1
|
Eugen-Olsen RB, Hariprakash J, Oestergaard V, Regenberg B. Molecular mechanisms of extrachromosomal circular DNA formation. Nucleic Acids Res 2025; 53:gkaf122. [PMID: 40037708 PMCID: PMC11879418 DOI: 10.1093/nar/gkaf122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Recent research reveals that eukaryotic genomes form circular DNA from all parts of their genome, some large enough to carry whole genes. In organisms like yeast and in human cancers, it is often observed that extrachromosomal circular DNA (eccDNA) benefits the individual cell by providing resources for rapid cellular growth. However, our comprehension of eccDNA remains incomplete, primarily due to their transient nature. Early studies suggest they arise when DNA breaks and is subsequently repaired incorrectly. In this review, we provide an overview of the evidence for molecular mechanisms that lead to eccDNA formation in human cancers and yeast, focusing on nonhomologous end joining, alternative end joining, and homologous recombination repair pathways. Furthermore, we present hypotheses in the form of molecular eccDNA formation models and consider cellular conditions which may affect eccDNA generation. Finally, we discuss the framework for future experimental evidence.
Collapse
Affiliation(s)
- Rasmus A B Eugen-Olsen
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Judith M Hariprakash
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Birgitte Regenberg
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Huang PC, Hong S, Alnaser HF, Mimitou EP, Kim KP, Murakami H, Keeney S. Meiotic DNA break resection and recombination rely on chromatin remodeler Fun30. EMBO J 2025; 44:200-224. [PMID: 39613969 PMCID: PMC11695836 DOI: 10.1038/s44318-024-00318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA for homologous recombination. In Saccharomyces cerevisiae meiosis, this resection involves nicking by the Mre11-Rad50-Xrs2 complex (MRX), then exonucleolytic digestion by Exo1. Chromatin remodeling at meiotic DSBs is thought necessary for resection, but the remodeling enzyme was unknown. Here we show that the SWI/SNF-like ATPase Fun30 plays a major, nonredundant role in meiotic resection. A fun30 mutation shortened resection tracts almost as severely as an exo1-nd (nuclease-dead) mutation, and resection was further shortened in a fun30 exo1-nd double mutant. Fun30 associates with chromatin in response to DSBs, and the constitutive positioning of nucleosomes governs resection endpoint locations in the absence of Fun30. We infer that Fun30 promotes both the MRX- and Exo1-dependent steps in resection, possibly by removing nucleosomes from broken chromatids. Moreover, the extremely short resection in fun30 exo1-nd double mutants is accompanied by compromised interhomolog recombination bias, leading to defects in recombination and chromosome segregation. Thus, this study also provides insight about the minimal resection lengths needed for robust recombination.
Collapse
Affiliation(s)
- Pei-Ching Huang
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Metagenomi, Emeryville, CA, 94608, USA
| | - Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hasan F Alnaser
- Chromosome and Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Eleni P Mimitou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunai, 430 E 29th St, New York, NY, 10016, USA
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
- Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, 06974, South Korea
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Chromosome and Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Shirian J, Hockla A, Gleba JJ, Coban M, Rotenberg N, Strik LM, Alasonyalilar Demirer A, Pawlush ML, Copland JA, Radisky ES, Shifman JM. Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension. Biomolecules 2024; 14:1187. [PMID: 39334953 PMCID: PMC11429640 DOI: 10.3390/biom14091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are significant drivers of many diseases, including cancer, and are established targets for drug development. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous MMP inhibitors and are being pursued for the development of anti-MMP therapeutics. TIMPs possess many attractive properties for drug candidates, such as complete MMP inhibition, low toxicity, low immunogenicity, and high tissue permeability. However, a major challenge with TIMPs is their rapid clearance from the bloodstream due to their small size. This study explores a method for extending the plasma half-life of the N-terminal domain of TIMP2 (N-TIMP2) by appending it with a long, intrinsically unfolded tail containing Pro, Ala, and Thr (PATylation). We designed and produced two PATylated N-TIMP2 constructs with tail lengths of 100 and 200 amino acids (N-TIMP2-PAT100 and N-TIMP2-PAT200). Both constructs demonstrated higher apparent molecular weights and retained high inhibitory activity against MMP-9. N-TIMP2-PAT200 significantly increased plasma half-life in mice compared to the non-PATylated variant, enhancing its therapeutic potential. PATylation offers distinct advantages for half-life extension, such as fully genetic encoding, monodispersion, and biodegradability. It can be easily applied to N-TIMP2 variants engineered for high affinity and selectivity toward individual MMPs, creating promising candidates for drug development against MMP-related diseases.
Collapse
Affiliation(s)
- Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Justyna J. Gleba
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Matt Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Naama Rotenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Laura M. Strik
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Aylin Alasonyalilar Demirer
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Matt L. Pawlush
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA (M.C.); (M.L.P.)
| | - Julia M. Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Singh A, Anwer M, Israr J, Kumar A. Advances in CRISPR-Cas systems for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:83-107. [PMID: 39266189 DOI: 10.1016/bs.pmbts.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Fungi contain a wide range of bioactive secondary metabolites (SMs) that have numerous applications in various fields, including agriculture, medicine, human health, and more. It is common for genes responsible for the production of secondary metabolites (SMs) to form biosynthetic gene clusters (BGCs). The identification and analysis of numerous unexplored gene clusters (BGCs) and their corresponding substances (SMs) has been significantly facilitated by the recent advancements in genomic and genetic technologies. Nevertheless, the exploration of secondary metabolites with commercial value is impeded by a variety of challenges. The emergence of modern CRISPR/Cas technologies has brought about a paradigm shift in fungal genetic engineering, significantly streamlining the process of discovering new bioactive compounds. This study begins with an examination of fungal biosynthetic gene clusters (BGCs) and their interconnections with the secondary metabolites (SMs) they generate. Following that, a brief summary of the conventional methods employed in fungal genetic engineering is provided. This study explores various sophisticated CRISPR/Cas-based methodologies and their utilization in examining the synthesis of secondary metabolites (SMs) in fungi. The chapter provides an in-depth analysis of the limitations and obstacles encountered in CRISPR/Cas-based systems when applied to fungal genetic engineering. It also proposes promising avenues for future research to optimize the efficiency of these systems.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Monisa Anwer
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India
| | - Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow, Barabanki, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
5
|
Kim S, Yamada S, Li T, Canasto-Chibuque C, Kim JH, Marcet-Ortega M, Xu J, Eng DY, Feeney L, Petrini JHJ, Keeney S. The MRE11-RAD50-NBS1 complex both starts and extends DNA end resection in mouse meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608390. [PMID: 39185212 PMCID: PMC11343206 DOI: 10.1101/2024.08.17.608390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if Mre11 is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead Mre11 model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection, not just resection initiation. Finally, resection defects are additively worsened by combining MRN and Exo1 mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate multiple functions of MRN in meiotic recombination, uncover unanticipated relationships between short- and long-range resection, and establish the importance of resection for mammalian meiosis.
Collapse
Affiliation(s)
- Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- The HAKUBI Center for Advanced Research, and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tao Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Claudia Canasto-Chibuque
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Marina Marcet-Ortega
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
| | - Diana Y. Eng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laura Feeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John H. J. Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
6
|
Shirian J, Hockla A, Gleba JJ, Coban M, Rotenberg N, Strik LM, Alasonyalilar Demirer A, Pawlush ML, Copland JA, Radisky ES, Shifman JM. Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600979. [PMID: 38979353 PMCID: PMC11230438 DOI: 10.1101/2024.06.27.600979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Matrix Metalloproteinases (MMPs) are drivers of many diseases including cancer and are established targets for drug development. Tissue inhibitors of metalloproteinases (TIMPs) are human proteins that inhibit MMPs and are being pursued for the development of anti-MMP therapeutics. TIMPs possess many attractive properties of a drug candidate, such as complete MMP inhibition, low toxicity and immunogenicity, high tissue permeability and others. A major challenge with TIMPs, however, is their formulation and delivery, as these proteins are quickly cleared from the bloodstream due to their small size. In this study, we explore a new method for plasma half-life extension for the N-terminal domain of TIMP2 (N-TIMP2) through appending it with a long intrinsically unfolded tail containing a random combination of Pro, Ala, and Thr (PATylation). We design, produce and explore two PATylated N-TIMP2 constructs with a tail length of 100- and 200-amino acids (N-TIMP2-PAT100 and N-TIMP2-PAT200, respectively). We demonstrate that both PATylated N-TIMP2 constructs possess apparent higher molecular weights compared to the wild-type protein and retain high inhibitory activity against MMP-9. Furthermore, when injected into mice, N-TIMP2-PAT200 exhibited a significant increase in plasma half-life compared to the non-PATylated variant, enhancing the therapeutic potential of the protein. Thus, we establish that PATylation could be successfully applied to TIMP-based therapeutics and offers distinct advantages as an approach for half-life extension, such as fully genetic encoding of the gene construct, mono-dispersion, and biodegradability. Furthermore, PATylation could be easily applied to N-TIMP2 variants engineered to possess high affinity and selectivity toward individual MMP family members, thus creating attractive candidates for drug development against MMP-related diseases.
Collapse
Affiliation(s)
- Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Justyna J. Gleba
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Matt Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Naama Rotenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Laura M. Strik
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Aylin Alasonyalilar Demirer
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Matt L. Pawlush
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, United States
| | - Julia M. Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
7
|
Du F, Li Z, Li X, Zhang D, Zhang F, Zhang Z, Xu Y, Tang J, Li Y, Huang X, Gu Y, Sun X, Huang H. Optimizing multicopy chromosomal integration for stable high-performing strains. Nat Chem Biol 2024:10.1038/s41589-024-01650-0. [PMID: 38858530 DOI: 10.1038/s41589-024-01650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
The copy number of genes in chromosomes can be modified by chromosomal integration to construct efficient microbial cell factories but the resulting genetic systems are prone to failure or instability from triggering homologous recombination in repetitive DNA sequences. Finding the optimal copy number of each gene in a pathway is also time and labor intensive. To overcome these challenges, we applied a multiple nonrepetitive coding sequence calculator that generates sets of coding DNA sequence (CDS) variants. A machine learning method was developed to calculate the optimal copy number combination of genes in a pathway. We obtained an engineered Yarrowia lipolytica strain for eicosapentaenoic acid biosynthesis in 6 months, producing the highest titer of 27.5 g l-1 in a 50-liter bioreactor. Moreover, the lycopene production in Escherichia coli was also greatly improved. Importantly, all engineered strains of Y. lipolytica, E. coli and Saccharomyces cerevisiae constructed with nonrepetitive CDSs maintained genetic stability.
Collapse
Affiliation(s)
- Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zijia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Duoduo Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingshuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jin Tang
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China
| | - Yongqian Li
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China
| | - Xingxu Huang
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
8
|
Huang PC, Hong S, Mimitou EP, Kim KP, Murakami H, Keeney S. Meiotic DNA break resection and recombination rely on chromatin remodeler Fun30. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589955. [PMID: 38659928 PMCID: PMC11042300 DOI: 10.1101/2024.04.17.589955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA tails for homologous recombination. In Saccharomyces cerevisiae meiosis, this 5'-to-3' resection involves initial nicking by the Mre11-Rad50-Xrs2 complex (MRX) plus Sae2, then exonucleolytic digestion by Exo1. Chromatin remodeling adjacent to meiotic DSBs is thought to be necessary for resection, but the relevant remodeling activity was unknown. Here we show that the SWI/SNF-like ATPase Fun30 plays a major, non-redundant role in resecting meiotic DSBs. A fun30 null mutation shortened resection tract lengths almost as severely as an exo1-nd (nuclease-dead) mutation, and resection was further shortened in the fun30 exo1-nd double mutant. Fun30 associates with chromatin in response to meiotic DSBs, and the constitutive positioning of nucleosomes governs resection endpoint locations in the absence of Fun30. We infer that Fun30 directly promotes both the MRX- and Exo1-dependent steps in resection, possibly by removing nucleosomes from broken chromatids. Moreover, we found that the extremely short resection in the fun30 exo1-nd double mutant is accompanied by compromised interhomolog recombination bias, leading to defects in recombination and chromosome segregation. Thus, this study also provides insight about the minimal resection lengths needed for robust recombination.
Collapse
Affiliation(s)
- Pei-Ching Huang
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10021
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Eleni P. Mimitou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Keun P. Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
- Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 06974, South Korea
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10021
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
9
|
Orleneva AP, Teslya PN, Serebrianyi VA. In vivo assembly of genetic constructs in filamentous fungus Talaromyces cellulolyticus. J Microbiol Methods 2024; 219:106893. [PMID: 38320738 DOI: 10.1016/j.mimet.2024.106893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
In the filamentous fungus Talaromyces cellulolyticus, similar to other filamentous fungi, non-homologous recombination predominates over homologous recombination. For instance, to achieve an acceptable integration frequency of a genetic construct into a target site on the intact chromosome, the flanking sequences directing this integration should be approximately 2.5 kb in length. However, despite the requirement of long flanks for integration into the intact chromosome, we found that homologous recombination between linear DNA fragments in T. cellulolyticus effectively occurs when these fragments overlap by just 50 bp. This allows for the assembly of full-sized genetic constructs in vivo from relatively small blocks, eliminating the need for in vitro assembly, similar to the approach previously developed for the yeast Saccharomyces cerevisiae. To validate this possibility, we replaced the native promoter of the target gene by transforming the recipient strain with five DNA fragments: two flanks for recombination with the target locus, two parts of the marker gene, and a donor promoter. This discovery significantly expedites the genetic engineering of T. cellulolyticus and potentially other fungi.
Collapse
Affiliation(s)
- Alexandra P Orleneva
- Ajinomoto-Genetika Research Institute, 1st Dorozhny proezd, 1-1, Moscow 117545, Russia
| | - Petr N Teslya
- Ajinomoto-Genetika Research Institute, 1st Dorozhny proezd, 1-1, Moscow 117545, Russia
| | | |
Collapse
|
10
|
Guo L, Yang G. Pioneering DNA assembling techniques and their applications in eukaryotic microalgae. Biotechnol Adv 2024; 70:108301. [PMID: 38101551 DOI: 10.1016/j.biotechadv.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Assembling DNA fragments is a fundamental manipulation of cloning microalgal genes and carrying out microalgal synthetic biological studies. From the earliest DNA recombination to current trait and metabolic pathway engineering, we are always accompanied by homology-based DNA assembling. The improvement and modification of pioneering DNA assembling techniques and the combinational applications of the available assembling techniques have diversified and complicated the literature environment and aggravated our identification of the core and pioneering methodologies. Identifying the core assembling methodologies and using them appropriately and flourishing them even are important for researchers. A group of microalgae have been evolving as the models for both industrial applications and biological studies. DNA assembling requires researchers to know the methods available and their improvements and evolvements. In this review, we summarized the pioneering (core; leading) DNA assembling techniques developed previously, extended these techniques to their modifications, improvements and their combinations, and highlighted their applications in eukaryotic microalgae. We predicted that the gene(s) will be assembled into a functional cluster (e.g., those involving in a metabolic pathway, and stacked on normal microalgal chromosomes, their artificial episomes and looming artificial chromosomes. It should be particularly pointed out that the techniques mentioned in this review are classified according to the strategy used to assemble the final construct.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; MoE Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Blount BA, Lu X, Driessen MR, Jovicevic D, Sanchez MI, Ciurkot K, Zhao Y, Lauer S, McKiernan RM, Gowers GOF, Sweeney F, Fanfani V, Lobzaev E, Palacios-Flores K, Walker RS, Hesketh A, Cai J, Oliver SG, Cai Y, Stracquadanio G, Mitchell LA, Bader JS, Boeke JD, Ellis T. Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. CELL GENOMICS 2023; 3:100418. [PMID: 38020971 PMCID: PMC10667340 DOI: 10.1016/j.xgen.2023.100418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.
Collapse
Affiliation(s)
- Benjamin A. Blount
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Xinyu Lu
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Maureen R.M. Driessen
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Dejana Jovicevic
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Mateo I. Sanchez
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Klaudia Ciurkot
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Robert M. McKiernan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Glen-Oliver F. Gowers
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Fiachra Sweeney
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Kim Palacios-Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro, México
| | - Roy S.K. Walker
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, UK
| | - Andy Hesketh
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | - Leslie A. Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
12
|
Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. J Fungi (Basel) 2023; 9:jof9030362. [PMID: 36983530 PMCID: PMC10058990 DOI: 10.3390/jof9030362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Fungi represent an important source of bioactive secondary metabolites (SMs), which have wide applications in many fields, including medicine, agriculture, human health, and many other industries. The genes involved in SM biosynthesis are usually clustered adjacent to each other into a region known as a biosynthetic gene cluster (BGC). The recent advent of a diversity of genetic and genomic technologies has facilitated the identification of many cryptic or uncharacterized BGCs and their associated SMs. However, there are still many challenges that hamper the broader exploration of industrially important secondary metabolites. The recent advanced CRISPR/Cas system has revolutionized fungal genetic engineering and enabled the discovery of novel bioactive compounds. In this review, we firstly introduce fungal BGCs and their relationships with associated SMs, followed by a brief summary of the conventional strategies for fungal genetic engineering. Next, we introduce a range of state-of-the-art CRISPR/Cas-based tools that have been developed and review recent applications of these methods in fungi for research on the biosynthesis of SMs. Finally, the challenges and limitations of these CRISPR/Cas-based systems are discussed and directions for future research are proposed in order to expand their applications and improve efficiency for fungal genetic engineering.
Collapse
|
13
|
Jacobus AP, Barreto JA, de Bem LS, Menegon YA, Fier Í, Bueno JGR, Dos Santos LV, Gross J. EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/Cas9 Applications in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:3886-3891. [PMID: 36257021 DOI: 10.1021/acssynbio.2c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Most CRISPR/Cas9 applications in yeast rely on a plasmid-based expression of Cas9 and its guide RNA (gRNA) containing a 20-nucleotides (nts) spacer tailored to each genomic target. The lengthy assembly of this customized gRNA requires at least 3-5 days for its precloning in Escherichia coli, purification, validation, and cotransformation with Cas9 into a yeast strain. Here, we constructed a series of 12 EasyGuide plasmids to simplify CRISPR/Cas9 applications in Saccharomyces cerevisiae. The new vectors provide templates for generating PCR fragments that can assemble up to six functional gRNAs directly into yeasts via homologous recombination between the 20-nts spacers. By dispensing precloning in E. coli, yeast in vivo gRNA assembly significantly reduces the CRISPR/Cas9 experimental workload. A highly efficient yeast genome editing procedure, involving PCR amplification of gRNAs and donors, followed by their transformation into a Cas9-expressing strain, can be easily accomplished through a quick protocol.
Collapse
Affiliation(s)
- Ana P Jacobus
- Institute for Bioenergy Research, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
- Ph.D. Program in Bioenergy, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
| | - Joneclei A Barreto
- Institute for Bioenergy Research, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
- Ph.D. Program in Bioenergy, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
| | - Lucas S de Bem
- Institute for Bioenergy Research, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
| | - Yasmine A Menegon
- Institute for Bioenergy Research, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
- Ph.D. Program in Bioenergy, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
| | - Ícaro Fier
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
| | - João G R Bueno
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
| | - Leandro V Dos Santos
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
- SENAI Innovation Institute for Biotechnology, São Paulo 01130-000, Brazil
| | - Jeferson Gross
- Institute for Bioenergy Research, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
- Ph.D. Program in Bioenergy, Sao Paulo State University, Rio Claro 13500-230, São Paulo, Brazil
| |
Collapse
|
14
|
Chiang YM, Lin TS, Wang CCC. Total Heterologous Biosynthesis of Fungal Natural Products in Aspergillus nidulans. JOURNAL OF NATURAL PRODUCTS 2022; 85:2484-2518. [PMID: 36173392 PMCID: PMC9621686 DOI: 10.1021/acs.jnatprod.2c00487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fungal natural products comprise a wide range of bioactive compounds including important drugs and agrochemicals. Intriguingly, bioinformatic analyses of fungal genomes have revealed that fungi have the potential to produce significantly more natural products than what have been discovered so far. It has thus become widely accepted that most biosynthesis pathways of fungal natural products are silent or expressed at very low levels under laboratory cultivation conditions. To tap into this vast chemical reservoir, the reconstitution of entire biosynthetic pathways in genetically tractable fungal hosts (total heterologous biosynthesis) has become increasingly employed in recent years. This review summarizes total heterologous biosynthesis of fungal natural products accomplished before 2020 using Aspergillus nidulans as heterologous hosts. We review here Aspergillus transformation, A. nidulans hosts, shuttle vectors for episomal expression, and chromosomal integration expression. These tools, collectively, not only facilitate the discovery of cryptic natural products but can also be used to generate high-yield strains with clean metabolite backgrounds. In comparison with total synthesis, total heterologous biosynthesis offers a simplified strategy to construct complex molecules and holds potential for commercial application.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
15
|
Shekhar C, Maeda T. A simple approach for random genomic insertion-deletions using ambiguous sequences in Escherichia coli. J Basic Microbiol 2022; 62:948-962. [PMID: 35739617 DOI: 10.1002/jobm.202100636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/20/2022] [Accepted: 06/11/2022] [Indexed: 11/07/2022]
Abstract
Escherichia coli K-12, being one of the best understood and thoroughly analyzed organisms, is the preferred platform for genetic and biochemical research. Among all genetic engineering approaches applied on E. coli, the homologous recombination approach is versatile and precise, which allows engineering genes or large segments of the chromosome directly by using polymerase chain reaction (PCR) products or synthetic oligonucleotides. The previously explained approaches for random insertion and deletions were reported as technically not easy and laborious. This study, first, finds the minimum length of homology extension that is efficient and accurate for homologous recombination, as 30 nt. Second, proposes an approach utilizing PCR products flanking ambiguous NNN-sequence (30-nt) extensions, which facilitate the homologous recombination to recombine them at multiple regions on the genome and generate insertion-deletion mutations. Further analysis found that these mutations were varying in number, that is, multiple genomic regions were deleted. Moreover, evaluation of the phenotype of all the multiple random insertion-deletion mutants demonstrated no significant changes in the normal metabolism of bacteria. This study not only presents the efficiency of ambiguous sequences in making random deletion mutations, but also demonstrates their further applicability in genomics.
Collapse
Affiliation(s)
- Chandra Shekhar
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
16
|
de Mattos-Shipley KMJ, Lazarus CM, Williams K. Investigating Fungal Biosynthetic Pathways Using Heterologous Gene Expression: Aspergillus oryzae as a Heterologous Host. Methods Mol Biol 2022; 2489:23-39. [PMID: 35524043 DOI: 10.1007/978-1-0716-2273-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A suite of molecular techniques have been developed in recent decades, which allow gene clusters coding for the biosynthesis of fungal natural products to be investigated and characterized in great detail. Many of these involve the manipulation of the native producer, for example, to increase yields of natural products or investigate the biosynthetic pathway through gene disruptions. However, an alternative and powerful means of investigating biosynthetic pathways, which does not rely on a cooperative native host, is the refactoring and heterologous expression of pathways in a suitable host strain. This protocol aims to walk the reader through the various steps required for the heterologous expression of a fungal biosynthetic gene cluster, specifically using Aspergillus oryzae strain NSAR1 and the pTYGS series of expression vectors. Briefly, this process involves the design and construction of up to four multigene expression vectors using yeast recombination, PEG-mediation transformation of A. oryzae protoplasts, and chemical extraction of the resulting transformants to screen for the presence of metabolites.
Collapse
Affiliation(s)
| | - Colin M Lazarus
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
17
|
Arnesen JA, Hoof JB, Kildegaard HF, Borodina I. Genome Editing of Eukarya. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Khaddaj R, Mari M, Cottier S, Reggiori F, Schneiter R. The surface of lipid droplets constitutes a barrier for endoplasmic reticulum-resident integral membrane proteins. J Cell Sci 2021; 135:268334. [PMID: 34028531 DOI: 10.1242/jcs.256206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.
Collapse
Affiliation(s)
- Rasha Khaddaj
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Stéphanie Cottier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
19
|
Endo M, Iwakami S, Toki S. Precision genome editing in plants via gene targeting and subsequent break-induced single-strand annealing. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:563-574. [PMID: 33001567 PMCID: PMC7955887 DOI: 10.1111/pbi.13485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 05/29/2023]
Abstract
Genome editing via artificial nucleases such as CRISPR/Cas9 has become popular in plants now. However, small insertions or deletions are major mutations and nucleotide substitutions rarely occur when DNA cleavage is induced. To induce nucleotide substitutions, a base editor utilizing dead or nickase-type Cas9 fused with deaminase have been developed. However, the direction and position of practical substitution are still limited. In this context, homologous recombination (HR)-mediated gene targeting (GT) has advantages because any mutations existing on the donor DNA are copied and passed onto the endogenous DNA. As HR-mediated GT is extremely rare in higher plants, positive-negative selection has been used to isolate cells in which GT has occurred. After successful selection, positive selection marker is no longer needed and should ideally be eliminated. In a previous study, we reported a seamless piggyBac-transposon-mediated marker elimination system. Precision marker elimination efficiency in this system is very high. The piggyBac transposon integrates into the host genome at TTAA elements and excises without leaving a footprint at the excised site, so a TTAA sequence is necessary at the location of a positive selection marker. To compensate for this limitation, we have developed a novel marker elimination system using an I-SceI break and subsequent single-strand annealing (SSA)-mediated DNA repair system.
Collapse
Affiliation(s)
- Masaki Endo
- Plant Genome Engineering Research UnitInstitute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
| | | | - Seiichi Toki
- Plant Genome Engineering Research UnitInstitute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
- Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
- Kihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan
| |
Collapse
|
20
|
Longwell CK, Hanna S, Hartrampf N, Sperberg RAP, Huang PS, Pentelute BL, Cochran JR. Identification of N-Terminally Diversified GLP-1R Agonists Using Saturation Mutagenesis and Chemical Design. ACS Chem Biol 2021; 16:58-66. [PMID: 33307682 DOI: 10.1021/acschembio.0c00722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) is a class B G-protein coupled receptor (GPCR) and diabetes drug target expressed mainly in pancreatic β-cells that, when activated by its agonist glucagon-like peptide 1 (GLP-1) after a meal, stimulates insulin secretion and β-cell survival and proliferation. The N-terminal region of GLP-1 interacts with membrane-proximal residues of GLP-1R, stabilizing its active conformation to trigger intracellular signaling. The best-studied agonist peptides, GLP-1 and exendin-4, share sequence homology at their N-terminal region; however, modifications that can be tolerated here are not fully understood. In this work, a functional screen of GLP-1 variants with randomized N-terminal domains reveals new GLP-1R agonists and uncovers a pattern whereby a negative charge is preferred at the third position in various sequence contexts. We further tested this sequence-structure-activity principle by synthesizing peptide analogues where this position was mutated to both canonical and noncanonical amino acids. We discovered a highly active GLP-1 analogue in which the native glutamate residue three positions from the N-terminus was replaced with the sulfo-containing amino acid cysteic acid (GLP-1-CYA). The receptor binding and downstream signaling properties elicited by GLP-1-CYA were similar to the wild type GLP-1 peptide. Computational modeling identified a likely mode of interaction of the negatively charged side chain in GLP-1-CYA with an arginine on GLP-1R. This work highlights a strategy of combinatorial peptide screening coupled with chemical exploration that could be used to generate novel agonists for other receptors with peptide ligands.
Collapse
Affiliation(s)
- Chelsea K. Longwell
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, California 94305, United States
| | - Stephanie Hanna
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nina Hartrampf
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R. Andres Parra Sperberg
- Department of Bioengineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States
| | - Po-Ssu Huang
- Department of Bioengineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jennifer R. Cochran
- Department of Bioengineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
21
|
Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life (Basel) 2020; 11:13. [PMID: 33375364 PMCID: PMC7823794 DOI: 10.3390/life11010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces cerevisiae has been for a long time a common model for fundamental biological studies and a popular biotechnological engineering platform to produce chemicals, fuels, and pharmaceuticals due to its peculiar characteristics. Both lines of research require an effective editing of the native genetic elements or the inclusion of heterologous pathways into the yeast genome. Although S. cerevisiae is a well-known host with several molecular biology tools available, a more precise tool is still needed. The clustered, regularly interspaced, short palindromic repeats-associated Cas9 (CRISPR-Cas9) system is a current, widespread genome editing tool. The implementation of a reprogrammable, precise, and specific method, such as CRISPR-Cas9, to edit the S. cerevisiae genome has revolutionized laboratory practices. Herein, we describe and discuss some applications of the CRISPR-Cas9 system in S. cerevisiae from simple gene knockouts to more complex processes such as artificial heterologous pathway integration, transcriptional regulation, or tolerance engineering.
Collapse
Affiliation(s)
| | | | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (J.R.); (J.L.R.)
| |
Collapse
|
22
|
Golden Gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Curr Genet 2020; 67:317-330. [PMID: 33367953 PMCID: PMC8032637 DOI: 10.1007/s00294-020-01143-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
The cloning of plasmids can be time-consuming or expensive. Yet, cloning is a prerequisite for many standard experiments for the functional analysis of genes, including the generation of deletion mutants and the localization of gene products. Here, we provide Golden Gate vectors for fast and easy cloning of gene fusion as well as gene deletion vectors applicable to diverse fungi. In Golden Gate cloning, restriction and ligation occur simultaneously in a one-pot reaction. Our vector set contains recognition sites for the commonly used type IIS restriction endonuclease BsaI. We generated plasmids for C- as well as N-terminal tagging with GFP, mRFP and 3xFLAG. For gene deletion, we provide five different donor vectors for selection marker cassettes. These include standard cassettes for hygromycin B, nourseothricin and phleomycin resistance genes as well as FLP/FRT-based marker recycling cassettes for hygromycin B and nourseothricin resistance genes. To make cloning most feasible, we provide robust protocols, namely (1) an overview of cloning procedures described in this paper, (2) specific Golden Gate reaction protocols and (3) standard primers for cloning and sequencing of plasmids and generation of deletion cassettes by PCR and split-marker PCR. We show that our vector set is applicable for the biotechnologically relevant Penicillium chrysogenum and the developmental model system Sordaria macrospora. We thus expect these vectors to be beneficial for other fungi as well. Finally, the vectors can easily be adapted to organisms beyond the kingdom fungi.
Collapse
|
23
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Hossain A, Lopez E, Halper SM, Cetnar DP, Reis AC, Strickland D, Klavins E, Salis HM. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat Biotechnol 2020; 38:1466-1475. [PMID: 32661437 DOI: 10.1038/s41587-020-0584-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/31/2020] [Indexed: 01/08/2023]
Abstract
Engineered genetic systems are prone to failure when their genetic parts contain repetitive sequences. Designing many nonrepetitive genetic parts with desired functionalities remains a difficult challenge with high computational complexity. To overcome this challenge, we developed the Nonrepetitive Parts Calculator to rapidly generate thousands of highly nonrepetitive genetic parts from specified design constraints, including promoters, ribosome-binding sites and terminators. As a demonstration, we designed and experimentally characterized 4,350 nonrepetitive bacterial promoters with transcription rates that varied across a 820,000-fold range, and 1,722 highly nonrepetitive yeast promoters with transcription rates that varied across a 25,000-fold range. We applied machine learning to explain how specific interactions controlled the promoters' transcription rates. We also show that using nonrepetitive genetic parts substantially reduces homologous recombination, resulting in greater genetic stability.
Collapse
Affiliation(s)
- Ayaan Hossain
- Bioinformatics and Genomics, Pennsylvania State University, University Park, PA, USA
| | - Eriberto Lopez
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Sean M Halper
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Daniel P Cetnar
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Alexander C Reis
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Devin Strickland
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Eric Klavins
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Howard M Salis
- Bioinformatics and Genomics, Pennsylvania State University, University Park, PA, USA. .,Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA. .,Department of Biological Engineering, Pennsylvania State University, University Park, PA, USA. .,Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
25
|
Limiting the DNA Double-Strand Break Resectosome for Genome Protection. Trends Biochem Sci 2020; 45:779-793. [PMID: 32513599 DOI: 10.1016/j.tibs.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
DNA double-strand break (DSB) resection, once thought to be a simple enzymatic process, is emerging as a highly complex series of coordinated activities required to maintain genome integrity. Progress in cell biology, biochemistry, and genetics has deciphered the precise resecting activities, the regulatory components, and their ability to properly channel the resected DNA to the appropriate DNA repair pathway. Herein, we review the mechanisms of regulation of DNA resection, with an emphasis on negative regulators that prevent single-strand (ss)DNA accumulation to maintain genome stability. Interest in targeting DNA resection inhibitors is emerging because their inactivation leads to poly(ADP-ribose) polymerase inhibitor (PARPi) resistance. We also present detailed regulation of DNA resection machineries, their analysis by functional assays, and their impact on disease and PARPi resistance.
Collapse
|
26
|
Hohnholz R, Achstetter T. Recombination in yeast based on six base pairs of homologous sequences: Structural instability in two sets of isomeric model expression plasmids. Yeast 2019; 37:207-216. [DOI: 10.1002/yea.3393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ruben Hohnholz
- Department of Industrial MicrobiologyCity University of Applied Sciences Bremen Bremen Germany
| | - Tilman Achstetter
- Department of Industrial MicrobiologyCity University of Applied Sciences Bremen Bremen Germany
| |
Collapse
|
27
|
Liu X, Wang M, Song Y, Li Y, Liu P, Shi H, Li Y, Hao T, Zhang H, Jiang W, Chen S, Li J. Combined Assembly and Targeted Integration of Multigene for Nitrogenase Biosynthetic Pathway in Saccharomyces cerevisiae. ACS Synth Biol 2019; 8:1766-1775. [PMID: 31117360 DOI: 10.1021/acssynbio.9b00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological nitrogen fixation, a process unique to diazotrophic prokaryote, is catalyzed by the nitrogenase complex. There has been a long-standing interest in reconstituting a nitrogenase biosynthetic pathway in a eukaryotic host with the final aim of developing N2-fixing cereal crops. In this study, we report that a nitrogenase biosynthetic pathway (∼38 kb containing 15 genes) was assembled in two individual one-step methods via in vivo assembly and integrated at δ and HO sites in Saccharomyces cerevisiae chromosome. Of the 15 genes, 11 genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA, nifV, groES, groEL) were from Paenibacillus polymyxa WLY78 and 4 genes (nifS, nifU, nifF, nifJ) were from Klebsiella oxytoca. The 15-gene nitrogenase biosynthetic pathway was correctly assembled and transcribed in the recombinant S. cerevisiae. The NifDK tetramer with an identical molecular weight as that of P. polymyxa was formed in yeast and the expressed NifH exhibited the activity of Fe protein. This study demonstrates that it will be possible to produce active nitrogenase in eukaryotic hosts.
Collapse
Affiliation(s)
- Xiaomeng Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Minyang Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yi Song
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yongbin Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Pengxi Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Haowen Shi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yunlong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Tianyi Hao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Wei Jiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
28
|
Garcia LE, Zubko MK, Zubko EI, Sanchez-Puerta MV. Elucidating genomic patterns and recombination events in plant cybrid mitochondria. PLANT MOLECULAR BIOLOGY 2019; 100:433-450. [PMID: 30968307 DOI: 10.1007/s11103-019-00869-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE Cybrid plant mitochondria undergo homologous recombination, mainly BIR, keep a single allele for each gene, and maintain exclusive sequences of each parent and a single copy of the homologous regions. The maintenance of a dynamic equilibrium between the mitochondrial and nuclear genomes requires continuous communication and a high level of compatibility between them, so that alterations in one genetic compartment need adjustments in the other. The co-evolution of nuclear and mitochondrial genomes has been poorly studied, even though the consequences and effects of this interaction are highly relevant for human health, as well as for crop improvement programs and for genetic engineering. The mitochondria of plants represent an excellent system to understand the mechanisms of genomic rearrangements, chimeric gene formation, incompatibility between nucleus and cytoplasm, and horizontal gene transfer. We carried out detailed analyses of the mtDNA of a repeated cybrid between the solanaceae Nicotiana tabacum and Hyoscyamus niger. The mtDNA of the cybrid was intermediate between the size of the parental mtDNAs and the sum of them. Noticeably, most of the homologous sequences inherited from both parents were lost. In contrast, the majority of the sequences exclusive of a single parent were maintained. The mitochondrial gene content included a majority of N. tabacum derived genes, but also chimeric, two-parent derived, and H. niger-derived genes in a tobacco nuclear background. Any of these alterations in the gene content could be the cause of CMS in the cybrid. The parental mtDNAs interacted through 28 homologous recombination events and a single case of illegitimate recombination. Three main homologous recombination mechanisms were recognized in the cybrid mitochondria. Break induced replication (BIR) pathway was the most frequent. We propose that BIR could be one of the mechanisms responsible for the loss of the majority of the repeated regions derived from H. niger.
Collapse
Affiliation(s)
- Laura E Garcia
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Mikhajlo K Zubko
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Elena I Zubko
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
29
|
Soniat MM, Myler LR, Kuo HC, Paull TT, Finkelstein IJ. RPA Phosphorylation Inhibits DNA Resection. Mol Cell 2019; 75:145-153.e5. [PMID: 31153714 DOI: 10.1016/j.molcel.2019.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/26/2019] [Accepted: 05/01/2019] [Indexed: 01/20/2023]
Abstract
Genetic recombination in all kingdoms of life initiates when helicases and nucleases process (resect) the free DNA ends to expose single-stranded DNA (ssDNA) overhangs. Resection regulation in bacteria is programmed by a DNA sequence, but a general mechanism limiting resection in eukaryotes has remained elusive. Using single-molecule imaging of reconstituted human DNA repair factors, we identify phosphorylated RPA (pRPA) as a negative resection regulator. Bloom's syndrome (BLM) helicase together with exonuclease 1 (EXO1) and DNA2 nucleases catalyze kilobase-length DNA resection on nucleosome-coated DNA. The resulting ssDNA is rapidly bound by RPA, which further stimulates DNA resection. RPA is phosphorylated during resection as part of the DNA damage response (DDR). Remarkably, pRPA inhibits DNA resection in cellular assays and in vitro via inhibition of BLM helicase. pRPA suppresses BLM initiation at DNA ends and promotes the intrinsic helicase strand-switching activity. These findings establish that pRPA provides a feedback loop between DNA resection and the DDR.
Collapse
Affiliation(s)
- Michael M Soniat
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Logan R Myler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
30
|
Novoa C, Dhoke GV, Mate DM, Martínez R, Haarmann T, Schreiter M, Eidner J, Schwerdtfeger R, Lorenz P, Davari MD, Jakob F, Schwaneberg U. KnowVolution of a Fungal Laccase toward Alkaline pH. Chembiochem 2019; 20:1458-1466. [DOI: 10.1002/cbic.201800807] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Catalina Novoa
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
| | - Gaurao V. Dhoke
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Diana M. Mate
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Present address: Center of Molecular Biology “Severo Ochoa”Universidad Autónoma de Madrid Nicolás Cabrera 1 28049 Madrid Spain
| | - Ronny Martínez
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
- Present address: Departamento de Ingeniería en AlimentosInstituto de Investigación Multidisciplinario en Ciencia y TecnologíaUniversidad de La Serena Raúl Bitrán 1305 1720010 La Serena Chile
| | | | | | - Jasmin Eidner
- IAB Enzymes GmbH Feldbergstrasse 78 64293 Darmstadt Germany
| | | | - Patrick Lorenz
- IAB Enzymes GmbH Feldbergstrasse 78 64293 Darmstadt Germany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Felix Jakob
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
31
|
Boonekamp FJ, Dashko S, van den Broek M, Gehrmann T, Daran JM, Daran-Lapujade P. The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Front Genet 2018; 9:504. [PMID: 30505317 PMCID: PMC6250768 DOI: 10.3389/fgene.2018.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/05/2022] Open
Abstract
The ability of the yeast Saccharomyces cerevisiae to convert glucose, even in the presence of oxygen, via glycolysis and the fermentative pathway to ethanol has played an important role in its domestication. Despite the extensive knowledge on these pathways in S. cerevisiae, relatively little is known about their genetic makeup in other industrially relevant Saccharomyces yeast species. In this study we explore the diversity of the glycolytic and fermentative pathways within the Saccharomyces genus using S. cerevisiae, Saccharomyces kudriavzevii, and Saccharomyces eubayanus as paradigms. Sequencing data revealed a highly conserved genetic makeup of the glycolytic and fermentative pathways in the three species in terms of number of paralogous genes. Although promoter regions were less conserved between the three species as compared to coding sequences, binding sites for Rap1, Gcr1 and Abf1, main transcriptional regulators of glycolytic and fermentative genes, were highly conserved. Transcriptome profiling of these three strains grown in aerobic batch cultivation in chemically defined medium with glucose as carbon source, revealed a remarkably similar expression of the glycolytic and fermentative genes across species, and the conserved classification of genes into major and minor paralogs. Furthermore, transplantation of the promoters of major paralogs of S. kudriavzevii and S. eubayanus into S. cerevisiae demonstrated not only the transferability of these promoters, but also the similarity of their strength and response to various environmental stimuli. The relatively low homology of S. kudriavzevii and S. eubayanus promoters to their S. cerevisiae relatives makes them very attractive alternatives for strain construction in S. cerevisiae, thereby expanding the S. cerevisiae molecular toolbox.
Collapse
Affiliation(s)
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
32
|
Yang JS, Garriga-Canut M, Link N, Carolis C, Broadbent K, Beltran-Sastre V, Serrano L, Maurer SP. rec-YnH enables simultaneous many-by-many detection of direct protein-protein and protein-RNA interactions. Nat Commun 2018; 9:3747. [PMID: 30217970 PMCID: PMC6138660 DOI: 10.1038/s41467-018-06128-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023] Open
Abstract
Knowing which proteins and RNAs directly interact is essential for understanding cellular mechanisms. Unfortunately, discovering such interactions is costly and often unreliable. To overcome these limitations, we developed rec-YnH, a new yeast two and three-hybrid-based screening pipeline capable of detecting interactions within protein libraries or between protein libraries and RNA fragment pools. rec-YnH combines batch cloning and transformation with intracellular homologous recombination to generate bait-prey fusion libraries. By developing interaction selection in liquid-gels and using an ORF sequence-based readout of interactions via next-generation sequencing, we eliminate laborious plating and barcoding steps required by existing methods. We use rec-Y2H to simultaneously map interactions of protein domains and reveal novel putative interactors of PAR proteins. We further employ rec-Y2H to predict the architecture of published coprecipitated complexes. Finally, we use rec-Y3H to map interactions between multiple RNA-binding proteins and RNAs-the first time interactions between protein and RNA pools are simultaneously detected.
Collapse
Affiliation(s)
- Jae-Seong Yang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Garriga-Canut
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Nele Link
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Katrina Broadbent
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Violeta Beltran-Sastre
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Sebastian P Maurer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain.
| |
Collapse
|
33
|
Ji CH, Kim JP, Kang HS. Library of Synthetic Streptomyces Regulatory Sequences for Use in Promoter Engineering of Natural Product Biosynthetic Gene Clusters. ACS Synth Biol 2018; 7:1946-1955. [PMID: 29966097 DOI: 10.1021/acssynbio.8b00175] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Promoter engineering has emerged as a powerful tool to activate transcriptionally silent natural product biosynthetic gene clusters found in bacterial genomes. Since biosynthetic gene clusters are composed of multiple operons, their promoter engineering requires the use of a set of regulatory sequences with a similar level of activities. Although several successful examples of promoter engineering have been reported, its widespread use has been limited due to the lack of a library of regulatory sequences suitable for use in promoter engineering of large, multiple operon-containing biosynthetic gene clusters. Here, we present the construction of a library of constitutively active, synthetic Streptomyces regulatory sequences. The promoter assay system has been developed using a single-module nonribosomal peptide synthetase that produces the peptide blue pigment indigoidine, allowing for the rapid screening of a large pool of regulatory sequences. The highly randomized regulatory sequences in both promoter and ribosome binding site regions were screened for their ability to produce the blue pigment, and they are classified into the strong, medium, and weak regulatory sequences based on the strength of a blue color. We demonstrated the utility of our synthetic regulatory sequences for promoter engineering of natural product biosynthetic gene clusters using the actinorhodin gene cluster as a model cluster. We believe that the set of Streptomyces regulatory sequences we report here will facilitate the discovery of new natural products from silent, cryptic biosynthetic gene clusters found in sequenced Streptomyces genomes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Jong-Pyung Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
34
|
Steenwyk JL, Rokas A. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation. Front Microbiol 2018; 9:288. [PMID: 29520259 PMCID: PMC5826948 DOI: 10.3389/fmicb.2018.00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond.
Collapse
Affiliation(s)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
35
|
Hu Z, Shi Z, Guo X, Jiang B, Wang G, Luo D, Chen Y, Zhu YS. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci 2018; 8:12. [PMID: 29468011 PMCID: PMC5819182 DOI: 10.1186/s13578-018-0200-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background Precise genome editing is essential for both basic and translational research. The recently developed CRISPR/Cas9 system can specifically cleave a designated site of target gene to create a DNA double-strand break, which triggers cellular DNA repair mechanism of either inaccurate non-homologous end joining, or site-specific homologous recombination. Unfortunately, homology-directed repair (HDR) is challenging due to its very low efficiency. Herein, we focused on improving the efficiency of HDR using a combination of CRISPR/Cas9, eGFP, DNA ligase IV inhibitor SCR7, and single-stranded oligodeoxynucleotides (ssODN) in human cancer cells. Results When Cas9, gRNA and eGFP were assembled into a co-expression vector, the disruption rate more than doubled following GFP-positive cell sorting in transfected cells compared to those unsorted cells. Using ssODNs as templates, SCR7 treatment increased targeted insertion efficiency threefold in transfected cells compared to those without SCR7 treatment. Moreover, this combinatorial approach greatly improved the efficiency of HDR and targeted gene mutation correction at both the GFP-silent mutation and the β-catenin Ser45 deletion mutation cells. Conclusion The data of this study suggests that a combination of co-expression vector, ssODN, and ligase IV inhibitor can markedly improve the CRISPR/Cas9-directed gene editing, which should have significant application in targeted gene editing and genetic disease therapy.
Collapse
Affiliation(s)
- Zheng Hu
- 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China.,2Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Chenzhou, 432000 Hunan China
| | - Zhaoying Shi
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Xiaogang Guo
- 4Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 Guangdong China
| | - Baishan Jiang
- 5Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 Guangdong China
| | - Guo Wang
- 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China
| | - Dixian Luo
- 2Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Chenzhou, 432000 Hunan China
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Yuan-Shan Zhu
- 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China.,6Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
36
|
Rao L, Hülsemann M, Gennerich A. Combining Structure-Function and Single-Molecule Studies on Cytoplasmic Dynein. Methods Mol Biol 2018; 1665:53-89. [PMID: 28940064 PMCID: PMC5639168 DOI: 10.1007/978-1-4939-7271-5_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytoplasmic dynein is the largest and most intricate cytoskeletal motor protein. It is responsible for a vast array of biological functions, ranging from the transport of organelles and mRNAs to the movement of nuclei during neuronal migration and the formation and positioning of the mitotic spindle during cell division. Despite its megadalton size and its complex design, recent success with the recombinant expression of the dynein heavy chain has advanced our understanding of dynein's molecular mechanism through the combination of structure-function and single-molecule studies. Single-molecule fluorescence assays have provided detailed insights into how dynein advances along its microtubule track in the absence of load, while optical tweezers have yielded insights into the force generation and stalling behavior of dynein. Here, using the S. cerevisiae expression system, we provide improved protocols for the generation of dynein mutants and for the expression and purification of the mutated and/or tagged proteins. To facilitate single-molecule fluorescence and optical trapping assays, we further describe updated, easy-to-use protocols for attaching microtubules to coverslip surfaces. The presented protocols together with the recently solved crystal structures of the dynein motor domain will further simplify and accelerate hypothesis-driven mutagenesis and structure-function studies on dynein.
Collapse
Affiliation(s)
- Lu Rao
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maren Hülsemann
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
37
|
Abstract
Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different.IMPORTANCEPneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms of antigenic variation used by this pathogen to escape the human immune system, a strategy commonly used by pathogenic microorganisms. Using a new DNA sequencing technology generating long reads, we could characterize the highly repetitive gene families encoding the proteins that are present on the cellular surface of this pest. These gene families are localized in the regions close to the ends of all chromosomes, the subtelomeres. Such chromosomal localization was found to favor genetic recombinations between members of each gene family and to allow diversification of these proteins continuously over time. This pathogen seems to use a strategy of antigenic variation consisting of the continuous production of new subpopulations composed of cells that are antigenically different. Such a strategy is unique among human pathogens.
Collapse
|
38
|
Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol 2017; 101:8063-8075. [PMID: 28965220 DOI: 10.1007/s00253-017-8486-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 10/18/2022]
Abstract
Functional genomics of filamentous fungi has gradually uncovered gene information for constructing 'cell factories' and controlling pathogens. Available gene manipulation methods of filamentous fungi include random integration methods, gene targeting technology, gene editing with artificial nucleases and RNA technology. This review describes random gene integration constructed by restriction enzyme-mediated integration (REMI); Agrobacterium-mediated transformation (AMT); transposon-arrayed gene knockout (TAGKO); gene targeting technology, mainly about homologous recombination; and modern gene editing strategies containing transcription activator-like effector nucleases (TALENs) and a clustered regularly interspaced short palindromic repeat/associated protein system (CRISPR/Cas) developed in filamentous fungi and RNA technology including RNA interference (RNAi) and ribozymes. This review describes historical and modern gene manipulation methods in filamentous fungi and presents the molecular tools available to researchers investigating filamentous fungi. The biggest difference of this review from the previous ones is the addition of successful application and details of the promising gene editing tool CRISPR/Cas9 system in filamentous fungi.
Collapse
|
39
|
Phillips AF, Millet AR, Tigano M, Dubois SM, Crimmins H, Babin L, Charpentier M, Piganeau M, Brunet E, Sfeir A. Single-Molecule Analysis of mtDNA Replication Uncovers the Basis of the Common Deletion. Mol Cell 2017; 65:527-538.e6. [PMID: 28111015 DOI: 10.1016/j.molcel.2016.12.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
Abstract
Mutations in mtDNA lead to muscular and neurological diseases and are linked to aging. The most frequent aberrancy is the "common deletion" that involves a 4,977-bp region flanked by 13-bp repeats. To investigate the basis of this deletion, we developed a single-molecule mtDNA combing method. The analysis of replicating mtDNA molecules provided in vivo evidence in support of the asymmetric mode of replication. Furthermore, we observed frequent fork stalling at the junction of the common deletion, suggesting that impaired replication triggers the formation of this toxic lesion. In parallel experiments, we employed mito-TALENs to induce breaks in distinct loci of the mitochondrial genome and found that breaks adjacent to the 5' repeat trigger the common deletion. Interestingly, this process was mediated by the mitochondrial replisome independent of canonical DSB repair. Altogether, our data underscore a unique replication-dependent repair pathway that leads to the mitochondrial common deletion.
Collapse
Affiliation(s)
- Aaron F Phillips
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Armêl R Millet
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France; Genome Dynamics in the Immune System Laboratory, INSERM, UMR 1163, Institut Imagine, 75015 Paris, France
| | - Marco Tigano
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Sonia M Dubois
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France
| | - Hannah Crimmins
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Loelia Babin
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France; Genome Dynamics in the Immune System Laboratory, INSERM, UMR 1163, Institut Imagine, 75015 Paris, France
| | - Marine Charpentier
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France
| | - Marion Piganeau
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France
| | - Erika Brunet
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France; Genome Dynamics in the Immune System Laboratory, INSERM, UMR 1163, Institut Imagine, 75015 Paris, France.
| | - Agnel Sfeir
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
40
|
Liu W, Zhang B, Jiang R. Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:41. [PMID: 28239413 PMCID: PMC5316175 DOI: 10.1186/s13068-017-0726-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/09/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Acetyl-CoA is an important precursor in Saccharomyces cerevisiae. Various approaches have been adopted to improve its cytosolic level previously with the emphasis on engineering the "acetyl-" part of acetyl-CoA. To the best of our knowledge, there have been no reports on engineering the "-CoA" part so far. RESULTS In this study, we had tried to engineer S. cerevisiae from both the "-CoA" part via pantothenate kinase overexpression (PanK from S. cerevisiae, the rate-limiting enzyme for CoA synthesis) and the "acetyl-"part through PDH bypass introduction (ALD6 from S. cerevisiae and SeAcsL641P from Salmonella enteric). A naringenin-producing reporter strain had been constructed to reflect cytosolic acetyl-CoA level as acetyl-CoA is the precursor of naringenin. It was found that PanK overexpression or PDH bypass introduction alone only led to a twofold or 6.74-fold increase in naringenin titer, but the combination of both (strain CENFPAA01) had resulted in 24.4-fold increase as compared to the control (strain CENF09) in the presence of 0.5 mM substrate p-coumaric acid. The supplement of PanK substrate pantothenate resulted in another 19% increase in naringenin production. CONCLUSIONS To greatly enhance acetyl-CoA level in yeast cytosol, it is feasible to engineer both the "acetyl-" part and the "-CoA" part simultaneously. Insufficient CoA supply might aggravate acetyl-CoA shortage and cause low yield of target product.
Collapse
Affiliation(s)
- Wenshan Liu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Bo Zhang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
41
|
A robust gene-stacking method utilizing yeast assembly for plant synthetic biology. Nat Commun 2016; 7:13215. [PMID: 27782150 PMCID: PMC5095168 DOI: 10.1038/ncomms13215] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. However, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. Here, we describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies for stacking genes and traits to address many impending environmental and agricultural challenges. Plant synthetic biology offers the potential to re-engineer crops, but requires efficient methods to prepare constructs for transformation. Here Shih et al. develop jStack, a method that utilizes yeast homologous recombination and a library of DNA parts, to efficiently assemble plant transformation vectors.
Collapse
|
42
|
Sun Y, Ban B, Bradbury A, Ansari GAS, Blake DA. Combining Yeast Display and Competitive FACS to Select Rare Hapten-Specific Clones from Recombinant Antibody Libraries. Anal Chem 2016; 88:9181-9. [PMID: 27571429 PMCID: PMC5032104 DOI: 10.1021/acs.analchem.6b02334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The development of antibodies to
low molecular weight haptens remains
challenging due to both the low immunogenicity of many haptens and
the cross-reactivity of the protein carriers used to generate the
immune response. Recombinant antibodies and novel display technologies
have greatly advanced antibody development; however, new techniques
are still required to select rare hapten-specific antibodies from
large recombinant libraries. In the present study, we used a combination
of phage and yeast display to screen an immune antibody library (size,
4.4 × 106) against hapten markers for petroleum contamination
(phenanthrene and methylphenanthrenes). Selection via phage display
was used first to enrich the library between 20- and 100-fold for
clones that bound to phenanthrene–protein conjugates. The enriched
libraries were subsequently transferred to a yeast display system
and a newly developed competitive FACS procedure was employed to select
rare hapten-specific clones. Competitive FACS increased the frequency
of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to
0.005% in the original library to between 13 and 35% in selected pools.
The presence of hapten-specific scFvs was confirmed by competitive
ELISA using periplasmic protein. Three distinct antibody clones that
recognize phenanthrene and methylphenanthrenes were selected, and
their distinctive binding properties were characterized. To our knowledge,
these are first antibodies that can distinguish between methylated
(petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies
will be useful in detecting the sources of environmental contamination.
This selection method could be generally adopted in the selection
of other hapten-specific recombinant antibodies.
Collapse
Affiliation(s)
- Yue Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana, United States
| | - Bhupal Ban
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana, United States
| | - Andrew Bradbury
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico, United States
| | - G A Shakeel Ansari
- Department of Pathology, University of Texas Medical Branch , Galveston, Texas, United States
| | - Diane A Blake
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana, United States
| |
Collapse
|
43
|
Myler LR, Finkelstein IJ. Eukaryotic resectosomes: A single-molecule perspective. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 127:119-129. [PMID: 27498169 DOI: 10.1016/j.pbiomolbio.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) disrupt the physical and genetic continuity of the genome. If unrepaired, DSBs can lead to cellular dysfunction and malignant transformation. Homologous recombination (HR) is a universally conserved DSB repair mechanism that employs the information in a sister chromatid to catalyze error-free DSB repair. To initiate HR, cells assemble the resectosome: a multi-protein complex composed of helicases, nucleases, and regulatory proteins. The resectosome nucleolytically degrades (resects) the free DNA ends for downstream homologous recombination. Several decades of intense research have identified the core resectosome components in eukaryotes, archaea, and bacteria. More recently, these proteins have been characterized via single-molecule approaches. Here, we focus on recent single-molecule studies that have begun to unravel how nucleases, helicases, processivity factors, and other regulatory proteins dictate the extent and efficiency of DNA resection in eukaryotic cells. We conclude with a discussion of outstanding questions that can be addressed via single-molecule approaches.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
44
|
Roehner N, Young EM, Voigt CA, Gordon DB, Densmore D. Double Dutch: A Tool for Designing Combinatorial Libraries of Biological Systems. ACS Synth Biol 2016; 5:507-17. [PMID: 27110633 DOI: 10.1021/acssynbio.5b00232] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, semirational approaches that rely on combinatorial assembly of characterized DNA components have been used to engineer biosynthetic pathways. In practice, however, it is not practical to assemble and test millions of pathway variants in order to elucidate how different DNA components affect the behavior of a pathway. To address this challenge, we apply a rigorous mathematical approach known as design of experiments (DOE) that can be used to construct empirical models of system behavior without testing all variants. To support this approach, we have developed a tool named Double Dutch, which uses a formal grammar and heuristic algorithms to automate the process of DOE library design. Compared to designing by hand, Double Dutch enables users to more efficiently and scalably design libraries of pathway variants that can be used in a DOE framework and uniquely provides a means to flexibly balance design considerations of statistical analysis, construction cost, and risk of homologous recombination, thereby demonstrating the utility of automating decision making when faced with complex design trade-offs.
Collapse
Affiliation(s)
- Nicholas Roehner
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Eric M. Young
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher A. Voigt
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - D. Benjamin Gordon
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Douglas Densmore
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
45
|
Bourras S, Rouxel T, Meyer M. Agrobacterium tumefaciens Gene Transfer: How a Plant Pathogen Hacks the Nuclei of Plant and Nonplant Organisms. PHYTOPATHOLOGY 2015; 105:1288-1301. [PMID: 26151736 DOI: 10.1094/phyto-12-14-0380-rvw] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Agrobacterium species are soilborne gram-negative bacteria exhibiting predominantly a saprophytic lifestyle. Only a few of these species are capable of parasitic growth on plants, causing either hairy root or crown gall diseases. The core of the infection strategy of pathogenic Agrobacteria is a genetic transformation of the host cell, via stable integration into the host genome of a DNA fragment called T-DNA. This genetic transformation results in oncogenic reprogramming of the host to the benefit of the pathogen. This unique ability of interkingdom DNA transfer was largely used as a tool for genetic engineering. Thus, the artificial host range of Agrobacterium is continuously expanding and includes plant and nonplant organisms. The increasing availability of genomic tools encouraged genome-wide surveys of T-DNA tagged libraries, and the pattern of T-DNA integration in eukaryotic genomes was studied. Therefore, data have been collected in numerous laboratories to attain a better understanding of T-DNA integration mechanisms and potential biases. This review focuses on the intranuclear mechanisms necessary for proper targeting and stable expression of Agrobacterium oncogenic T-DNA in the host cell. More specifically, the role of genome features and the putative involvement of host's transcriptional machinery in relation to the T-DNA integration and effects on gene expression are discussed. Also, the mechanisms underlying T-DNA integration into specific genome compartments is reviewed, and a theoretical model for T-DNA intranuclear targeting is presented.
Collapse
Affiliation(s)
- Salim Bourras
- First, second, and third authors: INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, BP 01, F-78850 Thiverval-Grignon, France
| | - Thierry Rouxel
- First, second, and third authors: INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, BP 01, F-78850 Thiverval-Grignon, France
| | - Michel Meyer
- First, second, and third authors: INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, BP 01, F-78850 Thiverval-Grignon, France
| |
Collapse
|
46
|
van Leeuwen J, Andrews B, Boone C, Tan G. Construction of Multifragment Plasmids by Homologous Recombination in Yeast. Cold Spring Harb Protoc 2015; 2015:pdb.top084111. [PMID: 26330631 DOI: 10.1101/pdb.top084111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Over the past decade, the focus of cloning has shifted from constructing plasmids that express a single gene of interest to creating multigenic constructs that contain entire pathways or even whole genomes. Traditional cloning methods that rely on restriction digestion and ligation are limited by the number and size of fragments that can efficiently be combined. Here, we focus on the use of homologous-recombination-based DNA manipulation in the yeast Saccharomyces cerevisiae for the construction of plasmids from multiple DNA fragments. Owing to its simplicity and high efficiency, cloning by homologous recombination in yeast is very accessible and can be applied to high-throughput construction procedures. Its applications extend beyond yeast-centered purposes and include the cloning of large mammalian DNA sequences and entire bacterial genomes.
Collapse
Affiliation(s)
- Jolanda van Leeuwen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Brenda Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Guihong Tan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
47
|
Abstract
The gene capture technique is a powerful tool that allows the cloning of large DNA regions (up to 80 kb), such as entire genomic islands, without using restriction enzymes or DNA amplification. This technique takes advantage of the high recombinant capacity of the yeast. A "capture" vector containing both ends of the target DNA region must first be constructed. The target region is then captured by co-transformation and recombination in yeast between the "capture" vector and appropriate genomic DNA. The selected recombinant plasmid can be verified by sequencing and transferred in the bacteria for multiple applications. This chapter describes a protocol specifically adapted for Pseudomonas aeruginosa genomic DNA capture.
Collapse
|
48
|
Odell AV, Tran F, Foderaro JE, Poupart S, Pathak R, Westwood NJ, Ward GE. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation. PLoS One 2015; 10:e0120331. [PMID: 25789621 PMCID: PMC4366382 DOI: 10.1371/journal.pone.0120331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/06/2015] [Indexed: 12/17/2022] Open
Abstract
Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.
Collapse
Affiliation(s)
- Anahi V Odell
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Fanny Tran
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Jenna E Foderaro
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Séverine Poupart
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Ravi Pathak
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Nicholas J Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
49
|
|
50
|
Pillai JK, Venkadesh S, Ajees AA, Rosen BP, Bhattacharjee H. Mutations in the ArsA ATPase that restore interaction with the ArsD metallochaperone. Biometals 2014; 27:1263-75. [PMID: 25183649 PMCID: PMC4224984 DOI: 10.1007/s10534-014-9788-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023]
Abstract
The ArsA ATPase is the catalytic subunit of the ArsAB As(III) efflux pump. It receives trivalent As(III) from the intracellular metallochaperone ArsD. The interaction of ArsA and ArsD allows for resistance to As(III) at environmental concentrations. A quadruple mutant in the arsD gene encoding a K2A/K37A/K62A/K104A ArsD is unable to interact with ArsA. An error-prone mutagenesis approach was used to generate random mutations in the arsA gene that restored interaction with the quadruple arsD mutant in yeast two-hybrid assays. A number of arsA genes with multiple mutations were isolated. These were analyzed in more detail by separation into single arsA mutants. Three such mutants encoding Q56R, F120I and D137V ArsA were able to restore interaction with the quadruple ArsD mutant in yeast two-hybrid assays. Each of the three single ArsA mutants also interacted with wild type ArsD. Only the Q56R ArsA derivative exhibited significant metalloid-stimulated ATPase activity in vitro. Purified Q56R ArsA was stimulated by wild type ArsD and to a lesser degree by the quadruple ArsD derivative. The F120I and D137V ArsAs did not show metalloid-stimulated ATPase activity. Structural models generated by in silico docking suggest that an electrostatic interface favors reversible interaction between ArsA and ArsD. We predict that mutations in ArsA propagate changes in hydrogen bonding and salt bridges to the ArsA-ArsD interface that affect their interactions.
Collapse
Affiliation(s)
- Jitesh K. Pillai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida 33199, USA
| | - Sarkarai Venkadesh
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida 33199, USA
| | - A. Abdul Ajees
- Department of Atomic and Molecular Physics, Manipal University, Manipal, Karnataka 576104, India
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida 33199, USA
| |
Collapse
|