. Our results strongly suggest that inhibitors of MAPK and mTOR may have a potential for prevention of Cd-induced neurodegeneration.
Collapse
Affiliation(s)
- Long Chen
- Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The present review attempts to provide an update of the scientific knowledge on the renal toxicity which occurs in human subjects as a result of chronic ingestion of low-level dietary Cd. It highlights important features of Cd toxicology and sources of uncertainty in the assessment of health risk due to dietary Cd. It also discusses potential mechanisms for increased susceptibility to Cd toxicity in individuals with diabetes. Exposure assessment on the basis of Cd levels in foodstuffs reveals that vegetables and cereals are the main sources of dietary Cd, although Cd is also found in meat, albeit to a lesser extent. Cd accumulates particularly in the kidney and liver, and hence offal contains relatively high amounts. Fish contains only small quantities of Cd, while crustaceans and molluscs may accumulate larger amounts from the aquatic environment. Data on Cd accumulation in human kidney and liver obtained from autopsy studies are presented, along with results of epidemiological studies showing the relationship between renal tubular dysfunction and kidney Cd burden. These findings suggest that a kidney Cd level of 50 μg/g wet weight is a maximum tolerable level in order to avoid abnormal kidney function. This renal Cd burden corresponds to a urinary Cd excretion of 2 μg/d. Accordingly, safe daily levels of Cd intake should be kept below 30 μg per person. Individual variations in Cd absorption and sensitivity to toxicity predicts that a dietary Cd intake of 30 μg/d may result in a slight renal dysfunction in about 1 % of the adult population. The previous guideline for a maximum recommended Cd intake of 1 μg/kg body weight per d is thus shown to be too high to ensure that renal dysfunction does not occur as a result of dietary Cd intake.
Collapse
|
27
|
. IN, . WBA, . NBY, . DDBM, . MHG, . MZ. Variations in Membrane Lipid Metabolism in Brassica juncea and Brassica napus Leaves as a Response to Cadmium Exposure. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/ja.2006.299.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Pereira R, Pereira ML, Ribeiro R, Gonçalves F. Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 139:561-75. [PMID: 16099561 DOI: 10.1016/j.envpol.2005.04.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 04/23/2005] [Indexed: 05/04/2023]
Abstract
Data gathered in this study suggested the exposure of rats and Algerian mice, living in an abandoned mining area, to a mixture of heavy metals. Although similar histopathological features were recorded in the liver and spleen of both species, the Algerian mouse has proved to be the strongest bioaccumulator species. Hair was considered to be a good biological material to monitor environmental contamination of Cr in rats. Significant positive associations were found between the levels of this element in hair/kidney (r=0.826, n=9, p<0.01) and hair/liver (r=0.697, n=9, p=0.037). Although no association was found between the levels of As recorded in the hair and in the organs, the levels of this element recorded in the hair, of both species, were significantly higher in animals captured in the mining area, which met the data from the organs analysed. Nevertheless, more studies will be needed to reduce uncertainty about cause-effect relationships.
Collapse
Affiliation(s)
- R Pereira
- Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
29
|
Satarug S, Nishijo M, Lasker JM, Edwards RJ, Moore MR. Kidney Dysfunction and Hypertension: Role for Cadmium, P450 and Heme Oxygenases? TOHOKU J EXP MED 2006; 208:179-202. [PMID: 16498227 DOI: 10.1620/tjem.208.179] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a metal toxin of continuing worldwide concern. Daily intake of Cd, albeit in small quantities, is associated with a number of adverse health effects which are attributable to distinct pathological changes in a variety of tissues and organs. In the present review, we focus on its renal tubular effects in people who have been exposed environmentally to Cd at levels below the provisional tolerable intake level set for the toxin. We highlight the data linking such low-level Cd intake with tubular injury, altered abundance of cytochromes P450 (CYPs) in the kidney and an expression of a hypertensive phenotype. We provide updated knowledge on renal and vascular effects of the eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and eicosatrienoic acids (EETs), which are biologically active metabolites from arachidonate metabolism mediated by certain CYPs in the kidney. We note the ability of Cd to elicit "oxidative stress" and to alter metal homeostasis notably of zinc which may lead to augmentation of the defense mechanisms involving induction of the antioxidant enzyme heme oxygenase-1 (HO-1) and the metal binding protein metallothionein (MT) in the kidney. We hypothesize that renal Cd accumulation triggers the host responses mediated by HO-1 and MT in an attempt to protect the kidney against injurious oxidative stress and to resist a rise in blood pressure levels. This hypothesis predicts that individuals with less active HO-1 (caused by the HO-1 genetic polymorphisms) are more likely to have renal injury and express a hypertensive phenotype following chronic ingestion of low-level Cd, compared with those having more active HO-1. Future analytical and molecular epidemiologic research should pave the way to the utility of induction of heme oxygenases together with dietary antioxidants in reducing the risk of kidney injury and hypertension in susceptible people.
Collapse
Affiliation(s)
- Soisungwan Satarug
- National Research Center for Environmental Toxicology, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
30
|
Satarug S, Moore MR. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1099-103. [PMID: 15238284 PMCID: PMC1247384 DOI: 10.1289/ehp.6751] [Citation(s) in RCA: 542] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cadmium is a cumulative nephrotoxicant that is absorbed into the body from dietary sources and cigarette smoking. The levels of Cd in organs such as liver and kidney cortex increase with age because of the lack of an active biochemical process for its elimination coupled with renal reabsorption. Recent research has provided evidence linking Cd-related kidney dysfunction and decreases in bone mineral density in nonoccupationally exposed populations who showed no signs of nutritional deficiency. This challenges the previous view that the concurrent kidney and bone damage seen in Japanese itai-itai disease patients was the result of Cd toxicity in combination with nutritional deficiencies, notably, of zinc and calcium. Further, such Cd-linked bone and kidney toxicities were observed in people whose dietary Cd intakes were well within the provisional tolerable weekly intake (PTWI) set by the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives of 1 microg/kg body weight/day or 70 microg/day. This evidence points to the much-needed revision of the current PTWI for Cd. Also, evidence for the carcinogenic risk of chronic Cd exposure is accumulating and Cd effects on reproductive outcomes have begun to emerge.
Collapse
Affiliation(s)
- Soisungwan Satarug
- National Research Centre for Environmental Toxicology, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
31
|
Abstract
Acute administration of cadmium (Cd) to rats results in hepatotoxicity. Recent reports indicate that Kupffer cells, the resident macrophages of the liver, participate in the manifestation of Cd-induced hepatotoxicity. Nitric oxide (NO) is a reactive nitrogen radical produced by activated Kupffer cells via the induction of inducible nitric oxide synthase (iNOS). Nitric oxide can combine with superoxide to form peroxynitrite, a molecule that may participate in the toxic mechanisms of hepatotoxins, such as acetaminophen and bacterial endotoxin. It has been speculated that Cd also may exert its hepatotoxicity, in part, via the production of NO by iNOS. Therefore, this study was undertaken to determine whether iNOS contributes to Cd-induced hepatotoxicity. Wild-type (WT) mice were administered selective iNOS inhibitors (AMT and 1400W) concurrently and 3 h after administration of a hepatotoxic dose of Cd (4.0 mg Cd/mg). Additionally, WT and iNOS-null (iNOS-KO) mice were dosed iv with saline or 2.0, 2.5, 3.0, 3.5 or 4.0 mg Cd/kg. Serum alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities were quantified to assess liver injury. Administration of iNOS inhibitors failed to prevent Cd-induced hepatotoxicity. Also, Cd caused a dose-dependent increase in liver injury in both WT and iNOS-KO mice. The liver injury produced by Cd in the iNOS-KO mice was not different from that in WT at any dose. These data indicate that iNOS does not appear to mediate Cd-induced hepatotoxicity.
Collapse
Affiliation(s)
- Eric B Harstad
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
32
|
Satarug S, Baker JR, Reilly PE, Moore MR, Williams DJ. Changes in zinc and copper homeostasis in human livers and kidneys associated with exposure to environmental cadmium. Hum Exp Toxicol 2001; 20:205-13. [PMID: 11393274 DOI: 10.1191/096032701678766787] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study was undertaken to assess changes in zinc and copper homeostasis in human tissues that could be attributed to human exposure to environmental cadmium, using samples of lung, liver and kidney cortex of 61 Queensland residents, aged 2 to 89 years, who had died of accidental causes. None of the subjects were exposed to cadmium in the workplace. Levels of zinc in liver and kidney cortex samples showed inverse associations with donor age whereas zinc in lung only showed inverse association with gender. Lung zinc levels in females were 14% lower than in males. Zinc in liver and kidney cortex samples were found to exist in at least two pools; one was associated with cadmium that bound to metallothionein (MT) and the other was associated with non-MT bound copper. In liver, the amounts of zinc in the MT pool were smaller compared to those in non-MT pool given that only 7% of zinc variations were explained by cadmium whereas 22% of the liver zinc variations were accounted for by non-MT bound copper. In sharp contrast, larger amounts of zinc in kidney cortex samples were in the MT pool, compared to those in the non-MT pool given that cadmium was found to explain 69% of total zinc variation whereas copper explained only 17% of kidney zinc variations. The levels of copper in liver were found to be increased by 45-50% in subjects with high cadmium exposure level, compared to subjects of similar ages with medium exposure level. The levels of zinc and copper in kidney cortex samples in the subjects with high cadmium exposure were both found to be significantly elevated compared to those found in the medium-exposure group whereas copper contents were about 19-23% greater than in medium- as well as low-exposure groups. Taken together these results indicate increased sequestration of zinc and copper in liver and kidney cortex samples. The increases in metal sequestrations were observed in liver samples having cadmium contents of greater than 1 microg/g wet weight and in kidney cortex having cadmium contents of greater than 26 microg/g wet weight. Zinc and copper contents in lung of this sample group, however, were not associated with cadmium due probably to lower exposure levels compared to those of liver and kidney.
Collapse
Affiliation(s)
- S Satarug
- National Research Centre for Environmental Toxicology, Brisbane, Australia
| | | | | | | | | |
Collapse
|