1
|
Kiribayeva A, Silayev D, Akishev Z, Baltin K, Aktayeva S, Ramankulov Y, Khassenov B. An impact of N-glycosylation on biochemical properties of a recombinant α-amylase from Bacillus licheniformis. Heliyon 2024; 10:e28064. [PMID: 38515717 PMCID: PMC10956057 DOI: 10.1016/j.heliyon.2024.e28064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Amylases are enzymes that are known to hydrolyze starch. High efficiency of amylolytic enzymes allows them to compete in the industry with the technology of chemical hydrolysis of starch. A Bacillus licheniformis strain with high amylolytic activity was isolated from soil and designated as T5. The gene encoding α-amylase from B. licheniformis T5 was successfully expressed in both Escherichia coli (rAmyT5-E) and Pichia pastoris (as rAmyT5-P). According to the study, the recombinant α-amylases rAmyT5-E and rAmyT5-P exhibited the highest activity at pH 6.0 and temperatures of 70 and 80 °C, respectively. Over 80% of the rAmyT5-E enzyme activity was preserved following incubation within the pH range of 5-9; the same was true for rAmyT5-P after incubation at pH 6-9. N-glycosylation reduced the thermal and pH stability of the enzyme. The specific activity and catalytic efficiency of the recombinant AmyT5 α-amylase were also diminished by N-glycosylation.
Collapse
Affiliation(s)
- Assel Kiribayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Dmitriy Silayev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Zhiger Akishev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Saniya Aktayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
2
|
Hussnaetter KP, Philipp M, Müntjes K, Feldbrügge M, Schipper K. Controlling Unconventional Secretion for Production of Heterologous Proteins in Ustilago maydis through Transcriptional Regulation and Chemical Inhibition of the Kinase Don3. J Fungi (Basel) 2021; 7:jof7030179. [PMID: 33802393 PMCID: PMC7999842 DOI: 10.3390/jof7030179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Heterologous protein production is a highly demanded biotechnological process. Secretion of the product to the culture broth is advantageous because it drastically reduces downstream processing costs. We exploit unconventional secretion for heterologous protein expression in the fungal model microorganism Ustilago maydis. Proteins of interest are fused to carrier chitinase Cts1 for export via the fragmentation zone of dividing yeast cells in a lock-type mechanism. The kinase Don3 is essential for functional assembly of the fragmentation zone and hence, for release of Cts1-fusion proteins. Here, we are first to develop regulatory systems for unconventional protein secretion using Don3 as a gatekeeper to control when export occurs. This enables uncoupling the accumulation of biomass and protein synthesis of a product of choice from its export. Regulation was successfully established at two different levels using transcriptional and post-translational induction strategies. As a proof-of-principle, we applied autoinduction based on transcriptional don3 regulation for the production and secretion of functional anti-Gfp nanobodies. The presented developments comprise tailored solutions for differentially prized products and thus constitute another important step towards a competitive protein production platform.
Collapse
|
3
|
Expression of Bacillus licheniformis α-amylase in Pichia pastoris without antibiotics-resistant gene and effects of glycosylation on the enzymic thermostability. 3 Biotech 2019; 9:427. [PMID: 31696032 DOI: 10.1007/s13205-019-1943-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022] Open
Abstract
Thermostable α-amylases are widely used in industry. The α-amylase from Bacillus licheniformis (BLA) with six potential glycosylation sites possessed excellent thermal and pH stability and high activity. Here, it was expressed in Pichia pastoris. The Pic-BLA-producing yeast without any antibiotics-resistant gene was cultivated in flasks and the amylase activity in fermentation supernatant reached 900 U/mL. The recombinant α-amylase Pic-BLA produced in P. pastoris was deeply glycosylated with 30% increase in molecular mass (MM). The deglycosylation treatment by Endoglycosidase H (Endo H) reduced the MM of Pic-BLA. Thermostability analysis showed that Pic-BLA and deglycosylated Pic-BLA were similar in heat tolerance. In order to eliminate the extra impact of Endo H, the BLA was also expressed in Escherichia coli to get non-glycosylated Eco-BLA. A comparative study between non-glycosylated Eco-BLA and glycosylated Pic-BLA showed no obvious difference in thermostability. It is speculated that the glycosylation has little effect on the thermostability of α-amylase BLA.
Collapse
|
4
|
Li L, Liu C, Qu M, Zhang W, Pan K, OuYang K, Song X, Zhao X. Characteristics of a recombinant Lentinula edodes endoglucanase and its potential for application in silage of rape straw. Int J Biol Macromol 2019; 139:49-56. [PMID: 31374269 DOI: 10.1016/j.ijbiomac.2019.07.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
An experiment was conducted to determine the characteristics of recombinant endoglucanase and its effects on rape straw silage. The endoglucanase from Lentinula edodes (LeCel12A) was produced in Pichia pastoris and shown maximum activity at 40 °C and pH 3.0. The LeCel12A exhibited preferential hydrolysis of carboxymethylcellulose. The activity of LeCel12A could be enhanced by MnCl2 in dose-dependent manners. Trp22 was a key amino acid affecting LeCel12A activity. The LeCel12A enhanced the hydrolysis of rape straw, rice straw, wheat straw, and corn straw. Supplemental LeCel12A increased lactic acid concentration and reduced lignocellulosic content of the rape straw silage. Though an increase in the saccharification efficiency of LeCel12A-treated rape straw silage was observed when the fibrolytic enzyme loading of hydrolysis system was enough, supplemental LeCel12A did not dramatically enhance the saccharification of rape straw silage in the current study. This study demonstrates that LeCel12A may be useful for improving the utilization of rape straw silage as an additive, but its supplemental dose, cost benefit, and consequent application possibility in biofuel production require careful consideration and further investigation.
Collapse
Affiliation(s)
- Lizhi Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Life science and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wenjing Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Kehui OuYang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
5
|
Palanikumar I, Katla S, Tahara N, Yui M, Zhang R, Ebihara A, Sivaprakasam S. Heterologous expression, purification, and functional characterization of recombinant ovine angiotensinogen in the methylotrophic yeast Pichia pastoris. Biotechnol Prog 2019; 35:e2866. [PMID: 31187608 DOI: 10.1002/btpr.2866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
Abstract
Angiotensinogen (AGT), a glycosylated plasma noninhibitory serpin, serves as a precursor for angiotensin peptides which regulate blood pressure and electrolyte balance. AGT is specifically cleaved by renin to produce angiotensin-I, the first product of the angiotensin-processing cascade. Ovine angiotensinogen (oAGT) is considered an effective substrate for human renin and consequently finds application in clinical renin assays. In this study, oAGT was cloned into the genome of Pichia pastoris and expressed under the control of alcohol oxidase (AOX1) promoter for high-level production. Compared to the shake flask study, the high cell density cultivation in bioreactor resulted in multifold increase in oAGT titer (420 ± 9.26 mg/L), which is its highest reported titer to date. We purified recombinant oAGT to homogeneity using two chromatography steps. The characterization studies revealed oAGT underwent a two-state transition during thermal denaturation process as assessed by differential scanning fluorimetry, and the melting temperature (Tm ) of the purified oAGT from P. pastoris was 48.3°C. Renin reactivity with recombinant oAGT from P. pastoris (0.51 nM angiotensin-I/min) was slightly lower than the renin reactivity for recombinant oAGT from Escherichia coli (0.67 nM angiotensin-I/min), possibly because of its mannosylated N-glycan content. Enhanced production of functionally active recombinant oAGT using P. pastoris expression system reported in this study envisage the effective utilization of oAGT in clinical studies related to renin in near future.
Collapse
Affiliation(s)
| | - Srikanth Katla
- BioPAT Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Nariyasu Tahara
- Graduate School of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Midori Yui
- Graduate School of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Rui Zhang
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| | | |
Collapse
|
6
|
Law KH, Tsang MW, Wong YK, Tsang MS, Lau PY, Wong KY, Ho KP, Leung YC. Efficient production of secretory Streptomyces clavuligerus β-lactamase inhibitory protein (BLIP) in Pichia pastoris. AMB Express 2018; 8:64. [PMID: 29679312 PMCID: PMC5910447 DOI: 10.1186/s13568-018-0586-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
β-Lactamase inhibitory protein (BLIP), a low molecular weight protein from Streptomyces clavuligerus, has a wide range of potential applications in the fields of biotechnology and pharmaceutical industry because of its tight interaction with and potent inhibition on clinically important class A β-lactamases. To meet the demands for considerable amount of highly pure BLIP, this study aimed at developing an efficient expression system in eukaryotic Pichia pastoris (a methylotrophic yeast) for production of BLIP. With methanol induction, recombinant BLIP was overexpressed in P. pastoris X-33 and secreted into the culture medium. A high yield of ~ 300 mg/L culture secretory BLIP recovered from the culture supernatant without purification was found to be > 90% purity. The recombinant BLIP was fully active and showed an inhibition constant (Ki) for TEM-1 β-lactamase (0.55 ± 0.07 nM) comparable to that of the native S. clavuligerus-expressed BLIP (0.5 nM). Yeast-produced BLIP in combination with ampicillin effectively inhibited the growth of β-lactamase-producing Gram-positive Bacillus. Our approach of expressing secretory BLIP in P. pastoris gave 71- to 1200-fold more BLIP with high purity than the other conventional methods, allowing efficient production of large amount of highly pure BLIP, which merits fundamental science studies, drug development and biotechnological applications.
Collapse
|
7
|
Li H, Rasmussen MI, Larsen MR, Guo Y, Jers C, Palmisano G, Mikkelsen JD, Kirpekar F. AutomatedN-glycan profiling of a mutantTrypanosoma rangelisialidase expressed inPichia pastoris, using tandem mass spectrometry and bioinformatics. Glycobiology 2015; 25:1350-61. [DOI: 10.1093/glycob/cwv063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/07/2015] [Indexed: 12/23/2022] Open
|
8
|
Xi H, Tian Y, Zhou N, Zhou Z, Shen W. Characterization of an N-glycosylated Bacillus subtilis leucine aminopeptidase expressed in Pichia pastoris. J Basic Microbiol 2014; 55:236-46. [PMID: 25389014 DOI: 10.1002/jobm.201400368] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/05/2014] [Indexed: 01/21/2023]
Abstract
Aminopeptidase is an important flavorsome especially in protein hydrolysate debittering by removing hydrophobic amino acid residue at the N-terminal end. Besides, it is also applied to preparation of active peptides and analysis of protein sequence. In this study, leucine aminopeptidase from Bacillus subtilis was cloned and expressed in Pichia pastoris, a widely used heterologous protein expression host. Then it was purified and characterized. After methanol induction for 96 h, the aminopeptidase activity in culture supernatant reached 28.4 U ml(À1) , which was 7.1 times that of wild strain B. subtilis Zj016. The optimal temperature and pH of the purified recombinant enzyme were 60 °C and 8.5, respectively. The purified aminopeptidase was stable within 30-60 °C and pH 8.0-9.0. It was intensively inhibited by Ni(2β) , Ca(2β) , DL-dithiothreitol (DTT) and ethylene diamine tetraacetic acid (EDTA), but activated by Co(2β) . The Km toward leucine-p-nitroanilines (Leu-pNA) of the enzyme was 0.97 mM. The sequence analysis of aminopeptidase indicated three potential N-glycosylation sites and it was further verified via MALDI-TOF-MS analysis. Consequently, the N-glycosylated aminopeptidase exhibited higher thermostability and catalytic efficiency. The purified enzyme exhibited two bands through sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) while a single band can be identified when the enzyme was deglycosylated. Circular dichroism spectroscopy indicated that the secondary structure of recombinant aminopeptidase was similar to the wild-type.
Collapse
Affiliation(s)
- Hongxing Xi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | | | | | | |
Collapse
|
9
|
Sibirny A, Madzak C, Fickers P. Genetic engineering of nonconventional yeasts for the production of valuable compounds. Microb Biotechnol 2014. [DOI: 10.1201/b17587-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
10
|
Miyazaki T, Yashiro H, Nishikawa A, Tonozuka T. The side chain of a glycosylated asparagine residue is important for the stability of isopullulanase. J Biochem 2014; 157:225-34. [PMID: 25359784 DOI: 10.1093/jb/mvu065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-glycosylation has been shown to be important for the stability of some glycoproteins. Isopullulanase (IPU), a polysaccharide-hydrolyzing enzyme, is a highly N-glycosylated protein, and IPU deglycosylation results in a decrease in thermostability. To investigate the function of N-glycan in IPU, we focused on an N-glycosylated residue located in the vicinity of the active site, Asn448. The thermostabilities of three IPU variants, Y440A, N448A and S450A, were 0.5-8.4°C lower than the wild-type enzyme. The crystal structure of endoglycosidase H (Endo H)-treated N448A variant was determined. There are four IPU molecules, Mol-A, B, C and D, in the asymmetric unit. The conformation of a loop composed of amino acid residues 435-455 in Mol-C was identical to wild-type IPU, whereas the conformations of this loop in Mol-A, Mol-B and Mol-D were different from each other. These results suggest that the Asn448 side chain is primarily important for the stability of IPU. Our results indicate that mutation of only N-glycosylated Asn residue may lead to incorrect conclusion for the evaluation of the function of N-glycan. Usually, the structures of N-glycosylation sites form an extended configuration in IPU; however, the Asn448 site had an atypical structure that lacked this configuration.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Yashiro
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
11
|
Qin Y, Qu Y. Asn124 of Cel5A from Hypocrea jecorina not only provides the N-glycosylation site but is also essential in maintaining enzymatic activity. BMB Rep 2014; 47:256-61. [PMID: 24286316 PMCID: PMC4163860 DOI: 10.5483/bmbrep.2014.47.5.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 11/24/2022] Open
Abstract
To investigate the function of N-glycosylation of Cel5A (endoglucanase II) from Hypocrea jecorina, two N-glycosylation site deletion Cel5A mutants (rN124D and rN124H) were expressed in Saccharomyces cerevisiae. The weights of these recombinant mutants were 54 kDa, which were lower than that of rCel5A. This result was expected to be attributed to deglycosylation. The enzyme activity of rN124H was greatly reduced to 60.6% compared with rCel5A, whereas rN124D showed slightly lower activity (10%) than that of rCel5A. rN124D and rN124H showed different thermal stabilities compared with the glycosylated rCel5A, especially at lower pH value. Thermal stabilities were reduced and improved for rN124D and rN124H, respectively. Circular dichroism spectroscopy showed that the modification of secondary structure by mutation may be the reason for the change in enzymatic activity and thermal stability. [BMB Reports 2014; 47(5): 256-261]
Collapse
Affiliation(s)
- Yuqi Qin
- National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, 27, Shanda South Road, Jinan, Shandong 250100, China
| | - Yinbo Qu
- National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, 27, Shanda South Road, Jinan, Shandong 250100, China
| |
Collapse
|
12
|
Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations. Appl Microbiol Biotechnol 2014; 98:4521-31. [DOI: 10.1007/s00253-013-5483-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 11/26/2022]
|
13
|
Jia D, Li J, Liu L, Zhang D, Yang Y, Du G, Chen J. High-level expression, purification, and enzymatic characterization of truncated poly(vinyl alcohol) dehydrogenase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 2012; 97:1113-20. [PMID: 22406863 DOI: 10.1007/s00253-012-3986-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/11/2012] [Accepted: 02/17/2012] [Indexed: 11/30/2022]
Abstract
A 1,965-bp fragment encoding a poly(vinyl alcohol) dehydrogenase (PVADH) from Sphingopyxis sp. 113P3 was synthesized based on the codon bias of the methylotrophic yeast Pichia pastoris. The fragment was then amplified by polymerase chain reaction and inserted into the site between EcoRI and NotI sites in pPIC9K, which was under the control of the AOX1 promoter and α-mating factor signal sequence from Saccharomyces cerevisiae. The recombinant plasmid, designated as pPIC9K-PVADH, was linearized using SalI and transformed into P. pastoris GS115 by electroporation. The PVADH activity reached 55 U/mL in a shake flask and 902 U/mL in a 3-L bioreactor. Surprisingly, the sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and N-terminal sequencing indicated that the secreted PVADH was truncated, and it had only 548 amino acid residues (an 81-amino acid sequence from the secreted protein was cleaved). The optimum pH and temperature ranges for the truncated PVADH were 7.0-8.0 and 41-53 °C, respectively. The activation energy of the recombinant truncated PVADH was approximately 10.36 kcal/mol between 29 and 41 °C. Both Ca(2+) and Mg(2+) had stimulating effects on the activity of PVADH. With PVA1799 as the substrate, the truncated PVADH had a Michaelis constant (K (m)) of 1.89 mg/mL and a maximum reaction rate (V (max)) of 34.9 nmol/(min mg protein). To the best of our knowledge, this is the first report on the expression of PVADH in P. pastoris, and the achieved PVADH yield is the highest ever reported.
Collapse
Affiliation(s)
- Dongxu Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
When planning any heterologous expression experiment, the very first critical step is related to the design of the overall strategy, hence to the selection of the most adapted expression vector. The very flexible Pichia pastoris system offers a broad range of possibilities for the production of secreted, endogenous or membrane proteins thanks to a combination of various plasmid backbones, selection markers, promoters and fusion sequences introduced into dedicated host strains. The present chapter provides some guidelines on the choice of expression vectors and expression strategies. It also brings the reader a complete toolbox from which plasmids and fusion sequences can be picked and assembled to set up appropriate expression vectors. Finally, it provides standard starting protocols for the preparation of the selected plasmids and their use for host strain transformation.
Collapse
Affiliation(s)
- Christel Logez
- Département Récepteurs et Protéines Membranaires, Centre National de la Recherche Scientifique, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | | | | | | |
Collapse
|
15
|
|
16
|
de Barros MC, do Nascimento Silva R, Ramada MHS, Galdino AS, de Moraes LMP, Torres FAG, Ulhoa CJ. The influence of N-glycosylation on biochemical properties of Amy1, an α-amylase from the yeast Cryptococcus flavus. Carbohydr Res 2009; 344:1682-6. [DOI: 10.1016/j.carres.2009.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 11/16/2022]
|
17
|
Xu Y, Sun J, Xu Z. Modification of a gene encoding hybrid xylanase and its expression in Pichia pastoris. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0035-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhuge B, Du GC, Shen W, Zhuge J, Chen J. Expression of a Bacillus subtilis pectate lyase gene in Pichia pastoris. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001-2002. MASS SPECTROMETRY REVIEWS 2008; 27:125-201. [PMID: 18247413 DOI: 10.1002/mas.20157] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review is the second update of the original review on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates that was published in 1999. It covers fundamental aspects of the technique as applied to carbohydrates, fragmentation of carbohydrates, studies of specific carbohydrate types such as those from plant cell walls and those attached to proteins and lipids, studies of glycosyl-transferases and glycosidases, and studies where MALDI has been used to monitor products of chemical synthesis. Use of the technique shows a steady annual increase at the expense of older techniques such as FAB. There is an increasing emphasis on its use for examination of biological systems rather than on studies of fundamental aspects and method development and this is reflected by much of the work on applications appearing in tabular form.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
20
|
Expression of Recombinant Proteins in Pichia Pastoris. Appl Biochem Biotechnol 2007; 142:105-24. [PMID: 18025573 DOI: 10.1007/s12010-007-0003-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/16/2006] [Accepted: 05/23/2006] [Indexed: 10/23/2022]
|
21
|
Ogawa M, Renesto P, Azza S, Moinier D, Fourquet P, Gorvel JP, Raoult D. Proteome analysis ofRickettsia felis highlights the expression profile of intracellular bacteria. Proteomics 2007; 7:1232-48. [PMID: 17385819 DOI: 10.1002/pmic.200600721] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proteome of Rickettsia felis, an obligate intracellular bacterium responsible for spotted fever, was analyzed using two complementary proteomic approaches: 2-DE coupled with MALDI-TOF, and SDS-PAGE with nanoLC-MS/MS. This strategy allowed identification of 165 proteins and helped to answer some questions raised by the genome sequence of this bacterium. We successfully identified potential virulence factors including two putative adhesins, four proteins of the type IV secretion system, four Sca autotransporters, four components of ABC transporters, some R. felis-specific proteins, and one antitoxin of the toxin-antitoxin system. Notably, the antitoxin was the first to be identified in intracellular bacteria. Only one protein containing rickettsia palindromic repeats was found, whereas none of the split genes, transposases, or tetratricopeptide/ankyrin repeats were detectably expressed. Comparison of the protein expression profiles of R. felis and 23 other bacterial species according to functional categories showed that intracellular bacteria express more proteins related to translation, especially ribosomal proteins. However, the remaining bacteria express more proteins related to energy production and carbohydrate/amino acid metabolism. In conclusion, this study reveals R. felis virulence factor expression and highlights the unique protein expression profile of intracellular bacteria.
Collapse
Affiliation(s)
- Motohiko Ogawa
- Unité des Rickettsies, CNRS-UMR 6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Daly R, Hearn MTW. Expression of the human activin type I and II receptor extracellular domains in Pichia pastoris. Protein Expr Purif 2005; 46:456-67. [PMID: 16309921 DOI: 10.1016/j.pep.2005.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/28/2005] [Accepted: 10/01/2005] [Indexed: 11/21/2022]
Abstract
Methods for the expression in Pichia pastoris and purification of the human activin receptor type I and II extracellular domains (ARIa/ARIb-ECDs, ARIIA/ARIIB-ECDs) are described. Key experimental aspects are also documented of the vector transformation methodology and the binding characteristics of these ECDs with activin A and inhibin. The cDNA constructs for these ECDs contained a C-terminal His6-tag with either the native signal (N) or the yeast alpha mating factor (alphaMF) sequence and were introduced into the pPICZ expression vector either as a single-copy or as a four-copy expression cassette. Hyper-resistant transformants (zeo(R): 500 microg/mL) generated from the cassette containing a single copy of the expression vector gave the stronger signal intensity with a DNA dot-blot screening assay. These transformants also produced higher quantities of the corresponding recombinant protein compared to transformants using the four-copy cassette vector. All receptor-ECD proteins expressed were found to be heterogeneously glycosylated, whereby the ARIIA-ECD and ARIIB-ECD had undergone two Asn-linked glycosylation events and the ARIb-ECD a single event. By SDS-PAGE, the de-glycosylated proteins migrated larger than the expected core size, indicating that they may have undergone O-linked glycosylation. Biacore-based procedures with the glycosylated and de-glycosylated ARIIA-ECD were employed to determine the kinetic and equilibrium binding parameters for the interaction with activin A and inhibin. The glycosylated ARIIA-ECD bound to activin A with a KD of 11.9 nM and inhibin with a KD of 21.1 nM. Although glycosylation of ARIIA-ECD was not strictly required for high affinity interactions with activin A or inhibin, it markedly improved the overall stability of the ARIIA-ECD.
Collapse
Affiliation(s)
- Rachel Daly
- ARC Special Research Centre for Green Chemistry, Monash University, Wellington Road, Clayton, Vic. 3800, Australia
| | | |
Collapse
|
23
|
Nakamura T, Zámocký M, Zdráhal Z, Chaloupková R, Monincová M, Prokop Z, Nagata Y, Damborský J. Expression of glycosylated haloalkane dehalogenase LinB in Pichia pastoris. Protein Expr Purif 2005; 46:85-91. [PMID: 16216524 DOI: 10.1016/j.pep.2005.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Heterologous expression of the bacterial enzyme haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 in methylotrophic yeast Pichia pastoris is reported. The haloalkane dehalogenase gene linB was subcloned into the pPICZalphaA vector and integrated into the genome of P. pastoris. The recombinant LinB secreted from the yeast was purified to homogeneity and biochemically characterized. The deglycosylation experiment and mass spectrometry measurements showed that the recombinant LinB expressed in P. pastoris is glycosylated with a 2.8 kDa size of high mannose core. The specific activity of the glycosylated LinB was 15.6 +/- 3.7 micromol/min/mg of protein with 1,2-dibromoethane and 1.86 +/- 0.36 micromol/min/mg of protein with 1-chlorobutane. Activity and solution structure of the protein produced in P. pastoris is comparable with that of recombinant LinB expressed in Escherichia coli. The melting temperature determined by the circular dichroism (41.7+/-0.3 degrees C for LinB expressed in P. pastoris and 41.8 +/- 0.3 degrees C expressed in E. coli) and thermal stability measured by specific activity to 1-chlorobutane were also similar for two enzymes. Our results show that LinB can be extracellularly expressed in eukaryotic cell and glycosylation had no effect on activity, protein fold and thermal stability of LinB.
Collapse
Affiliation(s)
- Takashi Nakamura
- Loschmidt Laboratories, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Daly R, Hearn MTW. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 2005; 18:119-38. [PMID: 15565717 DOI: 10.1002/jmr.687] [Citation(s) in RCA: 524] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of the methylotrophic yeast, Pichia pastoris, as a cellular host for the expression of recombinant proteins has become increasing popular in recent times. P. pastoris is easier to genetically manipulate and culture than mammalian cells and can be grown to high cell densities. Equally important, P. pastoris is also a eukaryote, and thereby provides the potential for producing soluble, correctly folded recombinant proteins that have undergone all the post-translational modifications required for functionality. Additionally, linearized foreign DNA can be inserted in high efficiency via homologous recombination procedures to generate stable cell lines whilst expression vectors can be readily prepared that allow multiple copies of the target protein, multimeric proteins with different subunit structures, or alternatively the target protein and its cognate binding partners, to be expressed. A further benefit of the P. pastoris system is that strong promoters are available to drive the expression of a foreign gene(s) of interest, thus enabling production of large amounts of the target protein(s) with relative technical ease and at a lower cost than most other eukaryotic systems. The purpose of this review is to summarize important developments and features of this expression system and, in particular, to examine from an experimental perspective the genetic engineering, protein chemical and molecular design considerations that have to be taken into account for the successful expression of the target recombinant protein. Included in these considerations are the influences of P. pastoris strain selection; the choice of expression vectors and promoters; procedures for the transformation and integration of the vectors into the P. pastoris genome; the consequences of rare codon usage and truncated transcripts; and techniques employed to achieve multi-copy integration numbers. The impact of the alcohol oxidase (AOX) pathways in terms of the mut+ and mut(s) phenotypes, intracellular expression and folding pathways is examined. The roles of pre-pro signal sequences such as the alpha mating factor (alpha-MF) and the Glu-Ala repeats at the kex2p cleavage site on the processing of the protein translate(s) have also been considered. Protocols for the generation of protein variants and mutants for screening for orphan cognate binding partners and the use of experimental platforms addressing the molecular recognition behaviour of recombinant proteins such as the extracellular domains of transmembrane receptors with their physiological ligands are also described. Finally, the palindromic patterns of glycosylation that can occur with these expression systems, in terms of the role and location of the sequon in the primary structure, the number of mannose units and the types of oligosaccharides incorporated as Asn- or O-linkages and their impact on the thermostability and immunogenicity of the recombinant protein are considered. Procedures to prevent glycosylation through manipulation of cell culture conditions or via enzymatic and site-directed mutagenesis methods are also discussed.
Collapse
Affiliation(s)
- Rachel Daly
- ARC Special Research Centre for Green Chemistry, Monash University, Building 23, Wellington Road, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
25
|
Sørensen JF, Kragh KM, Sibbesen O, Delcour J, Goesaert H, Svensson B, Tahir TA, Brufau J, Perez-Vendrell AM, Bellincampi D, D'Ovidio R, Camardella L, Giovane A, Bonnin E, Juge N. Potential role of glycosidase inhibitors in industrial biotechnological applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:275-87. [PMID: 14871668 DOI: 10.1016/j.bbapap.2003.09.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 09/30/2003] [Indexed: 10/26/2022]
Abstract
The nutrient content of food and animal feed may be improved through new knowledge about enzymatic changes in complex carbohydrates. Enzymatic hydrolysis of complex carbohydrates containing alpha or beta glycosidic bonds is very important in nutrition and in several technological processes. These enzymes are called glycosidases (Enzyme Class 3.2.1) and include amylases, pectinases and xylanases. They are present in many foods such as cereals, but their microbial analogues are often produced and added in many food processes, for instance to improve the shelf-life of bakery products, clear beer, produce glucose, fructose or dextrins, hydrolyse lactose, modify food pectins, or improve processes. However, many plant foods also contain endogenous inhibitors, which reduce the activity of glycosidases, in particular, proteins, peptides, complexing agents and phenolic compounds. The plant proteinaceous inhibitors of glycosidases are in focus in this review whose objective is to report the effect and implications of these inhibitors in industrial processes and applications. These studies will contribute to the optimisation of industrial processes by using modified enzymes not influenced by the natural inhibitors. They will also allow careful selection of raw material and reaction conditions, and future development of new genetic varieties low in inhibitors. These are all new and very promising concepts for the food and feed sector.
Collapse
Affiliation(s)
- Jens Frisbaek Sørensen
- Section Enzyme Development, Danisco Cultor A/S, Edwin Rahrsvej 38, DK-8220 Brabrand, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bagger HL, Fuglsang CC, Westh P. Preferential binding of two compatible solutes to the glycan moieties of Peniophora lycii phytase. Biochemistry 2003; 42:10295-300. [PMID: 12939159 DOI: 10.1021/bi034693i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulation of hydration behavior, and the concomitant effects on solubility and other properties, has been suggested as a main function of protein glycosylation. In this work, we have studied the hydration of the heavily glycosylated Peniophora lycii phytase in solutions (0.15-1.1 m) of the two compatible solutes glycerol and sorbitol. Osmometric measurements showed that glycerol preferentially binds to phytase (i.e., glycerol-glycoprotein interactions are more favorable than water-glycoprotein interactions resulting in a preferential accumulation of glycerol near the protein interface), while sorbitol is preferentially excluded from the hydration sphere (water-glycoprotein interactions are the more favorable). To assess contributions from carbohydrate and peptide moieties, respectively, we compared phytase (Phy) and a modified, yet enzymatically active form (dgPhy) in which 90% of the glycans had been removed. This revealed that both polyols showed a pronounced and approximately equal degree of preferential binding to the carbohydrate moiety. This preferential binding of polyols to glycans is in contrast to the exclusion from peptide interfaces observed here (for dgPhy) and in numerous previous reports on nonglycosylated proteins. Despite the distinct differences between peptide and carbohydrate groups, glycosylation had no effect on the stabilizing action provided by glycerol and sorbitol. On the basis of this, it was concluded that the carbohydrate mantle of Phy is equally accessible in the native and thermally denatured states, respectively (most likely fully accessible in both), and thus that its interactions with compatible solutes have little or no effect on conformational equilibria of the glycoprotein. For solubility and aggregation equilibria, on the other hand, the results suggest a polyol-induced stabilization of monomeric forms.
Collapse
Affiliation(s)
- Heidi L Bagger
- Department of Life Sciences and Chemistry, Roskilde University, Building 18.1, P.O. Box 260, DK-4000 Roskilde, Denmark
| | | | | |
Collapse
|
27
|
Enhanced Amylolytic Activity in Germinating Barley through Synthesis of a Bacterial Alpha -amylase. J Cereal Sci 2003. [DOI: 10.1006/jcrs.2002.0477] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|