1
|
Huang Y, Jia KZ, Zhao W, Zhu LW. Insights into the regulatory mechanisms and application prospects of the transcription factor Cra. Appl Environ Microbiol 2024; 90:e0122824. [PMID: 39494897 PMCID: PMC11577769 DOI: 10.1128/aem.01228-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Cra (catabolite repressor/activator) is a global transcription factor (TF) that plays a pleiotropic role in controlling the transcription of several genes involved in carbon utilization and energy metabolism. Multiple studies have investigated the regulatory mechanism of Cra and its rational use for metabolic regulation, but due to the complexity of its regulation, there remain challenges in the efficient use of Cra. Here, the structure, mechanism of action, and regulatory function of Cra in carbon and nitrogen flow are reviewed. In addition, this paper highlights the application of Cra in metabolic engineering, including the promotion of metabolite biosynthesis, the regulation of stress tolerance and virulence, the use of a Cra-based biosensor, and its coupling with other transcription factors. Finally, the prospects of Cra-related regulatory strategies are discussed. This review provides guidance for the rational design and construction of Cra-based metabolic regulation systems.
Collapse
Affiliation(s)
- Ying Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Kai-Zhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Wei Zhao
- State Key Laboratory of MicrobialTechnology, University, Qingdao, China
| | - Li-Wen Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
2
|
Weeramange C, Menjivar C, O'Neil PT, El Qaidi S, Harrison KS, Meinhardt S, Bird CL, Sreenivasan S, Hardwidge PR, Fenton AW, Hefty PS, Bose JL, Swint-Kruse L. Fructose-1-kinase has pleiotropic roles in Escherichia coli. J Biol Chem 2024; 300:107352. [PMID: 38723750 PMCID: PMC11157272 DOI: 10.1016/j.jbc.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024] Open
Abstract
In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.
Collapse
Affiliation(s)
- Chamitha Weeramange
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cindy Menjivar
- The Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pierce T O'Neil
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Kelly S Harrison
- The Department of Molecular Biosciences, The University of Kansas - Lawrence, Lawrence, Kansas, USA
| | - Sarah Meinhardt
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cole L Bird
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shwetha Sreenivasan
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Aron W Fenton
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - P Scott Hefty
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jeffrey L Bose
- The Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
3
|
Weeramange C, Menjivar C, O’Neil PT, El Qaidi S, Harrison KS, Meinhardt S, Bird CL, Sreenivasan S, Hardwidge PR, Fenton AW, Hefty PS, Bose JL, Swint-Kruse L. Fructose-1-kinase has pleiotropic roles in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571569. [PMID: 38168282 PMCID: PMC10760178 DOI: 10.1101/2023.12.14.571569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In Escherichia coli, the master transcription regulator Catabolite Repressor Activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. The ΔfruK strain also alters biofilm formation. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.
Collapse
Affiliation(s)
- Chamitha Weeramange
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Cindy Menjivar
- The Department of Microbiology, Molecular Genetics and Immunology, 3901 Rainbow Blvd, MSN 3029, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Pierce T. O’Neil
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Samir El Qaidi
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Kelly S. Harrison
- The Department of Molecular Biosciences, 2034 Haworth Hall, 1200 Sunnyside Avenue, The University of Kansas – Lawrence, Lawrence, Kansas, USA 66045
| | - Sarah Meinhardt
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Cole L. Bird
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Shwetha Sreenivasan
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Philip R. Hardwidge
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Aron W. Fenton
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - P. Scott Hefty
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Jeffrey L. Bose
- The Department of Microbiology, Molecular Genetics and Immunology, 3901 Rainbow Blvd, MSN 3029, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| |
Collapse
|
4
|
Joo Y, Sung JY, Shin SM, Park SJ, Kim KS, Park KD, Kim SB, Lee DW. A Retro-Aldol Reaction Prompted the Evolvability of a Phosphotransferase System for the Utilization of a Rare Sugar. Microbiol Spectr 2023; 11:e0366022. [PMID: 36786576 PMCID: PMC10101011 DOI: 10.1128/spectrum.03660-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The evolution of the bacterial phosphotransferase system (PTS) linked to glycolysis is dependent on the availability of naturally occurring sugars. Although bacteria exhibit sugar specificities based on carbon catabolite repression, the acquisition and evolvability of the cellular sugar preference under conditions that are suboptimal for growth (e.g., environments rich in a rare sugar) are poorly understood. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. We detected a minimal set of adaptive mutations in the d-fructose-specific PTS to render E. coli capable of d-tagatose utilization. These E. coli mutant strains lost the tight regulation of both the d-fructose and N-acetyl-galactosamine PTS following deletions in the binding site of the catabolite repressor/activator protein (Cra) upstream from the fruBKA operon and in the agaR gene, encoding the N-acetylgalactosamine (GalNAc) repressor, respectively. Acquired d-tagatose catabolic pathways then underwent fine-tuned adaptation via an additional mutation in 1-phosphofructose kinase to adjust metabolic fluxes. We determined the evolutionary trajectory at the molecular level, providing insights into the mechanism by which enteric bacteria evolved a substrate preference for the rare sugar d-tagatose. Furthermore, the engineered E. coli mutant strain could serve as an in vivo high-throughput screening platform for engineering non-phosphosugar isomerases to produce rare sugars. IMPORTANCE Microorganisms generate energy through glycolysis, which might have preceded a rapid burst of evolution, including the evolution of cellular respiration in the primordial biosphere. However, little is known about the evolvability of cellular sugar preferences. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. Consequently, we identified mutational hot spots and determined the evolutionary trajectory at the molecular level. This provided insights into the mechanism by which enteric bacteria evolved substrate preferences for various sugars, accounting for the widespread occurrence of these taxa. Furthermore, the adaptive laboratory evolution-induced cellular chassis could serve as an in vivo high-throughput screening platform for engineering tailor-made non-phosphorylated sugar isomerases to produce low-calorigenic rare sugars showing antidiabetic, antihyperglycemic, and antitumor activities.
Collapse
Affiliation(s)
- Yunhye Joo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Yoon Sung
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sun-Mi Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Jun Park
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Weeramange CJ, Fairlamb MS, Singh D, Fenton AW, Swint‐Kruse L. The strengths and limitations of using biolayer interferometry to monitor equilibrium titrations of biomolecules. Protein Sci 2020; 29:1018-1034. [PMID: 31943488 PMCID: PMC7096710 DOI: 10.1002/pro.3827] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Every method used to quantify biomolecular interactions has its own strengths and limitations. To quantify protein-DNA binding affinities, nitrocellulose filter binding assays with 32 P-labeled DNA quantify Kd values from 10-12 to 10-8 M but have several technical limitations. Here, we considered the suitability of biolayer interferometry (BLI), which monitors association and dissociation of a soluble macromolecule to an immobilized species; the ratio koff /kon determines Kd . However, for lactose repressor protein (LacI) and an engineered repressor protein ("LLhF") binding immobilized DNA, complicated kinetic curves precluded this analysis. Thus, we determined whether the amplitude of the BLI signal at equilibrium related linearly to the fraction of protein bound to DNA. A key question was the effective concentration of immobilized DNA. Equilibrium titration experiments with DNA concentrations below Kd (equilibrium binding regime) must be analyzed differently than those with DNA near or above Kd (stoichiometric binding regime). For ForteBio streptavidin tips, the most frequent effective DNA concentration was ~2 × 10-9 M. Although variation occurred among different lots of sensor tips, binding events with Kd ≥ 10-8 M should reliably be in the equilibrium binding regime. We also observed effects from multi-valent interactions: Tetrameric LacI bound two immobilized DNAs whereas dimeric LLhF did not. We next used BLI to quantify the amount of inducer sugars required to allosterically diminish protein-DNA binding and to assess the affinity of fructose-1-kinase for the DNA-LLhF complex. Overall, when experimental design corresponded with appropriate data interpretation, BLI was convenient and reliable for monitoring equilibrium titrations and thereby quantifying a variety of binding interactions.
Collapse
Affiliation(s)
- Chamitha J. Weeramange
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansas
| | - Max S. Fairlamb
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansas
| | - Dipika Singh
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansas
| | - Aron W. Fenton
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansas
| | - Liskin Swint‐Kruse
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansas
| |
Collapse
|
6
|
Zeng L, Burne RA. Essential Roles of the sppRA Fructose-Phosphate Phosphohydrolase Operon in Carbohydrate Metabolism and Virulence Expression by Streptococcus mutans. J Bacteriol 2019; 201:e00586-18. [PMID: 30348833 PMCID: PMC6304665 DOI: 10.1128/jb.00586-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022] Open
Abstract
The dental caries pathogen Streptococcus mutans can ferment a variety of sugars to produce organic acids. Exposure of S. mutans to certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress in S. mutans was demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon in S. mutans, sppRA, which was highly expressed in the fruK mutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+ and Mn2+ but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of the sppRA operon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only induced sppA expression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression of sppA, via a plasmid or by deleting sppR, greatly alleviated fructose-induced stress in a fruK mutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show that S. mutans is capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutans is a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon in S. mutans that regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Identification of TP53-induced glycolysis and apoptosis regulator (TIGAR) as the phosphoglycolate-independent 2,3-bisphosphoglycerate phosphatase. Biochem J 2014; 458:439-48. [PMID: 24423178 DOI: 10.1042/bj20130841] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The p53-induced protein TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator] is considered to be a F26BPase (fructose-2,6-bisphosphatase) with an important role in cancer cell metabolism. The reported catalytic efficiency of TIGAR as an F26BPase is several orders of magnitude lower than that of the F26BPase component of liver or muscle PFK2 (phosphofructokinase 2), suggesting that F26BP (fructose 2,6-bisphosphate) might not be the physiological substrate of TIGAR. We therefore set out to re-evaluate the biochemical function of TIGAR. Phosphatase activity of recombinant human TIGAR protein was tested on a series of physiological phosphate esters. The best substrate was 23BPG (2,3-bisphosphoglycerate), followed by 2PG (2-phosphoglycerate), 2-phosphoglycolate and PEP (phosphoenolpyruvate). In contrast the catalytic efficiency for F26BP was approximately 400-fold lower than that for 23BPG. Using genetic and shRNA-based cell culture models, we show that loss of TIGAR consistently leads to an up to 5-fold increase in the levels of 23BPG. Increases in F26BP levels were also observed, albeit in a more limited and cell-type dependent manner. The results of the present study challenge the concept that TIGAR acts primarily on F26BP. This has significant implications for our understanding of the metabolic changes downstream of p53 as well as for cancer cell metabolism in general. It also suggests that 23BPG might play an unrecognized function in metabolic control.
Collapse
|
8
|
Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli. Mol Biol Rep 2008; 36:529-36. [PMID: 18256902 DOI: 10.1007/s11033-008-9210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.
Collapse
|
9
|
Shin JS, Torres TP, Catlin RL, Donahue EP, Shiota M. A defect in glucose-induced dissociation of glucokinase from the regulatory protein in Zucker diabetic fatty rats in the early stage of diabetes. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1381-90. [PMID: 17204595 DOI: 10.1152/ajpregu.00260.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effect of stimulation of glucokinase (GK) export from the nucleus by small amounts of sorbitol on hepatic glucose flux in response to elevated plasma glucose was examined in 6-h fasted Zucker diabetic fatty rats at 10 wk of age. Under basal conditions, plasma glucose, insulin, and glucagon were ∼8 mM, 2,000 pmol/l, and 60 ng/l, respectively. Endogenous glucose production (EGP) was 44 ± 4 μmol·kg−1·min−1. When plasma glucose was raised to ∼17 mM, GK was still predominantly localized with its inhibitory protein in the nucleus. EGP was not suppressed. When sorbitol was infused at 5.6 and 16.7 μmol·kg−1·min−1, along with the increase in plasma glucose, GK was exported to the cytoplasm. EGP (23 ± 19 and 12 ± 5 μmol·kg−1·min−1) was suppressed without a decrease in glucose 6-phosphatase flux (145 ± 23 and 126 ± 16 vs. 122 ± 10 μmol·kg−1·min−1without sorbitol) but increased in glucose phosphorylation as indicated by increases in glucose recycling (122 ± 17 and 114 ± 19 vs. 71 ± 11 μmol·kg−1·min−1), glucose-6-phosphate content (254 ± 32 and 260 ± 35 vs. 188 ± 20 nmol/g liver), fractional contribution of plasma glucose to uridine 5′-diphosphate-glucose flux (43 ± 8 and 42 ± 8 vs. 27 ± 6%), and glycogen synthesis from plasma glucose (20 ± 4 and 22 ± 5 vs. 9 ± 4 μmol glucose/g liver). The decreased glucose effectiveness to suppress EGP and stimulate hepatic glucose uptake may result from failure of the sugar to activate GK by stimulating the translocation of the enzyme.
Collapse
Affiliation(s)
- Jun-Seop Shin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
10
|
Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 2006; 55:865-74. [PMID: 16567505 DOI: 10.2337/diabetes.55.04.06.db05-1178] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) controls glucose uptake and glycolysis in muscle. Little is known about its role in liver glucose uptake, which is controlled by glucokinase. We report here that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), metformin, and oligomycin activated AMPK and inhibited glucose phosphorylation and glycolysis in rat hepatocytes. In vitro experiments demonstrated that this inhibition was not due to direct phosphorylation of glucokinase or its regulatory protein by AMPK. By contrast, AMPK phosphorylated liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase without affecting activity. Inhibitors of the endothelial nitric oxide synthase, stress kinases, and phosphatidylinositol 3-kinase pathways did not counteract the effects of AICAR, metformin, or oligomycin, suggesting that these signaling pathways were not involved. Interestingly, the inhibitory effect on glucose phosphorylation of these well-known AMPK activators persisted in primary cultured hepatocytes from newly engineered mice lacking both liver alpha1 and alpha2 AMPK catalytic subunits, demonstrating that this effect was clearly not mediated by AMPK. Finally, AICAR, metformin, and oligomycin were found to inhibit the glucose-induced translocation of glucokinase from the nucleus to the cytosol by a mechanism that could be related to the decrease in intracellular ATP concentrations observed in these conditions.
Collapse
Affiliation(s)
- Bruno Guigas
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology, UCL 7529, avenue Hippocrate 75, 1200 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 2005; 244:259-66. [PMID: 15766777 DOI: 10.1016/j.femsle.2005.01.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/29/2004] [Accepted: 01/28/2005] [Indexed: 10/25/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 has four enzyme II (EII) genes of the phosphotransferase system in its genome encoding transporters for sucrose, glucose, fructose, and an unidentified EII. To analyze the function of these EII genes, they were inactivated via homologous recombination and the resulting mutants characterized for sugar utilization. Whereas the sucrose EII was the only transport system for sucrose in C. glutamicum, fructose and glucose were each transported by a second transporter in addition to their corresponding EII. In addition, the ptsF ptsG double mutant carrying deletions in the EII genes for fructose and glucose accumulated fructose in the culture broth when growing on sucrose. As no fructokinase gene exists in the C. glutamicum genome, the fructokinase gene from Clostridium acetobutylicum was expressed in C. glutamicum and resulted in the direct phosphorylation of fructose without any fructose efflux. Accordingly, since fructokinase could direct fructose flux to the pentose phosphate pathway for the supply of NADPH, fructokinase expression may be a potential strategy for enhancing amino acid production.
Collapse
Affiliation(s)
- Min-Woo Moon
- Laboratory of Microbial Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-600, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Barrière C, Veiga-da-Cunha M, Pons N, Guédon E, van Hijum SAFT, Kok J, Kuipers OP, Ehrlich DS, Renault P. Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site. J Bacteriol 2005; 187:3752-61. [PMID: 15901699 PMCID: PMC1112048 DOI: 10.1128/jb.187.11.3752-3761.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to its role as carbon and energy source, fructose metabolism was reported to affect other cellular processes, such as biofilm formation by streptococci and bacterial pathogenicity in plants. Fructose genes encoding a 1-phosphofructokinase and a phosphotransferase system (PTS) fructose-specific enzyme IIABC component reside commonly in a gene cluster with a DeoR family regulator in various gram-positive bacteria. We present a comprehensive study of fructose metabolism in Lactococcus lactis, including a systematic study of fru mutants, global messenger analysis, and a molecular characterization of its regulation. The fru operon is regulated at the transcriptional level by both FruR and CcpA and at the metabolic level by inducer exclusion. The FruR effector is fructose-1-phosphate (F1P), as shown by combined analysis of transcription and measurements of the intracellular F1P pools in mutants either unable to produce this metabolite or accumulating it. The regulation of the fru operon by FruR requires four adjacent 10-bp direct repeats. The well-conserved organization of the fru promoter region in various low-GC gram-positive bacteria, including CRE boxes as well as the newly defined FruR motif, suggests that the regulation scheme defined in L. lactis could be applied to these bacteria. Transcriptome profiling of fruR and fruC mutants revealed that the effect of F1P and FruR regulation is limited to the fru operon in L. lactis. This result is enforced by the fact that no other targets for FruR were found in the available low-GC gram-positive bacteria genomes, suggesting that additional phenotypical effects due to fructose metabolism do not rely directly on FruR control, but rather on metabolism.
Collapse
Affiliation(s)
- Charlotte Barrière
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Collet JF, Stroobant V, Van Schaftingen E. The 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from Trypanosoma brucei: metal-ion dependency and phosphoenzyme formation. FEMS Microbiol Lett 2001; 204:39-44. [PMID: 11682175 DOI: 10.1111/j.1574-6968.2001.tb10859.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recombinant cofactor-independent phosphoglycerate mutase from Trypanosoma brucei was inactivated by EDTA, and reactivated by Co(2+) much more than by Mn(2+) or Fe(2+). It displayed a minor phosphoglycerate phosphatase activity, which was stimulated by Mn(2+) more than by Co(2+). Upon incubation with [(32)P]phosphoglycerate, radioactivity was incorporated into the enzyme, most particularly in the presence of Mn(2+) or Fe(2+). The phosphorylated residue was identified by tandem mass spectrometry as Ser74, a residue homologous to the phosphorylated serine in alkaline phosphatase. However, the rates of formation and of disappearance of this phosphoenzyme were quite low compared to the mutase reaction. This and other properties indicated that the observed phosphoenzyme is an intermediate in the minor phosphatase activity rather than in the phosphomutase reaction.
Collapse
Affiliation(s)
- J F Collet
- Laboratoire de Chimie Physiologique, Christian de Duve Institute of Cellular Pathology and Université Catholique de Louvain, UCL 75-39, B-1200 Brussels, Belgium
| | | | | |
Collapse
|